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Starting from the electric fields produced by a point charge and a dipole traveling inside a circular
vacuum chamber, in this paper we derive a formalism for a complete set of equations that describe the
electromagnetic fields and the longitudinal and transverse coupling impedances arising by the interaction
of a beam with a perfectly conducting pipe in the case of elliptic geometry. The expressions, which are
valid for any frequency and beam energy, are written in terms of expansions of Mathieu functions, allow
to range from a circular geometry to the parallel plates, and show an interesting parallelism with the
well-known expressions for a circular pipe. We also obtain that, under the approximation of low
frequency, the formalism allows us to derive the Laslett coefficients for parallel plates, circular and
elliptic beam pipe.
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I. INTRODUCTION

Collective effects due to self-induced electromagnetic
fields in a particle accelerator are generally studied by
introducing the concepts of wakefield and coupling
impedance [1–3], which represent, in time and frequency
domain respectively, the response of the environment to a
point charge traveling inside the beam vacuum chamber
or in any of the accelerator devices. These effects can be
very important [4], and in some cases they could com-
promise the machine performance leading to partial or
total beam losses [5]. For low energy accelerators with
nonrelativistic beams, a not negligible contribution to the
total impedance is given by the so-called space charge
effects [6,7], which are generated directly by the charge

distribution and indirectly by the image charges on the
pipe wall.
The study of the impedance in the nonrelativistic case

for an elliptic cross section has been performed in
Ref. [8], where, however, the choice of the field expan-
sions has led to complicated expressions, not allowing to
easily disentangle, for example, from the total impedance,
the direct and indirect effect of space charge, important in
the transverse plane for collective effects studies of low
energy accelerators. Another formulation, written as an
integral form, taking into account the finite resistivity of
the beam vacuum chamber, and by considering the
classical regime of a good conductor, has been also
derived in Ref. [9].
For what concerns the low frequency limit of the space

charge impedance in elliptic geometry, in addition to the
Laslett coefficients valid for the transverse plane in the
stationary regime [7], an equivalent radius has been
introduced in Ref. [10], allowing to evaluate the longi-
tudinal and transverse impedances using the expressions for
a circular pipe. Lastly, there also exist numerical codes that
give the beam coupling impedance due to space charge and
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resistive wall for arbitrary transverse geometries [11], at
any frequency and beam energy.
In this paper we expand the formalism of a previous

work [12], in which we derived the longitudinal and
quadrupolar (detuning) indirect space charge impedance
produced by a point charge traveling on the axis of a
perfectly conducting elliptic vacuum chamber, presenting a
model of a complete set of equations for the electromag-
netic fields that allow to evaluate the longitudinal and
transverse coupling impedances due to space charge at any
frequency and beam energy. The equations, which show an
interesting parallelism with respect to the circular case,
allow to obtain the impedances for any value of ellipticity,
ranging from the circular shape to the parallel plates.
In Sec. II we review the basic functions that we use to

express the electromagnetic fields and the impedances in
elliptic geometry, i.e. the Mathieu functions, taking, as
reference work, the book of McLachlan [13]. Then, in
Sec. III the longitudinal space charge impedance produced
by a circular uniform beam is derived. In Sec. IV, by
applying a procedure similar to that of Ref. [12], we obtain
the electric field of a dipole vertically and horizontally
displaced, and, in Sec. V, we derive the transverse dipolar
impedances, comparing them with the known expressions
for a circular pipe and parallel plates. Finally, Sec. VI is
dedicated to concluding remarks.

II. ELLIPTIC COORDINATES
AND MATHIEU FUNCTIONS

In order to work with elliptical geometry, it is
convenient to introduce the transverse elliptical coordinates
φ and μ, describing respectively a set of hyperbolas having
the same foci, and a set of confocal ellipses, as shown
in Fig. 1.

The relations between elliptical and Cartesian coordi-
nates are given by

x ¼ F cosh μ cosφ

y ¼ F sinh μ sinφ; ð1Þ
where F is the focal distance of the ellipse, related to the
major and minor semiaxes ae and be by

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2e − b2e

q
: ð2Þ

With these notations the origin of the coordinate system
is given by (φ ¼ π=2, μ ¼ 0), and the boundary of the
beam pipe can be described by the simple equation,

μ ¼ μ0 ¼ arccosh

�
ae
F

�
: ð3Þ

As already discussed in Ref. [12], the Mathieu functions
represent the natural way to express the electromagnetic
fields inside an elliptical beam pipe. In particular, due to the
symmetries with respect to the four quadrants of Fig. 1, the
longitudinal electric field, produced by a point charge
traveling on the axis z of a perfectly conducting elliptical
vacuum chamber, has a dependence on the variable φ that
has been written in terms of the orthogonal set of elliptic
cosine even functions of negative argument, given in
Appendix A by Eq. (A1). The field has also a dependence
on μ given by the corresponding radial modified Mathieu
functions of the first and second kind (A4) and (A7). From
these expressions, in Ref. [12], we have obtained the
longitudinal and quadrupolar impedances, in elliptic geom-
etry, due to the indirect space charge.
For what concerns the transverse dipolar impedance, we

will first consider a vertical dipole having a symmetry with
respect to �x, and, as a consequence, we will show that the
longitudinal electric field can be expressed with the elli-
ptic sine odd functions (A3) and by the corresponding
equations (A6) and (A9), and then, for an horizontal dipole,
which produces a field symmetric with respect to �y, we
have the elliptic cosine odd functions (A2) and, for the
radial dependence, Eqs. (A5) and (A8).
Even if the computation of the Mathieu functions is not

so spread as the Bessel ones, there exists some well-known
mathematical software that allows to evaluate these func-
tions as, for example, the open source scientific PYTHON
package [14]. In addition to that, by solving the eigenvalue
problems described by Eqs. (A14), (A16), and (A15), it is
possible to write a dedicated script that evaluates also the
convergence of the summations. All the Mathieu functions
that we use in this article, and that are summarized in
Appendix A, converge very quickly and require a number
of terms which varies, depending on the frequency range of
interest and ellipticity, in the order of 10–120, allowing
then a fast evaluation of fields and impedances, without any
particular issue.

