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A search for time-integrated CP violation in the Cabibbo-suppressed decay D0 → π+π−π+π− is 
performed using an unbinned, model-independent technique known as the energy test. This is the first 
application of the energy test in four-body decays. The search is performed for P -even CP asymmetries 
and, for the first time, is extended to probe the P -odd case. Using proton–proton collision data 
corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector at centre-of-
mass energies of 

√
s = 7 TeV and 8 TeV, the world’s best sensitivity to CP violation in this decay is 

obtained. The data are found to be consistent with the hypothesis of CP symmetry with a p-value of 
(4.6 ± 0.5)% in the P -even case, and marginally consistent with a p-value of (0.6 ± 0.2)% in the P -odd 
case, corresponding to a significance for CP non-conservation of 2.7 standard deviations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The decay D0 → π+π−π+π− (charge-conjugate decays are 
implied unless stated otherwise) proceeds via a singly Cabibbo-
suppressed c → dud transition with an admixture from a c → ug
gluonic-penguin transition. Within the Standard Model (SM), these 
amplitudes have different weak phases, and the interference be-
tween them may give rise to a violation of the charge-parity (CP) 
symmetry in the decay. Another necessary condition for this di-
rect CP violation to occur is interference of at least two ampli-
tudes with different strong phases. The strong phase differences 
are known to be sizeable in charm decays and can enter through 
the resonances that abundantly contribute to the four-body final 
states. The sensitivity to CP violation is usually best for decays 
where the strong phases between interfering resonances have large 
differences. A rich spectrum of resonances contributes to the de-
cay D0 → π+π−π+π− , which according to the amplitude analysis 
performed by the FOCUS collaboration [1], is dominated by the 
amplitudes for D0 → a1(1260)+π− with a1(1260)+ → ρ0(770)π+
and for D0 → ρ0(770)ρ0(770).

In the SM, violation of the CP symmetry in the charm sector 
is expected at or below the O(10−3) level [2]. Contributions from 
particles that are proposed to exist in extensions of the SM may 
participate in higher-order loop contributions (penguin diagrams) 
and enhance the level of CP violation. Multibody decays, such as 
D0 → π+π−π+π− , allow the CP asymmetries to be probed across 
the phase space of the decay, and these local CP asymmetries may 
be larger than global CP asymmetries.

The analysis of D0 → π+π−π+π− is primarily sensitive to 
direct CP violation. In addition to this direct CP violation, the time-
integrated CP asymmetry in D0 → π+π−π+π− decays can also 
receive an indirect contribution arising from either D0–D0 mixing 
or interference between direct decays and decays following mixing. 
While direct CP asymmetry depends on the decay mode, indirect 
CP violation is expected to be universal within the SM. The time-
dependent measurements of D0 → π−π+ , K − K + decays constrain 
the indirect CP asymmetry below the O(10−3) level [3], which is 
beyond the sensitivity of this analysis.

Previously, the most sensitive search for CP violation in the 
D0 → π+π−π+π− decay was performed by the LHCb collabora-
tion with data collected in 2011 [4]. A binned χ2 technique (SCP) 
was used to exclude CP-violating effects at the 10% level. Four-
body decays require five independent variables to fully represent 
the phase space. Consequently, binned analyses will have a trade-
off between minimising the number of bins, in order to maximise 
the number of events per bin, and retaining sensitivity to the in-
terference between all contributing resonances. The measurement 
presented here includes data collected in 2012, resulting in a sig-
nal sample that is about three times larger than in the previous 
LHCb analysis. The method exploited here, known as the energy 
test, is an unbinned technique, which is advantageous in the anal-
ysis of multibody decays.

The energy test was applied for the first time to search for 
CP violation in decays of D0 → π−π+π0 [5]; here we present 
its first application to four-body decays. The energy test is used 
to assess the compatibility of the observed data with CP symme-
try. It is sensitive to local CP violation in the phase space and not 
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to global asymmetries, which may also arise from different pro-
duction cross-sections of D0 and D0 mesons at a proton–proton 
collider. The method identifies the phase space regions in which 
CP violation is observed. Being model-independent, this method 
neither identifies which amplitudes contribute to the observed 
asymmetry nor measures the actual asymmetry. Consequently, a 
model-dependent amplitude analysis of D0 and D0 decays would 
be required if evidence for a non-zero CP asymmetry is obtained.

