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Figure 1: Example of the non-rigid puzzle problem considered in this paper: given a model human shape (leftmost, first column) and three
query shapes (two deformed parts of the human and one unrelated ‘extra’ shape of a cat head), the goal is to find a segmentation of the model
shape (second column, shown in yellow and green; white encodes parts without correspondence) into parts corresponding to (subsets of) the
query shapes. Third column shows the computed correspondence between the parts (corresponding points are encoded in similar color).

Abstract
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems in-
cluding animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes
are allowed to undergo non-rigid deformations and only partial views are available, the problem becomes very challenging. To
this end, we present a non-rigid multi-part shape matching algorithm. We assume to be given a reference shape and its multiple
parts undergoing a non-rigid deformation. Each of these query parts can be additionally contaminated by clutter, may overlap
with other parts, and there might be missing parts or redundant ones. Our method simultaneously solves for the segmentation
of the reference model, and for a dense correspondence to (subsets of) the parts. Experimental results on synthetic as well as
real scans demonstrate the effectiveness of our method in dealing with this challenging matching scenario.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Shape Analysis

1. Introduction

Finding correspondence between deformable shapes is one of the
cornerstone problems in computer vision and graphics. The ability
to establish correspondence between 3D geometric data is a crucial
ingredient in a broad spectrum of applications ranging from anima-
tion, texture mapping, and robotic vision, to medical imaging and
archaeology [vKZHCO11]. The deformable shape correspondence
problem comes in a variety of flavors and settings. It is common to
distinguish between rigid and non-rigid correspondence depend-
ing on whether the shapes are allowed to undergo deformations (in
this case, one can further distinguish between isometric or inelas-
tic deformations, or more general non-isometric deformations that

can also change the shape topology). Second, one distinguishes be-
tween full and partial correspondence (in the latter case, one allows
for some parts of the shapes to be missing; this setting arises in nu-
merous applications that involve real data acquisition by 3D sen-
sors, inevitably leading to missing parts due to occlusions or partial
view). Finally, there is also the difference between pairwise and
multiple correspondence (in the latter case, one tries to establish
correspondence between a collection of shapes).

1.1. Related work

Albeit one of the most broadly studied problems in the domain of
geometry processing, correspondence is far from being solved, es-
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pecially in some challenging settings. We refer the reader to recent
survey papers [vKZHCO11, BCBB15] for an up-to-date review of
existing methods.

Rigid partial correspondence problems arising, e.g., in the fu-
sion or completion of multiple 3D scans have been tackled by ICP-
like approaches [AMCO08,ART15]. Bronstein et al. [BB08b] used
a regularized ICP approach where the matching parts are explic-
itly modeled, and proposed a functional similar to the Mumford-
Shah [MS89,VC02] imposing part regularity. Litany et al. [LBB12]
extended this approach to multiple rigid shape matching.

Non-rigid partial correspondence. Several approaches for intrin-
sic partial matching revolve around the notion of minimum distor-
tion correspondence [BBK06]. Bronstein et al. [BB08a, BBBK09]
combined metric distortion minimization with optimization over
regular matching parts. Rodolà et al. [RBA∗12, RTH∗13] relaxed
the regularity requirement by allowing sparse correspondences.
Windheuser et al. [WSSC11] proposed an integer linear program-
ming solution for dense elastic matching. Sahillioğlu and Yemez
[SY14b] proposed a voting-based formulation to match shape ex-
tremities, which are assumed to be preserved by the partiality trans-
formation. The aforementioned methods are based on intrinsic met-
ric preservation and on the definition of spectral features, hence
their accuracy suffers at high levels of partiality – where the com-
putation of these quantities becomes unreliable due to boundary
effects and meshing artifacts.

More recent approaches include the alignment of tangent spaces
[BWW∗14] and the design of robust descriptors for partial match-
ing [vKZH13]. Several works tried to employ machine learning
methods to deal with partial matches. Masci et al. [MBBV15]
introduced Geodesic CNN, a deep learning framework for com-
puting dense correspondences between deformable shapes, provid-
ing a generalization of the convolutional networks (CNN) to non-
Euclidean manifolds. Wei et al. [WHC∗15] focused on matching
human shapes undergoing changes in pose by means of classical
CNNs, also tackling partiality transformations.