FIG. 1. Elliptic coordinates. The φ coordinate describes a series
of hyperbolas having the same foci. The μ coordinate describes
confocal ellipses centered in the origin of the coordinate system.
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III. LONGITUDINAL SPACE CHARGE
IMPEDANCE

In Ref. [12], starting from the longitudinal electric field
of a Dirac δ-function beam distribution with total charge Q
moving with velocity v ¼ βc on the axis z of the elliptical
pipe, we have derived the indirect space charge longitudinal
and transverse quadrupolar impedances per unit of length,
which we write here as

dZk
dz

¼ 2πG
Q

X∞
l¼0

ð−1Þl A
ð2lÞ
0

p0
2l

ce2l

�
π

2
;−q

�
Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

× Ce2lð0;−qÞ; ð4Þ

and

dZquad
y

dz
¼ 2πGβ
Qk0F2

X∞
l¼0

ð−1Þl A
ð2lÞ
0

p0
2l

ce2l

�
π

2
;−q

�
Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

×Ce002lð0;−qÞ ð5Þ

dZquad
x

dz
¼ 2πGβ
Qk0F2

X∞
l¼0

ð−1Þl A
ð2lÞ
0

p0
2l

ce002l

�
π

2
;−q

�
Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

×Ce2lð0;−qÞ ð6Þ

with

G ¼ jZ0

Qk0
2πβ2γ2

; ð7Þ

and

q ¼
�
k0F
2βγ

�
2

; ð8Þ

where Z0 is the vacuum impedance, k0 is the wave number
in free space, equal to ω=c, and γ the relativistic factor. The
other quantities are described in Appendix A.
In order to evaluate the effects of longitudinal space

charge on the beam dynamics, of particular interest for low
energy accelerators [15,16], Eq. (4), which gives the
contribution only of the indirect effect, is not sufficient,
and the direct space charge has to be taken into account,
too. By considering a transverse uniform distribution, as
that described in Ref. [17], in this section we obtain the
total longitudinal space charge impedance valid for an
elliptic beam pipe geometry at any frequency. In order to do
that, we start from the direct longitudinal electric field (in
frequency domain) produced by a round beam with uni-
form transverse density within beam radius rb, given in
Ref. [17], and that we write as

Ed
z ¼

8<
:

2Gβγ
rbk0

h
βγ
k0rb

−K1

�
k0rb
βγ

�
I0
�
k0r
βγ

�i
ðr ≤ rbÞ

2Gβγ
rbk0

I1
�
k0rb
βγ

�
K0

�
k0r
βγ

�
ðr > rbÞ:

ð9Þ

Differently from the cited article, we are now interested
in the indirect field generated inside an elliptical vacuum
chamber. We observe that the direct electric field in Eq. (9)
for r > rb depends on K0ðrÞ as that of the point charge of
Ref. [12]. There is only a difference in the multiplying
coefficient. By using then the same method, writing the
modified Bessel function of second kind in terms of a
summation of Mathieu functions, we can easily obtain the
indirect field for the elliptic geometry as

Ei
z ¼ −

4πGβγ
rbk0

I1

�
k0rb
βγ

�X∞
l¼0

ð−1Þl A
ð2lÞ
0

p0
2l

ce2lðφ;−qÞ

×
Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

Ce2lðμ;−qÞ: ð10Þ

We are now able to express the total field produced by a
uniform transverse beam distribution inside an elliptical
vacuum chamber as a sum of Eqs. (9) and (10):

Etot
z ¼ Ed

z þ Ei
z: ð11Þ

Indeed this field satisfies the boundary conditions, being
zero on the surface μ ¼ μ0.
The longitudinal impedance per unit length can then be

evaluated as

dZk
dz

¼ −
Etot
z ðφ ¼ π

2
; μ ¼ 0Þ

Q

¼ j
Z0

πr2bk0

��
k0rb
βγ

�
K1

�
k0rb
βγ

�
− 1

þ 2π

�
k0rb
βγ

�
I1

�
k0rb
βγ

�X∞
l¼0

ð−1Þl A
ð2lÞ
0

p0
2l

ce2l

�
π

2
;−q

�

×
Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

Ce2lð0;−qÞ
�
: ð12Þ

If we introduce the quantity

qr ¼
ae − be
ae þ be

; ð13Þ

then the above equation can be compared with those of
Ref. [17] when the pipe tends to become circular (qr → 0)
and for parallel plates (qr → 1). Of course the equation can
be used to obtain the space charge impedance for any
intermediate value of the ellipticity. In the approximation of
low frequency, for a circular pipe of radius b, we also have
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the classical expression of the space charge longitudinal
impedance [6]

dZk
dz

¼ j
Z0ω

2πβ2γ2c

�
1

2
þ log

be
rb

�
: ð14Þ

In Fig. 2 we show a comparison between the absolute
value of the space charge impedance given by Eq. (12) in
the extreme cases of circular pipe (qr ¼ 10−3) and parallel
plates (qr ¼ 0.8) with the analytic solutions of Ref. [17] as
a function of βγ=ðk0rbÞ, which is inversely proportional to
the wave number and, then, to the frequency. It is important
to underline that, despite this term appears as an indepen-
dent variable of the Bessel functions for both the circular
pipe and parallel plates, the space charge impedance
changes with energy (and with beta) even if the term is
kept constant.
In the same figure we also show the low frequency

approximation given by Eq. (14). When k0 decreases, the
low frequency approximation coincides with the solution of
the circular pipe.