The analysis presented here probes separately both P -even and 
P -odd CP asymmetries. The P -even test is performed through 
the comparison of the distribution of events in the D0 and D0

phase spaces, characterised by squared invariant masses. Addition-
ally characterising the events using a triple product of final-state 
particle momenta [6–8] gives sensitivity to P -odd amplitudes, and 
thus allows the first test for P -odd CP asymmetries in an unbinned 
model-independent technique.

2. Detector and reconstruction

The LHCb detector [9,10] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed for the 
study of particles containing b or c quarks. The detector includes 
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area 
silicon-strip detector located upstream of a dipole magnet with a 
bending power of about 4 Tm, and three stations of silicon-strip 
detectors and straw drift tubes placed downstream of the magnet. 
The tracking system provides a measurement of momentum, p, of 
charged particles with a relative uncertainty that varies from 0.5% 
at low momentum to 1.0% at 200 GeV/c. The minimum distance of 
a track to a primary pp interaction vertex (PV), the impact param-
eter (IP), is measured with a resolution of (15 + 29/pT) μm, where 
pT is the component of the momentum transverse to the beam, in 
GeV/c. Different types of charged hadrons are distinguished using 
information from two ring-imaging Cherenkov detectors. Photons, 
electrons and hadrons are identified by a calorimeter system con-
sisting of scintillating-pad and preshower detectors, an electromag-
netic calorimeter and a hadronic calorimeter. Muons are identified 
by a system composed of alternating layers of iron and multiwire 
proportional chambers.

This analysis uses the data from pp collisions collected by the 
LHCb experiment in 2011 and 2012 corresponding to integrated lu-
minosities of, respectively, 1 fb−1 and 2 fb−1 at centre-of-mass en-
ergies of 7 TeV and 8 TeV. The polarity of the dipole magnet is re-
versed periodically throughout data-taking. The configuration with 
the magnetic field pointing upwards (downwards), bends positively 
(negatively) charged particles in the horizontal plane towards the 
centre of the LHC. Similar amounts of data were recorded with 
each polarity, which reduces the effect of charge-dependent detec-
tion and reconstruction efficiencies on results obtained from the 
full data sample.

In the simulation, pp collisions are generated using Pythia

8 [11] with a specific LHCb configuration [12]. Decays of hadronic 
particles are described by EvtGen [13]. The interaction of the 
generated particles with the detector and its response are imple-
mented using the Geant4 toolkit [14] as described in Ref. [15].

The online event selection is performed by a trigger, which con-
sists of a hardware stage, based on high-pT signatures from the 
calorimeter and muon systems, followed by a two-level software 
stage. Events are required to pass both hardware and software trig-
ger levels. The software trigger at its first level applies partial event 
reconstruction. It requires at least one good quality track associ-
ated with a particle having high pT and not originating from a PV.

A second-level software trigger, optimised for four-body had-
ronic charm decays, fully reconstructs D0 → π+π−π+π− candi-

dates coming from D∗+ → D0π+
s decays. The charge of the soft 

pion (πs) tags the flavour of the D mesons at production, which 
is needed as π+π−π+π− is a self-conjugate final state acces-
sible to both D0 and D0 decays. The trigger selection ensures 
the suppression of combinatorial background while minimising the 
distortion of the acceptance in the phase space of the decay. The 
trigger requires a four-track secondary vertex with all tracks being 
of good quality and passing minimum momentum and transverse 
momentum requirements. The pions from the candidate D0 de-
cay are required to have a large impact parameter significance 
(χ2

IP) with respect to all PVs, where χ2
IP is defined as the differ-

ence in the vertex-fit χ2 of a PV reconstructed with and without 
the considered track. A part of the data collected in 2011 was 
taken with a different second-level trigger selection. In this selec-
tion only D0 → π+π−π+π− candidates are reconstructed while 
the D∗+ reconstruction is performed only during the offline selec-
tion. For a part of the data collected in 2012, additional events 
were selected in the trigger from the partial reconstruction of 
D0 → π+π−π+π− candidates arising from D∗+ → D0π+

s decays, 
using only information from one π+π− pair and a soft pion.