Dynamic fusion is a particular setting of the problem, refer-
ring to non-rigid tracking of depth images produced by 3D sen-
sors. Attempts to extend ICP-based methods to such a setting
[LSP08] had limited success due to sensitivity to initialization
and to the underlying assumption of small deformations. Recent
works [NFS15, DTF∗15] generalizing the Kinect fusion approach
[NIH∗11], were based on volumetric representation of 3D data.

Most of the aforementioned correspondence methods are point-
wise, i.e., one seeks a mapping between vertices of the underly-
ing shapes. Ovsjanikov et al. [OBCS∗12] introduced functional
maps, representing correspondences between functional spaces on
the respective shapes. While not intended for partial correspon-
dence, follow-up works [KBBV14] showed that functional maps
and similar constructions can handle certain settings with miss-
ing parts. Rodolà et al. [RCB∗16] introduced partial functional
correspondence, an extension of [OBCS∗12] where matched parts
are explicitly modeled and regularized in a manner similar to
[BB08a, BBBK09]. This method has achieved state-of-the-art per-
formance on the recent SHREC’16 Partial Correspondence bench-
mark [CRB∗16].

Multiple shape correspondence in the rigid settings has been ad-
dressed in numerous works, including [HFG∗06, TRA11, LBB12].
In the non-rigid setting, pointwise and functional maps for large
shape collections have been explored in [HG13, HWG14, SY14a,
CRA∗16].

1.2. Main contributions

In this paper, we are interested in intrinsic, non-rigid, partial, mul-
tiple shape correspondence in a setting which we refer to as non-
rigid puzzles (see Figure 1). The motivation in mind is to use this
formulation as a first step toward automatic reconstruction of the
deformable shapes (dynamic fusion), in which one tries to match
multiple scans to a near-isometric general model. We assume to be
given a model shape and multiple query shapes, assumed to be parts
of ( near isometrically) deformed versions of the model shape, pos-
sibly with additional clutter. The query shapes may contain over-
lapping parts, and the model shape might have ‘missing’ regions
that do not correspond to any query shape; conversely, there might
be ‘extra’ query shapes that have no correspondence to the model
shape.

We present a framework for solving 3D non-rigid puzzle prob-
lems. We formulate such problems as partial functional correspon-
dences between the query and model shapes, and alternate between
optimization on the part-to-whole correspondence and the segmen-
tation of the model. Our method can be considered an extension
of [RCB∗16] for the multiple part setting on one hand, and a non-
rigid generalization of the rigid puzzles problem treated in [LBB12]
on the other.

The rest of the paper is organized as follows. In Section 2 we
overview the basic notions in spectral analysis on manifolds and
present the partial functional maps framework. Section 3 formu-
lates the non-rigid puzzle problem and describes the proposed ap-
proach, and Section 4 gives the implementation details. Section 5
presents experimental results, where we show how the method
copes with some challenging examples. Finally, Section 6 con-
cludes the paper.

2. Background

We model a shape as a two-dimensional Riemannian manifoldM
(possibly with boundary ∂M), endowed with the standard mea-
sure induced by the volume form. We denote the space of square-
integrable functions on the manifoldM by L2(M) = { f :M→
R |

∫
M f 2da <∞}, and use the standard L2(M) inner product

〈 f ,g〉M =
∫
M f gda.

Our manifolds are equipped with the intrinsic gradient ∇M
and Laplace-Beltrami operator ∆M, generalizing the correspond-
ing notions from Euclidean spaces to manifolds. By analogy to flat
spaces, the Laplacian provides us with all necessary tools for ex-
tending Fourier analysis to manifolds. In particular, it admits an
eigen-decomposition

∆Mφi(x) = λiφi(x) x ∈ int(M) (1)

〈∇Mφi(x), n̂(x)〉= 0 x ∈ ∂M, (2)

with homogeneous Neumann boundary conditions (2), where n̂ is
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the normal vector to the boundary. Here, 0 = λ1 ≤ λ2 ≤ . . . are
eigenvalues and φ1,φ2, . . . are the corresponding eigenfunctions
forming an orthonormal basis of L2(M).

Since the eigenfunctions of the Laplacian form a basis, any func-
tion f ∈ L2(M) can be represented via the (manifold) Fourier se-
ries expansion

f (x) = ∑
i≥1
〈 f ,φi〉Mφi(x) . (3)

Functional correspondence. A recent paradigm shift in the
shape matching problem was introduced by Ovsjanikov et al.
[OBCS∗12]. The authors proposed to model correspondences
among two shapes by means of a linear operator T : L2(M)→
L2(N ), mapping functions on M to functions on N . Classical
point-to-point matching can then be seen as a special case where
one maps delta functions to delta functions.