IV. ELECTROMAGNETIC FIELDS
OF A DIPOLE

In order to evaluate the transverse impedance due to space
charge, we first consider the electric field produced by two
charges forming a dipole moving with velocity βc in the free
space. Let us suppose that the dipole moment is oriented
along y and equal to P ¼ 2Qd, where 2d is the distance
between the two charges. The longitudinal electric field in
any position of the free space for r ≫ d is given by [18]

Ed;y
z ¼ jZ0

Pk20
2πβ3γ3

sin θK1

�
k0r
βγ

�

¼ Gd sin θK1

�
k0r
βγ

�
; ð15Þ

with θ the angle with respect to the x axis in cylindrical
coordinates.
Using a procedure similar to that of Ref. [12], we first

move from cylindrical to elliptic coordinates by writing

K1

�
k0r
βγ

�
¼ K1

�
k0F
2βγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2μ þ e−2μ − 2 cosð2φþ πÞ

q �
;

ð16Þ

and

sin θ ¼ y
r
¼ 2 sinh μ sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2μ þ e−2μ − 2 cosð2φþ πÞ
p : ð17Þ

We then transform the modified Bessel function of the
second kind by using the relations (8.407) and (8.532) of
Ref. [19]. After some mathematical manipulations, we
obtain

K1

�
k0F
2βγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2μ þ e−2μ − 2 cosð2φþ πÞ

q �

¼ R
2

ν1ν2

X∞
k¼0

ðkþ 1ÞIkþ1ðν1ÞKkþ1ðν2ÞC1
k½cosð2φþ πÞ�;

ð18Þ

where

ν1 ¼
k0F
2βγ

e−μ; ν2 ¼
k0F
2βγ

eμ;

R ¼ k0F
2βγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2μ þ e−2μ − 2 cosð2φþ πÞ

q
; ð19Þ

and C1
k is the Gegenbauer function (see Appendix B for

details).
Therefore, the longitudinal electric field of Eq. (15) can

be written as

Ed;y
z ¼ Gd

2Fk0 sinh μ
βγν1ν2

X∞
k¼0

ðkþ 1ÞIkþ1ðν1ÞKkþ1ðν2Þ

× C1
k½cosð2φþ πÞ� sinφ: ð20Þ

In Appendix B we show that the last two terms of the
above summation can be written as a sum of se2lþ1ðφ;−qÞ
with known coefficients.
Considering Eq. (B7), by using then the relations that

give the Bessel functions of index k in terms of those of
index k� 1, we then obtain

FIG. 2. Dependence of space charge longitudinal impedance
with wave number. Comparison between Eq. (12) and analytic
solutions for parallel plates and circular pipe with rb ¼ 5 mm,
be ¼ 1 cm, and β ¼ 0.5.
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Ed;y
z ¼ Gd

X∞
m¼0

ð−1Þmse2mþ1ðφ;−qÞ

×
X∞
r¼0

Að2mþ1Þ
2rþ1

�X∞
k¼r

f½Ikðν1Þ − Ikþ2ðν1Þ�Kkþ1ðν2Þ

þ ½Kkðν2Þ − Kkþ2ðν2Þ�Ikþ1ðν1Þg
�
: ð21Þ

In Appendix C, we show that the last summation in
round brackets can be reduced to the sum of only two
addenda; namely,

�X∞
k¼r

f½Ikðν1Þ − Ikþ2ðν1Þ�Kkþ1ðν2Þ

þ ½Kkðν2Þ − Kkþ2ðν2Þ�Ikþ1ðν1Þg
�

¼ Irðν1ÞKrþ1ðν2Þ þ Krðν2ÞIrþ1ðν1Þ: ð22Þ

In the same Appendix a further simplification is per-
formed, by expressing the sum with the index r in Eq. (21)
as the radial modified Mathieu functions of second kind
Gek2mþ1. Therefore, the final expression of the longi-
tudinal direct electric field of a vertical dipole in free space
in elliptic coordinates is given by

Ed;y
z ¼ πGd

X∞
m¼0

ð−1Þm Að2mþ1Þ
1

p0
2mþ1

se2mþ1ðφ;−qÞ

×Gek2mþ1ðμ;−qÞ: ð23Þ

It is important to observe that Eq. (23), which is
equivalent to Eq. (15) since the electric field must exhibit
the same configuration independently from the coordinate
system that has been adopted, is expressed in terms of a
product of Mathieu functions with separate elliptic coor-
dinates φ and μ, as done in Ref. [12] for the field produced
by a point charge.
In order to determine the indirect field scattered by the

elliptic boundary conditions, due to the symmetric reasons
discussed in Sec. II, we expand this field in terms of the
Mathieu functions se2mþ1 and Se2mþ1, with the expansion
coefficients determined in such a way to give a zero value
electric field on the elliptic surface μ ¼ μ0. Finally, by
using the orthogonal properties of se2mþ1, we easily obtain

Ei;y
z ¼ −πGd

X∞
m¼0

ð−1Þm Að2mþ1Þ
1

p0
2mþ1

se2mþ1ðφ;−qÞ

×
Gek2mþ1ðμ0;−qÞ
Se2mþ1ðμ0;−qÞ

Se2mþ1ðμ;−qÞ: ð24Þ

The total longitudinal electric field is then given by the
sum of direct and indirect fields:

Et;y
z ¼πGd

X∞
m¼0

ð−1ÞmA
ð2mþ1Þ
1

p0
2mþ1

se2mþ1ðφ;−qÞ

×

�
Gek2mþ1ðμ;−qÞ−

Gek2mþ1ðμ0;−qÞ
Se2mþ1ðμ0;−qÞ

Se2mþ1ðμ;−qÞ
�
:

ð25Þ
This field satisfies the boundary conditions on the contour

of the ellipse representing the beam vacuum chamber.
Equation (25) is our final result, expressed in a compact
form, to calculate the longitudinal electric field, at any
frequency and transverse position, produced by a dipole in
an elliptic vacuumchamber of anydimensionand aspect ratio.
It is interesting to observe that Eq. (25) is formally very

similar to the well-known longitudinal electric field gen-
erated by a dipole in a perfectly conducting beam pipe of
radius be [18]:

Et
z ¼ Gd sin θ

�
K1

�
k0r
βγ

�
−
K1ðk0beβγ Þ
I1ðk0beβγ Þ

I1

�
k0r
βγ

��
; ð26Þ

with the pair of modified Bessel functions of first and
second order I1ðxÞ and K1ðxÞ replacing the summation of
the pair of modified Mathieu functions of first and second
order Se2mþ1 and Gek2mþ1, and sin θ replacing the elliptic
sine odd functions. The equation can therefore be used to
fully describe and rapidly compute the longitudinal electric
field produced by a dipole inside a beam vacuum chamber
having elliptical cross sections.
As we show in Appendix D, Eq. (26) can be also derived

from Eq. (25) in the limit when the elliptic pipe tends to
become round, that is when F → 0.
For what concerns the electric field produced by a dipole

oriented along the horizontal axis x ¼ 0, we start from an
equation similar to Eq. (15), but with a cos θ dependence
instead of sin θ. The cosine can be written in terms of
elliptic coordinates as

cos θ ¼ x
r
¼ 2 cosh μ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2μ þ e−2μ − 2 cosð2φþ πÞ
p ; ð27Þ

so that we find again Eq. (20), but, instead of the term
ðsinh μ � � � sinφÞwe have now ðcosh μ � � � cosφÞ. This gives
a different expansion of the Gegenbauer function in terms
of the elliptic cosine odd functions, and, as shown in
Appendix E, after some mathematical manipulations, we
obtain a longitudinal electric field given by

Et;x
z ¼πGd

X∞
m¼0

ð−1ÞmB
ð2mþ1Þ
1

s02mþ1

ce2mþ1ðφ;−qÞ

×

�
Fek2mþ1ðμ;−qÞ−

Fek2mþ1ðμ0;−qÞ
Ce2mþ1ðμ0;−qÞ

Ce2mþ1ðμ;−qÞ
�

ð28Þ
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valid for a dipole displaced horizontally and very similar to
that of a vertical dipole.

V. TRANSVERSE SPACE
CHARGE IMPEDANCES

From the longitudinal electric fields produced by a
dipole displaced in the vertical and horizontal planes, we
obtain, in this section, the transverse coupling impedances.
While in the longitudinal case the direct and indirect space
charge effects are important since both affect the coherent
motion, for the transverse case the direct term acts
incoherently on the beam, and therefore, only the indirect
space charge impedance is derived here for collective
effects studies.
In particular the vertical and horizontal impedances per

unit length can be written as [20]

dZdip
y

dz
¼ −

β

Pk0

∂Ei;y
z

∂y
				
φ¼π

2
;μ¼0

¼ −
β

Pk0

�∂Ei;y
z

∂μ
∂μ
∂y þ

∂Ei;y
z

∂φ
∂φ
∂y

�				
φ¼π

2
;μ¼0

ð29Þ

dZdip
x

dz
¼ −

β

Pk0

∂Ei;x
z

∂x
				
φ¼π

2
;μ¼0

¼ −
β

Pk0

�∂Ei;x
z

∂μ
∂μ
∂x þ

∂Ei;x
z

∂φ
∂φ
∂x

�				
φ¼π

2
;μ¼0

: ð30Þ

By using Eq. (1), the partial derivatives can be simplified
giving

dZdip
y

dz
¼ −

β

FPk0

∂Ei;y
z

∂μ
				
φ¼π

2
;μ¼0

ð31Þ

dZdip
x

dz
¼ β

FPk0

∂Ei;x
z

∂φ
				
φ¼π

2
;μ¼0

; ð32Þ

so that, from Eqs. (24) and (E13), we obtain respectively

dZdip
y

dz
¼ j

Z0k0
2Fβ2γ3

×
X∞
m¼0

ð−1Þm Að2mþ1Þ
1

p0
2mþ1

se2mþ1

�
π

2
;−q

�

×
Gek2mþ1ðμ0;−qÞ
Se2mþ1ðμ0;−qÞ

Se02mþ1ð0;−qÞ; ð33Þ

and

dZdip
x

dz
¼ −j

Z0k0
2Fβ2γ3

×
X∞
m¼0

ð−1Þm Bð2mþ1Þ
1

s02mþ1

ce02mþ1

�
π

2
;−q

�

×
Fek2mþ1ðμ0;−qÞ
Ce2mþ1ðμ0;−qÞ

Ce2mþ1ð0;−qÞ; ð34Þ

where with Se02mþ1 and ce02mþ1 we have indicated the
derivatives of the functions evaluated in 0 and π=2
respectively.
These equations allow to evaluate the dipolar space

charge impedances for any value of ellipticity, frequency
and beam energy. Moreover, the summations converge very
rapidly allowing fast computations of the impedances.
If we start from the indirect field in Eq. (26), and by

considering the derivative of the electric field with respect
to r, we obtain the transverse space charge impedance in
circular geometry, which can be written as

dZdip
⊥

dz
¼ j

Z0k20
4πβ3γ4

K1ðk0beβγ Þ
I1ðk0beβγ Þ

: ð35Þ

The impedance given by this equation can be compared
with the impedances of Eqs. (33) and (34) in the limit
of qr → 0.
As a further term of comparison, in elliptic geometry, if

we assume that the frequency tends to zero, a transverse
impedance can be obtained by considering the stationary
forces produced by the beam. In this case the asymptotic
expressions of the impedances, which do not depend on
frequency any more, can be written in terms of the Laslett
coefficients as [7]

dZdip
⊥

dz
¼ j

Z0

πβγ2

�
ξV;H1 − ϵV;H1

b2e

�
; ð36Þ

with ξ1 and ϵ1 summarized in Table I for circular, elliptic,
and parallel plates geometries.
In the table, KðkÞ is the complete elliptic integral of the

first kind, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k02

p
, and k0 is the complementary

modulus given by

TABLE I. Laslett coefficients for circular, elliptic, and parallel
plates geometries [7].