3. Offline event selection

In the offline selection, signal candidates are required to be as-
sociated to candidates that passed the online selection described 
in the previous section. In addition, the offline selection imposes 
more stringent kinematic criteria than those applied in the trigger. 
The D∗+ and D0 candidates must have pT > 500 MeV/c. All the 
candidate pion tracks, those from the D0 decay products and the 
πs mesons, are required to have pT > 350 MeV/c and p > 3 GeV/c
to reduce the combinatorial background. The candidate D0 decay 
products must form a good quality vertex. As a consequence of 
the non-negligible D0 lifetime, the D0 decay vertex should typ-
ically be significantly displaced from the PV; this is ensured by 
applying a selection on the significance of the D0 candidate flight 
distance. Charm mesons from b hadron decays have larger IPs due 
to the comparatively long b hadron lifetimes. This secondary charm 
contribution is suppressed by imposing an upper limit on the χ2

IP
of the D0 candidate. Background from D0 → K −π+π−π+ decays, 
with a kaon misidentified as a pion, is reduced by placing tight 
requirements on the π± particle identification based on the ring-
imaging Cherenkov detectors. The contribution of the Cabibbo-
favoured D0 → K 0

S π+π− decay is found to be below the percent 
level. As investigated in Ref. [4], partially reconstructed or misre-
constructed multibody D(s) decays (e.g., decays with a missing pion 
or a kaon misidentified as pion) do not give rise to peaking back-
grounds under the D0 → π+π−π+π− signal.

Constraints on the decay kinematics are applied to improve 
mass and momentum resolutions. The four pions from the D0 de-
cay are constrained to come from a common vertex and the decay 
vertex of the D∗+ candidate is constrained to coincide with its 
PV [16]. These constraints are applied in the determination of the 
mass difference, �m, between the D0 and the D∗+ . The D0 is con-
strained to its nominal mass in the determination of the kinemat-
ics in the D0 → π+π−π+π− decay. A requirement on fit quality 
for the D∗+ vertex fits efficiently suppresses combinatorial back-
ground. This requirement also suppresses the contribution from 
D∗+ mesons originating from long-lived b hadrons. The remain-
ing component in the analysis from this source is not sensitive to 
CP asymmetries in b hadrons as the flavour tag is obtained from 
the charge of the πs in the decay of the D∗+ meson.

The πs is a low-momentum particle, with the consequence that 
the large deflection in the magnetic field leads to different accep-
tances for the two charges. Consequently, the soft pion is restricted 
to the region where the detection asymmetry is small. This is 
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Fig. 1. Distribution of �m with fit overlaid for the selected D∗+ candidates in the 
2012 data. The data points and the contributions from signal, background, and their 
total obtained from the fit are shown.

achieved through the application of fiducial cuts on the soft pion 
momentum, following Ref. [17]. As the kinematics of the slow pion 
are largely uncorrelated with the D0 phase space, the πs detec-
tion asymmetry would result in a global asymmetry to which this 
analysis is not sensitive. There are, however, differences in the de-
tection efficiencies of the D0 and D0 daughters that may introduce 
additional asymmetries localised in the phase space of D0 decays, 
and which are discussed in detail in Sect. 7.

The signal region in the D0 invariant mass is defined as 1852 <
m(π+π−π+π−) < 1882 MeV/c2, corresponding to a full range 
of about four times the mass resolution. The signal yield is es-
timated from the �m distribution, which is shown in Fig. 1 for 
the 2012 data. These �m distributions are modelled by the sum 
of three Gaussian functions for signal and a second-order polyno-
mial multiplied by a threshold function 

√
1 − mπ/�m, where mπ

is the pion mass, describing combinatorial and random soft-pion 
backgrounds. The selected samples comprise 320,000 and 720,000 
signal candidates in the 2011 and 2012 data with purities of 97%
and 96%, respectively. The final signal sample is selected requiring 
|�m − 145.44| < 0.45 MeV/c2, which corresponds to selecting a 
region with a width roughly twice the effective �m resolution.

4. Description of the phase space

Five coordinates are required for a full description of the phase 
space of four-body decays [18]. In contrast to three-body decays, 
there is no standard or commonly preferred choice of coordinates. 
Two-body and three-body invariant mass combinations of the pi-
ons are used as coordinates here. The energy test performed here 
is a statistical method comparing the distributions of D0 and D0

candidates in phase space (see Sect. 5). Therefore, it is sensitive 
to the position of an event in phase space and to the choice 
of coordinates spanning this phase space. The choice of coordi-
nates influences the sensitivity of the analysis as it will change 
the distance between events in the phase space. Furthermore, 
D0 → π+π−π+π− decays contain two π+ and two π− mesons. 
The pions of the same charge can be interchanged; as a result each 
decay can be placed at four points in phase space. The energy test 
is sensitive to such pion interchange. To obtain both a unique out-
put and optimal sensitivity from the energy test, an ordering of the 
input variables of the energy test is defined in the following.