Because T is a linear operator, it can be equivalently represented
by a matrix of coefficients C = (ci j) arising from the following
short computation: Let us be given orthonormal bases {φi}i≥1 and
{ψi}i≥1 on L2(M) and L2(N ), respectively, and let us fix some
function f ∈ L2(M). Then

T f = T ∑
i≥1
〈 f ,φi〉Mφi = ∑

i≥1
〈 f ,φi〉MT φi

= ∑
i j≥1
〈 f ,φi〉M 〈T φi,ψ j〉N︸ ︷︷ ︸

ci j

ψ j . (4)

The application of T is expressed by linearly transforming the ex-
pansion coefficients of f from basis {φi}i≥1 onto basis {ψi}i≥1.

Choosing as the bases the eigenfunctions {φi}i≥1, {ψi}i≥1 of
the respective Laplacians on the two shapes yields a particularly
convenient representation for the functional map [OBCS∗12]. By
analogy with Fourier analysis, this choice allows to truncate the se-
ries (4) after the first k coefficients, which is equivalent to taking
the upper left k× k submatrix of C as an approximation of the full
map. Further, one obtains ci j = 〈T φi,ψ j〉N ≈ ±δi j whenever the
two shapes are nearly isometric. This results in matrix C being di-
agonally dominant, since ci j ≈ 0 if i 6= j . This particular structure
was exploited in [PBB∗13, KBB∗13] as a prior for shape matching
problems.

Partial functional correspondence. Let N be part of a shape
that is nearly isometric to a full model M. Recently, Rodolà et
al. [RCB∗16] showed that for each eigenfunction ψ j of N there
exists a corresponding eigenfunction φi ofM for some i≥ j, such
that ci j = 〈T φi,ψ j〉N ≈ ±1, and zero otherwise. Differently from
the full-to-full case of [OBCS∗12], where approximate equality
holds for i = j, here the inequality i≥ j induces a slanted-diagonal
structure on matrix C (Figure 2). In particular, the angle of the di-
agonal can be precomputed and used as a prior for the matching
process.

The key idea behind their analysis is to model partiality as a per-
turbation of the Laplacian matrices LM, LN of the two shapes.
Specifically, consider the dog shapeM shown in Figure 3, and as-
sume a vertex ordering where the points contained in the red region

Figure 2: A key observation behind partial functional maps is the
eigenfunction interleaving property, by which the eigenvectors of
the full shape contain a subset whose restriction constitutes also
the (approximate) eigenvectors of a part of the shape. As a result,
the inner products of the eigenvectors of the full shape and the part,
restricted to the corresponding subset, form a slanted diagonal ma-
trix. The slope of the slant depends on the ratio of the areas of the
partial and the full shape.

LN

LN

E

E>

N

N

Figure 3: Structure of Laplacian of a shape consisting of two parts
(reproduced from [RCB∗16]).

N appear before those of the blue region N . Then, the Laplacian
of the full shape LM will assume the structure

LM =

(
LN 0

0 LN

)
+

(
PN E
E> PN

)
, (5)

where the second matrix encodes the perturbation due to the bound-
ary interaction between the two regions. Such a matrix is typically
very sparse and low-rank, since it contains non-zero elements only
in correspondence of the edges connecting ∂N to ∂N .

If the perturbation matrix is identically zero, then (5) is exactly
block-diagonal; this describes the case in which N and N are dis-
joint parts, and the eigenpairs of LM are an interleaved sequence
of those of the two blocks. The key result shown in [RCB∗16] is
that this interleaving property still holds even when considering the
full matrix LM as given in (5): Its eigenpairs consist of those of
the blocks LN , LN , up to some bounded perturbation that depends
on the length and position of the boundary ∂N . In other words, the
eigenfunctions and eigenvalues of the parts show up among those
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of the full shape. By letting {φi}i≥1 and {ψ j} j≥1 denote the eigen-
functions onM andN respectively, this is what makes the equality
ci j = 〈T φi,ψ j〉N ≈±1 hold approximately for i≥ j.

