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Abstract

Wave propagation in long-range elastic metamaterials produces important propaga-
tion phenomena, such as wave stopping, negative and supersonic group velocities.
Metamaterials are particular materials that gain peculiar properties not because of
the material itself, but thanks to the realization of periodic sub-structures, capable
of modifying the behavior of the macro-structure.
The advances in technological machining, especially in the field of additive man-
ufacturing techniques, give the possibility to realize complex elastic connections
between different cellular elements; the presence of micro- and nano-scale connected
structures changes the dynamic response of materials composed by the aggregation
of these lattices. Such solids are clustered as elastic metamaterials.
In homogeneous elastic materials, each elementary cell is connected to its first
neighbors, constituting short-range interactions; on the other hand, when the range
of connections spreads, interesting phenomena in terms of mechanical wave prop-
agation appear. The chance of controlling wave propagation by simply changing
the topology of the elastic connections is an important achievement; for instance,
such designed materials can manipulate the mechanical energy flow, by isolating a
vibration sensitive area at the cost of routing the energy into less sensitive regions,
or better the energy can be focused to be harvested and converted.
A physical mathematical model has been constructed starting from some of the
long-range interactions that can be found in nature, such as the presence in classical
discrete system (Mass-Spring) of magnetostatic or electrostatic elements. The main
feature of these interactions is the dependency on the absolute distance and not
on the relative displacement; each element, indeed, exchange forces with all the
elements of the system, not only with its close neighbors.
Several approaches to the problem have been adopted to model long-range interaction
metamaterials. The expertise in the homogenization of discrete problems involving
complex structure has been the theoretical basis for building up a continuous model
capable of describing long-range interactive metamaterials. Two opposite approaches
have been adopted to describe the phenomenon: (i) a differential approach and
(ii) an integral approach. The differential approach needs some assumptions and
approximations, especially in the interaction range that needs to be limited in space,
while the integral approach use some of the same assumptions and approximations
but works with a full interaction range. For this reason, most of the mathematical
efforts in modelling such materials has been dedicated to the development of the
integral approach-based model.
To better describe the system, the interaction model is based on two prototype
forces: the Gauss-like and the Laplace-like. Technically speaking, these interactions,
as the ones from which they come from, decay with the distance and respect the
action-reaction principle holds. In addition, they have a known Fourier transform;
it is not the case with magnetostatic and electrostatic forces, generally power-law
based.
The principal result of the investigation consists in finding some properties of phase
and group velocities for one-dimensional infinite waveguides, where several unusual
phenomena emerge. Namely we show and demonstrate in a close analytical form the
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following phenomena: wave-stopping, eigenstate migration, negative group velocity,
leading to supersonic propagation.
An analogous approach is used to evaluate wave propagation in long-range beams
(Euler-Bernoulli), and in two dimensional membranes with circle-step long-range
interaction, with the borne of analogous phenomena.
The investigation includes also a huge experimental campaign, set in cooperation
with Technion, Israel Institute of technology. An experimental setup for the testing
of single and coupled long-range magnetic waveguide has been built, demonstrating
interesting phenomena in terms of magnetically coupled waveguides that reproduce
some of the results the theoretical investigation predicts.
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Chapter 1

Outlook on elastic
metamaterials

Metamaterials are finely designed materials capable of achieving strange behavior.
They respond with unusual phenomena thanks to the particular geometry (lattices)
in which they are arranged; not thanks to the physics of the material itself. In
general, the dimensions of the lattice is much smaller than the dimensions of the
observed phenomena. Such kind of smart materials have been deeply studied since
fifty years ago. Nevertheless, they found a meaningful applicability only in the last
decades, thanks to the advantages of micro- and nano- manufacturing technologies.
Under the term metamaterials (meta, "beyond" from the ancient greek) several kinds
of materials can be found; the classification is generally made according to the
physical phenomenon. Therefore, we can find the group of elastic metamaterials: for
example, system where the energy distribution in elastic propagation is modified to
preserve the integrity of delicate areas [1].
One important cluster is the family of electromagnetic metamaterials [2, 3]. The
investigation focuses on the effects on electromagnetic wave propagation, such as
scattering [4] and absorption [5]. Cloaking phenomena are also investigated [6, 7],
and other strange propagation behaviors.
Two branches of elastic metamaterials have been widely developed: acoustic and
seismic. Both clusters study the control and the absorption of mechanical waves,
with different models and scales. Beyond sound absorption [8, 9], acoustic meta-
materials are capable of controlling the perturbation flow, thanks to the use of
modern materials, like aerogels [10], achieving acoustic cloaking (meaningful result
in underwater defense applications).
Seismic metamaterials have been developed to control and absorb the flow of seismic
waves [11–14]. In addition, in a multidisciplinary approach, hybrid electromagnetic
and elastic structures have been developed, using mechanical switches, for instance,
to turn on and off electromagnetic control [15, 16], and for the development of
nano-mechanical transistors [17].
Among the purely elastic metamaterials, the structural materials play an important
role. Some examples are topological [18] metamaterials with negative indexes [19],
and soft materials, capable of achieving anisotropic deformation behaviors [20].
Moreover, the use of origami structures to build self assembling robots [21] can be
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found, and the study of mechanical cloaking phenomena [22].
The thesis project describes wave propagation in infinite elastic metamaterials, in
which peculiar phenomena appear, as achieved in finite elastic materials [23].
The chance of designing elastic metamaterials is supported by the possibility of
physically building connection topologies, thanks to the achievements in additive
manufacturing [24–27]. In particular, such advances give the opportunity of building
long-range metamaterials: peculiar nonlocal materials, developed by the workgroup
in the last years. They represent the theoretical basis for the propagation analysis
in this thesis [28, 29].
Other authors focus on the analysis of wave propagation in discrete media [30–35],
using different approaches in the definition of long-range interactions.
The work here presented is part of a project on the study of nonlocal connections [36],
made by the Vibrations Mechanics group in Sapienza, supervised by Prof. Antonio
Carcaterra [37, 38].
Nonlocal connections are classified in several categories, defined by the connection
topology, as depicted in Figure 1.1. The red connections indicate the short-range
interaction, typical of local elastic connections; the blue dashed lines represent the
nonlocal connections.
Five connection families are identified: (i) One to all, (ii) All to all with full

Figure 1.1. Nonlocal connectivity outlook

connections’ range, (iii) All to all with random sparse connections, (iv) All to all
with limited connection range and (v) Twin-waves family.
The one to all group indicates structures where a master-cluster topology is present
[1, 39–44]. A mass, called master, is connected to all the other masses of the system,
composing the cluster. These masses share an elastic interaction with the master,
but they are not necessarily connected among themselves.
The all to all group, (ii), (iii) and (iv), describes an interaction family where each
element of the structure has an interaction with several other elements, at maximum
with all. In particular, this work spans the all to all full range, and the all to all
limited range clusters (also developed in [45]). The the random sparse connections
have been studied by other members of the work group [46, 47].
The twin waves family describes the interaction between more than one solid. It has
been developed by the group [48, 49] and describes the phenomena borne when two
or more local or nonlocal media stand within an interaction range.

The thesis describes some general long-range interactions in elastic media (rods, beam
and membranes). The presence of nonlocal interactions leads to peculiar phenomena,
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unusually present in purely mechanical materials, while they are more common in
acoustic or electromagnetic metamaterials. Such phenomena are Wave-Stopping
[50–54], Hypersonic/Superluminal phase or group velocities [55–59] and Negative
Group Velocity (NGV) [60–63].
The presented phenomena have been highlighted thanks to a closed form approach
in the solution of the equations of motion of such waveguides; and the relationship
between time frequency and space frequency (dispersion relationship) has been
evaluated. The analysis continues through the evaluation of the propagation speeds
(Phase velocity and Group velocity); providing the information about wave propaga-
tion.
The document is divided in four parts; the first includes this overview on elastic
metamaterials, and a section in which the general physical-mathematical model is
presented (Section 2).
In Part I the one-dimensional long-range models are developed; in particular long-
range interactions in rods (Section 3) and beams (section 4) are presented. Three
interaction forces are introduced: (i) Gauss-like, (ii) Laplace-like, and (iii) Rectangu-
lar.
In Part II the rectangular model is applied for two-dimensional media (membranes).
In Part III some engineering remarks are presented. In Section 6 an experimental
demonstrator is introduced. Some preliminary results are presented in Section 7.
Conclusive notes, together with some hints for the forthcoming work, are summarized
in Section 8.
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Chapter 2

Long-range interaction in
continuous media

In the following section a general mathematical approach to the proposed problem is
introduced. In the displacement formulation, the equation of motion is ruled by the
Navier1-Cauchy2 equation [64], that, for a continuous unbounded three-dimensional
elastic medium is:

ρ utt(x, t)−
E

2(1 + ν)

[
∇2u(x, t) + 1

1− 2ν∇ (∇ · u(x, t))
]

= 0 (2.1)

The long-range force is introduced as an additional term into the wave equation:
F(P ,Q) is the force that is borne on the particle at P , because of the particle at
Q as in Figure 2.1. The interaction should guarantee the action-reaction principle

e1

e2

e3

F(P,Q1)F(P,Q2)
P

Q1
Q2

Figure 2.1. Unbounded solid with long-range interactions

holds: F(P ,Q) = −F(Q,P ). Considering two punctual elements that are in the
1Claude-Louis Navier (February 10th, 1785 - August 21st, 1836) French engineer and physicist

who specialized in mechanics
2Baron Augustin-Louis Cauchy (August 21st, 1789 - May 23rd, 1857) French mathematician,

engineer and physicist
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initial reference configuration at x and ξ, respectively, the force between the two is
expressed as follows:

F (x + u(x, t), ξ + u(ξ, t)) = −f(|r|)r (2.2)

with u(�, t) the displacement in the elastic medium of the particle at � and
r = x−ξ+u(x, t)−u(ξ, t). The minus introduces the chosen sign convention: if f(|r|)
is positive, the particles attract, if negative, they repulse. The mass density is ρ(x),
and the Young and Poisson moduli E(x), ν(x) are respectively introduced. Moreover,
one can consider forces decaying with |r|, such that lim|r|→∞ f(|r|)r = 0. These
properties are present in several physical interactions, such as in magnetic dipole-
dipole interaction, which formulation is µM (x)µM (ξ) r

|r|5 (µM (x) is the magnetic
dipole intensity); analogous considerations hold for the Coulomb electric force. In
general, the weakening of the force with the distance is common to many physical
problems.
The long-range interaction concerns each punctual element of the medium, and
the resultant behavior is affected by the summation of the forces exerted by every
punctual element of the volume. The summation on the whole volume leads to an
integral term in the equation of motion, leading to a nonlinear integral-differential
wave equation. Starting from equation (2.1):

ρ utt(x, t)−
E

2(1 + ν)

[
∇2u(x, t) + 1

1− 2ν∇ (∇ · u(x, t))
]

+
∫
ξ∈R3

f(|r|)r dV = 0 (2.3)

In general analytical solutions of equation (2.3) are not possible. However, the
linearization of the magnitude term of the force: f(|r|), with respect to ε = u(x, t)−
u(ξ, t) and assuming |ε| � |x− ξ|, i.e. small deformations, permits to investigate
closed form solutions, providing important insights into the wave propagation
properties.
Proceeding with the force linearization, the Taylor series of the force up to the first
order in terms of ε brings to the following expansion:

f(|r|)r = f (|x− ξ|) (x− ξ) + ∂

∂ε
[f(|r|)r]

∣∣∣∣
ε=0

+ o(ε2) (2.4a)

f(|r|)r ≈ f (|x− ξ|) (x− ξ) + ∂

∂ε
[f(|r|)r]

∣∣∣∣
ε=0

(2.4b)

(2.4c)

and, by single component

f(|r|)rk ≈ f (|x− ξ|) (xk − ξk) +
∑
s

[
∂f

∂εs

∣∣∣∣
ε=0

(xk − ξk)εs + f |ε=0
∂rk
∂εs

∣∣∣∣
ε=0

εs

]
(2.5a)

≈ f (|x− ξ|) (xk − ξk) +
∑
s

[
∂f

∂|r|

∣∣∣∣
ε=0

∂|r|
∂εs

∣∣∣∣
ε=0

(xk − ξk)εs + f |ε=0
∂rk
∂εs

∣∣∣∣
ε=0

εs

]
(2.5b)
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Focusing on the indexed variable:

∂|r|
∂εs

∣∣∣∣
0

= ∂

∂εs

[∑
i

(xi − ξi + εi)2
]1/2

∣∣∣∣∣∣
0

= 1
2

2(xs − ξs + εs)
|x− ξ + ε|

∣∣∣∣
0

= (xs − ξs)
|x− ξ|

(2.6a)

∂rk
∂εs

∣∣∣∣
0

= ∂

∂εs
(xk − ξs + εk)

∣∣∣∣
0

= δsk (2.6b)

where �|0 = �|ε=0. Substituting equation (2.6a) and equation (2.6b) into equa-
tion (2.5b), we have:

f(|r|)rk ≈ f (|x− ξ|) (xk − ξk) +
∑
s

[
∂f

∂|r|

∣∣∣∣
0

(xs − ξs)
|x− ξ|

(xk − ξk)εs + f(|r|)|0 δskεs

]
(2.7a)

≈ f (|x− ξ|) (xk − ξk) +
∑
s

[
∂f

∂|r|

∣∣∣∣
0

(xs − ξs)
|x− ξ|

(xk − ξk)εs + f(|r|)|0 εk

]
(2.7b)

that, in vector form becomes:

f(|r|)r ≈ (x− ξ) f0 + g0ε+ f0ε (2.8)

where

f0 = f(|r|)|0 = f (|x− ξ|) (2.9a)

g0 = ∂f

∂|r|

∣∣∣∣
0

(x− ξ)⊗ (x− ξ)
|x− ξ| (2.9b)

The force is composed by three terms: the first is the static component, the other
two are the dynamic displacement and dependent forces. Namely, the second order
tensor g0 depends on the gradient of the force with respect to the distance, the last
due to the static prestress. Therefore, the integral term of equation (2.3) becomes:∫

ξ∈R
[(x− ξ) f0 + g0ε+ f0ε] dV (2.10)

Separation of the static and the dynamic components of the displacement, i.e. using
the decomposition u(x, t) = v(x) + w(x, t), leads to:

− E

2(1 + ν)

[
∇2v + 1

1− 2ν∇ (∇ · v)
]

+
∫
ξ∈R

(x− ξ) f0dV = 0 (2.11)

for the static solution, and to

ρwtt −
E

2(1 + ν)

[
∇2w + 1

1− 2ν∇ (∇ ·w)
]

+

+
∫
ξ∈R

(g0ε+ f0ε) dV = 0 (2.12)
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for the dynamic equation. Equation (2.12) can be furtherly split into terms that,
singularly analyzed, lead to spatial convolution elements. Moreover, expliciting all
the dependencies, the dynamic interaction force becomes:∫

ξ∈R
(g0ε+ f0ε) dV =∫

ξ∈R
[g0(x, ξ) ε(x, ξ, t) + f0(x, ξ) ε(x, ξ, t)] dV =∫

ξ∈R
{g0(x, ξ) [w(x, t)−w(ξ, t)] + f0(x, ξ) [w(x, t)−w(ξ, t)]} dV

(2.13)

Developing each additive term, we have:∫
ξ∈R

g0(x, ξ) w(x, t)dV = p (g0 ∗ 1) ·w (2.14a)

−
∫
ξ∈R

g0(x, ξ) w(ξ, t)dV = −[g0 ∗ (w)] (2.14b)∫
ξ∈R

f0(x, ξ) w(x, t)dV = (f0 ∗ 1)w (2.14c)

−
∫
ξ∈R

f0(x, ξ) w(ξ, t)dV = −[f0 ∗ (w)] (2.14d)

where ∗ is the convolution operator, and both f0 and g0 are evaluated at ξ = 0.
Equation (2.12) becomes:

ρwtt −
E

2(1 + ν)

[
∇2w + 1

1− 2ν∇ (∇ ·w)
]

+

+ (g0 ∗ 1) ·w− (g0 ∗w) + (f0 ∗ 1)w− (f0 ∗w) = 0 (2.15)

An interesting result is achieved: in fact, if the hypothesis of small displacements
stands, the equation of motion becomes a summation of few convolution integrals,
leading to closed form solutions of the wave equation, focusing the attention in
resolving the dynamic equation (2.15).
The proposed equation is a general law, basis of some study cases, developed during
the PhD and summarized in this document. The following chapters present the
results obtained for one and two dimensional metamaterials with some examples of
long-range interaction forces.
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Part I

One-dimensional waves in
metamaterials
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The wave dynamics analysis starts with the evaluation of the wave propagation
phenomenon in one-dimensional unbounded media subject to long-range interac-
tion, for a better comprehension and evaluation of the wave propagation in elastic
metamaterials. Equation (2.15), consequently, reduces in the following expression:

ρ
∂2w

∂t2
+ � + (g0 ∗ 1)w − (g0 ∗ w) + (f0 ∗ 1)w − (f0 ∗ w) = 0 (2.16)

where � represents the local elasticity operator. To this purpose, two models are
analyzed in the following sections:

• D’Alembert based media;

• Euler-based media.