The order of the charges of the four pions in the D0 decay 
π1π2π3π4 is fixed to π+π−π+π− .1 There are four two-body 
combinations in which resonances can be formed and these are 
the π+π− pairs: π1π2, π1π4, π3π2, and π3π4. Likewise, there are 
four three-body combinations: the two of positive charge, π1π2π3
and π1π3π4, and the two of negative charge, π1π2π4 and π2π3π4. 
The invariant masses of all possible π+π− pairs are calculated and 
sorted for each event. The π+π− pair with the largest invariant 
mass is fixed to be π3π4, which fully determines the order of all 
four pions. As only a small fraction of the ρ(770) resonance, either 
produced directly from the D0 decay or through a1(1260) decays, 
contributes to the largest m(π+π−), the π3π4 combination is ex-
cluded from the coordinates used. While any combination of five 
variables covers the full phase space, the choice made here is to 
keep variables sensitive to the presence of the main resonances. 
The two-body and three-body mass combinations that do not con-
tain the π3π4 pair are used for the energy test coordinates. This 
results in five invariant masses, π1π2, π1π4, π2π3, π1π2π3 and 
π1π2π4, which are expected to cover most of the intermediate res-
onance contributions.

The choice of using only invariant masses has a limitation. 
Invariant masses are even under parity transformation, and a 
comparison of the D0 and D0 samples probes only P -even CP
asymmetries. In four-body decays, however, P -odd amplitudes 
can also be present. In D0 → π+π−π+π− decays, there is 
only one significant P -odd amplitude, the perpendicular helic-
ity (A⊥) of D0 → ρ0(770)ρ0(770) decays. Alternatively, in the 
partial-wave basis, it is the amplitude corresponding to the P-
wave D0 → ρ0(770)ρ0(770) decays. Its contribution to the total 
D0 → π+π−π+π− width is about 6% [19]. The default approach 
is extended to make a complementary test of the P -odd CP asym-
metry, which may arise from interference between P -odd and 
P -even amplitudes. This is discussed further in Ref. [8].

Triple products, which are by definition P -odd, can be used to 
probe P -odd CP violation [20]. These asymmetries are proportional 
to the cosine of the strong-phase difference between the interfer-
ing partial waves [6], and thus will be enhanced where P -even 
CP asymmetries, proportional to the sine of the strong-phase dif-
ference, lack sensitivity. A triple product CT = �p1 · (�p2 × �p3) is 
constructed for D0 decays, where pion momenta are measured in 
the D0 rest frame. Here �p1, �p2 and �p3 are the vector momenta 
of π1, π2 and π3 sorted as described above (i.e., π4 is excluded). 
The corresponding triple product for the D0 decays is obtained by 
applying the CP transformation, CP(CT ) = −C(CT ) = −C T . The C T

observable is constructed by charge conjugating the pions entering 
CT (i.e., the excluded pion in C T is the π+ in the largest m(π+π−)

combination). The total sample is divided into four subsamples ac-
cording to the D0 flavour and the sign of the triple product:

[I] D0(CT > 0), [II] D0(CT < 0),

[III] D
0
(−C T > 0), [IV] D

0
(−C T < 0). (1)

Samples I and III are related by the CP transformation, and so 
are II and IV. The yields of these four samples are listed in Table 1. 
The test for the presence of P -even CP asymmetry is performed by 
comparing the combined sample I + II with the combined sample 
III + IV. This corresponds to the integration over CT and is the de-
fault test, in which D0 and D0 samples are compared in the phase 
space spanned with invariant masses only. Similarly, the test for 
a P -odd CP asymmetry is performed by comparing the combined 
sample I + IV with the combined sample II + III. This comparison 

1 In a D0 decay the order of π1π2π3π4 is charge-conjugated, π−π+π−π+ , with 
respect to that of the D0 decay.
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Table 1
The yields of signal events in the four samples that obtained from fits to the �m
distribution.

