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Abstract: How the body plan is established and maintained in multicellular organisms is a central
question in developmental biology. Thanks to its simple and symmetric structure, the root represents
a powerful tool to study the molecular mechanisms underlying the establishment and maintenance
of developmental axes. Plant roots show two main axes along which cells pass through different
developmental stages and acquire different fates: the root proximodistal axis spans longitudinally
from the hypocotyl junction (proximal) to the root tip (distal), whereas the radial axis spans
transversely from the vasculature tissue (centre) to the epidermis (outer). Both axes are generated
by stereotypical divisions occurring during embryogenesis and are maintained post-embryonically.
Here, we review the latest scientific advances on how the correct formation of root proximodistal and
radial axes is achieved.
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1. Introduction

One of the most intriguing questions in developmental biology is how the body plan is established.
To answer this question, for decades scientists have focused on the formation of developmental axes,
utilizing different model systems. Most of our knowledge on axes formation derives from studies
on vertebrate limb development [1,2]. However, these systems present several limitations due to
their complex structure that limits analysis at a single cell resolution. On the contrary, plant roots
display a simple and organized structure, where cell lineages are easily distinguishable by shape and
position [3,4]. Furthermore, due to the presence of the cell wall, plant cells do not migrate; hence, cell
fate and identity can be easily followed during different stages of organ development [3–5]. For these
reasons, roots represent a powerful tool to study the molecular mechanisms on how developmental
axes are established and maintained. Roots can be represented as a series of concentric cylinders,
where epidermis is the outermost tissue while the vasculature bundles lie in the centre [4] (Figure 1).
Roots display two main developmental axes: the proximodistal axis, extending longitudinally from
the root–shoot junction (proximal) to the root apex (distal); the radial axis, spreading transversally
from the vasculature bundles to the epidermis [4] (Figure 1). Like other animal model systems,
root axes are established during embryogenesis and maintained post-embryonically by the activity
of meristems [3–6]. Meristems are localized structures that sustain post embryonic indeterminate
plant organ growth due to the activity of stem cell niches (SCNs) [3–5]. In the Arabidopsis root
meristem, there are five sets of stem cells (initials) that give rise to all root tissues: epidermis and
lateral root cap initials (EPI LRC STEM CELLS), cortex and endodermis initial (CEI), pericycle initials,
vasculature initials and distally columella initials (Figure 1) [3,4]. These sets of stem cells surround the
QC (Quiescent Center) which maintains, by contacting them, their stem cell identity (Figure 1) [7,8].
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The stem cells divide asymmetrically and anticlinally generating daughter cells (Figure 1) that generates
both the proximodistal and radial axes through stereotypical cell divisions. Along the proximodistal
axis, the stem cell daughters divide anticlinally a fixed number of times, generating the division zone
of the meristem. In the proximal area of the meristem, those cells cease to divide when they reach
a boundary called the transition zone (TZ). Here they start to elongate and differentiate, generating
the elongation/differentiation zone [3,5,9,10] (Figure 1). In this zone, cells acquire characteristic
differentiation features such as root hairs for the epidermis or tracheids for the vascular cells [11,12].
The position of the TZ is fundamental for proximodistal axis specification, as it marks the boundary
between undifferentiated and differentiated cells [9,13].

Figure 1. Arabidopsis root structure. (A) Representation of an Arabidopsis seedling where the
proximodistal axis is indicated. In the blow up, a representation of the Arabidopsis root apex is
shown where false colours highlight the different tissues. Root zonation: stem cell niche, SCN;
division zone, DZ; elongation/differentiation zone, EDZ; transition zone, TZ. (B) Cartoon reporting
the longitudinal section of a wild type (Wt) Arabidopsis root stem cell niche. Different colours represent
root tissues and initials, as indicated in the legend. The blow up highlights the typical ground tissue
(GT) architecture (one layer of endodermis and one layer of cortex) resulting from the opposite graded
distribution of miR165/6 and Class III Homeodomain Leucine Zipper (HD-ZIPIII) (triangle shapes
above blow up). In particular, miR165/6 (green) presents low expression in the vascular bundle and
high expression in the endodermis, constraining HD-ZIPIII expression. As a result, HD-ZIPIII (red)
present high expression in the vascular bundle and low expression in the endodermis. (C) Cartoon
reporting the longitudinal section of an Arabidopsis stem cell niche lacking miR165/6 expression.
The blow up highlights the HD-ZIPIII expanded expression in the whole ground tissue (GT). This results
in the formation of an extra layer of the cortical tissue (dashed line). QC, quiescent centre; CEI, cortex
and endodermis initial; CEID, cortex and endodermis initial daughter cell; EPI, epidermis; LRC, lateral
root cap.
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Radially, most of the stem cells daughters divide periclinally, giving rise to two tissues with
different identities. For example, cortex and endodermis are derived from the periclinal division of the
daughter of the cortex and endodermis initial (CEI), whereas epidermis and lateral root cap originate
from the EPI LRC initial [14–16]. The control of the asymmetric divisions occurring in the stem cell
daughters is key for the correct patterning of the radial axis. Indeed, alteration of the position and
timing of those divisions causes the formation of aberrant body plan and shape (Figure 1).