The slant of C identifying the pairs (i, j) for which ci j 6= 0,
can easily be computed as follows. A classical result due to Weyl
[Wey11] describes the asymptotic behavior of the Laplacian eigen-
values on manifolds. Let λ j and λi denote the eigenvalues for
shapes N and M respectively. Then, Weyl’s theorem applied to
2-manifolds states that λ j ∼ 1

|N | j and λi ∼ 1
|M| i as i, j→∞ (here

| · | denotes the surface area). In other words, eigenvalues have a
linear growth with the rate inversely proportional to surface area.
By the previous analysis, we know that λi ≈ λ j for i≥ j. Hence, it

follows immediately that matrix C has a slant given by j
i ≈

|N |
|M| ,

the area ratio of the two shapes.

The following observation is crucial for the entire paper: Let
M⊂M and N⊂N be two parts of the shapesM andN . Then, the
functional correspondence between the parts M and N represented
in the pair of orthogonal bases {φi} and {ψ j} on M and N , re-
spectively, has an approximate slanted diagonal structure with the
slant determined by the area ratio |N |/|M| (see Figure 2). We
emphasize that the slanted-diagonal structure of the matrix C does
not depend on the parts M and N themselves (which are typically
unknown!), but only on the full shapes to which they belong.

3. Problem formulation

Let us be given a model shape M and a collection {Ni}p
i=1 of p

query shapes constituting possibly incomplete, cluttered, and non-
rigidly deformed unknown parts ofM. Our goal is to segmentM
into p disjoint parts {Mi}, locate the corresponding parts {Ni⊂Ni}
on the input shapes, and calculate the correspondences τi : Mi→Ni.
By clutter we refer to the regions Nc

i =Ni \Ni which are redundant
for achieving a full reconstruction. This may include overlaps be-
tween theNi’s, scanning artifacts, and even entire extra parts com-
ing, e.g., from a different shape as we demonstrate in Figure 1. By
incompleteness we mean that the Mi’s do not coverM, i.e., there
is a missing part

M0 =M\

(
p⋃

i=1
Mi

)
. (6)

M0 can be seen as clutter from the parts perspective. Figure 4 de-
picts our notation.

We encode the correspondences τi in the functional representa-
tion by the matrices Ci with respect to the Laplacian eigenbasis
ΦΦΦ ofM (restricted to Mi) and the Laplacian eigenbasis ΨΨΨi of Ni
(restricted to Ni). We further assume to be given as input sets of cor-
responding functions on each Mi and Ni that are stacked as column
vectors of (possibly differently-sized) matrices Fi and Gi, respec-
tively.

Remark Since the availability of known corresponding functions
is rather a restrictive assumption, in practice we avoid using this in-
put by replacing the Fi’s with a dense descriptor field F calculated
onM (the number of columns in F corresponds to the number of
dimensions of the descriptor). As the Gi’s, we use the descriptors

M1

M2

τ1

τ2

N2

N1

M

M0

N2

N1

Figure 4: The notation we follow in this paper.

computed on the correspondingNi’s. A robust data fitting term ac-
counts for descriptor mismatches.

With these premises, we formulate the simultaneous segmenta-
tion and correspondence as the following optimization problem:

min
Ci,Mi⊆M,Ni⊆Ni

p

∑
i=1
‖CiΨΨΨi(Ni)

TGi−ΦΦΦ(Mi)
TFi‖2,1

+λM
p

∑
i=0

Rpart(Mi)+λN
p

∑
i=1

Rpart(Ni)

+λcorr

p

∑
i=1

Rcorr(Ci)

s.t. Mi∩M j = ∅ ∀i 6= j

M0∪M1∪·· ·=M
|Mi|= |Ni| ≥ α|Ni|,

(7)

where ΦΦΦ(Mi) denotes the Laplacian eigenbasis onM restricted to
the part Mi, and, similarly, ΨΨΨi(Ni) denotes the basis onNi restricted
to the part Ni.

The first term in (7) is a data fitting term measuring how well the
known corresponding functions are mapped between the parts and
the model. The `2,1 norm was chosen here to increase robustness
against outliers in the input. This is especially important when one
uses descriptors which are not perfectly resilient to non-rigid de-
formations. The second and third terms aggregating Rpart are part
regularization terms of the form Rpart(M) = |∂M| promoting parts
with short boundaries and preventing too fragmented segmentation.
Note that while the regularization term applies to the missing part
M0, the data fitting term does not. The last term aggregating Rcorr
is a regularization term imposing a prior on the correspondences
themselves. Here, the prior comes in the form of a penalty promot-
ing the slanted diagonal structure of each Ci with the slant propor-
tional to the ratio |Ni|/|M| as detailed in the sequel.