Sample I II III IV

Yields 256 466 ± 629 246 629 ± 519 258 274 ± 574 246 986 ± 607

is performed in the same phase space as the default P -even ap-
proach and allows the P -odd contribution to the CP asymmetry to 
be probed, since the P -even contribution cancels [8]. No triple-
product asymmetry measurements exist for D0 → π+π−π+π−
decays and the previous LHCb study [4] was performed in the 
phase space based on the invariant masses only. Consequently, this 
is the first time a P -odd CP asymmetry is investigated in this de-
cay mode.

5. Energy test

Model-independent searches for local CP violation are typically 
carried out using a binned χ2 approach to compare the rela-
tive density in a bin of phase space of a decay with that of its 
CP-conjugate. This method was used in a previous study of D0 →
π+π−π+π− decays [4]. As discussed in the previous section, five 
coordinates are required to describe four-body decays. A model-
independent unbinned statistical method called the energy test 
was introduced in Refs. [21,22]. The potential for increased sen-
sitivity of this method over binned χ2 analyses in Dalitz plot 
analyses was shown in Refs. [8,23] and it was first applied to ex-
perimental data in Ref. [5].

This Letter introduces the first application of the energy test 
technique to four-body decays, where it is used to compare two 
event samples in tests of both P -even and P -odd type CP violation. 
The P -even energy test separates events according to their flavour, 
and then compares these D0 and D0 samples. The P -odd energy 
test separates events using both their flavour and sign of the triple 
product, as described in the previous section.

A test statistic, T , is used to compare the average distances of 
events in phase space. The variable T is based on a function ψi j ≡
ψ(dij) which depends on the distance dij between events i and j. 
It is defined as

T =
n∑

i, j>i

ψi j

n(n − 1)
+

n∑

i, j>i

ψi j

n(n − 1)
−

n,n∑

i, j

ψi j

nn
, (2)

where the first and second terms correspond to an average 
weighted distance between events within the n events of the first 
sample and between the n events of the second sample, respec-
tively. The third term measures the average weighted distance 
between events in the first sample and events in the second sam-
ple. If the distributions of events in both samples are identical, T
will randomly fluctuate around a value close to zero.

The normalisation factors in the denominators of the terms of 
Eq. (2) remove the impact of global asymmetries between D0 and 
D0 samples. In the P -odd test, subsamples of both D0 and D0

samples are combined. Consequently, any global asymmetries in 
these could result in local asymmetries in the samples used for 
the P -odd test. Therefore, for the P -odd test the global asymmetry 
between D0 and D0 is removed by randomly rejecting some of 
the D0 candidates to equalise the size of the samples of the two 
flavours before combining the events into the two samples that are 
compared.

The function ψ should decrease with increasing distance dij

between events i and j, in order to increase the sensitivity to lo-

cal asymmetries. A Gaussian function is chosen, ψ(dij) = e−d2
i j/2δ2

, 

with a tuneable parameter δ (see Sect. 6) that describes the effec-
tive radius in phase space within which a local asymmetry is mea-
sured. Thus, this parameter should be larger than the resolution of 
dij but small enough not to dilute locally varying asymmetries. The 
distance between two points is obtained using the five squared in-
variant masses discussed in the previous section and calculated as

d2
i j = (m2, j

12 − m2,i
12 )2 + (m2, j

14 − m2,i
14 )2 + (m2, j

23 − m2,i
23 )2

+ (m2, j
123 − m2,i

123)
2 + (m2, j

124 − m2,i
124)

2. (3)

In the case of CP violation, the average distances entering in 
the third term of Eq. (2) are larger than in the other terms. Due 
to the characteristics of the ψ function, this leads to a reduced 
magnitude of this third term relative to the other terms. Therefore, 
larger CP asymmetries lead to larger values of T . This is translated 
into a p-value under the hypothesis of CP symmetry by compar-
ing the T value observed in data to a distribution of T values 
obtained from permutation samples. The permutation samples are 
constructed by randomly assigning events to either of the samples, 
thus simulating a situation without CP violation. The p-value for 
the no-CP-violation hypothesis is obtained as the fraction of per-
mutation T values greater than the observed T value.

For scenarios where the observed T value lies well within the 
range of permutation T values, the p-value can be calculated by 
simply counting how many permutation T values are larger than 
the observed one. If large CP violation is observed, the observed 
T value is likely to lie outside the range of permutation T val-
ues. In this case the permutation T distribution can be fitted with 
a generalised-extreme-value (GEV) function, as demonstrated in 
Refs. [21,22] and used in Ref. [5]. The p-value from the fitted T
distribution can be calculated as the fraction of the integral of 
the function above the observed T value. The uncertainty on the 
p-value is obtained by randomly resampling the fit parameters 
within their uncertainties, taking into account their correlations, 
and by extracting a p-value for each of these generated T distri-
butions. The spread of the resulting p-value distribution is used to 
set 68% confidence intervals. A 90% confidence-level upper limit is 
quoted where no significantly non-zero p-value can be obtained 
from the fit.