Geometry Circular Elliptic Parallel plates

ϵV1 0 b2e
12F2 ½ð1þ k02Þð2KðkÞ

π Þ2 − 2� π2

48

ϵH1 0 − b2e
12F2 ½ð1þ k02Þð2KðkÞπ Þ2 − 2� − π2

48

ξV1
1
2

b2e
4F2 ½ð2KðkÞ

π Þ2 − 1� π2

16

ξH1
1
2

b2e
4F2 ½1 − ð2KðkÞk0

π Þ2� 0
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k0 ¼
�
1þ 2

P∞
s¼1ð−1Þsqs

2

r

1þ 2
P∞

s¼1 q
s2
r

�2

: ð37Þ

An alternative way of writing Eq. (36) and giving the
same results in the static condition for the elliptic geometry,
has been found in Ref. [10]. If we write the impedance due
to the indirect space charge effect as

dZdip
⊥

dz
¼ j

Z0

2πβγ2b2eq
; ð38Þ

the equivalent radius beq depends on the ellipticity and it is
given by [10]

beq;v ¼ be
2

ffiffiffiffiffiffiffi
6qr

p

ð1 − qrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ ϑ42ð0; qrÞ þ ϑ43ð0; qrÞ

p ; ð39Þ

beq;h ¼ be
2

ffiffiffiffiffiffiffi
6qr

p

ð1 − qrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϑ42ð0; qrÞ − ϑ43ð0; qrÞ

p ; ð40Þ

for the vertical and horizontal planes, respectively, and with
ϑnðz; qrÞ the Jacobi theta functions.
In Figs. 3 and 4, in blue, red, and black, we show the

absolutevalue of the indirect space charge impedances given
by Eqs. (33) and (34) for three values of qr. The impedances
are shown as a function of the quantity βγ=ðk0beÞ, and we
have considered β ¼ 0.5 and b ¼ 3.5 cm.
The case with qr ¼ 10−3 (black curve) agrees very well

with the transverse impedance of the circular pipe of
Eq. (35) (dashed orange curve). The comparisons for
parallel plates, both in y and x, and obtained with
qr ¼ 0.8, have been done by using the code IW2D [21]
with a very low resistivity (blue curve compared with
dashed yellow one). We can also see from the figures that,

when k0 decreases (low frequency, asymptotic value), the
expressions with the Laslett coefficients for circular and
parallel plates, represented with brown and magenta lines
respectively, and obtained with Eq. (36), agree with our
results. Moreover, for the case of elliptic geometry (evalu-
ated here for qr ¼ 0.1 and represented with the red curve),
we can only compare our solution in terms of the Mathieu
functions with the asymptotic expression of Eq. (36) or
Eq. (38) (green line).
In addition to the comparison of the impedance, if we

divide Eqs. (33) and (34) by jZ0=ð2πβγ2Þ, and compare the
results with Eq. (38), it is possible to obtain the vertical and
horizontal equivalent radius as a function of qr (valid only
for low frequency in the asymptotic approximation):

1

b2eq;v
¼ πk0

Fβγ

X∞
m¼0

ð−1Þm Að2mþ1Þ
1

p0
2mþ1

se2mþ1

�
π

2
;−q

�

×
Gek2mþ1ðμ0;−qÞ
Se2mþ1ðμ0;−qÞ

Se02mþ1ð0;−qÞ; ð41Þ

and

1

b2eq;h
¼ −

πk0
Fβγ

X∞
m¼0

ð−1Þm Bð2mþ1Þ
1

s02mþ1

ce02mþ1

�
π

2
;−q

�

×
Fek2mþ1ðμ0;−qÞ
Ce2mþ1ðμ0;−qÞ

Ce2mþ1ð0;−qÞ: ð42Þ

The corresponding adimensional equivalent radii
(beq;ðv=hÞ=b), compared with those given by Eqs. (39)
and (40), give an excellent agreement as shown in
Fig. 5. The vertical and horizontal asymptotic values, equal
respectively to 2

ffiffiffi
3

p
=π and 2

ffiffiffi
6

p
=π, can be obtained directly

from the Laslett coefficients.

FIG. 3. Dependence of space charge vertical impedance with
wave number for be ¼ 3.5 cm and β ¼ 0.5. Comparison of
Eq. (33) (black, blue and red curves) with the circular pipe case
given by Eq. (35) (dashed orange curve), with IW2D code results
for parallel plates (dashed yellow curve), and with the asymptotic
expressions (36) and (38) valid for low frequency (brown,
magenta and green lines).

FIG. 4. Dependence of space charge horizontal impedance with
wave number for be ¼ 3.5 cm and β ¼ 0.5. Comparison of
Eq. (34) (black, blue and red curves) with the circular pipe case
given by Eq. (35) (dashed orange curve), with IW2D code results
for parallel plates (dashed yellow curve), and with the asymptotic
expressions (36) and (38) valid for low frequency (brown,
magenta and green lines).
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VI. CONCLUSIONS

In this paper we have developed a set of equations which
use the Mathieu functions and give the electromagnetic
fields produced by a point charge and a dipole inside a
perfectly conducting vacuum chamber of elliptic geometry.
From the fields we have then derived the space charge

coupling impedances, which are valid for any frequency,
beam energy, and ellipticity. Furthermore, the fields and the
impedances, written in terms of summations of angular and
radial Mathieu functions, can be quickly evaluated due to
the rapid convergence of the series.
The developed theory can be extended to include the

case of resistive wall impedance [22], and, in general, can
be used as reference for the study of coupling impedances
in elliptic geometry, as, for example, the evaluation of
the electromagnetic fields generated by a beam passing
through a step transition between two confocal elliptical
waveguides.
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APPENDIX A: THE MATHIEU FUNCTIONS

In this Appendix we summarize all the Mathieu func-
tions used in the paper, considering, as reference work, the
book of McLachlan [13]. In particular, the periodic angular
ordinary Mathieu functions are given by four series of
orthogonal equations, the elliptic cosine even, cosine odd,
sine even and sine odd functions. For our problem we need
only the first two and the last one with negative argument
−q, expressed by

ce2lðφ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrAð2lÞ
2r cosð2rφÞ ðA1Þ

ce2lþ1ðφ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrBð2lþ1Þ
2rþ1 cos½ð2rþ 1Þφ�

ðA2Þ

se2lþ1ðφ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrAð2lþ1Þ
2rþ1 sin½ð2rþ 1Þφ�;

ðA3Þ

and the corresponding radial modified Mathieu functions of
the first and second kind given respectively by

Ce2lðμ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrAð2lÞ
2r coshð2rμÞ ðA4Þ

Ce2lþ1ðμ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrBð2lþ1Þ
2rþ1 cosh½ð2rþ 1Þμ�

ðA5Þ

Se2lþ1ðμ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrAð2lþ1Þ
2rþ1 sinh½ð2rþ 1Þμ�;

ðA6Þ

and

Fek2lðμ;−qÞ ¼
p0
2l

πAð2lÞ
0

X∞
r¼0

Að2lÞ
2r Irðν1ÞKrðν2Þ ðA7Þ

Fek2lþ1ðμ;−qÞ ¼
s02lþ1

πBð2lþ1Þ
1

X∞
r¼0

Bð2lþ1Þ
2rþ1 ½Irðν1ÞKrþ1ðν2Þ

− Irþ1ðν1ÞKrðν2Þ� ðA8Þ

Gek2lþ1ðμ;−qÞ ¼
p0
2lþ1

πAð2lþ1Þ
1

X∞
r¼0

Að2lþ1Þ
2rþ1 ½Irðν1ÞKrþ1ðν2Þ

þ Irþ1ðν1ÞKrðν2Þ�; ðA9Þ

with

p0
2l ¼ ð−1Þl ce2lð0;−qÞce2lð

π
2
;−qÞ

Að2lÞ
0

ðA10Þ

s02lþ1 ¼ ð−1Þlþ1
ce02lþ1ðπ2 ;−qÞce2lþ1ð0;−qÞffiffiffi

q
p

Bð2lþ1Þ
1

ðA11Þ

p0
2lþ1 ¼ ð−1Þl se2lþ1ðπ2 ;−qÞse02lþ1ð0;−qÞffiffiffi

q
p

Að2lþ1Þ
1

; ðA12Þ

FIG. 5. Adimensional equivalent radius beq=b as a function of
qr for the vertical and horizontal plane compared with Eqs. (39)
and (40).

M. MIGLIORATI et al. PHYS. REV. ACCEL. BEAMS 21, 124201 (2018)

124201-8



and ν1 ¼ ffiffiffi
q

p
e−μ and ν2 ¼ ffiffiffi

q
p

eμ. Here IrðxÞ and KrðxÞ are
the modified Bessel functions of first and second kind,
and se02lþ1 and ce02lþ1 are the derivatives of the respective
functions.
The expansion coefficients Að2lÞ

2r , Að2lþ1Þ
2rþ1 , and Bð2lþ1Þ

2rþ1 , are
defined in such a way that the angular functions are
orthogonal [13], so that, for example, we have

Z
2π

0

ce2lðφ;−qÞce2pðφ;−qÞdφ ¼


0 l ≠ p

π l ¼ p:
ðA13Þ

They can then be obtained by solving an eigenvalue
problem for the following truncated matrices:

aAð2lÞ
0 − qAð2lÞ

2 ¼ 0

½a − 4�Að2lÞ
2 − qð2Að2lÞ

0 þ Að2lÞ
4 Þ ¼ 0

½a − ð2rÞ2�Að2lÞ
2r − qðAð2lÞ

2r−2 þ Að2lÞ
2rþ2Þ ¼ 0 ðr ≥ 2Þ ðA14Þ

ða − 1þ qÞBð2lþ1Þ
1 − qBð2lþ1Þ

3 ¼ 0

½a − ð2rþ 1Þ2�Bð2lþ1Þ
2rþ1 − qðBð2lþ1Þ

2r−1 þ Bð2lþ1Þ
2rþ3 Þ ¼ 0 ðr ≥ 1Þ

ðA15Þ

ða− 1− qÞAð2lþ1Þ
1 − qAð2lþ1Þ

3 ¼ 0

½a− ð2rþ 1Þ2�Að2lþ1Þ
2rþ1 − qðAð2lþ1Þ

2r−1 þ Að2lþ1Þ
2rþ3 Þ ¼ 0 ðr ≥ 1Þ:

ðA16Þ

where the terms “a” represent the eigenvalues and the
expansion coefficients are the eigenvectors of the three
truncated linear equations’ systems.

APPENDIX B: THE GEGENBAUER FUNCTION

From Eq. (8.937) of [19], we have that

C1
k½cosð2φþ πÞ� sinφ ¼ sin ½ðkþ 1Þð2φþ πÞ�

sinð2φþ πÞ sinφ

¼ ð−1Þk sin ½ðkþ 1Þ2φÞ�
2 cosφ

: ðB1Þ

Due to the symmetry considerations of Sec. II, we want
to write Eq. (B1) in terms of the elliptic sine odd functions
(A3). To do that, we write

sin ½ðkþ 1Þ2φÞ�
cosφ

¼
X∞
m¼0

L2kþ1
2mþ1se2mþ1ðφ;−qÞ: ðB2Þ

In order to find the expansion coefficients L2kþ1
2mþ1 we use

the normalisation condition for the elliptic sine function, so
that

Z
π

−π
se2tþ1ðφ;−qÞ

sin ½ðkþ 1Þ2φÞ�
cosφ

dφ ¼ πL2kþ1
2tþ1 : ðB3Þ

If we now substitute the expansion (A3) in the above
equation we obtain that

L2kþ1
2tþ1 ¼ ð−1Þt

π

X∞
r¼0

ð−1ÞrAð2tþ1Þ
2rþ1

×
Z

π

−π
sin½ð2rþ 1Þφ� sin ½ðkþ 1Þ2φÞ�

cosφ
dφ: ðB4Þ

The integral is equal to 2πð−1Þk−r if r ≤ k, otherwise it is
zero, so that

L2kþ1
2tþ1 ¼ 2ð−1Þtþk

Xk
r¼0

Að2tþ1Þ
2rþ1 : ðB5Þ

Therefore, the Gegenbauer function times the sine can be
written finally as

C1
k½cosð2φþ πÞ� sinφ ¼ ð−1Þk

2

X∞
m¼0

L2kþ1
2mþ1se2mþ1ðφ;−qÞ;