Thanks to the generation of new tools and the improvement of molecular methodologies, several
molecular mechanisms underlying the establishment and maintenance of the proximodistal and radial
are in the process of being discovered and fully comprehended. In this review, we report the current
view on how these two axes are patterned.

2. Root Radial Axis

The root radial axis organization depends on the coordinated activity of periclinal divisions of
the stem cell daughters. One of the most studied mechanisms patterning the radial axis is the one
controlling the formation of the cortex and the endodermis root tissues. These tissues originate from
a single stem cell (CEI) that firstly divides anticlinally, thereby generating a daughter cell (CEID).
This cell divides periclinally, generating the cortex and the endodermis that together are called
Ground Tissue (GT). GT specification starts in the embryo when a periclinal division at early globular
embryonic stage separates the pro-vasculature tissues from the GT precursor cell. Only later, at the
heart embryonic stage, a pro-GT division leads to the specification of the cortex and the endodermis [6].
It was recently shown that the establishment of the pro-GT at early embryonic stages depends on
the plant hormone auxin. A maximum level of auxin activity driven by the auxin responsive factor
MONOPTEROS/AUXIN RESPONSIVE FACTOR 5 (MP/ARF5) in the GT precursor cells is required
for GT formation [17]. Indeed, mp null mutants display impaired GT establishment [17].

Two GRAS family transcription factors, SHORTROOT (SHR) and SCARECROW (SCR), are
involved in the formation of the cortex and endodermis layers, as they are necessary and sufficient
to promote the CEID periclinal division [18–21]. SHR is a mobile transcription factor expressed in
the vasculature. SHR moves toward the CEID, CEI and endodermis via plasmodesmata, where it is
sequestered into the nucleus [22,23] (Figures 2 and 3). SHR movements restriction is fundamental
for GT patterning, as overexpression of SHR results in additional GT layer formation [24,25]. In the
vasculature, SHR is maintained mostly in the cytoplasm by the activity of SCARECROW-LIKE23
(SCL23) [26]. In the CEID, SHR forms a molecular complex with SCR and it is sequestered in the
nucleus by the activity of SCR. In the nucleus, SHR/SCR complex sustains the expression of SCR
itself and induces the expression of INDETERMINATE DOMAIN C2H2 zinc finger (BIRD) transcription
factors such as JACKDAW (JKD), NUTCRACKER (NUC) and MAGPIE (MGP) [21,27–31]. BIRD proteins
physically interact with the SHR/SCR complex, restricting SHR movements to the stele [27,29,32].
SHR/SCR complex promotes the expression of the cell cycle regulator CYCLIND6 (CYCD6;1) in the
CEID, inducing here a periclinal division [33,34]. Via a combination of mathematical modelling and
wet biology, it has been proposed that the SHR/SCR/CYCD6;1 module, together with the cell cycle
inhibitor RETINOBLASTOMA-RELATED (RBR) protein, acts via a bistable circuit to regulate the
CEID asymmetric division [33–35]. In the CEI, the CYCD6;1 together with the CDKB1;1 (CYCLIN
DEPENDENT KINASE 1;1) or CDKB1;2 induces the phosphorylation of RBR, reducing its activity
in the CEID, thus promoting the periclinal division [34]. Auxin is a key factor for the promotion of
this periclinal division. Indeed, an auxin maximum in the CEI promotes CYCD6;1 expression [34].
On the contrary, RBR was shown to directly interact with SCR, reducing its transcriptional activator
activity in the endodermis [36]. The RBR and SCR interaction, together with the activity of the RBR
regulator CYCD6;1, limits the asymmetric cell division in the SCN, thus allowing the formation of
the endodermal and cortical layers (Figure 2). Recently, a sophisticated molecular mechanism was
proposed for a SHR/SCR-dependent switching on of the CYCD6;1 involving the RNA POLYMERASE
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II cofactor Mediator. Depending on the SHR concentration, SCR interacts with the subunit 31 of the
Mediator to promote CYCD6;1 expression [37].