The number of permutations is constrained by the available 
computing time. The default p-value extraction, defined before ob-
taining the result from the data, uses the counting method as long 
as at least three permutation T values are found to be larger than 
the observed T value. Otherwise, the p-value is determined by in-
tegrating the fitted GEV function. The p-values presented here are 
based on over 1000 permutations for the default data results and 
on 100 permutations for the sensitivity studies (see Sect. 6).

A visualisation of regions of significant asymmetry is obtained 
by assigning an asymmetry significance to each event. The contri-
butions of a single event in one sample, Ti , and a single event in 
the other sample, T i , to the total T value are given by

Ti = 1

2n (n − 1)

n∑

j �=i

ψi j − 1

2nn

n∑

j

ψi j, (4)

T i = 1

2n
(
n − 1

)
n∑

j �=i

ψi j − 1

2nn

n∑

j

ψi j. (5)

Having obtained the Ti and T i values for all events, the per-
mutation method is also used here to define the significance of 
each event. For a given event i the expected Ti distribution in the 
case of CP symmetry is obtained by using the permutation method. 
The distributions of the smallest negative and largest positive Ti
values of each permutation, T min

i and T max
i , are used to assign sig-

nificances of negative and positive asymmetries, respectively. If for 
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Table 2
Overview of sensitivities to various CP-violation scenarios in sim-
ulation. �A and �φ denote, respectively, the relative change in 
magnitude and the change in phase of the amplitude of the res-
onance R . The P-wave ρ0(770)ρ0(770) is a P -odd component. 
The phase change in this resonance is tested with the P -odd 
CP-violation test. Results for all other scenarios are given with the 
standard P -even test.

R (partial wave) (�A, �φ) p-value (fit)

a1 → ρ0π (S) (5%,0◦) 2.6+3.4
−1.7 × 10−4

a1 → ρ0π (S) (0%,3◦) 1.2+3.6
−1.2 × 10−6

ρ0ρ0 (D) (5%,0◦) 3.8+2.9
−1.9 × 10−3

ρ0ρ0 (D) (0%,4◦) 9.6+24
−7.2 × 10−6

ρ0ρ0 (P) (4%,0◦) 3.0+1.2
−0.9 × 10−3

ρ0ρ0 (P) (0%,3◦) 9.8+4.4
−3.8 × 10−4

real data the Ti value falls in the right (left) tail of the distribution 
of T max

i (T min
i ) containing 32%, 5% or 0.3% of the values it is as-

signed a positive (negative) significance of 1, 2 or 3 σ , respectively. 
The same procedure is applied to the T i distribution, leading to a 
phase space with an inverted asymmetry pattern. This method is 
illustrated in Sect. 6.

The practical limitation of this method is that the number 
of mathematical operations scales quadratically with the sample 
size. Furthermore, a significant number of permutations is required 
to get a sufficient precision on the p-value. In this analysis, the 
method is implemented using parallel computing on graphics pro-
cessing units (GPUs) [24].

6. Sensitivity studies

To interpret the results, a study of the sensitivity of the present 
data sample to different types of CP violation is required. The sen-
sitivity is examined based on simplified simulation samples gener-
ated according to a preliminary version of the model in Ref. [25]
based on CLEO-c measurements. The generation is performed us-
ing MINT, a software package for amplitude analysis of multibody 
decays that has also been used by the CLEO collaboration [26]. 
Given the high purity obtained in the selection, backgrounds are 
neglected in these sensitivity studies.

The variation of the selection efficiency across phase space is 
taken into account in these studies. This efficiency is measured us-
ing a sample of events based on the full LHCb detector simulation. 
The efficiency varies mainly as a function of the momentum of the 
lowest momentum pion in the event in the D0 rest frame, and this 
efficiency variation is parameterised. However, the dependence of 
the efficiency on this parametrisation is relatively weak. For fur-
ther studies the efficiency, based on the parametrisation, is then 
applied to the simplified simulated data sets.