ðB6Þ

with the known expansion coefficients given by Eq. (B5).
If we further write sinh μ in terms of ν1 and ν2, after some

manipulations, Eq. (20) becomes

Ed;y
z ¼ Gd

2

X∞
m¼0

se2mþ1ðφ;−qÞ
X∞
k¼0

L2kþ1
2mþ1ð−1Þk

×



2ðkþ 1Þ

ν1
Ikþ1ðν1ÞKkþ1ðν2Þ

−
2ðkþ 1Þ

ν2
Ikþ1ðν1ÞKkþ1ðν2Þ

�
: ðB7Þ

APPENDIX C: A RELATION ON THE
SUMMATION OF BESSEL FUNCTIONS

Let us consider the last summation of Eq. (21) of Bessel
functions. All the terms with intermediate indexes simplify
each other, so that we obtain

�X∞
k¼r

f½Ikðν1Þ− Ikþ2ðν1Þ�Kkþ1ðν2Þ

þ ½Kkðν2Þ−Kkþ2ðν2Þ�Ikþ1ðν1Þg
�

¼ Irðν1ÞKrþ1ðν2ÞþKrðν2ÞIrþ1ðν1Þ
− lim

n→∞
½Irþnþ4ðν1ÞKrþnþ3ðν2ÞþKrþnþ4ðν2ÞIrþnþ3ðν1Þ�:

ðC1Þ
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Since

lim
n→∞

½Irþnþ4ðν1ÞKrþnþ3ðν2Þ þ Krþnþ4ðν2ÞIrþnþ3ðν1Þ�
¼ 0e−ð2nÞμ → 0; ðC2Þ

we can then write the electric field of Eq. (21) as

Ed;y
z ¼ Gd

X∞
m¼0

ð−1Þmse2mþ1ðφ;−qÞ

×
X∞
r¼0

Að2mþ1Þ
2rþ1 ½Irðν1ÞKrþ1ðν2Þ þ Irþ1ðν1ÞKrðν2Þ�:

ðC3Þ

We now recognize in the last summation a term propor-
tional to the Mathieu functions Gek2mþ1 of Eq. (A9), so
that we have finally

Ed;y
z ¼ πGd

X∞
m¼0

ð−1Þm Að2mþ1Þ
1

p0
2mþ1

se2mþ1ðφ;−qÞ

×Gek2mþ1ðμ;−qÞ: ðC4Þ

APPENDIX D: DERIVATION OF THE
LONGITUDINAL FIELD OF A DIPOLE FROM
AN ELLIPTICAL PIPE TO A CIRCULAR ONE

Let us start from Eq. (25) in the limit when ae → be,
which also means that F → 0 and q → 0. Moreover, we
have

μ0 ¼ arccosh

�
be
F

�
→ ∞;

μ ¼ arccosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

F2
þ sin2θ

r �
→ ∞: ðD1Þ

When q ¼ 0 all the coefficients of the Mathieu expan-

sions Að2lþ1Þ
2rþ1 are zero except the first one (r ¼ l ¼ 0) which

is 1, so that the electric field (25) becomes

Et;y
z ¼ πGd

Að1Þ
1

p0
1

se1ðφ; 0Þ

×

�
Gek1ðμ; 0Þ −

Gek1ðμ0; 0Þ
Se1ðμ0; 0Þ

Se1ðμ; 0Þ
�
: ðD2Þ

Since Að1Þ
1 ¼ 1, we have

se1ðφ; 0Þ ¼ sinφ ¼ sin θ: ðD3Þ
Moreover, from Eq. (19) we have that

ν1ðμÞ ¼ ν1ðμ0Þ → 0; ðD4Þ

and

ν2ðμÞ ¼
k0F
2βγ

eμ →
k0r
βγ

; ν2ðμ0Þ ¼
k0F
2βγ

eμ0 →
k0be
βγ

;

ðD5Þ

so that

Gek1ðμ; 0Þ ¼
p0
1

π

�
I0ð0ÞK1

�
k0r
βγ

�
þ I1ð0ÞK0

�
k0r
βγ

��

¼ p0
1

π
K1

�
k0r
βγ

�
; ðD6Þ

and, analogously,

Gek1ðμ0; 0Þ ¼
p0
1

π
K1

�
k0be
βγ

�
: ðD7Þ

Finally, if, instead of Eq. (A6), we use, for Seð2lþ1Þ,
the expansions in terms of Bessel functions given in
Ref. [13],

Se2lþ1ðμ;−qÞ

¼ p0
2lþ1

Að2lþ1Þ
1

X∞
r¼0

ð−1ÞrAð2lþ1Þ
2rþ1 ½Irðν1ÞIrþ1ðν2Þ−Irþ1ðν1ÞIrðν2Þ�;

ðD8Þ

we obtain that

Se1ðμ; 0Þ ¼ p0
1I1

�
k0r
βγ

�
; Se1ðμ0; 0Þ ¼ p0

1I1

�
k0be
βγ

�
;

ðD9Þ

so that the longitudinal electric field reduces to

Et
z ¼ Gd sin θ

�
K1

�
k0r
βγ

�
−
K1ðk0beβγ Þ
I1ðk0beβγ Þ

I1

�
k0r
βγ

��
; ðD10Þ

which is the longitudinal electric field of a vertical dipole in
a circular perfectly conducting vacuum chamber.