Figure 2. Schematic representation of the gene regulatory network acting for the cortex and endodermis
initial periclinal division. On the left, representation is provided of the Arabidopsis root tip, where the
cortex and endodermis initial (CEI) and its daughter cell (CEID), cortex, endodermis and vascular
tissues are depicted in colour. In the blow up, the gene regulatory network supporting the CEI
asymmetric cell division (ACD) is shown. In the CEI, the SHR/SCR complex sustains the expression
of SCR and promotes the expressions of CYCD1;6 and of JKD and MGP. CYCD6;1 expression is also
sustained by high levels of auxin (IAA) in the CEI. CYCD6;1 represses RBR activity, which in turn
regulates negatively the ACD by a direct repression of SCR activity. SHR/SCR complex also promotes
the expression of miR165/6, thus restricting PHB expression in the vascular tissue.

Once CEID divides, several factors coordinate the formation of the cortical and endodermal layers.
SHR also promotes endodermal fate, as suggested by the loss of endodermis identity in shr
mutants [18,28,38,39]. It was shown that BIRD proteins, other than regulating SHR movements, play a
key role in determining cortical identity, as multiple mutant combinations of BIRD members show
GT with no cortical identity [32]. Therefore, the combined activity of SHR, SCR and BIRD proteins
is necessary to pattern the GT. Interestingly SHR and SCR are involved only in the maintenance of
GT and not in its establishment. Once MP initiates the ground tissue lineage, it acts upstream of the
SHR/SCR module, controlling ground tissue patterning and maintenance.

SCHIZORIZA (SCZ), a member of the Heat Shock Transcription Factor family, is also involved
in GT patterning and its activity depends on SHR and SCR [40–42]. Interestingly, SCZ is expressed
in all root tissues except for the lateral root cap. It was shown that SCZ, together with JKD, MGP,
and NUC proteins, promotes cortical identity (Figures 2 and 3) [32]. It must be pointed out that scz
mutants present additional tissue layers with mixed cortical, endodermal and epidermal identities,
suggesting a role for this gene in tissue fate separation [40–42]. The analysis of SCZ target genes will
help to establish an understanding of how SCZ patterns the radial axis.

Besides organizing the GT, SHR/SCR complex is involved in vasculature patterning. Arabidopsis
root vasculature consists of an inner xylem bundle (metaxylem in the centre, protoxylem aside) with
two juxtaposed phloematic bundles [4] (Figure 3). The formation and development of the metaxylem
depends on the redundant activity of the Class III Homeodomain Leucine Zipper (HD-ZIPIII) members,
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a family of five transcription factors targeted by microRNA 165/6 (miR165/6). SHR/SCR promotes
in the endodermis the expression of miR165/6 that, moving toward the stele via plasmodesmata,
generates an opposite gradient of the HD-ZIPIII proteins, with a maximum in the metaxylem and
a minimum in the endodermis [22,43,44] (Figures 1 and 3). The formation of a radial gradient of
HD-ZIPIIIs is sufficient to pattern the xylem fate specification, as high HD-ZPIIIs levels promote
metaxylem formation, whereas low ones promote protoxylem [43,44] (Figure 3). In the stele, HD-ZIPIIIs
control the biosynthesis and activity of the phytohormone cytokinin, which in turn regulates auxin
distribution and signalling [44,45]. This finely regulated mechanism is sufficient to pattern the stele.

Figure 3. Image showing the molecular mechanisms controlling radial axis patterning. The figure
shows a half radial section of the Arabidopsis root. Each square file corresponds to a different tissue layer,
where the central file (inner) corresponds to the metaxylem and the outer file to the lateral root cap,
as indicated in the scheme. Class III Homeodomain Leucine Zipper III (HD-ZIPIII) and miR165a/6b
(opposite gradients) are indicated in purple and green, respectively. Blue squares on endodermal cells
represent Casparian strips. White arrow indicates SHR protein movement from the vascular tissue into
endodermal cell nucleus. Blue arrows indicate the CIF-, CASP- and SGN1-dependent regulation of
Caspary band formation. SCZ promotes the cortical identity supporting tissue fate separation.