Finally, the set of constraints renders the problem a proper seg-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

138



O. Litany & E. Rodolà & A. M. Bronstein & M. M. Bronstein & D. Cremers / Non-Rigid Puzzles

mentation task, enforcing a complete covering and exclusivity of
the segments Mi. The area constraint enforces the non-cluttered
matching areas Ni to be equal. For cases where there exist both
clutter in the parts and missing elements, we introduce the inequal-
ity term putting a lower bound on the part areas to avoid the trivial
solution. In such cases, one has to impose a prior on the resulting
non-cluttered area being greater than some percentage α of the en-
tire cluttered part.

Since problem (7) is intractable in its combinatorial formulation,
we consider a relaxation of the parts to continuous membership
functions ui :M→ [0,1] to encode the Mi’s, and vi : Ni → [0,1]
to encode the Ni’s. Assuming that M is discretized with m ver-
tices, and each Ni is discretized with ni vertices, the relaxed and
discretized optimization problem can be summarized as

min
Ci,ui,vi

p

∑
i=1
‖CiAi(η(ui))−Bi(η(vi))‖2,1 +λM

p

∑
i=0

Rpart(η(ui))

+λN
p

∑
i=1

Rpart(η(vi))+λcorr

p

∑
i=1

Rcorr(Ci)

s.t.
p

∑
i=0

η(ui) = 1

aT
Mη(ui) = aT

Ni η(vi)≥ αaT
Ni 1

(8)

Note that, differently from [RCB∗16], here we solve p matching
problems simultaneously (one per part) under covering and exclu-
sivity constraints.

−1 0 1 2
0

1In the problem above, a denote the
vectors of discrete area elements on
the corresponding shapes, and η(t) =
1
2 tanh

(
6(t− 1

2 )
)
+ 1

2 is an element-wise
non-linear transformation used to restrict
the indicators at each vertex to the range
[0,1] (see inset). Function η(t) was cho-
sen according to [RCB∗16]. The matri-
ces Ai(η(ui)) = ΦΦΦ

Tdiag(ui)Fi and Bi(η(vi)) = ΨΨΨ
T
i diag(vi)Gi de-

note the representation coefficients of the input descriptor fields
restricted to their respective parts.

As the regularization term of the segments we use a discretized
version of the intrinsic Mumford-Shah functional introduced in
[BB08a]

Rpart(η(u)) =
∫
M

ξ(η(u))‖∇Mη(u)‖da≈ aT
Mg , (9)

where ξ(t) ≈ δ

(
t− 1

2

)
, and the vector g contains as its elements

the values of the discretized intrinsic gradient norm of η(u) com-
puted on the tangent bundle of M, weighted element-wise by
ξ(η(u)).

For the regularization of the functional maps Ci, we follow
[RCB∗16],

Rcorr(C) = ‖C�W‖2
F +λ1 ∑

i6= j
(C>C)2

i j

+ λ2 ∑
i
((C>C)ii−di)

2. (10)

80 90 100 110 120 130 140 150 160
Iteration number

Time (sec)
30 32 34 36 38 40 42 44 46 48

Figure 5: An example showing the decrease in cost during the
alternating minimization of the different sets of variables, Ci (red),
vi (green) and ui (blue).

Here, the first term containing an element-wise product of C with
the funnel-shaped weight matrix W promotes the slanted-diagonal
structure of C. The elements of the weight matrix are given by

wmn = e−σ
√

m2+n2
‖ n
‖n‖ × ((m,n)>−p)‖ . (11)

The slanted diagonal of W is a line segment `(t) = p + t n
‖n‖

with t ∈ R, where p = (1,1)> is the matrix origin, and n =
(1, |Ni|/|M|)> is the line direction with slope |Ni|/|M|. The sec-
ond factor in wmn is the distance from the slanted diagonal `, and
σ > 0 regulates the spread around `. In our experiments we set
σ = 0.03. The second term in Rcorr(C) promotes orthogonality of
C (area-preserving maps), while the third term regularizes its rank
by setting {di}r

i=1 = 1 and {di}k
i=r+1 = 0. Following [RCB∗16],

the estimation of r is done by

r = max{i | λNi < max
j

λ
M
j } . (12)

4. Implementation

We solve the optimization problem by means of a threefold al-
ternating minimization. To this end, we make use of the masks
Wi to initialize the matrices Ci by applying the transformation
Ci = 11>− Wi

max(Wi)
. We then minimize over the partial functional

maps Ci, the model indicator functions ui and the parts indicator
functions vi in a cyclic manner, keeping the other parameters fixed
(see Algorithm 1).