The former formulation starts from a local elasticity rod-like unbounded media with
long-range interactions, while the latter models a Euler-Bernoulli beam-like infinite
structure with long-range connections involving the external surfaces of the media.
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Chapter 3

Long-range interactions in a
D’Alembert waveguide

The D’Alembert based model is typical of elastic media subject to pressure waves,
and in this section, a rod-like long-range structure is presented.
The local elasticity in homogeneous cross-section constant media, subject to pressure

waves, for cross-section unit is −E∂
2w

∂x2 , and equation (2.16) consequently becomes:

ρ
∂2w

∂t2
− E∂

2w

∂x2 + (g0 ∗ 1)w − (g0 ∗ w) + (f0 ∗ 1)w − (f0 ∗ w) = 0 (3.1)

A general solution for the equation of motion can be assumed as follows:

w(x, t) =
∫∫ ∞
∞

W (k, ω)e(kx−ωt) dk dω (3.2)

where k is the propagation wavenumber [rad/m] and ω is the propagation frequency,
[rad/s]. In order to evaluate wave propagation in one-dimensional rod-like structures,
the general solution is introduced in the equation of motion and a dispersion
relationship is found.
The dispersion relationship is a mathematical law, namely a function, that relates
the time (frequency) and space (wavenumber) domains. To each fixed frequency,
none, one or a set of numerable correspondent wavenumbers solve the equation, and
vice versa by variating the wavenumber.
In the following sections, three interaction forces are analyzed:

• Gauss3-like;

• Laplace4-like;

• Rectangular.
3Johann Carl Friedrich Gauss (April 30th, 1777 - February 23rd, 1855) German mathematician

and physicist
4Pierre-Simon, marquis de Laplace (March 23rd, 1749 - March 5th, 1827) French scholar whose

work was important to the development of mathematics, statistics, physics and astronomy
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The Gauss- and Laplace-like forces are interaction forces rapidly decaying within
the distance, and derive from the Gauss (Normal) and Laplace (Double Exponen-
tial) distributions, respectively. The distribution term, capable of the interaction
magnitude, is multiplied by the r vector, to preserve the action-reaction principle.
This is the reason for the presence of the -like suffix.
The rectangular force is a constant stiffness interaction defined in a limited window
of the distance r.

3.1 Gauss-like
The Gauss-like interaction is a physical-mathematical model capable of describing
the force exchanged between two particles at distance r. The expression of the
magnitude term is the following:

f(|r|) = µe
− |r|

2

β2 (3.3)

The parameter µ (real, positive or negative) is a magnitude coefficient and β (real
and positive) is the interaction length, that takes into account the interaction spread
in the distance domain. In Figure 3.1 some Gauss-like examples are presented.
The Gauss-like force, thanks to the presence of the normal distribution, guarantees

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

r [m]

-5
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-2

-1

0

1

2

3

4

5

F
(|r

|)
 [

N
/m

3
]

Gauss-like force

= 100 N/m 4 ,   =0.1 m

=  25 N/m 4 ,   =0.2 m

=12.5 N/m 4 ,   =0.3 m

=6.25 N/m 4 ,   =0.4 m

Figure 3.1. Gauss-like force as function of the distance vector r = x− ξ

a distance-dependent decaying, moreover, the skew-symmetric behavior preserves
the action-reaction principle decay. Note that the choice of such force model is
corroborated by the simplicity of it, in fact, the behavior is controlled by the choice
of the two parameters µ and β, with a behavior that mimics several non-local inter-
actions, naturally long-range, such as electrostatic, magneto-static or gravitational
interaction, that generally follow a power-like interaction model.
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The power-like force, at r = 0 exhibits a singularity. It would happen in the only
case in which one of the particles collapses with another. However, this is a physically
unreachable condition, so that, power-law type interactions can be approximated
with Gauss-like interactions.

3.1.1 Analytical solution

The Gauss-like force is introduced into equation (3.1): collecting the convolutions,
so that it becomes:

ρ
∂2w

∂t2
− E∂

2w

∂x2 + [(g0 + f0) ∗ 1]w − [(f0 + g0) ∗ w] = 0 (3.4)

Introducing the actual expressions of f0 and g0, and introducing h0 = f0 + g0 as
follows:

f0(x− ξ) = µe
− (x−ξ)2

β2 (3.5a)

g0(x− ξ) = −2 µ
β2 (x− ξ)2e

− (x−ξ)2

β2 (3.5b)

h0(x− ξ) = f0(x− ξ) + g0(x− ξ) = µ

[
1− 2

β2 (x− ξ)2
]
e
− (x−ξ)2

β2 (3.5c)

equation (3.4) becomes:

ρ
∂2w

∂t2
− E∂

2w

∂x2 +
[
µ

(
1− 2

β2x
2
)
e
− x

2
β2 ∗ 1

]
w − µ

(
1− 2

β2x
2
)
e
− x

2
β2 ∗ w = 0 (3.6)

The equation of motion is thus reduced into the sum of four terms, but they
reduce to three, because the convolution among the parenthesis of the third term:

µ

(
1− 2

β2x
2
)
e
− x

2
β2 ∗ 1 is null:

µ

(
1− 2

β2x
2
)
e
− x

2
β2 ∗ 1 =

∂

∂x

(
µx e

− x
2
β2

)
∗ 1 =

µx e
− x

2
β2 ∗ ∂

∂x
(1) =

µx e
− x

2
β2 ∗ 0 = 0

(3.7)

Consequently, equation (3.6) reads:

ρ
∂2w

∂t2
− E∂

2w

∂x2 − µ
(

1− 2
β2x

2
)
e
− x

2
β2 ∗ w = 0 (3.8)

Some considerations about the linearization are needed, in fact, equation (3.8) is
useful only if the linearization hypothesis stands; therefore, equation (3.6), and equa-

tion (3.8), are valid under the assumption |ε| � |x−ξ|. Since |ε|
|x− ξ|

= |w(x)− w(ξ)|
|x− ξ|
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the strain should be � 1, at least of the order of 10−1.
According to the general solution w(x, t) = w0e

(kx−ωt) the strain is ∂w
∂x

= kw0e
(kx−ωt)

and the linearization is verified for ∂w
∂x
� 1, i.e. for w0k � 1. Introducing the

nondimensional wavenumber K = βk, it produces
∣∣∣∣w0K

β

∣∣∣∣� 1 hence K � β

w0
.

The obtained relationship indicates that, when the propagation regime is defined, the
intrinsic length and the vibration amplitude are mutually defined. In the following
sections, the evaluation will focus on low wavenumbers (K < 6), where interesting
phenomena emerge, in particular when K is in the order of ∼ 1; above the interest
bandwidth, the long-range model practically collapses into the standard short range
elastic waveguide. It means that the linearization is valid when the oscillation
amplitude w0 is much smaller than the intrinsic characteristic β: w0 � β.
The equation of motion, describing the behavior of the physical system, intrinsically
contains the dispersion relationship; to obtain it, the displacement needs to be
mathematically collected, and the resulting factor is the dispersion relationship. To
collect the displacement, it is necessary to transform the convolution into a product.
For this reason domain transforms are needed.
Two Fourier5 transforms6 are applied to the equation of motion, in time to frequency
and in space to wavenumber domains.
Taking into account the general solution of the equation of motion, equation (3.2),
equation (3.8) reads into:

− ρω2W + Ek2W − µβ3

2
√

2
k2e−

(βk)2
4 W = 0 (3.9)

where W = W (k, ω) = Ft→ω {Fx→k [w(x, t)]}.
Collecting W and applying a sign change we have:[

ρω2 − Ek2 + µβ3

2
√

2
k2e−

(βk)2
4

]
W = 0 (3.10)

Equation (3.10) is valid for any possible displacement, implying that the factor needs
to be null.
Consequently, the dispersion relationship for the one-dimensional rod based waveg-
uide with Gauss-like long-range interaction is obtained:

ρω2 − Ek2 + µβ3

2
√

2
k2e−

(βk)2
4 = 0 (3.11)

5Jean-Baptiste Joseph Fourier (March 21st, 1768 - May 16th, 1830) French mathematician and
physicist

6both time and space interest domains spread from −∞ to +∞
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To reduce the number of governing parameters, two additional nondimensional
groups are introduced, and, remembering the nondimensional wavenumber K:

Ω =
√
ρ

E
βω nondimensional frequency (3.12a)

K = βk nondimensional wavenumber (3.12b)

χ = µβ3

2
√

2E
stiffness ratio (3.12c)

obtaining the nondimensional dispersion relationship:

Ω2 +K2
(
χe−

K2
4 − 1

)
= 0 (3.13)

The nondimensional group in equation (3.12c) is named ratio because, introducing

the long-range stiffness: E∗ = µβ3

2
√

2
, (real, positive or negative, according to the

sign of µ) the nondimensional group χ is exactly the ratio between the long-range
(nonlocal) stiffness and the short-range (local) stiffness.
The expression obtained in equation (3.13) links the frequency to the wavenumber
in a relation that is ruled by one parameter only: the stiffness ratio χ. For one-
dimensional second order Gauss-like waveguides, several interesting phenomena
emerge, just acting on χ.
Because of the presence of transcendent terms that do not allow a closed form
solution in the time frequency domain, the dispersion equation is solved in the
wavenumber domain in both dimensional and nondimensional solutions:

ω = ±k
√
E

ρ
− µβ3

2
√

2ρ
e−

(βk)2
4 (3.14)

Ω = ±K
√

1− χe−
K2
4 (3.15)

The solution in the frequency domain is numerically obtained, and it is presented in
Appendix A. In the following paragraphs, the nondimensional dispersion relationship
is analyzed.
The propagation is analyzed in terms of the stiffness ratio χ, especially in terms of
magnitude and sign.
Three different regions are identified:

• Strongly negative χ, with χ � −1, where a strong long-range repulsion is
observed;

• Low magnitude χ, with −1 ≤ χ ≤ 1, where a quasi-neutral behavior is
observed;

• Strongly positive χ, with χ � 1, where a strong long-range attraction is
observed.

The three regions show unusual behaviors at low wavenumbers (K <∼ 5.5), while
the long-range waveguide, regardless of the magnitude and the sign of χ, show the
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same trend, asymptotically converging to the solution of the short-range waveguide,
thereafter called with the notation D’Alembert7 who solved the short-range infinite
elastic waveguide system [65].

Strongly negative χ

Under a mathematical point of view, when χ � −1, equation (3.15) admits real
solutions, positive or negative, according to the sign of the root. In Figure 3.2
some values of the positive solutions of the frequency are plotted, and interesting
phenomena emerge.
The dispersion relationships depicted in Figure 3.2 show similar properties. At low
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Figure 3.2. Dispersion curves for the 1D 2nd order Gauss-like model with strongly negative
χ

wavenumbers they present a high slope that quickly vanishes, up to obtain a local
maximum; from then on, the curve decreases up to a valley, a local minimum, until
they rapidly converge to the short-range waveguide, in dashed red.
The slope of the curve, as widely discussed later, is directly correlated to the wave
packet envelope speed; when it is null, as in local points, the envelope does not
travel [66], evidencing the presence of wave-stopping phenomenon. To this aim, a
wave-stopping line has been depicted in Figure 3.2, indicating the K,Ω couple where
the phenomenon verifies. Moreover, when the slope becomes negative, the wave
packet travels in opposite direction with respect to the disturbances peaks, so that a
NGV (Negative Group Velocity) region is highlighted. The non highlighted region
indicates a conventional dynamic behavior.
It is evident that for low magnitude negative χ, the waveguide does not present

7Jean-Baptiste Le Rond d’Alembert (Paris, November 16th, 1717 - Paris, October 29th, 1783)
French mathematician, mechanician, physicist, philosopher, and music theorist
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wave-stopping and reverse propagation (as in the NGV region). These values are
discussed in the next paragraph.

Low magnitude χ

When the stiffness ratio magnitude is low (|χ|< 1), either positive or negative, the
dispersion equation allows real frequencies. In this region, nevertheless, neither
wave-stopping, nor reverse propagation phenomena appear. In Figure 3.3 some
dispersion curves are presented.
It is evident that the curves are barely different from the D’Alembert line, in

0 0.5 1 1.5 2 2.5 3 3.5 4

Nondimensional wavenumber K

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

n
d

im
en

si
o

n
al

 f
re

q
u

en
cy

 

Dispersion relationship (Gauss-like model)

D'ALEMBERT

-1< <1

=-
1

=1

Figure 3.3. Dispersion curves for the 1D 2nd order Gauss-like model with low magnitude χ

that, according to the meaning of the χ parameter, the local elasticity is stronger
than the nonlocal interaction. Further discussion will be made in the wave speed
analysis sections that follow, because such kind of dispersion curves provokes a
modal migration between frequency bandwidths. As for the previous case, also when
|χ| ≤ 1 for K >∼ 4 (not depicted in Figure 3.3 to highlight the lower wavenumbers
behavior), the behavior mimics the D’Alembert waveguide.