Various CP asymmetries are introduced by modifying, for a 
chosen D0 flavour, either the magnitude or the phase of the 
dominant amplitude contributions: a1(1260)+ → ρ0(770)π+ (in 
S-wave) and ρ0(770)ρ0(770) (both P-wave and D-wave). The re-
sulting sensitivities are shown in Table 2. The p-values, including 
their statistical uncertainties, are obtained from fits of GEV func-
tions.

The asymmetry significances for each simulated event are 
shown in Fig. 2 for P -even and P -odd CP-violation tests and 
projected onto invariant masses of the selected three-pion and 
two-pion subsystems. The CP violation is introduced as a phase 
difference in either the a1(1260)+ or P-wave ρ0(770)ρ0(770) am-
plitudes (see Sect. 6). The shapes of the regions with significant 
asymmetry that are visible in the one-dimensional projections in 
Fig. 2 cannot be easily interpreted in terms of the amplitudes 

and phase differences of the contributing resonances; the two-
dimensional spectra are not easy to understand either. However, 
repeating this exercise for different scenarios of CP violation, the 
observed features are found to be sufficiently distinguishable to 
help identify the origin of any CP asymmetry in the data.

The sensitivity of the method also depends on the choice of the 
effect radius δ. Studies indicate good stability of the measured sen-
sitivity for values of δ from 0.3 to 1 GeV2/c4, which are well above 
the resolution of the dij and small compared to the size of the 
phase space. The value δ = 0.5 GeV2/c4 yields the best sensitivity 
to most of the CP-violation scenarios studied and was chosen, prior 
to the data unblinding, as the default value. The optimal δ value 
may vary with different CP-violation scenarios. Hence, the final re-
sults are also quoted for values of 0.3 GeV2/c4 and 0.7 GeV2/c4.

7. Systematic effects

There are two main sources of asymmetry that may degrade 
or bias the energy test. One is an asymmetry that may arise 
from background and the other is due to detection and produc-
tion asymmetries that could vary across phase space. The effect 
of these asymmetries is studied for both the P -even and P -odd 
CP-violation measurements.

Background asymmetries are tested by applying the energy test 
to events in the sidebands surrounding the signal region in the �m
vs. m(π+π−π+π−) plane. These events are randomly split into 
11 subsamples containing the same number of background events 
as expected to contribute under the signal peak. The p-values ob-
tained are compatible with a uniform distribution and no signifi-
cant asymmetry is found; p-values range between 2% and 96% (4%
and 91%) for P -even (P -odd). As the background present in the 
signal region is found to be CP symmetric, no correction is applied 
in the T value calculation discussed in Sect. 5.

Positively and negatively charged pions interact differently with 
matter; the differences in the inelastic cross-sections are momen-
tum dependent and significant for low-momentum particles [19]. 
The presence of the π+π− pairs in the final state makes the detec-
tion asymmetries cancel to first order. Residual local asymmetries 
may remain in certain regions of the phase space where π+ and 
π− have different kinematic distributions. These effects are tested 
using the Cabibbo-favoured decay D0 → K −π+π−π+ as a con-
trol mode. This channel is affected by kaon detection asymmetries, 
which are known to be larger than pion detection asymmetries and 
thus should serve as a conservative test. The data sample is ob-
tained with the same kinematic selection criteria as for the signal 
channel and imposing requirements on the candidate K ± particles 
identified using information from the ring-imaging Cherenkov de-
tectors. The control sample is split into ten subsets, each of which 
contains approximately the same amount of data as the signal 
sample. The energy test yields results compatible with a uniform 
distribution of p-values with values between 3% and 87% (8% and 
74%) for P -even (P -odd), which is consistent with the assumption 
that this source of asymmetry is below the current level of sensi-
tivity.

Asymmetries in the soft pion detection, although largely uncor-
related with the D0 phase space, are reduced using fiducial cuts 
(see Sect. 3). Charm mesons produced in the pp interactions ex-
hibit a production asymmetry up to the percent level, which is 
slightly dependent on the meson kinematics [27,28]. More D∗−
particles are observed than D∗+ , giving rise to a global asymme-
try, to which the applied method is insensitive by construction. No 
significant local CP asymmetry is expected owing to the small ob-
served correlation of the D∗ momentum and the D0 phase space.
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Fig. 2. (a, b) Distribution of permutation T -values fitted with a GEV function for the simulated sample and showing the measured T -value as a vertical line, and (c, d, e, f) local 
asymmetry significances. Left column plots are for a P -even CP-violation test with a 3◦ phase CP violation introduced in the a1(1260)+ resonance (see text), projected onto 
the (c) m(π1π2π3) and (e) m(π1π2) axes. Right column plots are for a P -odd CP-violation test with 3◦ phase CP violation introduced in the P-wave ρ0(770)ρ0(770)