APPENDIX E: LONGITUDINAL ELECTRIC
FIELD OF A HORIZONTAL DIPOLE

For a dipole oriented along the horizontal axis, the
electric field of Eq. (20) becomes

Ed;x
z ¼ Gd

2Fk0 cosh μ
βγν1ν2

X∞
k¼0

ðkþ 1ÞIkþ1ðν1ÞKkþ1ðν2Þ

× C1
k½cosð2φþ πÞ� cosφ: ðE1Þ
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The last two terms in the summation can be written as

C1
k½cosð2φþ πÞ� cosφ ¼ sin ½ðkþ 1Þð2φþ πÞ�

sinð2φþ πÞ cosφ

¼ ð−1Þk sin ½ðkþ 1Þ2φÞ�
2 sinφ

; ðE2Þ

which, due to the symmetry considerations of Sec. II, can
be written in terms of the elliptic cosine odd functions (A2).
To do that, we write

sin ½ðkþ 1Þ2φÞ�
sinφ

¼
X∞
m¼0

M2kþ1
2mþ1ce2mþ1ðφ;−qÞ; ðE3Þ

which, due to the normalization condition, gives

Z
π

−π
ce2tþ1ðφ;−qÞ

sin ½ðkþ 1Þ2φÞ�
sinφ

dφ ¼ πM2kþ1
2tþ1 ; ðE4Þ

so that

M2kþ1
2tþ1 ¼ ð−1Þt

π

X∞
r¼0

ð−1ÞrBð2tþ1Þ
2rþ1

×
Z

π

−π
cos½ð2rþ 1Þφ� sin ½ðkþ 1Þ2φÞ�

sinφ
dφ: ðE5Þ

The integral is equal to 2π if r ≤ k, otherwise it is zero,
so that

M2kþ1
2tþ1 ¼ 2ð−1Þt

Xk
r¼0

ð−1ÞrBð2tþ1Þ
2rþ1 : ðE6Þ

Therefore, the longitudinal electric field becomes

Ed;x
z ¼ Gd

Fk0 cosh μ
βγν1ν2

X∞
m¼0

ce2mþ1ðφ;−qÞ

×
X∞
k¼0

M2kþ1
2mþ1ðkþ 1Þð−1ÞkIkþ1ðν1ÞKkþ1ðν2Þ; ðE7Þ

with the known expansion coefficients given by Eq. (E6).
By writing now cosh μ in terms of ν1 and ν2, after some

mathematics, we obtain an equation similar to Eq. (21) of
the vertical dipole:

Ed;x
z ¼ Gd

X∞
m¼0

ð−1Þmce2mþ1ðφ;−qÞ
X∞
r¼0

ð−1ÞrBð2mþ1Þ
2rþ1

×

�X∞
k¼r

ð−1Þkf½Ikðν1Þ − Ikþ2ðν1Þ�Kkþ1ðν2Þ

− ½Kkðν2Þ − Kkþ2ðν2Þ�Ikþ1ðν1Þg
�
: ðE8Þ

Let us now consider the last summation, for which all the
terms with intermediate indexes simplify each other, so that
we remain with

�X∞
k¼r

ð−1Þkf½Ikðν1Þ − Ikþ2ðν1Þ�Kkþ1ðν2Þ

− ½Kkðν2Þ − Kkþ2ðν2Þ�Ikþ1ðν1Þg
�

¼ ð−1ÞrfIrðν1ÞKrþ1ðν2Þ − Krðν2ÞIrþ1ðν1Þ
− lim

n→∞
½Irþnþ4ðν1ÞKrþnþ3ðν2Þ

− Krþnþ4ðν2ÞIrþnþ3ðν1Þ�g: ðE9Þ

Since

lim
n→∞

½Irþnþ4ðν1ÞKrþnþ3ðν2Þ − Krþnþ4ðν2ÞIrþnþ3ðν1Þ�
¼ 0ðe−ð2nÞμÞ; ðE10Þ

we can write the electric field of Eq. (E8) as

Ed;x
z ¼ Gd

X∞
m¼0

ð−1Þmce2mþ1ðφ;−qÞ

×
X∞
r¼0

Bð2mþ1Þ
2rþ1 ½Irðν1ÞKrþ1ðν2Þ − Irþ1ðν1ÞKrðν2Þ�:

ðE11Þ

We now recognize in the last summation a term propor-
tional to the Mathieu functions Fek2mþ1 of Eq. (A8), so that
the direct field can be written finally as

Ed;x
z ¼ πGd

X∞
m¼0

ð−1Þm Bð2mþ1Þ
1

s02mþ1

ce2mþ1ðφ;−qÞ

× Fek2mþ1ðμ;−qÞ: ðE12Þ

For what concerns the indirect field scattered by the
elliptic boundary conditions, due to the symmetric reasons
discussed in Sec. II, we expand it in terms of the Mathieu
functions ce2mþ1 and Ce2mþ1, with the expansion coef-
ficients determined in such a way to give a zero value
electric field on the elliptic surface μ ¼ μ0, so that we easily
obtain

Ei;x
z ¼ −πGd

X∞
m¼0

ð−1Þm Bð2mþ1Þ
1

s02mþ1

ce2mþ1ðφ;−qÞ

×
Fek2mþ1ðμ0;−qÞ
Ce2mþ1ðμ0;−qÞ

Ce2mþ1ðμ;−qÞ; ðE13Þ

and, therefore, the total field is given by Eq. (28).

SPACE CHARGE IMPEDANCE AND ELECTROMAGNETIC… PHYS. REV. ACCEL. BEAMS 21, 124201 (2018)

124201-11



[1] L. Palumbo, V. G. Vaccaro, and M. Zobov, Wakefields and
impedance, CERN Technical Report No. CERN 95-06,
1995.

[2] V. G. Vaccaro, Longitudinal instabilities of a coasting beam
above transition, due to the action of lumped discontinu-
ities, CERN Technical Report No. ISR-RF/66-35, 1966.

[3] A. M. Sessler and V. G. Vaccaro, Longitudinal instabilities
of azimuthally uniform beam in circular vacuum chamber
with walls of arbitrary electrical properties, CERN
Technical Report No. CERN 67-2, 1967.

[4] M.Migliorati, E. Belli, andM. Zobov, Impact of the resistive
wall impedance on beam dynamics in the future circular
eþe− collider, Phys. Rev. Accel. Beams 21, 041001
(2018).

[5] M. Migliorati, S. Aumon, E. Koukovini-Platia, A.
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