Strongly positive χ

When χ > 1 the dispersion curves is not real for any wavenumber values; in fact,
for K ∈ [0;K0] the dispersion relationship provides purely imaginary frequencies.
K0 is calculated starting from equation (3.15), as follows. By imposing K0 as the
wavenumber value when the square root argument is null, namely the value in
which there is the shift from purely imaginary to real solutions of the dispersion
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relationship:

1− χe−
K2

0
4 = 0

χe−
K2

0
4 = 1

e−
K2

0
4 = 1

χ

e−
K2

0
4 = χ−1

ln
(
e−

K2
0

4

)
= ln

(
χ−1

)
−K

2
0

4 = − ln (χ)

K2
0 = 4 ln (χ)

K0 = 2
√

ln (χ)

(3.16)

the evaluation of negative wavenumbers is not in the interests of this PhD project.
When a purely imaginary solution appears, either the positive and the negative
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Figure 3.4. Dispersion curves for the 1D 2nd order Gauss-like model with strongly positive
χ

solutions of the dispersion relationship leads to instability regions. In fact, defining
Ω(K̄)1,2 = ±Ω1,2 = ±CΩω1,2, with K̄ ∈ [0,K0] and CΩ =

√
ρ

E
β the nondimen-

sional to dimensional conversion coefficient, the single element of the displacement
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solution diverges, as follows:

w1(x, t) = w01e
(kx−CΩω1t) = w01e

CΩω1tekx (3.17a)
w2(x, t) = w02e

(kx+CΩω2t) = w02e
−CΩω2tekx (3.17b)

(3.17c)

The first solution diverge when t → +∞, the second comes from a divergent
condition, i.e. when t→ −∞. In Figure 3.4, an instability region has been depicted
when K ∈ [0,K0].
The slope of the dispersion curves, right at the beginning of the stable region, is very
high. This condition will be accurately discussed later, but similar trends indicate a
very high propagation speed, if compared to the pressure waves propagation speed.

3.1.2 Wave speed analysis

To analyse wave propagation, two velocities must be evaluated, namely the phase
velocity and the group velocity, two quantities capable of highlighting the presence
of peculiar propagation phenomena, such as wave-stopping or superluminal regions.

Phase velocity

The phase velocity describes the motion of a single elementary wavelet in the
carrier [67], and it is defined by the ratio between the frequency and the wavenumber.
Introducing a reference phase velocity c =

√
E
ρ corresponding to the solution of

the short-range elastic waveguide, the dimensional phase velocity in Gauss-like one-
dimensional structures is evaluated from the solution of the dimensional dispersion
relationship, equation (3.15), obtaining its nondimensional counterpart:

cφ = ω

k
= ±

√
E

ρ
− µβ3

2
√

2ρ
e−

(βk)2
4

= ±
√
E

ρ

√
1− µβ3

2
√

2E
e−

(βk)2
4

= ±c
√

1− µβ3

2
√

2E
e−

(βk)2
4

= ±c
√

1− χe−
K2
4

= c

(
±
√

1− χe−
K2
4

)

= c

±K
√

1− χe−
K2
4

K


= c

Ω
K

(3.18)
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introducing Cφ = Ω
K as the nondimensional phase velocity, from equation (3.18):

Cφ = Ω
K

= cφ
c

= ±
√

1− χe−
(βk)2

4 (3.19)

The phase velocity analysis strictly follows the classifications made for the dispersion
relationship, namely in terms of magnitude and sign of the stiffness ratio χ.

Strongly negative χ

For strongly negative stiffness ratios, the phase velocity follows a monotonically
decreasing behavior8 with respect to the nondimensional wavenumber, as depicted in
Figure 3.5. As a consequence, for each value of χ, the maximum value is obtained at
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Figure 3.5. Phase velocities for the 1D 2nd order Gauss-like model with strongly negative
χ

the initial value K = 0, and each curve asymptotically converges to the D’Alembert
line Cϕ = 1.
From a mechanical point of view, it means that each wavelet travels with a faster
speed with respect to the others with higher wavenumbers. Non-constant phase
speed means also that the general shape of the perturbation is not preserved and
it does not travel in a compact shape along the waveguide, in contrast with what
happens for the D’Alembert waveguide, where a constant phase velocity is present
and the shape of the perturbation is preserved.

8if χ� −1, ∂Cϕ
∂K

= χe−
K2

4

4
√

1− χe−K2
4

K 6= 0 ∀ K ∈ [0,+∞)
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Low magnitude χ

When the magnitude of χ decreases, also the the initial point of the phase velocity
decreases its value, getting closer to the limit case, χ = 0 in which the D’Alembert
case is obtained9, while the trend is completely preserved. With low, but positive,
stiffness ratios, the trend flips, and the initial value is between 0 and 1, and the
value of the phase velocity asymptotically converges to 1: its maximum value. In
Figure 3.6 some examples are presented:
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Figure 3.6. Phase velocities for the 1D 2nd order Gauss-like model with low magnitude χ

The extremum χ = 1 indicates the maximum value of χ for which only real solutions
appear, and, for this value, the minimum phase velocity (without instability) can
be reached: Cϕ = 0. Mathematically speaking, a constant perturbation along the
waveguide (K = 0) in such medium has null phase velocity.

Strongly positive χ

For strongly positive values of χ, the value of the phase velocity is similar to the
dispersion relationship; it starts close to zero barely right of the instability line, and
then it tends to the D’Alembert model, as depicted in Figure 3.7.
Some interesting behavior will emerge in the next paragraph, when the propagation
in terms of group velocity is analyzed.

Group velocity

The group velocity describes the speed of modulation [67] and it is defined as the
derivative of the frequency with respect to the wavenumber. In an analogous way

9When χ→ 0, E � µβ3: equation (3.13)tends to the D’Alembert wave equation
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Figure 3.7. Phase velocities for the 1D 2nd order Gauss-like model with strongly positive χ

with respect to the phase velocity, the group velocity is calculated:

cg = ∂ω

∂k
= ± ∂

∂k

[
k

√
E

ρ
− µβ3

2
√

2ρ
e−

(βk)2
4

]

= ±
√
E

ρ

∂

∂k

[
k

√
1− µβ3

2
√

2E
e−

(βk)2
4

]

= ±c ∂
∂k

[
k

√
1− χe−

(βk)2
4

]

= ±c ∂
∂k

βk
√

1− χe−
(βk)2

4

β


= ±c ∂

∂(βk)

[
(βk)

√
1− χe−

(βk)2
4

]

= ±c ∂

∂K

(
K

√
1− χe−

K2
4

)
= c

∂Ω
∂K

(3.20)

introducing Cg = ∂Ω
∂K as the nondimensional group velocity, from equation (3.20) we

have:

Cg = ∂Ω
∂K

= cg
c

= ±

√1− χe−
K2
4 + χe−

K2
4

4
√

1− χe−
K2
4

K2

 (3.21)
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Strongly negative χ

When χ � −1 interesting phenomena emerge; in fact the group velocity shows a
sign change. When the group velocity vanishes, wave-stopping phenomena appear.
It means that the envelope of a narrow banded group of wavelets, if the average
wavenumber stands in one of the wave-stopping points, does not travel along the
waveguide.
Moreover, as shown in Figure 3.8, each curve has two wave-stopping points. These
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Figure 3.8. Group velocities for the 1D 2nd order Gauss-like model with strongly negative
χ

points define a bandwidth in which the group velocity is negative. In this region,
while a single banded wavelet travels along the waveguide in one direction, the
envelope of a wave packet moves backwards. This region is called Negative Group
Velocity (NGV) region, where the negative adjective is used to identify the sign of
the envelope speed if compared to the wavelet speed. The width of the NGV area is
as wide as much higher is the magnitude of χ, as visible in Figure 3.2.

Low magnitude χ

When the magnitude of χ decreases, no wave-stopping or negative group velocity
phenomena emerge, but rather a mode migration phenomenon appears. To describe
the mode migration phenomenon, an additional quantity must be introduced: the
eigenstate density.
The eigenstate (or modal) density [66] is defined as the number of eigenstates in a
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certain bandwidth, and it is evaluated as follows for nondimensional quantities:

dN

dΩ ∝
d

dΩ

(
K

π
L

)
for reference length (L = π)

∝ dK

dΩ = 1
Cg

dN

dΩ ∝
1
Cg

= ± 4
√

1− χe−
K2
4

4 + χ (K2 − 4) e−
K2
4

(3.22)

As depicted in Figure 3.9 and highlighted in Figure 3.10, all the curves show a trend
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Figure 3.9. Group velocities for the 1D 2nd order Gauss-like model with low magnitude χ

around the D’Alembert reference, in particular two curve branches are identified: the
first overcomes the D’Alembert group velocity, while in the second the group velocity
is smaller. In terms of eigenstate density, the situation flips. A folding wavenumber
k0 ∼ 1, 4 is identified, as the wavenumber that divides the two branches.
In Figure 3.11, for instance, the eigenstate density for χ = 0, 4 is depicted. When
0 <χ<1, at lower wavenumbers, the eigenstate density increases, while it is lower
than the D’Alembert reference from k0 on. The migration term is used because of
the variation of the density has a precise trend; in fact, the eigenstates gained in
[0, k0] is equal to the ones lost in [k0,+∞). From a mathematical point of view:∫ k0

0

(
dN

dΩ − 1
)
dΩ =

∫ +∞

k0

(
1− dN

dΩ

)
dΩ (3.23)

According to the mode migration phenomenon, an eigenstate packet travels, mi-
grating from high to low frequencies, folding around k0. The opposite phenomenon
appears when −1 < χ < 0, where the migration goes from low to high frequencies,
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Figure 3.10. Eigenstate density for the 1D 2nd order Gauss-like model with strongly
positive χ
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function of Ω

as shown in Figure 3.10.
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Strongly positive χ

For χ� 1 neither wave-stopping phenomena, nor mode migration appear. Instead,
interesting phenomena in the wave propagation studies emerge: superluminal group
velocity regions.
Right after the stability line, as depicted in Figure 3.12, the group velocity reaches
very high values. Theoretically, in this region infinite group velocity could be reached,
no upper limit is mathematically present, so that, speeds higher than the speed of
light can be reached10.
In general, the group velocity is always higher that the D’Alembert reference, as
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Figure 3.12. Group velocities for the 1D 2nd order Gauss-like model with strongly positive
χ

shown in Figure 3.12, and then, with a very high slope, the group velocity decreases
to asymptotically reach the short-range waveguide. In the following section, some
numerical simulations follow to corroborate the results arisen from the model.

3.1.3 Simulations

Some numerical simulations have been carried out to test the effects of the long-range
interaction, and to corroborate the developed models, demonstrating the presence of
the hypothesized phenomena.
The numerical simulations have been performed for a continuous finite rod clamped
at the ends, and subjected to long-range interaction as in Figure 3.13. The physical
quantities are defined as follows:

• mass density: 1320 kg/m3;
10this consideration is not in contrast with the impossibility to overcome the speed of light, in

fact, neither the group nor the phase velocity indicate the information transmission velocity, whose
maximum value is defined by the speed of light [68].



3.1 Gauss-like 26

• elastic modulus: 1.6 MPa;

• rod length (l) : 100 m;

• long-range interaction length (β): 0.32 m;

while the long-range force intensity is ruled by the simulation. In fact, three
simulations have been run to trace the three scales of the stiffness ratio described in
the previous sections.
In all the following simulations, the initial condition has been chosen to excite several

ξ x

w(x, t)

l

w(ξ, t)

F [x− ξ + w(x, t)− w(ξ, t)]

Figure 3.13. Geometry of the rod used to simulate the long-range models

wavelengths (200), in a wavenumber domain capable of letting all the propagation
phenomena, the ones described by the analysis of the dispersion curve.

Strongly negative χ

The simulation for the strongly negative stiffness ratio has been evaluated with a
Gauss-like force magnitude as follows:

• long-range interaction length (µ): −8.64x106 N/m4

leading to a stiffness ratio χ = −42.7.
The displacement map in Figure 3.14 shows how different wavenumbers spread

Figure 3.14. Displacement map (left) and plots (right) for 1D waveguide with strongly
negative χ subject to Gauss-like interaction

along the waveguide. It is possible to distinguish low wavenumbers that rapidly
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reach the resting extrema of the waveguide. A backbone perturbation propagates
with a speed comparable to the D’Alembert propagation speed. This quasi-non
dispersive propagation is composed by higher wavenumbers, while this wavefront
propagates, a tail evolve with slower speeds in the waveguide.
The propagation map is compared to the analytical dispersion relationship. To
obtain a simulated dispersion relationship, a 2-D Discrete Fourier Transform has
been applied [69], in space and time domain. In Figure 3.15 the discrete dispersion
relationship is compared to the analytical result, where the lightest regions highlight
a match between time and space frequencies.
A graphical analysis shows that the expected behavior is found also in the numerical

Figure 3.15. Dispersion analysis for Gauss-like interaction and strongly negative χ (Left:
analytical dispersion relationship, Right: Simulated dispersion relationship)

simulations. The analysis shows not just a qualitative match, but the behavior has
been completely rebuilt.
Such result was not granted, in that the limitations in the length could lead to
unbalancing phenomena in the borders, modifying the static solution.

Low magnitude χ

The simulation for low magnitude stiffness ratios has been carried on with χ = 0.9,
leading to µ = 1.82x105 N/m4.
The map and the plots in Figure 3.16 show a barely non-dispersive behavior of the
wave packet. In the plots are clearly recognizable the high wavenumbers backbones.
According to the model, lower wavenumbers should propagate with slower speeds,
and few wavenumbers should propagate with faster speeds. Such behavior is clearly
visible in the simulations, where faster and slower frequencies spread from the central
packet.
The comparison in Figure 3.17 corroborates the presence of dispersion also in the
finite length waveguide. Slow wavenumbers propagate with slower speeds, speed
that rapidly decreases and then lightly grows again, up to tend to the D’Alembert
propagation speed, showing the migration phenomena hypothesized in the previous
sections.



3.1 Gauss-like 28

Figure 3.16. Displacement map (left) and plots (right) for 1D waveguide with low
magnitude χ subject to Gauss-like interaction

Figure 3.17. Dispersion analysis for Gauss-like interaction and low magnitude χ (Left:
analytical dispersion relationship, Right: Simulated dispersion relationship)

Strongly positive χ

The value of the stiffness ratio chosen to simulate a strongly positive system is the
same value in magnitude chosen for the negative case. The value has been chosen to
compare the opposite effects borne with the same interaction magnitude but with
opposite direction. In particular, χ = 42.7 and µ = 8.64x106 N/m4.
In the following simulation, the dispersion relationship leading to instability effects
have not been excited, due to the focus of the work in the study of propagation
phenomena.
The observation of the map and of the plots in Figure 3.18 shows the presence of a
very fast wave package which travels along the whole waveguide quasi-instantaneously,
as evident in the 3-D map (left). The D’Alembert backbone is evident, together
with the presence of faster wave packets (not superluminal).
The comparison between the simulation and the analytical model corroborate the
presence of the phenomena presented in the previous sections for strongly positive
stiffness ratios.
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Figure 3.18. Displacement map (left) and plots (right) for 1D waveguide with strongly
positive χ subject to Gauss-like interaction

Figure 3.19. Dispersion analysis for Gauss-like interaction and strongly positive χ (Left:
analytical dispersion relationship, Right: Simulated dispersion relationship)

In the next section a different interaction model is presented. This force leads to
comparable effects, thanks to a comparable distance-decaying behavior.