It was recently shown that miR165/6 distribution is not only crucial for vasculature
development but also for GT patterning [46,47] (Figures 1 and 2). A mir165/6-dependent
minimum of HD-ZIPIIIs in the CEI/CEID and endodermis is required to restrict the number of
cortical layers, as miR165/6-insensitive HD-ZIPIII mutants show additional cortical layers [47].
HD-ZIPIIIs expression in the GT results in ectopic CYCD6;1 activation, prompting additional GT
divisions. Intriguingly, the HD-ZIPIII member PHABULOSA (PHB) indirectly sustains CYCD6;1
expression in a SHR-independent manner, but how PHB triggers periclinal divisions is still not
known [46–48]. It was recently shown that PHB directly targets MP to pattern the vasculature
tissue [49]. Nevertheless, whether PHB/MP circuit is important for GT establishment is not known.
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It was recently shown that SHR, together with SCR, also specifies endodermis differentiation.
Functional endodermis is characterized by Casparian strips, lignified structures deposited on the radial
and transverse side of the endodermal cell wall [24]. SHR directs the formation of the Casparian strips
by inducing the MYB DOMAIN transcription factor MYB36 and the receptor-like kinase SGN1 and
SGN3 [50,51] (Figure 3). In endodermal cells, MYB36 induces the expression of the transmembrane
proteins CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN (CASP) [52,53], which are involved in
the recruitment of lignin synthesis enzymes on the plasma-membrane. SGN1/3 position CASP proteins
on the plasma membrane (Figure 3). Nonetheless, SHR promotes the formation of a non-functional
Caspary band and it requires the activity of vasculature-deriving small peptides, CASPARIAN STRIP
INTEGRITY FACTOR (CIF), to generate a functional strip [50,51] (Figure 3). Hence, SHR and SCR
constitute an important module to control endodermis differentiation.

3. Root Proximodistal Axis

Different from the radial axis, where most of the cells show different identities but similar
developmental stages, along the proximodistal axis cells display different stages of development.
Positioning of the TZ plays a key role for patterning the proximodistal axis, as the TZ separates
proliferating meristematic cells from the elongated ones [54] (Figures 1 and 4). The position of the
TZ depends on the dynamic equilibrium between cell division and cell differentiation; alterations of
this equilibrium cause the TZ position to shift toward the distal or the proximal area of the root, thus
varying the proximodistal zonation.

Auxin plays a pivotal role in establishing the root proximodistal axis, acting as a local
morphogen [55,56]. Already at the globular stage of embryogenesis, a maximum of auxin in
the basal pole of the embryo determines the position of the SCN [57]. This auxin maximum is
controlled by the activity of the auxin polar transport efflux facilitators PIN FORMED (PINs) that
distribute this hormone [58–60]. Auxin signalling is necessary for the formation of the SCN [55,61].
Interestingly, mp loss of function mutants or gain of function mutants of its repressor, the AUX/IAA
auxin signalling repressor BODENLOS (BDL), display no root formation [61–63]. Together with
auxin, four AP2 transcription factors, PLETHORA 1,2,3 and 4 (PLT1,2,3 and 4), control stem cell
activity and root growth from embryogenesis onwards [64,65]. Multiple combinations of the loss
of function mutants plt1,2,3,4 show no root SCN formation, whereas constitutive expressions of
PLT genes induces shoot homeotic transformation into root [65]. The GATA transcription factor
HANABA TARANU/MONOPOLE (HAN) forms the boundary between embryonic apical and basal
pole, confining PLT expression and the auxin maximum to the root precursors domain [66]. PLTs also
play also an active role in the repression of the apical pole identity. Indeed, PLT, together with
miR165/6, represses the apical embryonic SCN formation by restricting HD-ZIPIIIs expression [67,68].
Lack of this repression leads to the homeotic transformation of the root into shoot, suggesting a master
role for PLT in determining the embryonic apical-basal axis [68]. It has been recently demonstrated
that PLT regulates the expression of HAN and the synthesis of auxin via direct control of YUCCA3,
a gene involved in auxin biosynthesis [69]. One possibility is that PLTs regulate the expression of genes
involved in apical fate determination, such as HD-ZIPIII directly acting on HAN or on auxin synthesis.
Future studies will clarify this point.