Although this algorithm is not guaranteed to converge, in prac-
tice we observed a strictly decreasing cost value as the one shown
in Figure 5. For the different minimization steps we used the con-
jugate gradient solver supplied by the Manopt toolbox [BMAS14].
Since this solver does not support constraints inherently, they were
replaced by large quadratic penalties. In order to further refine the
solution for the functional maps Ci we added a k-dimensional ICP
step [RCB∗16]. We noticed this step helps especially when the de-
scriptors are performing poorly. The parameters were changed ac-
cording to the required setting of the experiment. For instance, in
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Ours

PFM

Ours

PFM

Figure 6: Comparison between partial functional maps [RCB∗16] and our method in a “perfect” puzzle setting. For each method we show
the membership functions of each part with respect to the model (first two rows), and the color-coded correspondence between parts and
model (last two rows). For PFM, the fact that each part is matched independently leads to different parts covering overlapping areas on the
model (see, e.g., the four legs). This ambiguity is completely resolved by our method as all parts are matched jointly to the template, yielding
a regularizing effect on the correspondence.

the non-isometric experiment (Figure 7) we set λ1 = 0 to allow
changes of areas.

Input : modelM, parts {Ni}p
i=1

Output: segments {ui},{vi} and maps {Ci}
initialization: Ci = 11>− Wi

max(Wi)
, ui = 1, vi = 1

while decrease in energy > ε do
fix {ui} and {vi} in Eq. (8) and solve for {Ci};
run spectral ICP [RCB∗16] for all Ci;
fix {Ci} and {ui} in Eq. (8) and solve for {vi};
fix {Ci} and {vi} in Eq. (8) and solve for {ui};

end
Algorithm 1: Our pipeline for solving non-rigid puzzles.

5. Experimental results

Our method was implemented in C++/Matlab, and executed on an
Intel i7-4710MQ 2.50GHz CPU with 8 logical cores. Typical run-
ning times for matching 5 parts to a template of about 10K vertices
were 20 minutes (end-to-end).

Data. In our experiments we use both synthetic and real data. The
synthetic dataset is made up of shapes from the TOSCA [BBK08]
and FAUST [BRLB14] benchmarks. In order to avoid compatible
meshings and make the dataset more realistic, each TOSCA model
is independently remeshed to ∼10K vertices by iterative pair con-
tractions [GH97]. All FAUST templates are kept at their original
resolution (∼7K). The second dataset is composed of real scans
acquired with a calibrated Asus Xtion Pro Live RGB-D sensor and
then fused into a dense 3D model (about 30K vertices) by DVO-
SLAM [KSC13].

The shapes from these datasets are decomposed into a control-

lable amount of parts by Voronoi decomposition and consensus
segmentation [RBC14]; the former approach leads to generic sur-
face patches having similar area, while the latter tends to produce
more semantically meaningful parts (e.g., arms and feet).

Features. Unless differently stated, as dense descriptor fields for
the data term in (7) we use 350-dimensional SHOT signatures
[TSDS10]. These are rotation-invariant local features with no isom-
etry invariance, but whose locality properties result in a higher re-
silience towards boundary effects than classical spectral features
[SOG09, ASC11]. Note that we compute dense descriptors for all
shape points, including those lying along the boundaries.

template

Figure 7: Comparison between our method (top row) and PFM
(bottom row) on real data. The parts shown on the right were ac-
quired with a 3D scanner.
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Iteration 1 Iteration 2 Iteration 3

Figure 8: An example of our matching pipeline when dealing with overlapping parts. The optimization process alternates between the
membership functions on the model (top row) and those on the parts (bottom row). At each alternating step, the membership functions are
optimized jointly on the respective parts. Note that in this example there is more than one possible solution (e.g., the blue parts are redundant).

5.1. Perfect puzzle

In Figure 6 we show an example of a solution obtained with our
method in a basic setting. The input data are five non-overlapping
pieces taken from nearly isometric deformations of the model,
forming a covering set of the model. SHOT descriptors were used
in the data fitting term. No additional clutter is introduced. For this
experiment, we compare with the partial functional maps (PFM)
method of Rodolà et al. [RCB∗16] applied to each part separately,
resulting in five independent PFM matching problems (one per
part).