3.2 Laplace-like
The Laplace-like model describes a distance-decaying long-range interaction between
two particles in the media distant r the one from the other.
Similar to the Gauss-like interaction described in section 3.1.1, the Laplace-like
interaction model is a combination of two factors: a distribution and a skew-
symmetrical component. The mathematical expression of the former is defined as
follows:

f(|r|) = µe
− |r|
β (3.24)

The parameters µ (∈ R) and β (∈ R+) inherit their physical meaning from the
Gauss-like model. Figure 3.20 shows a picture with some Laplace-like examples.
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With respect to the plot in Figure 3.1, the plots in Figure 3.20, obtained for the
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Figure 3.20. Laplace-like force as function of the distance vector r = x− ξ

same µ,β couple, show that the general behavior is preserved. It is evident that
the distance spread of the force is wider in the Laplace-like model, as a direct
consequence of the Laplace distribution, while the peak position and magnitude are
basically comparable, as shown in Figure 3.21:

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

r [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

F
(|r

|)
 [

N
/m

3
]

Interaction comparison

Gauss-like
Laplace-like

= 100 N/m 4,   =0.1m

Figure 3.21. Comparison between Gauss-like and Laplace-like force for µ = 100 N/m4

and β = 0.1 m
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As well as for the Gauss-like model, the Laplace like model can be used to mimic
the trend of several power-like interactions, especially when the interaction has a
lower decay, with respect to the distance.

3.2.1 Analytical Solution

The terms f0 and g0 have been calculated, and read as follows:

f0(x− ξ) = µe
− |x−ξ|

β (3.25a)

g0(x− ξ) = −µ
β
|x− ξ|e−

|x−ξ|
β (3.25b)

h0(x− ξ) = f0(x− ξ) + g0(x− ξ) = µ

(
1− |x− ξ|

β

)
e
− |x−ξ|

β (3.25c)

Some terms in the equation of motion are null (as reference, see section 3.1.1). The
equation of motion for the one-dimensional waveguide with Laplace-like interaction
results as follows:

ρ
∂2w

∂t2
− E∂

2w

∂x2 −
[
µ

(
1− |x|

β

)
e
− |x|

β

]
∗ w = 0 (3.26)

Applying the Fourier transform in both space and time domain, factorizing the
Fourier transform of the displacement assumed as in equation 3.2, the dispersion
relationship is obtained:

ρω2 − Ek2 + µ
2
√

2
πβ

3

(β2k2 + 1)2k
2 = 0 (3.27)

According to the parameters in equation (3.12), the nondimensional dispersion
relationship for the Laplace-like one-dimensional model is obtained as follows:

Ω2 +K2
( 8χ√

π(K2 + 1)2 − 1
)

= 0 (3.28)

The dispersion relationship with a Laplace-like interaction differs form the Gauss-like
homologous equation in the nature of the long-range contribution. In fact, while
in the Gauss-like dispersion relationship we note the presence of a transcendent
wavenumber term that does not allow an analytical solution of the equation in the
frequency domain, the Laplace-like model gives back a rational dispersion relationship
that allows analytical solutions in the frequency domain, as in Appendix B.
The solution in the wavenumber domain has been evaluated for both dimensional
and nondimensional quantities:

ω = ±k

√√√√√E

ρ
− µ

ρ

2
√

2
πβ

3

(β2k2 + 1)2 = 0 (3.29)

Ω = ±K
√

1− 8χ√
π(K2 + 1)2 = 0 (3.30)

In the following paragraphs, the nondimensional dispersion relationship is analyzed.
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Strongly negative χ

As well as for the Gauss-like model, the dispersion relationship for the Laplace-like
interaction has been evaluated by varying the sign and the intensity of the stiffness
ratio.
For strongly negative ratios, as shown in Figure 3.22, also the Laplace-like model
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Figure 3.22. Dispersion curves for the 1D 2nd order Laplace-like model with strongly
negative χ

shows a dispersion relationship bigger than the D’Alembert reference. Moreover,
for χ <∼ −29, the presence of wave-stopping and Negative Group Velocity regions
emerge, as highlighted by the line and area, respectively.

Low magnitude χ

The dispersion relationship shows, for long-range stiffnesses comparable with the
short-range elasticity, pretty weakly curves, if compared with the local-elasticity
reference, as shown in Figure 3.23.

Strongly positive χ

An unstable region is present also in the Laplace like model for K ∈ [0, k0], with

k0 =

√
2
√

2√χ
4
√
π
− 1, evaluated by zeroing the square root in equation (3.30) and

taking the only solution compatible with the domain.
Out of the stability region, the frequency, always lower than the D’Alembert

reference, asymptotically reaches a constant growing trend, corresponding to the
D’Alembert one.
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Figure 3.23. Dispersion curves for the 1D 2nd order Laplace-like model with low magnitude
χ
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Figure 3.24. Dispersion curves for the 1D 2nd order Laplace-like model with strongly
positive χ

3.2.2 Wave speed analysis

Phase and group velocities are now evaluated. With a procedure similar to the
Gauss-like model, the two quantities are calculated, in the following paragraphs.
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Phase velocity

The nondimensional phase velocity in Laplace-like one-dimensional structures is
evaluated, starting from the solution of the dimensional dispersion relationship:
equation (3.29), obtaining its nondimensional counterpart:

cφ = ω

k
= ±

√√√√√E

ρ
− µ

ρ

2
√

2
πβ

3

(β2k2 + 1)2

= ±
√
E

ρ

√√√√√1− µ

E

2
√

2
πβ

3

(β2k2 + 1)2

= ±c

√√√√√1− µ

E

2
√

2
πβ

3

(β2k2 + 1)2

= ±c
√

1− 8χ
√
π (β2k2 + 1)2

= ±c
√

1− 8χ
√
π (K2 + 1)2

= c
Ω
K

(3.31)

introducing Cφ = Ω
K as the nondimensional phase velocity, from equation (3.31) we

have:
Cφ = Ω

K
= ±

√
1− 8χ
√
π (K2 + 1)2 (3.32)
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Group velocity

The group velocity is evaluated from the dimensional dispersion equation ω(k):

cg = ∂ω

∂k
= ± ∂

∂k

k
√√√√√E

ρ
− µ

ρ

2
√

2
πβ

3

(β2k2 + 1)2



= ±
√
E

ρ

∂

∂k

k
√√√√√1− µ

E

2
√

2
πβ

3

(β2k2 + 1)2


= ±c ∂

∂k

[
k

√
1− 8χ
√
π (β2k2 + 1)2

]

= ±c ∂
∂k

βk
√

1− 8χ√
π(β2k2+1)2

β


= ±c ∂

∂(βk)

{
(βk)

√
1− 8χ
√
π [(βk)2 + 1]2

}

= ±c ∂

∂K

[
K

√
1− 8χ
√
π (K2 + 1)2

]

= c
∂Ω
∂K

(3.33)

As in Section 3.1.1, Cg = ∂Ω
∂K is the nondimensional group velocity. From equa-

tion (3.33):

Cg = ∂Ω
∂K

= cg
c

= ±


√

1− 8χ
π (K2 + 1)2 + 16K2χ

π (K2 + 1)3
√

1− 8χ
π(K2+1)2

 (3.34)

The similarities with the Gauss-like model continue. In fact, the two model see the
borne of the same phenomena, namely the presence of wave-stopping, of reverse
propagation, of mode migration, and of superluminal, hypersonic group velocity,
according to the magnitude and sign of the stiffness ratio χ.
In Figure 3.23 the phase and the group velocity for the three regions are depicted in
a summarizing plot comprehensive of all the curves.

3.2.3 Simulations

The following section shows some numerical simulations obtained for the finite waveg-
uide described in Section 3.1.3 with similar interaction magnitude and analogous
spread.
The simulation for the strongly negative stiffness ratio is evaluated setting the value
of the stiffness ratio (in this case χ = ±39.7), obtaining next the value of the
force magnitude µ = ±8.04x106 N/m4 for the high magnitude stiffness ratios, and
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(a) Phase velocity, χ� −1.
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(b) Group velocity, χ� −1.
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(c) Phase velocity, −1 ≤ χ ≤ 1.
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(d) Group velocity, −1 ≤ χ ≤ 1.
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(e) Phase velocity, χ� 1.
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Figure 3.23. Propagation speeds for the Laplace-like model.

χ = −0.9 with µ = −1.82x105 N/m4. The simulations are presented in Figure 3.22.
A qualitative analysis of the simulations shows the presence of the expected

propagation phenomena, coherently with the simulations with Gauss-like interaction
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(a) Strongly negative χ

(b) Low magnitude χ

(c) Strongly positive χ

Figure 3.22. Displacement maps (left) and plots (right) for 1D waveguide subject to
Laplace-like interaction

described in Section 3.1.3. The analysis of the propagation behavior, presented
in Figure 3.21 shows that the trend of the dispersion curves is respected, but, no
quantitative match is registered.
A gap is evident in the values where the strange propagation phenomena have
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(a) Strongly negative χ

(b) Low magnitude χ

been analytically highlighted. This discrepancy has an explanation in the nature of
the force, compared to the interaction length.
The Laplace-like force, as depicted in Figure 3.21, shows that for the same interaction
length parameter β, the actual spread is different for the two models. The Laplace
distribution, in fact, vanishes more slowly if compared to the normal distribution
(Gauss distribution). The truncation effects due to the limited waveguide appear
to be no more negligible with respect to the Gauss-like interaction with the same
interaction length.
The long-range effect borne from the simulations appears amplified with respect to
the analytical results. Under a possible follow up in the analysis, an evaluation of
the gap related to the infinite to finite truncation can be carried with both analytical
and computational approaches, in a physical feasibility perspective.

The two models show practically the same phenomena, the main difference be-
ing in the possibility to solve in closed form (see B) the dispersion relationship of
the Laplace-like model in the wavenumber domain.
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(c) Strongly positive χ

Figure 3.21. Dispersion analysis for Laplace-like interaction (Left: analytical dispersion
relationship, Right: Simulated dispersion relationship)

In general, if the interaction force responds to a skew-symmetric behavior F (r(x, ξ)) =
−F (−r(x, ξ)) responsible of preserving the action-reaction principle, equation (3.1)
can be rewritten in the following compact form:

ρẅ − Ew′′ + h ∗ w = 0 (3.35)

with ẅ = ∂2w

∂t2
, w′′ = ∂2w

∂x2 , and h = f0 + g0.
In the previous sections, the propagation behavior has been analyzed, by select-
ing some discrete values of the stiffness ratio. To better understand the strange
phenomena emerged in these interaction models, a propagation map is built, as in
Figure 3.22.
All the unusual regions have been highlighted in Figure 3.22. In both maps, the

(a) Gauss-like interaction (b) Laplace-like interaction

Figure 3.22. Dispersion maps, Gauss-like and Laplace-like interaction.

Wave-Stopping line, the Negative Group Velocity, Unstable and Hypersonic regions
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emerge. The map depict the nondimensional frequency (surfaces) as function of the
stiffness ratio (in abscissa) and of the nondimensional wavenumber (in ordinate).
The next model has a different basis. in fact, the force is a nonlocal elastic interaction,
spreading up to a finite distance for each element of the waveguide.

3.3 Rectangular
The Gauss-like and Laplace-like models have been developed starting from the
assumption of an interaction force split in two terms, an intensity term, function of
the norm of the distance vector, and the distance vector itself. The rectangular model,
instead, describes a classical elastic connection spreading in a finite rectangular
window.
To this purpose, the assumptions made to obtain equation (2.15) are not valid, and
the equation of motion for the rectangular model is the one-dimensional version of
equation (2.3), as follows:

ρ
∂2w

∂t2
− E∂

2w

∂x2 + µ

∫ +∞

−∞
H(x− ξ, β)ε dξ = 0 (3.36)

where the term µ

∫ +∞

−∞
H(x − ξ, β)ε dξ describes the rectangular the long-range

interaction. Moreover H(x − ξ, β) is the function that limits the interaction in a
rectangular 2β wide window, as follows:

H(x− ξ, β) = Θ(x− ξ + β)−Θ(x− ξ − β) (3.37)

with Θ the Heaviside theta function.

3.3.1 Analytical Solution

The integral term of equation (3.36) is analyzed:∫ +∞

−∞
H(x− ξ, β)ε dξ =

∫ +∞

−∞
[Θ(x− ξ + β)−Θ(x− ξ − β)] [w(x)− w(ξ)] dξ

(3.38)
that can be split into the summation of two integrals:∫ +∞

−∞
[Θ(x− ξ + β)−Θ(x− ξ − β)]w(x) dξ (3.39a)

and

−
∫ +∞

−∞
[Θ(x− ξ + β)−Θ(x− ξ − β)]w(ξ) dξ (3.39b)

Analyzing equation (3.39a) it becomes:∫ +∞

−∞
[Θ(x− ξ + β)−Θ(x− ξ − β)]w(x) dξ = w(x)

∫ +∞

−∞
[Θ(x− ξ + β)−Θ(x− ξ − β)] dξ

= [(x− ξ + β)Θ(x− ξ + β)− (x− ξ − β)Θ(x− ξ − β)]+∞−∞w(x)
= 2βw(x)

(3.40)
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while equation (3.39b) becomes:

−
∫ +∞

−∞
[Θ(x− ξ + β)−Θ(x− ξ − β)]w(ξ) dξ

= −
∫ +∞

−∞
[Θ(x+ β − ξ)−Θ(x− β − ξ)]w(ξ) dξ

= − [Θ(x+ β)−Θ(x− β)] ∗ w(x)

(3.41)

Substituting equations (3.40) and (3.41) into equation (3.36) the equation of motion
for the rectangular interaction is obtained:

ρ
∂2w

∂t2
− E∂

2w

∂x2 + 2βµw(x)− µ [Θ(x+ β)−Θ(x− β)] ∗ w(x) = 0 (3.42)

Applying the Fourier Transform in time and space domains the equation of motion
reads as follows:

− ρω2W + Ek2W + 2βµW − µ
√

2
π

sin(βk)
k

W = 0 (3.43)

Collecting W (k, ω) the dispersion relationship is obtained:

− ρω2 + Ek2 + 2βµ− µ
√

2
π

sin(βk)
k

= 0 (3.44)

that, in nondimensional parameters, becomes:

− Ω2 +K2 + 4
√

2χ− χ 8√
π

sincK = 0 (3.45)

and, solved in the wavenumbers domain:

ω = ±

√
E

ρ
k2 + 2βµ

ρ
− µ

ρ

√
2
π

sin(βk)
k

(3.46a)

Ω = ±
√
K2 + 4

√
2χ− χ 8√

π
sincK (3.46b)

The model stands only for positive values of the stiffness ratio χ. In this model, in
fact, µ is the spring stiffness distribution per unit length, generally positive.
An interesting difference emerge, with respect to the dispersion relationships ob-
tained with the Gauss-like and Laplace like models. The presence of a constant term
strongly modifies the propagation behavior, as depicted in Figure 3.23.
The dispersion relationships depicted in Figure 3.23 shows that, in general, the

propagation regime is different from the short-range case, the red dashed line, more-
over, increasing the intensity of the stiffness ratio, the presence of wave-stopping
and reverse propagation emerge, coherently, in this case, with the two interaction
models presented in the previous sections, but, thanks to the presence of an harmonic
element, for χ > 50, more NGV bandwidths are present.
In Figure 3.24 the propagation map of the rectangular model where the Wave-
stopping, the NGV regions and the superluminal phase velocity regions are high-
lighted.
The wave propagation analysis continues with the evaluation of the wave speeds.
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Figure 3.23. Dispersion curves for the 1D 2nd order rectangular model

Figure 3.24. Dispersion map rectangular interaction.