Post-embryonically, PLTs and auxin are required to maintain SCN activity in the root, forming
a gradient with a maximum in this zone (Figure 4) [55,64,65,70]. Ectopic inductions of auxin or
PLTs maximum in the meristem convert other cell types in stem cells, underlying the importance of
these maxima for stem cell specification. Post-embryonically, PLTs mRNAs and auxin are distributed
in a gradient along the meristematic proximodistal axis [70]. PLTs and auxin gradients are strictly
interconnected. Indeed, auxin promotes PLTs expression, whereas PLTs regulate auxin distribution,
controlling PINs expression and auxin biosynthesis [58,64,69]. Different concentrations of auxin or
PLTs result in different developmental outputs, i.e., high PLTs and auxin levels are necessary for SCN
specification, whereas minimum auxin and PLT levels are necessary to induce cell differentiation
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at the TZ [55,64,65,70,71] (Figure 4). Recent studies have shown that the PLTs gradient along the
proximodistal axis is partially independent from auxin, while the capacity of these proteins to diffuse
along this axis plays an important role [65,70].

PIN-dependent polar auxin transport is necessary to position the auxin maximum at the root
distal part [55,59] and the manner in which an auxin minimum is positioned at the proximal TZ
has recently been elucidated. Indeed, the role of the plant hormone cytokinin in shaping the auxin
gradient has been revealed. To position this minimum cytokinin triggers a module that involves the
cytokinin receptor AHK3 (ARABIDOPSIS HISTIDINE KINASE 3), the cytokinin-dependent transcription
factor ARR1 (ARABIDOPSIS RESPONSE REGULATOR1), the auxin signalling repressor SHY2/IAA3
(SHORT HYPOCOTYL2/INDOLE-3-ACETIC ACID INDUCIBLE 3) and the auxin catabolic enzyme
GH3.17 (GRETCHEN HAGEN 3.17) [54,71–73] (Figure 4). Cytokinin via AHK3 activates ARR1 directly
inducing the expression of SHY2 in the vasculature at the TZ. Here, SHY2 downregulates PINs expression,
thus reducing the shoot to root auxin efflux and, hence, cell division activity; auxin instead induces
proteasome-dependent SHY2 degradation, supporting PINs expression [54,72–74] (Figure 4). At the same
time, cytokinin via ARR1 induces the GH3.17 gene in the lateral root cap and epidermis [71], where it
mediates auxin degradation (Figure 4). The coordinated regulation of both auxin signalling and catabolism
localizes a developmental instructive auxin minimum that positions the TZ [71].

Figure 4. Molecular mechanisms leading to the root proximodistal axis patterning. On the left,
representation of the Arabidopsis root. False colours indicate the activity domain of genes involved in
the regulation of the equilibrium between cell division and cell differentiation processes established
in the root. Arrowheads indicate the position of the TZ. Auxin and PLT-graded distributions are
indicated in the piecewise colour bar, where the maximum is in the SCN and the minimum at the TZ.
The molecular mechanisms acting in the control of meristem activity are indicated in the diagram.
The QC SCR domain is represented by red; in green, the root cap and differentiated epidermis GH3.17
domain; in purple, the vascular bundles SHY2 domain; and in light blue, the first elongating epidermal
cells EXPA1 domain. Asterisks represent genes involved in the regulation of the cell differentiation
process mediated by cytokinin activity. Dashed lines indicate SCR-dependent indirect regulation of
ASB1 and ARR1.
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The coordination of SCN activity with cell differentiation process at the TZ is fundamental for
proper proximodistal axis patterning. This spatial coordination is controlled by SCR and SHR, which
repress cytokinin activity in the SCN, thus controlling auxin production [34,75,76]. In particular, SCR
represses ARR1 expression in the QC, which in turn positively regulates the expression of the auxin
biosynthesis gene ASB1 (ANTHRANILATE SYNTHASE BETA SUBUNIT 1). Since ARR1 is induced by
auxin at the TZ SCR, by regulating auxin biosynthesis in the QC, this controls stem cell division in the
SCN and cell differentiation at the TZ [34].