We performed a similar comparison with real data acquired by
a 3D sensor. For this experiment we use the upper part of a shape
from FAUST as a template, and portions of a real scanning as the
data. Differently from the previous experiment where dense SHOT
descriptors are used, here we employ Gaussians supported at ∼15
hand-picked matches as data features. The results are reported in
Figure 7.

5.2. Overlapping pieces

A more interesting setup is obtained when allowing the different
pieces to have non-zero overlap, as illustrated in Figure 8. In Fig-
ure 9 we show additional results obtained in this setting. To make
the experiment even more challenging, we produce the input parts
by decomposing into five components two different non-isometric
shapes from the FAUST dataset. The decomposition is performed
so as to allow large areas of overlap between the pieces. We see
that our method copes well with both sources of nuisance even
if these show up simultaneously: Overlapping areas are correctly
segmented, while the lack of isometry does not have a significant
impact on the quality of the correspondence.

5.3. Incomplete and noisy data

In practical situations, it may happen that the parts at our disposal
do not provide a complete covering of the template model. As de-
scribed in Section 3, our method naturally allows handling scenar-
ios where some of the parts are missing. This is simply done by
introducing a lower bound on the part areas, reflecting some prior
knowledge on the amount of missing area; note that, in the absence
of clutter, this is directly given by the difference of template area
and the sum of the parts. In practice we implement this by defining
a membership function to represent the missing part, which is then
treated the same way as the others (i.e., we demand regularity on
the missing area, yet provide no data term).

In Figure 1 we show an example of such a scenario, with addi-
tional ‘extra’ pieces that do not belong to the model (the head of
the cat). In this noisy setting, the outlier shape is automatically ex-
cluded from the final solution due to a lack of mutual support with
the rest of the data. Another example of this challenging scenario
is given in Figure 10.

6. Discussion and conclusions

In this paper we introduced a method for solving 3D non-rigid puz-
zle problems. We formulated the problem as one of partial func-
tional correspondence among an input set of surface pieces and a
full template model known in advance. The pieces are matched to
the template in a joint fashion, and an optimization process alter-
nates between optimizing for the dense part-to-whole correspon-
dence and the segmentation of the model. We showed how the set
of constraints imposed on the plurality of the pieces has a regu-
larizing effect on the solution, leading to accurate part alignment
even in challenging scenarios. The framework we presented is re-
markably flexible, and can be easily adapted to deal with missing
or overlapping pieces, moderate amounts of clutter, and outliers.
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Figure 9: Non-rigid puzzle alignment between overlapping parts. Shown are the final segmentation obtained by our method (left), the
dense matchings between the parts and the model (middle), and the normalized geodesic error (shown as a heatmap) to the ground-truth
correspondence (right). With the exception of the final column, corresponding points have the same color whereas white color denotes
no match. Despite the lack of isometry (two different individuals) and the large overlap, our method correctly identifies non-overlapping
subregions on all the parts, providing a perfect covering of the template. Note that this is not the only possible solution, as the optimization
problem we solve may have multiple optima.

Figure 10: In this example, an additional outlier piece (the human
arm) is included in the input set. Our method treats extra pieces
as clutter; the arm is automatically selected by the matching pro-
cess, and completely excluded from the final solution. Note how the
presence of the extraneous part did not affect the quality of the cor-
respondence.

Limitations. One of the main limitations, which our method in-
herits from the functional maps framework, is the need for a rea-
sonably good data term, implying that one has to provide some
corresponding functions between the model and the query shapes.
This is especially important when the shapes being matched are not
nearly isometric. In order to allow a fully-automatic pipeline, dense
descriptors are used as such corresponding functions. Yet, in real-
world settings when the data is contaminated by noise and scanning
artifacts, obtaining invariant descriptors is a major challenge.

Acknowledgments

We thank Michael Moeller for the fruitful discussions and Christian
Kerl for the technical support in the real scanning experiments. AB
and OL are supported by the ERC Starting Grant No. 335491. ER
and MB are supported by the ERC Starting Grant No. 307047. DC
is supported by the ERC Consolidator Grant “3D Reloaded”.