3.3.2 Wave speed analysis

The analysis is divided in the evaluation of the phase velocity and the group velocity.

Phase velocity

The nondimensional phase velocity for rectangular interaction is evaluated, starting
from the solution of the dimensional dispersion relationship, in equation (3.46a), to
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obtain, consequently, its nondimensional counterpart:

cφ = ω

k
= ±

√
E
ρ k

2 + 2β µρ −
µ
ρ

√
2
π

sin(βk)
k

k

cφ = ω

k
= ±

√
E

ρ
+ 2β µ

ρk2 −
µ

ρ

√
2
π

sin(βk)
k3

= ±
√
E

ρ

√
1 + 2β µ

Ek2 −
µ

E

√
2
π

sin(βk)
k3

= ±c

√
1 + 2β µ

Ek2 −
µ

E

√
2
π

sin(βk)
k3

= ±c
√

1 + 2β3 µ

E(βk)2 −
µβ3

E

√
2
π

sin(βk)
(βk)3

= ±c
√

1 + 2β3 µ

E(βk)2 −
µβ3

E

√
2
π

sinc(βk)
(βk)2

= ±c

√
1 + 4

√
2χ

K2 − χ 8√
π

sincK
K2

= ±c

√
K2 + 4

√
2χ− χ 8√

π
sincK

K

= c
Ω
K

(3.47)

introducing Cφ = Ω
K as the nondimensional phase velocity, from equation (3.47):

Cφ = Ω
K

= ±

√
1 + 4

√
2χ

K2 − χ 8√
π

sincK
K2 (3.48)

In Figure 3.25 some plots of the phase velocity are presented:
The phase velocity in one-dimensional rods with rectangular interaction shows

a decreasing behavior, that asymptotically tends to the short range waveguide,
but, with respect to the Gauss-like and Laplace-like models with strongly negative
stiffness ratios, at very low wavenumbers, the phase velocity tends to infinite values,
showing the presence of superluminal phase velocity regions.
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Figure 3.25. Dispersion curves for the 1D 2nd order rectangular model

Group velocity

The group velocity is evaluated from the dimensional dispersion equation ω(k):

cg = ∂ω

∂k
= ± ∂

∂k

√E

ρ
k2 + 2βµ

ρ
− µ

ρ

√
2
π

sin(βk)
k


= ±

√
E

ρ

∂

∂k

√k2 + 2β µ
E
− µ

E

√
2
π

sin(βk)
k


= ±c ∂

∂k

√k2 + 2β µ
E
− µ

E

√
2
π

sin(βk)
k



= ±c ∂
∂k


√

(βk)2 + 2β3 µ
E −

µβ3

E

√
2
π

sin(βk)
βk

β


= ±c ∂

∂(βk)

√(βk)2 + 2β3 µ

E
− µβ3

E

√
2
π

sinc(βk)


= ±c ∂

∂K

[√
K2 + 4

√
2χ− χ 8√

π
sincK

]

= c
∂Ω
∂K

(3.49)
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As in Section 3.1.2, Cg = ∂Ω
∂K is the nondimensional group velocity. From equa-

tion (3.49):

Cg = ∂Ω
∂K

= cg
c

= ±

 χ 8√
π

sincK
K − χ 8√

π
cosK
K + 2K

2
√
K2 + 4

√
2χ− χ 8√

π
sincK

 (3.50)

In Figure 3.26 some plots of the group velocity are presented: The group velocity for
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Figure 3.26. Dispersion curves for the 1D 2nd order rectangular model

the rectangular model is depicted in Figure 3.26, for some values of the stiffness ratio.
The behavior can be defined as pseudo-harmonic and several zero crossing appear,
the number of which is related to the intensity of χ, leading to the presence of one
or more NGV regions, delimited by couples of wave-stopping wavenumbers. One
other interesting phenomenon is evidenced in terms of wave-stopping: for very low
wavenumbers, the group velocity vanishes, and, this effect appears for every not null
stiffness ratio, leading to the presence of wave stopping also where the long-range
interaction is not so strong, requirement necessary in the Gauss-like and Laplace-like
cases.
For high wavenumbers, the harmonic amplitude vanishes and the group velocity,
as shown in the previous interaction models. The waveguide, thus, tends to the
short-range D’Alembert waveguide.
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Chapter 4

Long-range interactions in a
Bernoulli beam

The beam model is typical of elastic media subject to bending waves. In the following
section, a beam-like long-range structure, thereafter called waveguide, subject to
bending waves, is presented.
The local elasticity operator responds to the Euler11-Bernoulli12[28, 70] beam model,
represented as follows:

ξ

ζ

x

z

2s

w(x, t)
w(ξ, t)

Long-range surface

Long-range force

Figure 4.1. Unbounded Euler-Bernoulli beam with long-range interaction.

with ρ, 2s, A, E and I the mass density, the thickness, the cross-section (supposed
rectangular), the Young modulus and the moment of inertia, respectively, constant
along the beam, and w(. . . ) the z-axis displacement.
The two dimensional model, according to the Euler-Bernoulli formulation, is reduced
to a one-dimensional problem, function of the only z−direction displacement, and the

local elasticity operator is EI ∂
4w

∂x4 . The equation of motion for the Euler-Bernoulli
formulation reads as follows:

ρA
∂2w(x, t)
∂t2

+ EI
∂4w(x, t)
∂x4 + p(x, t) = 0 (4.1)

where p(x, t) indicates the applied loads.
For a purely flexural beam, the long-range interaction leads to two terms: q(x, t)

11Leonhard Euler (April 5th, 1707 - September 18th 1783) Swiss mathematician, physicist,
astronomer, logician and engineer

12Daniel Bernoulli (February 8th, 1700 - March 17th, 1782) Swiss mathematician and physicist
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and m(x, t), a shear force and a bending moment, respectively.
The resulting equation of motion of the Euler-Bernoulli beam is:

ρA
∂2w(x, t)
∂t2

+ EI
∂4w(x, t)
∂x4 + q(x) + ∂m(x)

∂x
= 0 (4.2)

where

m(x) = zFx(x) = z

∫ ∞
−∞

[rf(|r|)]x dξ (4.3a)

q(x) = Fz(x) =
∫ ∞
−∞

[(rf(|r|)]z dξ (4.3b)

Two interactions are considered, the first where the long-range interaction is present
on the upper surface only (TOP), the second where both the upper and the lower
surfaces interact (TOP-BOTTOM).

4.1 Gauss-like
The case of a Gauss-like interaction in long-range beams is considered. In the
following parts, the interaction on the only top surface is considered, as graphically
depicted in Figure 4.2 that follows:

ξ

ζ

x

z

2s

w(x, t)
w(ξ, t)

Long-range surface

F [x− ξ + w(x, t)− w(ξ, t)]

Figure 4.2. Unbounded Euler-Bernoulli beam with TOP long-range interaction (Gauss-
like).

Subsequently, the long-range interaction is introduced also in the bottom surface.
As a consequence, a mutual interaction between particles from top to bottom and
vice-versa appears, besides the self-evident interaction between all the elements of
the bottom surfaces. The graphical appearance of such beam is shown in Figure 4.3.

ξ x

z

2s

w(x, t)
w(ξ, t)

Long-range surface (top)

Long-range surface (bottom)

F [x− ξ + w(x, t)− w(ξ, t)]

Figure 4.3. Unbounded Euler-Bernoulli beam with TOP-BOTTOM long-range interaction
(Gauss-like).
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4.1.1 Top surface interaction

Analytical solution

According to the Euler-Bernoulli beam model, w(. . . ) is sufficient to describe the
displacement of the beam: u. Being:

ux = −s(w′(x, t)− w′(ξ, t)) (4.4a)
uz = w(x, t)− w(ξ, t) (4.4b)

with w′(. . . ) = ∂w(... )
∂x and, remembering that x = ( xs ) and ξ = ( ξs ), with g0 =[

∂f(|r|)
∂|r|

∣∣∣
0

(x−ξ)2

|x−ξ| 0
0 0

]
=
[
g011 0

0 0

]
, the long-range force becomes:

rf(|r|) = f0
(
x−ξ

0

)
+
[
g011 0

0 0

] (
−s[w′(x,t)−w′(ξ,t)]
w(x,t)−w(ξ,t)

)
+ f0

(
−s[w′(x,t)−w′(ξ,t)]
w(x,t)−w(ξ,t)

)
(4.5)

Bending moment From equation (4.3a)

m(x, t) = s

∫ ∞
−∞

f0(x− ξ) + (g011 + f0)
{
−s[w′(x, t)− w′(ξ, t)]

}
dξ (4.6a)

= s

∫ ∞
−∞

f0(x− ξ)dξ−

− s2w′(x, t)
∫ ∞
−∞

(g011 + f0)dξ+

+ s2
∫ ∞
−∞

(g011 + f0)w′(ξ, t) = (4.6b)

= s2
∫ ∞
−∞

(g011 + f0)w′(ξ, t) = (4.6c)

= s2 [(g011 + f0) ∗ w′(x, t)
]

(4.6d)

Shear force From equation (4.3b)

p(x, t) =
∫ ∞
−∞

f0[w(x, t)− w(ξ, t)]dξ (4.7a)

= w(x)
∫ ∞
−∞

f0dξ −
∫ ∞
−∞

f0w(ξ) = (4.7b)

= f̄0w(x)− f0 ∗ w(x) (4.7c)

where �̄ = � ∗ 1.
Substituting (4.6) and (4.7) into (4.2):

ρA
∂2w(x, t)
∂t2

+EI ∂
4w(x, t)
∂x4 +f̄0w(x, t)−(f0 ∗ w(x, t))+ ∂

∂x

{
s2
[
(f0 + g011) ∗ ∂w(x, t)

∂x

]}
= 0

(4.8)
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The Fourier Transform in time and space leads to the dispersion relationship:

− ρAω2 + EIk4 + f̄0 − ˆ̂
f0 − k2s2

(
ˆ̂
f0 + ˆ̂g011

)
= 0 (4.9)

where ˆ̂� denotes the double Fourier transform.
For a Gauss-like interaction, remembering that f(|r|) = µAe

− |r|
2

β2 , and remembering
f0 and g011 = g0 from equation (3.5), equation (4.9) becomes

− ρAω2 + EIk4 + µAβ
√
π − µAβe

− (βk)2
4

√
2
− k4s2µAβ3 e

− (kβ)2
4

2
√

2
= 0 (4.10)

that, in nondimensional parameters becomes:

Ω2 − 1
3S

2K4 − χ
[
2
√

2π −
(
2 + S2K4

)
e−

K2
4

]
= 0 (4.11)

with S = s
β , and the moment of inertia is I = 1

12A(2s)2 = 1
3As

2.
Equation 4.12 leads to the nondimensional dispersion curve:

Ω = ±
√

1
3S

2K4 + χ

[
2
√

2π − (2 + S2K4) e−
K2
4

]
(4.12)

In Figure 4.4 two values of the stiffness ratio are presented and compared with the
canonical Euler-Bernoulli formulation (in red dashed line). The thickness of the
beam is assumed constant: s = 0.01β.
Both values lead to hypersonic/superluminal propagation, the model on the left (a)
shows superluminal group velocity right out of an unstable region, while the case
depicted on the right (b) presents a superluminal phase velocity, as highlighted in
section 4.1.1.
Two propagation maps are depicted for many values of the beam thickness, as
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Figure 4.4. Dispersion relationships, Gauss-like top surface interaction beam.

in Figure 4.11 to summarize the behavior of the long-range beam with Gauss-like
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interaction on top surface. Both plots show the presence of unstable regions when the
stiffness ratio is negative13. In addition, the thickness of the beam plays a valuable
role in the definition of the unstable region. In fact, the smallest the thickness, the
biggest the value of K0, the transition wavenumber between the unstable and the
stable regions.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Young modulus ratio ( )

0

1

2

3

4

5

6

7

8

9

10

N
o
n
d
im

e
n
s
io

n
a
l 
w

a
v
e
n
u
m

b
e
r 

(K
)

Propagation map, ( ,K) with S=0.01

0
.3

5
0
.3

5
0
.3

5
0
.7

0
.7

0
.7

1
.0

5
1
.0

5
1
.0

5

1
.4

1
.4

1
.4

1
.7

5
1
.7

5

1
.7

5

2
.1

2
.1

2
.1

2
.4

5
2
.4

5

2.45

2
.8

2
.8

2.8

3
.1

5
3
.1

5

U
N

S
T

A
B

L
E

 R
E

G
IO

N

(a) S = 0.01

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Young modulus ratio ( )

0

1

2

3

4

5

6

7

8

9

10

N
o
n
d
im

e
n
s
io

n
a
l 
w

a
v
e
n
u
m

b
e
r 

(K
)

Propagation map, ( ,K) with S=0.1

0.35

0.35

0
.3

5

0.7

0.7

0
.7

1.05

1.05

1
.0

5

1.4

1.4

1
.4

1.75

1.75

1
.7

5

2.1

2.1

2.1

2
.1

2.45

2.45

2.45

2
.4

5

2.8

2.8

2.8

2
.8

3.15

3.15

3.15

3.15

3.5

3.5

3.5

3.85

3.85

3.85

4.2

4.2

4.2

4.55

4.55

4.55

4.9

4.9

4.9

5.25

5.25

5.25

5.6

5.6

5.95 6.3

UNSTABLE REGION

(b) S = 0.1

Figure 4.5. Dispersion map, Gauss-like top surface interaction beam.

Wave speed analysis

The nondimensional phase and group velocities are obtained:

Cφ = Ω
K

= ±

√
1
3S

2K4 + χ

[
2
√

2π − (2 + S2K4) e−
K2
4

]
K

(4.13a)

Cg = ∂Ω
∂K

= ±
4K3S2

3 + e−
K2
4 Kχ+ 1

2e
−K

2
4 K5S2χ− 4e−

K2
4 K3S2χ

2
√

K4S2

3 − 2e−
K2
4 χ− e−

K2
4 K4S2χ+ 2π

√
2χ

(4.13b)

From the analysis of the propagation velocities, some interesting phenomena emerge,
as depicted in Figure 4.6:
As anticipated in the previous sections, some interesting phenomena appear in the
long-range beams with Gauss-like interaction on the top surface, where, according
to the sign of the stiffness ratio, superluminal region appears alternatively: phase
velocity or group velocity for positive or negative stiffness ratios, respectively. More-
over, all the velocities asymptotically tend to the classical Euler-Bernoulli beam,
and, for positive χ, for very low wavenumbers, the group velocity rapidly decreases,
theoretically vanishing when K → 0.