Considering the key role of cytokinin in positioning the TZ, the regulation of cytokinin synthesis is
fundamental for proper root patterning [13,24]. ISOPENTENYL TRANSFERASE (IPT) enzymes are key
regulators of cytokinin synthesis [24]. In the meristem, the transcription factor PHB promotes cytokinin
synthesis via direct induction of IPT1 and IPT7 [77]. The PHB-dependent cytokinin production is
sufficient to activate the ARR1/SHY2 module, positioning the TZ. Intriguingly, ARR1 represses both
PHB and its repressors miR165/6 expression, triggering a negative incoherent feedforward loop that
finely tunes cytokinin levels and prevents meristem from differentiating [77].

Recently, it was demonstrated that cytokinin also promotes the transition of cells from the
meristematic zone to the elongation zone, regulating apoplastic acidification and cell expansion.
ARR1 directly regulates enzymes involved in cellular expansion such as the α-expansin EXPANSIN1
(EXPA1), controlling cell wall loosening and the plasma membrane H+-ATPases (HA) 1 and 2
(AHA1 and AHA2) that transport protons (H+) out of the cell. Interestingly, expa1 mutants show a
shift of the TZ toward the root proximal zone without interfering with the final cell size, suggesting
that EXPA1-dependent cell expansion is mostly controlling the timing of cell exit from the division
zone more than the final cell size itself [78] (Figure 4).

4. Future Perspectives

In recent years we have increased our understanding of the mechanisms controlling the formation
of both radial and proximodistal axes of the root apical meristem. It is interesting to notice that
the molecular mechanisms patterning both the radial and the proximodistal axes involve the same
main players (i.e., auxin, PHB and SHR/SCR). Future studies will elucidate how the mechanisms
controlling the development of these two axes coordinate in order to generate a structured body plan.
Moreover, the effectors of the master genes governing the zonation of both those axes are starting
to be understood, but several players are still missing and will be discovered in the future. In this
optic, with respect to the proximodistal axis, the lists of targets of ARR1 and PLTs were published.
This knowledge will allow us to better understand how those genes are interconnected and how they
coordinate to ensure continuous growth.

In multicellular organisms, cell elongation is accompanied by endoreduplication, genome
duplication in absence of mitosis [79,80]. Similarly, it was shown that cells at the TZ show enhanced
the number of genome copies compared to their meristematic progenitors. Moreover, cytokinin is
known to promote endoreduplication [81]. It will be interesting in the future to investigate the role of
endoreduplication in patterning the root proximodistal axis.

Most of the molecular mechanisms patterning the root axes were discovered in Arabidopsis.
In recent years, several variations in those mechanisms were found to be the basis for interspecific
variability in plants.

Indeed, root axis structure are largely variable among species. For example, the root radial axis is
extremely variable, as number and features of tissue layers is strictly dependent on the species [24,82,83].
One of the tissues along the radial axis that is most variable between species is the cortex [24]. For example,
Cardamine hirsuta, a close relative of Arabidopsis, displays two cortex layers. It was recently shown that
the second cortical layer of Cardamine emerges from the activity of a developmental domain absent in
Arabidopsis, the cortex endodermis mixed identity tissue (CEM). Activity of HD-ZIPIII in this domain is
crucial for the formation of the second cortical, as knockdown of these genes results in the loss of this
additional layer [47]. How PHB controls the CEM periclinal division is still not known. In Arabidopsis,
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ectopic expression of PHB indirectly promotes CYCD6;1 expression independently from SHR, therefore
PHB might control CEM division acting on this gene. Moreover, whether this mechanism is conserved in
other distant relatives with multiple cortical layers or whether this mechanism adds to the one controlled
by SHR is still not known. Future research will allow us to uncover the answers to this interesting question.
It was shown that SHR and SCR also play a key role in patterning the differences in radial axis anatomy
among species. The multi cortical layered species Oryza sativa (rice), indeed, maintains the SHR/SCR
interaction, but SHR movements are subject to lower restriction, for promoting multiple cortical layers
formation [38,84].

The mechanisms governing root axis formation and maintenance in Arabidopsis might be valid
for most of the species but may not be universal. It was shown that in the root of most of the
species, auxin controls cell division, whereas cytokinin controls differentiation. However, in the fern
Azolla filiculoides, cytokinin promotes cell division, whereas auxin promotes cell differentiation [85].
Analysis of the molecular mechanisms controlling root axes in species other than Arabidopsis will
permit us to understand how and when these mechanisms arose and diverged. In this optic, utilization
of close relatives of Arabidopsis might allow us to understand this crucial point.
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