resonance projected onto the same axes. In plots (c, d, e, f) the grey area corresponds to candidates with a contribution to the T -value of less than one standard deviation. 
The pink (blue) area corresponds to candidates with a positive (negative) contribution to the T -value. Light, medium or dark shades of pink and blue correspond to between 
one and two, two and three, and more than three standard-deviation contributions, respectively. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
8. Results and conclusions

The application of the energy test to all selected D0 →
π+π−π+π− candidates using an effective radius of δ =
0.5 GeV2/c4 yields T = 1.10 × 10−6 in the P -even CP-violation 
test and T = 2.11 × 10−6 in the P -odd CP-violation test. The 
permutation T value distributions are shown in Fig. 3 (a, b). By 
counting the fraction of permutations with a T value above the 
nominal T value in the data, a p-value of (4.6 ± 0.5)% is obtained 
in the P -even CP-violation test and (0.6 ± 0.2)% in the P -odd 
CP-violation test. The central value of the P -odd result would cor-
respond to being at least 2.7 standard deviations from the mean 

of a normal distribution. The significance levels of the Ti values 
are shown in Fig. 3 (c, e) projected onto the m(π1π2π3) axis, 
and Fig. 3 (d, f) projected onto the m(π1π2) axis. In the P -even 
test, a small phase space region contains candidates with a lo-
cal negative asymmetry exceeding 1σ significance. Furthermore, 
in the P -odd test, candidates with a local positive asymmetry ex-
ceeding 2σ significance are seen in a small phase-space region 
dominated by the ρ0 resonance, which can be compared with the 
corresponding plots in Fig. 2. Varying the effective radius results 
in the p-values listed in Table 3. The central values of the P -odd 
results for δ = 0.3 GeV2/c4 correspond to more than three stan-
dard deviations from the mean of a normal distribution but the 
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Fig. 3. (a, b) Distribution of permutation T -values fitted with a GEV function and showing the T -value of the data tests as a vertical line, and (c, d, e, f) local asymmetry 
significances. Left column plots are for the P -even CP-violation test, projected onto the (c) m(π1π2π3) and (e) m(π1π2) axes. Right column plots are for the P -odd 
CP-violation test projected onto the same axes. In plots (c, d, e, f) the grey area correspond to candidates with a contribution to the T -value of less than one standard 
deviation. In the P -even CP violation test the positive (negative) asymmetry significance is set for the D0 candidates having positive (negative) contribution to the measured 
T value. In the P -odd CP violation test the positive (negative) asymmetry significance is set for sample I + IV having positive (negative) contribution to the measured T
value (see Sect. 5). The pink (blue) area corresponds to candidates with a positive (negative) contribution to the T -value. Light, medium or dark shades of pink and blue 
correspond to between one and two, two and three, and more than three standard deviation contributions, respectively. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Table 3
Results for the P -even and P -odd CP-violation tests for three different values of the effective radius δ. 
The p-values obtained with both the counting and GEV fitting methods are given (see text). The count-
ing method is the default method.

δ [GeV2/c4] p-value P -even p-value P -odd

Counting GEV fit Counting GEV fit

0.3 (0.88 ± 0.26)% (0.78 ± 0.10)% (0.24 ± 0.14)% (0.28 ± 0.04)%
0.5 (4.6 ± 0.5)% (4.8 ± 0.3)% (0.63 ± 0.20)% (0.34 ± 0.05)%
0.7 (16 ± 2)% (17 ± 2)% (0.83 ± 0.48)% (0.52 ± 0.16)%
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significance falls below this level when considering their uncer-
tainties.

In summary, a search for time-integrated CP violation in the 
Cabibbo-suppressed decay D0 → π+π−π+π− is performed using 
a novel unbinned model-independent technique. This is the first 
application of the energy test to four-body decays and extends the 
approach to allow P -odd CP violation searches. This analysis has 
the best sensitivity from a single experiment to P -even CP viola-
tion and is the first test for P -odd CP violation in this decay. The 
data are found to be marginally consistent with the hypothesis of 
CP symmetry at the current level of precision.
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