13remember that in the case of the rod the unstable region was found in positive χs
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Figure 4.6. Dispersion velocities, Gauss-like top surface interaction beam.

4.1.2 Top and Bottom surface interaction

Analytical solution

The top-top interaction is the one evaluated in section 4.1.1, thus it is not discussed
here. According to the Euler-Bernoulli beam model, w(. . . ) is sufficient to describe
the displacement of the beam and u leads to:

ux = −sw′(x, t)− sw′(ξ, t)) (4.14a)
uz = w(x, t)− w(ξ, t) (4.14b)

with w′(. . . ) = ∂w(... )
∂x and, remembering that x = ( xs ) and ξ =

(
ξ
−s

)
, with g0 = ∂f(|r|)

∂|r|

∣∣∣
0

(x−ξ)2

|x−ξ|
∂f(|r|)
∂|r|

∣∣∣
0

2s(x−ξ)
|x−ξ|

∂f(|r|)
∂|r|

∣∣∣
0

2s(x−ξ)
|x−ξ|

∂f(|r|)
∂|r|

∣∣∣
0

4h2

|x−ξ|

 =
[
g011 g012

g021 g022

]
, the two-dimensional long-range

force becomes:

rf(|r|) = f0
(
x−ξ
2s

)
+
[
g011 g012

g021 g022

] (
−sw′(x,t)−sw′(ξ,t))

w(x,t)−w(ξ,t)

)
+ f0

(
−sw′(x,t)−sw′(ξ,t))

w(x,t)−w(ξ,t)

)
(4.15)
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Bending moment From equation (4.3a)

m(x, t) = s

∫ ∞
−∞

{
f0(x− ξ) + (g011 + f0)

[
−sw′(x, t)− sw′(ξ, t)

]
+ g012 [w(x)− w(ξ)]

}
dξ

(4.16a)

= s

∫ ∞
−∞

f0(x− ξ)dξ−

− s2w′(x, t)
∫ ∞
−∞

(g011 + f0)dξ−

− s2
∫ ∞
−∞

(g011 + f0)w′(ξ, t)dξ+ (4.16b)

+ sw(x)
∫ ∞
−∞

g012dξ− (4.16c)

− s
∫ ∞
−∞

g012w(ξ)dξ = (4.16d)

= −s2 [(g011 + f0) ∗ w′(x, t)
]
− s g012 ∗ w(x, t) (4.16e)

Shear force From equation (4.3b)

p(x, t) =
∫ ∞
−∞

{
2sf0 + g021

[
−sw′(x) + sw′(ξ)

]
+ (g022 + f0) [w(x, t)− w(ξ, t)]

}
dξ

(4.17a)

= 2s
∫ ∞
−∞

f0dξ−

− sw(x, t)
∫ ∞
−∞

g021dξ−

− s
∫ ∞
−∞

g021w
′(ξ, t)dξ+ (4.17b)

w(x)
∫ ∞
−∞

(g022 + f0)dξ− (4.17c)

−
∫ ∞
−∞

(g022 + f0)w(ξ)dξ = (4.17d)

= 2sf̄0 − sg021 ∗ w(x, t) + (ḡ22 + f̄0)w(x, t)− (g022 + f0) ∗ w(x, t) (4.17e)

where �̄ = � ∗ 1.

Bottom-Top interaction

For the Bottom-Top interaction, x and ξ are as follows: x = ( x
−s ) and ξ = ( ξs ),

with g0 =

 ∂f(|r|)
∂|r|

∣∣∣
0

(x−ξ)2

|x−ξ|
∂f(|r|)
∂|r|

∣∣∣
0
−2s(x−ξ)
|x−ξ|

∂f(|r|)
∂|r|

∣∣∣
0
−2s(x−ξ)
|x−ξ|

∂f(|r|)
∂|r|

∣∣∣
0

4h2

|x−ξ|

 =
[
g011 g012

g021 g022

]
, the two-dimensional
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long-range force becomes:

rf(|r|) = f0
(
x−ξ
−2s

)
+
[
g011 g012

g021 g022

] (
sw′(x,t)+sw′(ξ,t))
w(x,t)−w(ξ,t)

)
+f0

(
+sw′(x,t)+sw′(ξ,t))

w(x,t)−w(ξ,t)

)
(4.18)

Bending moment From equation (4.3a)

m(x, t) = −s
∫ ∞
−∞

{
f0(x− ξ) + (g011 + f0)

[
sw′(x, t) + sw′(ξ, t)

]
+ g012 [w(x)− w(ξ)]

}
dξ

(4.19a)

= −s
∫ ∞
−∞

f0(x− ξ)dξ−

− s2w′(x, t)
∫ ∞
−∞

(g011 + f0)dξ−

− s2
∫ ∞
−∞

(g011 + f0)w′(ξ, t)dξ− (4.19b)

− sw(x)
∫ ∞
−∞

g012dξ+ (4.19c)

+ s

∫ ∞
−∞

g012w(ξ)dξ = (4.19d)

= −s2 [(g011 + f0) ∗ w′(x, t)
]

+ s g012 ∗ w(x, t) (4.19e)

Shear force From equation (4.3b)

p(x, t) =
∫ ∞
−∞

{
−2sf0 + g021

[
sw′(x) + sw′(ξ)

]
+ (g022 + f0) [w(x, t)− w(ξ, t)]

}
dξ

(4.20a)

= −2s
∫ ∞
−∞

f0dξ+

+ sw(x, t)
∫ ∞
−∞

g021dξ+

+ s

∫ ∞
−∞

g021w
′(ξ, t)dξ+ (4.20b)

w(x)
∫ ∞
−∞

(g022 + f0)dξ− (4.20c)

−
∫ ∞
−∞

(g022 + f0)w(ξ)dξ = (4.20d)

= −2sf̄0 + sg021 ∗ w(x, t) + ¯(g022 + f0)w(x, t)− (g022 + f0) ∗ w(x, t)
(4.20e)

where �̄ = � ∗ 1.



4.1 Gauss-like 54

Bottom-Bottom interaction

For the Bottom-Bottom interaction, x and ξ become as follows: x = ( x
−s ) and

ξ =
(
ξ
−s

)
, with g0 =

[
∂f(|r|)
∂|r|

∣∣∣
0

(x−ξ)2

|x−ξ| 0
0 0

]
=
[
g011 0

0 0

]
, the two-dimensional long-

range force becomes:

rf(|r|) = f0
(
x−ξ

0

)
+
[
g011 0

0 0

] (
−sw′(x,t)+sw′(ξ,t))

w(x,t)−w(ξ,t)

)
+ f0

(
−sw′(x,t)+sw′(ξ,t))

w(x,t)−w(ξ,t)

)
(4.21)

Bending moment From equation (4.3a)

m(x, t) = −s
∫ ∞
−∞

{
f0(x− ξ) + (g011 + f0)

[
−sw′(x, t) + sw′(ξ, t)

]}
dξ (4.22a)

= −s
∫ ∞
−∞

f0(x− ξ)dξ+

+ s2w′(x, t)
∫ ∞
−∞

(g011 + f0)dξ−

− s2
∫ ∞
−∞

(g011 + f0)w′(ξ, t)dξ = (4.22b)

= −s2 [(g011 + f0) ∗ w′(x, t)
]

+ s2
[

¯(g011 + f0)w′(x, t)
]

(4.22c)

Shear force From equation (4.3b)

p(x, t) =
∫ ∞
−∞

+f0 [w(x, t)− w(ξ, t)] dξ (4.23a)

= w(x)
∫ ∞
−∞

+f0dξ− (4.23b)

−
∫ ∞
−∞

f0w(ξ)dξ = (4.23c)

= f̄0w(x, t)− f0 ∗ w(x, t) (4.23d)

where �̄ = � ∗ 1.

Total contribution

The contributions coming from the cases depicted in Section 4.1.1 are combined, for
the Gauss-like model, as follows:

ptot = 2f̄0TTw− 2f0TT ∗w− 2sg021TB
∗w′+ 2(ḡ022TB

+ f̄0TB )w− 2(g022TB
+ f0TB ) ∗w

(4.24)
mtot = 2s2(g011TT

+ f0TT ) ∗ w′ − 2s2(g011TB
+ f0TB ) ∗ w′ − 2sg012TB

∗ w (4.25)

there the pedices �TT and �TB indicate the TOP-TOP and TOP-BOTTOM contri-
bution, respectively; moreover, for a more clear graphic appearance, the dependencies
have been omitted.
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Some terms have been simplified during the calculation because they vanish in the
Gauss-like formulation. The remaining terms are as follows:

f̄0TT = µAβ
√
π (4.26a)

f0TT |x = µAe
− x

2
β2 (4.26b)

g021TB |x = g12TB |x = −2µA
β2 se

−4 s
2
β2 xe

− x
2
β2 (4.26c)

ḡ022TB + f̄0TB = µAβ
√
πe
−4 s

2
β2

(
1− 8s2

β2

)
(4.26d)

(g022TB + f0TB )|x = µAe
−4 s

2
β2

(
1− 8s2

β2

)
e
− x

2
β2 (4.26e)

(g011TT + f0TT )|x = µA(1− 2x2

β2 )e−
x2
β2 (4.26f)

(g011TB + f0TB )|x = µAe
−4 s

2
β2 (1− 2x2

β2 )e−
x2
β2 (4.26g)

Substituting into (4.8), the Fourier transform in time and space leads to the following
dispersion relationship:

− ρAω2 + EIk4 + 2µAβ
√
π + 2µAβ

√
π

(
1− 8s2

β2

)
e
−4 s

2
β2 − 2µAβ 1√

2
e−

(βk)2
4 −

−4µAs2
√

2e−4 s
2
β2

√
β

k2e−
(βk)2

4 −2µAβ

(
1− 8s2

β2

)
e
−4 s

2
β2

√
2

e−
(βk)2

4 +2µAβ3 e
−4 s

2
β2 − 1

2
√

2
s2k4e−

(βk)2
4 = 0

(4.27)

In non dimensional parameters, equation (4.27) for a rectangular section beam,
becomes:

Ω2 = 1
3S

2K4 + 4χ
√

2
√
π + 4χ

√
2
√
π(1− 8S2)e−4S2 − 4χe−

K2
4 −

− 16χS2K2e−4S2
e−

K2
4 − 4χ(1− 8S2)e−4S2

e−
K2
4 − 2χ

(
1− e−4S2)

S2K4e−
K2
4

(4.28)

As in the case of the top surface interaction only, the case in which the two surfaces
interact presents an unstable region for negative stiffness ratios and superluminal
velocities, as depicted in Figure 4.7 for s = 0.01β.
In Figure 4.8 the propagation map for the top and bottom interaction surfaces for
two values of the beam thickness is presented. Once again, the ratio between the
thickness of the beam and the interaction length controls the spread of the instability
region.

Wave speed analysis

From the analysis of the propagation velocities, some interesting phenomena emerge,
as depicted in Figure 4.7:
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Figure 4.7. Dispersion relationships, Gauss-like top and bottom surfaces interaction beam.
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Figure 4.8. Dispersion map, Gauss-like top-bottom surface interaction beam.

4.2 Laplace-like
The case of the Laplace-like beam is considered. Starting from equation (4.8), the
additional forces for the top surface interaction and for the top and bottom surfaces
are considered.
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Figure 4.9. Dispersion velocities, Gauss-like top and bottom surfaces interaction beam.

4.2.1 Top surface interaction

Analytical Solution

The solution of the top surface interaction is evaluated in the previous section for the
Gauss-like model. Starting from equation (4.9) the following values are considered:

f̄0 = 2Aµβ (4.29a)

f0|x = µAe
− |x|

β (4.29b)

(g011 + f011)|x = µA(1− x2

β
)e−

|x|
β (4.29c)

and the dispersion relationship for the Laplace-like beams reads into:

− ρAω2 + EIk4 + 2µAβ −

√
2
πβµA

β2k2 + 1 − k
4s2 2

√
2
πAβ

3k2µ

(β2k2 + 1)2 = 0 (4.30)

that, in nondimensional parameters becomes:

Ω2 − 1
3S

2K4 − χ
{

4
√

2−
[ 4√

π(K2 + 1) + S2K4 8√
π(K2 + 1)2

]}
= 0 (4.31)
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leading to the solution for the nondimensional frequency as follows:

Ω = ±
√

1
3S

2K4 + χ

{
4
√

2−
[ 4√

π(K2 + 1) + S2K4 8√
π(K2 + 1)2

]}
(4.32)
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Figure 4.10. Dispersion relationships, Laplace-like top surface interaction beam.
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Figure 4.11. Dispersion map, Gauss-like top surface interaction beam.
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Wave speed analysis

The nondimensional phase and group velocities are obtained:

Cφ = Ω
K

= ±

√
1
3S

2K4 + χ
{

4
√

2−
[

4√
π(K2+1) + S2K4 8√

π(K2+1)2

]}
K

(4.33a)

Cg = ∂Ω
∂K

= ±
4K3S2

3 + 8Kχ(K2(1−4S2)+1)
√
π(K2+1)3

2
√

K4S2

3 − 4χ(2K4S2+K2+1)√
π(K2+1)2 + 4

√
2χ

(4.33b)

Some interesting phenomena emerge according to the propagation velocities, as
depicted in Figure 4.12:
The Laplace-like beam with top interactive surface is solved in a closed form and
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Figure 4.12. Dispersion velocities, Gauss-like top surface interaction beam.

subsequently the wave propagation analysis is completed. This is not the case of the
Laplace-like beam with top and bottom interaction, where numerical approaches are
needed to extract the dispersion relationship, not in the target of this thesis project.
In forthcoming activities, the analysis will be extended also in evaluating the
propagation regimes in beams with rectangular long-range interaction.
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Part II

Two-dimensional waves in
metamaterials
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Chapter 5

Long-range interactions in an
elastic membrane

Interesting phenomena have been highlighted in the previous sections. The inter-
action will be susbequently expanded in two dimensional membranes subject to
long-range interaction.
In a logical and consequential expansion of the work made for the one-dimensional
metamaterials, the Gauss-like, Laplace-like and the rectangular models must be
analysed. The first two cases do not present a closed form solution, thus, the analysis
of such kind of interaction has not been developed in this thesis, whose aim is to find
analytical solution for long-range interaction models. The rectangular model will be
presented in the following section, together with the supporting mathematics. The
two dismissed models open the chance to study a follow up of this thesis, focused on
the deep analysis of such behaviors.
In the following formulation, the elements will be identified by the x = ( xy ) and
ξ =

(
ξ
η

)
coordinates systems.

5.1 Rectangular interaction
The dynamic equation of motion in two dimensions cannot be obtained from equa-
tion (2.15), because the interaction force does not respond to the formulation
F (r) = −f(|r|)r. Introducing the long range interaction

F (r) = µH(|r|) ε (5.1)

the equation of motion for the long-range membrane is introduced:

ρwtt − P ∇2w +
∫∫

R2
µH(|r|) ε dξ dη = 0 (5.2)

where P indicates the intensity per unit area of the stiffness operator.
As in the one-dimensonal case, the operator H describes the interaction window. An
axial-symmetric rectangular window is introduced, as in equation (5.3) and plotted
in Figure 5.1:

H(|r|) =
{

1, |r| ≤ β
0, |r| > β

(5.3)
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where β, as in previous models, is a real positive quantity, indicating the interaction
spread.