References

[AMCO08] AIGER D., MITRA N. J., COHEN-OR D.: 4-points congru-
ent sets for robust pairwise surface registration. TOG 27, 3 (2008), 85.
2

[ART15] ALBARELLI A., RODOLÀ E., TORSELLO A.: Fast and accurate
surface alignment through an isometry-enforcing game. Pattern Recog-
nition 48 (2015), 2209–2226. 2

[ASC11] AUBRY M., SCHLICKEWEI U., CREMERS D.: The wave ker-
nel signature: A quantum mechanical approach to shape analysis. In
Proc. ICCV Workshops (2011). 6

[BB08a] BRONSTEIN A. M., BRONSTEIN M. M.: Not only size mat-
ters: regularized partial matching of nonrigid shapes. In Proc. NORDIA
(2008). 2, 5

[BB08b] BRONSTEIN A. M., BRONSTEIN M. M.: Regularized partial
matching of rigid shapes. In Proc. ECCV. 2008. 2

[BBBK09] BRONSTEIN A., BRONSTEIN M., BRUCKSTEIN A., KIM-
MEL R.: Partial similarity of objects, or how to compare a centaur to a
horse. IJCV 84, 2 (2009), 163–183. 2

[BBK06] BRONSTEIN A. M., BRONSTEIN M. M., KIMMEL R.: Gen-
eralized multidimensional scaling: a framework for isometry-invariant
partial surface matching. PNAS 103, 5 (2006), 1168–1172. 2

[BBK08] BRONSTEIN A., BRONSTEIN M., KIMMEL R.: Numerical Ge-
ometry of Non-Rigid Shapes. Springer, 2008. 6

[BCBB15] BIASOTTI S., CERRI A., BRONSTEIN A., BRONSTEIN M.:
Recent trends, applications, and perspectives in 3d shape similarity as-
sessment. In Computer Graphics Forum (2015). 2

[BMAS14] BOUMAL N., MISHRA B., ABSIL P.-A., SEPULCHRE R.:
Manopt, a Matlab toolbox for optimization on manifolds. Journal of
Machine Learning Research 15 (2014), 1455–1459. URL: http://
www.manopt.org. 5

[BRLB14] BOGO F., ROMERO J., LOPER M., BLACK M. J.: FAUST:
Dataset and evaluation for 3D mesh registration. In Proc. CVPR (June
2014). 6

[BWW∗14] BRUNTON A., WAND M., WUHRER S., SEIDEL H.-P.,
WEINKAUF T.: A low-dimensional representation for robust partial iso-
metric correspondences computation. Graphical Models 76, 2 (2014),
70 – 85. 2

[CRA∗16] COSMO L., RODOLÀ E., ALBARELLI A., MÉMOLI F., CRE-
MERS D.: Consistent partial matching of shape collections via sparse
modeling. Computer Graphics Forum (2016). 2

[CRB∗16] COSMO L., RODOLÀ E., BRONSTEIN M. M., TORSELLO
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[SY14b] SAHILLIOĞLU Y., YEMEZ Y.: Partial 3-d correspondence from
shape extremities. Computer Graphics Forum 33, 6 (2014), 63–76. 2

[TRA11] TORSELLO A., RODOLÀ E., ALBARELLI A.: Multiview reg-
istration via graph diffusion of dual quaternions. In Proc. CVPR (2011).
2

[TSDS10] TOMBARI F., SALTI S., DI STEFANO L.: Unique signatures
of histograms for local surface description. In Proc. ECCV (2010),
pp. 356–369. 6

[VC02] VESE L. A., CHAN T. F.: A multiphase level set framework for
image segmentation using the Mumford and Shah model. IJCV 50, 3
(2002), 271–293. 2

[vKZH13] VAN KAICK O., ZHANG H., HAMARNEH G.: Bilateral maps
for partial matching. Computer Graphics Forum 32, 6 (2013), 189–200.
2

[vKZHCO11] VAN KAICK O., ZHANG H., HAMARNEH G., COHEN-
OR D.: A survey on shape correspondence. Computer Graphics Forum
30, 6 (2011), 1681–1707. 1, 2

[Wey11] WEYL H.: Über die asymptotische Verteilung der Eigen-
werte. Nachrichten von der Gesellschaft der Wissenschaften zu Göttin-
gen, Mathematisch-Physikalische Klasse (1911), 110–117. 4

[WHC∗15] WEI L., HUANG Q., CEYLAN D., VOUGA E., LI H.: Dense
human body correspondences using convolutional networks. arXiv
1511.05904 (2015). 2

[WSSC11] WINDHEUSER T., SCHLICKEWEI U., SCHMIDT F. R., CRE-
MERS D.: Large-scale integer linear programming for orientation pre-
serving 3d shape matching. Computer Graphics Forum 30, 5 (2011),
1471–1480. 2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

143