Figure 5.1. Rectangular long-range interaction in membranes for µ = 1 and β = 5

5.1.1 Analytical Solution

Introducing equation (5.3) into equation (5.1), expliciting ε = w(x, y)−w(ξ, η) the
following expression is obtained:

ρwtt − P ∇2w + µ

∫∫
R2
H(|r|) [w(x, y)−w(ξ, η)] dξ dη = 0 (5.4)

Splitting the double integral in two terms, remembering that |r| =
√

(x− ξ)2 − (y − η)2,
two expressions are obtained and analysed:

µ

∫∫
R2
H(|r|)w(x, y) dξ dη =µw(x, y)

∫∫
R2
H(|r|) dξ dη

=µw(x, y)
∫∫

R2
H (x− ξ, y − η) dξ dη

=µπβ2w(x, y)

(5.5)

and

−µ
∫∫

R2
H(|r|)w(ξ, η) dξ dη =− µ

∫∫
R2
H (x− ξ, y − η)w(ξ, η) dξ dη

=− µ [H(x, y) ∗w(x, y)]
(5.6)

that, substituted in equation (5.4) leads to the equation of motion:

ρwtt − P ∇2w + µπβ2w − µ [H ∗w] = 0 (5.7)
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Applying two times the Fourier transform and collecting the transform of the
displacement, a dispersion relationship for the long-range membrane is obtained:

− ρω2 + P
(
k2
x + k2

y

)
+ µπβ2 − µβ√

k2
x + k2

y

J1
(
β
√
k2
x + k2

y

)
= 0 (5.8)

where kx and ky are the wavenumbers along the two coordinates, and J1(�) is the
Bessel14 function of the 1st kind15 with α = 1 [71]. Introducing new nondimensional
groups:

Ω =
√
ρ

P
βω nondimensional frequency (5.9a)

Kx,y = βkx,y nondimensional wavenumber (5.9b)

χ = µβ4

P
stiffness ratio (5.9c)

equation 5.8 becomes, in nondimensional form:

− Ω2 +
(
K2
x +K2

y

)
+ χ

π − J1(
√
K2
x +K2

y )√
K2
x +K2

y

 = 0 (5.10)

The two dispersion relations lead to the dispersion surfaces

ω2 = P

ρ

(
k2
x + k2

y

)
+ µ

ρ
πβ2 − µβ

ρ
√
k2
x + k2

y

J1
(
β
√
k2
x + k2

y

)
(5.11a)

Ω2 =
(
K2
x +K2

y

)
+ χ

π − J1(
√
K2
x +K2

y )√
K2
x +K2

y

 (5.11b)

With analogous meanings with respect to the one-dimensional models, the parameter
χ can be defined as the ratio between the long-range interaction stiffness E∗ = µβ4,
and the short range stiffness, ruled by P .
Introducing the radial wavenumber K =

√
K2
x +K2

y , the dispersion surface is plot-
ted in Figure 5.2, now reduced into a series of parametric curves, according to the
magnitude of the stiffness ratio, compared to the case of the short-range membrane,
in which the dispersion relationship is defined as ω2 = c2(k2

x + k2
y) with c =

√
P
ρ

that, in radial direction, becomes a line crossing the zero at the origin.
The curves in Figure 5.2 indicate, similarly to what happened in the case of

the one-dimensional, that the presence of the long-range term strongly modifies
the oscillation frequency of the membrane. Nevertheless, a mathematical analysis
shows that all the curves start from a non-zero value and asymptotically lead to the
short-range membrane. In addition, when the stiffness ratio increases, some per-
turbation in the propagation appears, analysed in terms of phase and group velocities.

14Friedrich Wilhelm Bessel (July 22nd, 1784 - March 17th 1846) German astronomer, mathemati-
cian, physicist and geodesist

15defined by Bernoulli after Bessel’s death: Jα(x) =
∫ π

0 cos(ατ − x sin τ) dτ
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Figure 5.2. Dispersion curves for the rectangular membrane model as function fo the radial
wavenumber

5.1.2 Wave speed analysis

The analysis of the phase and the group velocity is performed along two different
directions, the former following the radial wavenumber approach, the latter by
analyzing the propagation direction in both x and y axis.

phase velocity

The phase velocity is calculated in the following paragraphs.
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radial wavenumber For the evaluation of the phase velocity in the radial direction,
the radial dimensional wavenumber is introduced: k =

√
k2
x + k2

y,

cφ = ω

k
= ±

√
T
ρ k

2 + µπ
ρ β

2 − µβ
ρk J1 (βk)

k

= ±
√
P

ρ
+ µπ

ρ

β2

k2 −
µβ

ρk3J1 (βk)

= ±
√
P

ρ

√
1 + µπ

P

β2

k2 −
µβ

Pk3J1 (βk)

= ±c

√
1 + µπ

P

β2

k2 −
µβ

Pk3J1 (βk)

= ±c
√

1 + µβ4

P

π

(βk)2 −
µβ4

P

J1 (βk)
(βk)3

= ±c
√

1 + χ
π

(βk)2 − χ
J1 (βk)
(βk)3

= ±c

√
1 + χ

π

K2 − χ
J1 (K)
K3

= ±c

√
K2 + χ

[
π − J1(K)

K

]
K

= c
Ω
K

(5.12)

As well as for the previous models the nondimensional phase velocity Cφ = cφ
c

= Ω
K

is introduced and plotted in Figure 5.3 for the radial wavenumber.
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Figure 5.3. Phase velocity for the rectangular membrane model (radial wavenumber)

Coordinates propagation direction The phase velocity along the single axis
is introduced as follows:

cφx = ω

kx
= ±

√
P
ρ (k2

x + k2
y) + µπ

ρ β
2 − µβ

ρ
√
k2
x+k2

y

J1
(
β
√
k2
x + k2

y

)
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√
P

ρ

√
(k2
x + k2

y) + µπ
P β
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P
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k2
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β
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y

)
kx
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x + k2

y) + µπ
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(
β
√
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y

)
kx
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β2(k2

x + k2
y) + µπ

P β
4 − µβ4

Pβ
√
k2
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y

J1
(
β
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k2
x + k2

y

)
βkx
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√
[(βkx)2 + (βky)2] + χπ − χ√
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(√

(βkx)2 + (βky)2
)

βkx
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√
(K2

x +K2
y ) + χπ − χ√

K2
x+K2
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J1
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K2
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Kx
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√
(K2

x +K2
y ) + χ

[
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Kx
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Ω
Kx

(5.13)
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and the nondimensional x−direction phase velocity is Cφx = cφx
c

= Ω
Kx

, depicted in
Figure 5.4. The nondimensional y−direction phase velocity, for analogous calculus
is Cφy = Ω

Ky
.

The radial phase velocity shows similar trends independently of the intensity of the

Figure 5.4. Phase velocity for the rectangular membrane model (x-direction propagation)

stiffness ratio, as depicted in Figure 5.3, where all the curves present a very high
phase velocity at low wavenumbers, and superluminal phenomena emerge.
The same phenomenon comes out analyzing the propagation along the x and y
directions. In fact, low wavenumbers superluminal phase velocity emerges, as shown
in Figure 5.4.

group velocity

The group velocity is calculated as follows for the two directions in the next para-
graphs.
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radial wavenumber The dimensional group velocity is calculated:

cg = ∂ω

∂k
= ± ∂

∂k

√
P

ρ
k2 + µπ

ρ
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∂(βk)

√
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(βk)

= ±c ∂

∂K

√
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[
π − J1 (K)

K

]
= c

∂Ω
∂K

(5.14)

The nondimensional radial group velocity Cg = cg
c

= ∂Ω
∂K

is introduced and depicted
in Figure 5.5.
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Figure 5.5. Group velocity for the rectangular membrane model (radial wavenumber)
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Coordinates propagation direction The group velocity along the x-axis is
introduced:

cgx = ∂ω

∂kx
= ± ∂
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(5.15)

and the nondimensional x−direction group velocity is Cgx = cgx
c

= ∂Ω
∂Kx

, plotted in
Figure 5.6. The nondimensional y−direction group velocity, for analogous calculus
is Cgy = ∂Ω

∂Ky
.

The presence of unusual propagation phenomena are strictly related to the intensity

Figure 5.6. Group velocity for the rectangular membrane model (x-direction propagation)

of the stiffness ratio χ, as depicted in Figure 5.5 and Figure 5.6 , where Wave-stopping
and Negative Group Velocity emerge only for high stiffness ratios χ >∼ 30. Similar to
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what highlighted in the case of the one-dimensional rod with rectangular interaction,
the radial group velocity presents a pseudo-harmonic trend, that asymptotically
leads to the case of the short-range membrane, with constant group velocity. The
oscillating behavior of the radial group velocity curve theoretically allows the presence
of more than one NGV regions, but, the stiffness ratios to obtain such phenomena
are pretty high χ > 104, values that are barely reachable with physical quantities.
Moreover, the surfaces in Figure 5.6 show that the wave-stopping and NGV regions
are described with circles and rings, respectively.
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Part III

Experiments and perspectives
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Chapter 6

Design of an experimental
demonstrator

Thanks to the achieved results in terms of wave propagation in the rod models and
simulations, an experimental campaign has been carried on in the PhD project.
The experimental campaign has been developed in cooperation with the research
team of the Dynamics Laboratory at the Mechanical Engineering Department of
Technion, Israel Institute of Technology, directed by Prof. Izhak Bucher [72–75].
The experimental demonstrator consists in a prototype for testing the effects of
nonlocal interactions in the dynamics of a finite discrete waveguide with long-range
interactions. The nonlocality is provided by the use of permanent neodymium
magnets.
The experimental setup is a finite waveguide composed by discrete elements, namely
cells; each cell is linked to the frame and to its closest neighbor with metal (steel)
strips, in charge for providing the short range stiffness. The cell is composed by
a neodymium permanent magnet surrounded by an external plastic (ABS) case,
capable of hosting the magnet and also clamping the metal strips. The first mass is
solicited by an electromagnetic actuator (voice-coil) and the displacement of some
of the cells have been monitored with laser interferometers.
The choice of the magnet-magnet interaction as nonlocal element has been made

Figure 6.1. Outlook of the experimental demonstrator

because the permanent magnets do not need an external energy supply; they can
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be handled in safety (no special protection hardware is needed) and, thanks to
the choice of magnets with cubic shape, several configurations can be evaluated.
The magnet to magnet interaction is modeled by a power-law type: f(|r|) ∝ r

|r|5 ,
according to the magnetic dipole-dipole interaction described in [76]. Nevertheless,
the interaction vanishes very soon, due to the high power order.
To limit the cell dimensions as much as possible (to obtain the best long-range
interaction spread), the size of the magnet has been chosen to reach the best
compromise between compact dimensions and force intensity (proportional to the
volume of the magnet). Several design choices have been made to achieve the
best results. The general model, as in the previous sections, shows interesting
phenomena with high stiffness ratios, but this requirement is in strong contrast with
the practical design feasibility. The magnetostatic long-range forces, in fact, lead
to small equivalent stiffness (E∗): to obtain high ratios (χs), very soft springs are
needed, in contrast with the values attainable with steel springs. The choice of using
steel strips as springs has been made to guarantee the waveguide not to collapse
under his own weight. For that reason the presence of springs connecting each cell
with the ground (sky-hook springs) is necessary, even if consisting in an additional
short-range stiffness term, further compromising the stiffness ratio of the waveguide.
The design parameters are summarized in Table 6.1:
The number of cells is limited to 13 due to the overall dimensions of the setup, that

Description Symbol Quantity Unit

Number of cells N 13
Magnetic interaction intensity µ 1.1964x10−7 (N/m4)
Mass of the magnet mmag 7.6x10−3 (kg)
Mass of the plastic support mcase 4.2x10−3 (kg)
Mass of the actuator (mobile section) mcoil 60x10−3 (kg)
Mass of the actuator/1st cell support msupp 249x10−3 (kg)
Stiffness of the sky-hook springs ksh 382.6 (N/m)
Stiffness of the cell springs kcell 369.9 (N/m)

Table 6.1. Demonstrator design parameters.

is around 90 cm long.
A preliminary experimental campaign has been made to verify the presence of shifts
in the frequency response of the system, due to the presence of nonlocal interactions.
The data acquisition chain, shown in Figure 6.2 indicates the hardware involved in
the measurement. In general, the workstation is connected to the data acquisition
system, capable of both receiving information from the sensors, and sending data
to the actuator. The actuator has a control hardware capable of converting the
information received from the workstation into an electrical signal to send to the
voice-coil. Moreover, a low voltage output signal is sent from the actuator control
hardware to the data acquisition system, to read the actual current signal sent to
the actuator.
The laser sensors acquire the displacements of the cells, converted into voltage and
sent to the acquisition system. The information is sent to the workstation, on which
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Figure 6.2. Measurement chain

an acquisition software is responsible of the data logging procedure.
Some auxiliary hardware is present, such as a DC converter capable of providing the
power supply to the actuator.
The acquisition campaign has been set up to obtain the frequency response of the
system, as a preliminary dat acquisition campaign.
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Chapter 7

Preliminary results

The experimental configuration of the demonstrator cannot lead to the evaluation of
Wave-Stopping, Negative Group Velocity or superluminal effects; nevertheless, the
presence of magnetic interaction leads to perturbation in the dynamic response of
the waveguide.
The choice of cubic magnets allows the waveguide to be tested under three different
configurations. Namely the three setups are classified as follows:

• Short-range configuration: Each magnet is oriented to have the face with
both north and south pole perpendicular to the abscissa. According to this
configuration, negligible magnetic interaction is registered;

• Repulsive configuration: Each magnet is oriented to have the face with
north/south magnetic poles facing the same pole of the first neighbor. Ac-
cording to this configuration, a prevalent repulsive magnetic interaction is
registered;

• Attractive configuration: Each magnet is installed with the same orienta-
tion, each magnet will expose his north/south pole face to the opposite of the
waveguide. According to this configuration, attractive interaction is registered.

The three configurations are presented in Figure 7.1:
The FFT of the system has been obtained by exciting the system with stepped sine
waves. An excitation loop has been designed. Each iteration excites the system with
a single frequency sine force. The data acquisition starts when the system reaches a
stationary regime, and the displacement is collected.
The processing algorithm is based on the Non Linear Least Square method. It detects
the actual frequency and reads the amplitude of the displacement for each degree of
freedom. The ratio between the amplitude of the excitation and the amplitude of
the displacement gives the frequency response. In Figure 7.2 the FFT of some DoFs
of the system in the three configurations is presented. The excitation bandwidth
spans from 10 to 60 Hz, with ∆f = 0.2Hz.
The plots in Figure 7.2 show the frequency response (magnitude and phase) of

three masses, in each window, each line corresponds to a configuration.
A graphical analysis of the plots shows that the frequency responses are comparable
for the three configurations. Weak magnetic interaction is registered, if compared to
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(a) Short-range configuration

(b) Repulsive configuration

(c) Attractive configuration

Figure 7.1. Experimental configurations
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Figure 7.2. FFT of the experimental waveguide

the local stiffness. Nevertheless, some differences emerge.

Mass 2 At low frequencies (10-20 Hz) the frequency response is high. The support
of the voice coil shift the first natural frequency around 20 Hz and increases the
response at lower frequencies. Between 30 Hz and 40 Hz a shift of the resonances is
registered, and, from 40 to 60 Hz, no important shifts appear.

Mass 5 In mass 5 the effects of the coil support is less evident, and the greatest
shifts emerge from 30 Hz to 40 Hz. Also from 50 Hz to 60 Hz the frequency response
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changes.

Mass 13 A richer response emerge around 25 Hz for the active configurations
(Repulsive and attractive). In addition, the bigger shift is present between 30 Hz
and 40 Hz, as for the other masses.

This preliminary results gives important hints for the next experimental campaigns.
The acquisition bandwidth can be extended towards higher frequencies, because the
presence of some resonances around 60 Hz needs to be investigated.
Most of the shifts emerge from 30 Hz to 40 Hz, thus, a more detailed analysis of
this bandwidth is desirable. Several acquisition will be made. Moreover, the setup
should guarantee a higher definition of the response curves. Hence, ∆f must reduce.
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Chapter 8

Conclusions

This thesis presents the investigation carried on by the author during a three year
PhD program in theoretical and applied mechanics.
The analysis has shown how the presence of long-range nonlocal connections can
produce unusual effects in wave propagation of elastic metamaterials.
A general interaction model has been presented. The analysis has been carried on
in a detailed analysis for one-dimensional waveguides with long-range interactions.
The models are ruled by second and fourth order local interaction, i.e. following the
D’Alembert and Euler-Bernoulli dynamic models, respectively. In addition the case
of an elastic membrane has been evaluated.
The studied cases have been evaluated according to three interaction families: the
Gauss-like, the Laplace-like and the rectangular interactions. All the three interaction
forces respect the action-reaction principle, and all of them are function of the mutual
distance between different particles of the medium. In addition, the Gauss-like and
the Laplace-like forces rapidly decay with the distance; physically mimicking the
behavior of several interactions present in nature such as electrostatic, magnetostatic
or gravitational forces. The rectangular interaction is a constant elastic interaction
living in a limited interaction range, namely a radius (in membranes) or a segment
(in rods).
The different interactions have been analysed and closed form dispersion relationships
have been calculated. Each combination of elastic model with interaction force has
been depicted in a propagation map. The surface on the propagation maps is the
plot of the time frequency, depicted as function of the space frequency. A long-range
parameter has been introduced: the stiffness ratio, χ; a nondimensional group
comparing the long-range interaction to the short-range forces.
The maps of the long-range rods (for Gauss-like and Laplace-like forces) show
different propagation behaviors, according to the sign and to the magnitude of χ:
when the local elasticity overcomes the nonlocal interaction, a mode propagation
phenomenon emerge. For strongly negative ratios Wave-Stopping and Negative
Group Velocity phenomena emerge. For high (positive) stiffness ratios an instability
region appears at low space frequencies (wavenumbers), and, barely in the stable
propagation region, Superluminal group velocity is registered.
The rectangular long-range interaction rod has physical meaning only for positive
values of the stiffness ratios. A shift towards the high frequencies of the dispersion
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relationship is registered coherently with the increasing of the magnitude of the
stiffness ratios. In addition, Wave-Stopping and Negative Group Velocity regions
appear, together with the presence of Superluminal phase velocity regions for very
low wavenumbers.
In the case of long-range beams, two kind of interactions have been evaluated, long-
range top surface and long-range top and bottom surfaces. Gauss-like (top surface
and top and bottom surfaces) and Laplace-like (Top surface) have been considered.
In both cases, for negative wavenumbers unstable regions and Superluminal group
velocities appear, the thinnest the beam, the widest the instability region. For
positive stiffness ratios, a shift is present, as well as in the case of rectangular rods,
together with the presence of Superluminal phase velocity at low wavenumbers.
In two dimensions, the case of a rectangular interaction membrane is considered. As
in the one-dimensional rod with analogous interaction, the presence of Wave-Stopping,
Negative Group Velocity and Superluminal phase velocity regions is confirmed.
Some numerical simulations have been developed to corroborate the presence of
such propagation phenomena. Finite media subject to long-range interactions have
been simulated. The results obtained for the Gauss-like and Laplace-like rods are
encouraging and give a hint to prosecute with additional simulations, aimed to test
the model/interaction combinations not investigated in this project.
The results obtained with the simulations of rod models opened the possibility to
design an experimental demonstrator, built in cooperation with with Prof. Izhak
Bucher and the team of the Dynamics Laboratory at Technion, Israel institute of
technology in Haifa. The preliminary setup has been used to test the presence of a
frequency response shift in elastic waveguides with long-range magnetic interaction.
Three configurations have been considered. Such preliminary results open the
way in pursuing with the experimental campaign. To achieve peculiar phenomena,
nevertheless, a re-design of the experimental setup is necessary: due to the insufficient
strength of magnets in modifying solid media dynamics.
The generality of the presented physical-mathematical model: a local interaction
system added with nonlocal terms, can be applied in wide ranges. Not only in
physics, such as in the regulation of complex physical systems, but also, for instance,
in social dynamics. Recent studies in the population dynamics [77] show how elastic
connections can be used to model the behaviour of the crowds; dynamic modeling
can also be applied to predict and prevent the risk on catastrophic events [78].
Moreover, also the traffic dynamics can be modeled, according to long-range models
[79], demonstrating how the collective behaviour of individuals can be described
as a population of particles subject to wave models, as described in the present
investigation.
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Appendix A

Numerical solutions for the
one-dimensional Gauss-like
waveguide (Frequency domain)

The analysis in Section 3.1 is carried on solving the dispersion relationship in the
wavenumber domain. In the current appendix a numerical algorithm for the solution
of the dispersion relationship in the frequency domain is presented.
The transcendent nature of the dispersion relationship leads to the presence of an
infinite set of numerable solutions for each frequency value. Uncontrolled root finding
algorithms lead to random local minima; distinguishing the different dispersion curves
is not possible. In Figure A.1, the different solutions are plotted with green circles
to qualitative observe the nature of the solutions. The random algorithm are tested
for low values of the stiffness ratio χ.
A canonical Newton16-Raphson17 method is applied. Special initial guesses are

chosen: the hypothesis of at least continuous dispersion curves is made, thanks to
the preliminary graphical results in Figure A.1.
The root finding algorithm works as a two-dimensions loop, where once the local
frequency value is evaluated, one of the i− th curve is considered. The loop in the
frequency starts at Ω = 0, where analytical solutions are found by solving equation
(A.1):

Ω2 −K2 + χK2e−
K2
4

∣∣∣∣
0

= 0

K2
0i

(
1− χe−

K2
0i
4

)
= 0

(A.1)

The dummy solutions K01,2 = 0 correspond to the purely real and purely imaginary
trends. Solving the term between the parenthesis:

χe−
K2

0i
4 = 1

16Sir Isaac Newton (January 4th 1643 - March 31st 1727) English mathematician, astronomer,
theologian, author and physicist.

17Joseph Raphson (c. 1648 - c. 1715) English mathematician.



81

0 1 2 3 4 5 6 7 8 9 10

Ω

0

2

4

6

8

10

R
e

(K
)

χ=-1

0 1 2 3 4 5 6 7 8 9 10

Ω

0

2

4

6

8

10

Im
(K

)

(a) χ = −1

0 1 2 3 4 5 6 7 8 9 10

Ω

0

2

4

6

8

10

R
e

(K
)

χ=0.5

0 1 2 3 4 5 6 7 8 9 10

Ω

0

2

4

6

8

10

Im
(K

)

(b) χ = 0.5

0 1 2 3 4 5 6 7 8 9 10

Ω

0

2

4

6

8

10

R
e

(K
)

χ=1

0 1 2 3 4 5 6 7 8 9 10

Ω

0

2

4

6

8

10

Im
(K

)

(c) χ = 1

0 1 2 3 4 5 6 7 8 9 10

Ω

0

2

4

6

8

10

R
e

(K
)

χ=2

0 1 2 3 4 5 6 7 8 9 10

Ω

0

2

4

6

8

10

Im
(K

)

(d) χ = 2

Figure A.1. Numerical solutions of the dispersion relationships (green circles in digital
version) for different values of χ (-1, 0.5, 1, 2) compared with the real and purely
imaginary analytical solution (blue and red lines in digital version respectively)

in χ = 0 the D’Alembert waveguide is verified, and the only solution is K01,2 = 0.
For χ 6= 0:

e−
K2

0i
4 = 1

χ

−
K2

0i
4 + 2πi = − lnχ

K2
0i

4 = 2πi+ lnχ

K0i = ±2
√

2πi+ lnχ

where the first 2(i+ 1) solutions are found for Ω = 0.
For the following Ωj steps of the frequency loop, the initial guesses are the solutions
obtained for Ω = Ωj−1. For the 1st step of the loop, the solutions are the K0i values
calculated as in equation (A.1).
The solution for 5 dispersion curves is depicted in Figure A.2.
Observing the plots in Figure A.2, interesting behaviour emerge. In blue it is
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Figure A.2. Long-range Gauss-like waveguide dispersion curves (Non-dimensional frequency
domain)

possible to notice the purely real dispersion curve, ruled by the inverse relation
Ω = K

√
1− χe−

K2
4 . In addition, a purely imaginary curve appears, apparently

linked to near field phenomena, and several complex curves appear. Such solutions
have no physical meaning, if compared to the purely real solutions. For this reason
the focus have been moved to the analytical solutions discussed in Section 3.1.
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Appendix B

Analytical solutions for the
one-dimensional Laplace-like
waveguide (Frequency domain)

The Laplace-like model leads to a rational dispersion relationship, in the wavenum-
ber. The order of the numerator is 6, and it is a biquadratic polynomial. The only
two domain poles of the dispersion relationship are in K = ±, but, solving with
Cardano18’s method for the solutions of 3rd order equations, the poles appear not to
be solutions of the equation, as in equations (B.1), (B.2), and (B.3).

K3,4 = ± 1√
3 8
√
π

{[
24χ+

√
π
(
Ω2 + 1

)2
+ 4√πΩ2 − 2

(
36 4√πχ

(
Ω2 − 2

)
+ π3/4

(
Ω2 + 1

)3

+ 6
√

6
√
−χ

(
64χ2 + 2

√
πχ (Ω4 + 20Ω2 − 8) + π (Ω2 + 1)3

)) 1
3

+
(

36 4√πχ
(
Ω2 − 2

)
+ π3/4

(
Ω2 + 1

)3

+6
√

6
√
−χ

(
64χ2 + 2

√
πχ (Ω4 + 20Ω2 − 8) + π (Ω2 + 1)3

)) 2
3


[
36 4√πχ

(
Ω2 − 2

)
+ π3/4

(
Ω2 + 1

)3

+6
√

6
√
−χ

(
64χ2 + 2

√
πχ (Ω4 + 20Ω2 − 8) + π (Ω2 + 1)3

)]− 1
3
 (B.1)

18Gerolamo Cardano (September 24th 1501 - September 21st 1576) Italian mathematician, physi-
cian, biologist, physicist, chemist, astrologer, astronomer, philosopher, writer, and gambler
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K3,4 = ± 1√
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The solutions K are plotted in Figure B.1, where one real solutions couple emerge,
together with two couples of conjugate complex solutions. As well as for the Gauss-
like solutions, the only valuable curve is the real one, which equation corresponds to
the inverse of the curve in equation (3.30).
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Figure B.1. Long-range Laplace-like waveguide dispersion curves (Non-dimensional fre-
quency domain)
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Appendix C

Numerical simulation Matlab
basic code

The numerical simulations carried on for the Gauss-like and the Laplace-like finite
rods, are based on a modal approach solved with the Galërkin19 method. In
particular, the displacement is assumed as follows:

w(x, t) =
∑
i

(Ai sin kix+Bi cos kix) (Ci sinωit+Di cosωit) (C.1)

with i ∈ N is the integer index indicating the i-th mode, and ki = iπ
L , where the

geometrical properties have been introduced in Section 3.1 and previously. The
frequencies are unknown, because of the nonlocal nature of the system.
According to the boundary conditions of the system (finite rod clamped at the ex-
trema, as in Figure 3.13), Bi = 0 always. The displacement is applied in the equation
of motion for the generic one-dimensional long-range waveguide, equation (3.35).
Writing the space contribution and the time contribution in a compact form:

φi(x) = Ai sin kix (C.2a)
qi(x) = Ci sinωit+Di cosωit (C.2b)

the equation of motion becomes:

− ρ
∑
i

ω2
i φi(x)qi(t) + E

∑
i

k2
i φi(x)qi(t) + h(x) ∗

∑
i

φi(x)qi(t) = 0 (C.3)

The equation of motion can be solved minimizing the ortho-normalization error with
the Galërkin method. Equation (C.3) can be split in two parts that are separately
analyzed:

−ρ
∑
i

ω2
i φi(x)qi(t) + E

∑
i

k2
i φi(x)qi(t) (C.4a)

h(x) ∗
∑
i

φi(x)qi(t) (C.4b)

19Boris Grigoryevich Galërkin (March 4th 1871 - July 12th 1945) Soviet mathematician and
engineer.
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The analysis of the first part leads to the classical short-range modal rod. Introducing
the diagonal matrix Λ such that λi = i2π2

L2
E
ρ :∫ L

0
φj(x)

(
−ρ

∑
i

ω2
i φi(x)qi(t) + E

∑
i

k2
i φi(x)qi(t)

)
dx = 0 (C.5)

leads to the known relationship

Iq̈(t) + Λq(t) (C.6)

with I the identity matrix and q =

 ...
qj(t)
...

.
The solution of the second element requires more attention. It is necessary, in fact,
that the convolution integral, integrated with the orthogonal mode, leads to a closed
form solution. For the Gauss-like and Laplace-like models this solution exists. In
general, to solve the system a H matrix is obtained as follows:

H | [hji] =
∫ L

0
φj(x)

∫ L

0
h(x− ξ)φi(ξ)qi(t) dξ dx (C.7)

The equation of motion becomes:

Iq̈(t) + (Λ +H) q(t) = 0 (C.8)

that corresponds to the equation of motion of a discrete modal system.
The new system is simulated according to the modal analysis technique, evaluating
the eigenvalues and the eigenvectors, and letting the system evolve according to
the displacement in equation C.1. Initial conditions in space are chosen for all the
wavenumber spectrum.
The displacement maps depicted in Sections 3.1 and 3.2 show both time and space
evolution for long-range systems. Two discrete Fourier transforms have been applied
to the maps, once in space and once in time domain, obtaining the depicted dispersion
surfaces. The peaks indicate a frequency-wavenumber correlation.
The time and space steps, together with the time window and the total length of
the rod, have been chosen to avoid any leakage or aliasing phenomena.
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