
* Corresponding author: giovanni.cannata@uniroma1.it 

Numerical investigation of the three-dimensional velocity fields 
induced by wave-structure interaction 

Giovanni Cannata1*, Francesco Gallerano1, Federica Palleschi1, Chiara Petrelli1, and Luca Barsi1 
1Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Italy 

Abstract. Submerged shore-parallel breakwaters for coastal defence are a good compromise between the 
need to mitigate the effects of waves on the coast and the ambition to ensure the preservation of the 
landscape and water quality. In this work we simulate, in a fully three-dimensional form, the hydrodynamic 
effects induced by submerged breakwaters on incident wave trains with different wave height. The proposed 
three-dimensional non-hydrostatic finite-volume model is based on an integral form of the Navier-Stokes 
equations in σ-coordinates and is able to simulate the shocks in the numerical solution related to the wave 
breaking. The obtained numerical results show that the hydrodynamic phenomena produced by wave-
structure interaction have features of three-dimensionality (undertow), that are locally important, and 
emphasize the need to use a non-hydrostatic fully-three-dimensional approach. 

1 Introduction  
Submerged breakwaters for coastal defence are a good 
compromise between the need to mitigate the effects of 
waves on the coast and the ambition to ensure the 
preservation of the landscape and water quality. The 
main function of this structure is to protect the 
shoreward area of the breakwater from wave actions by 
way of attenuating the incoming waves. Submerged 
breakwaters lower the wave energy in the protected area 
by provoking the breaking of the incoming waves over 
the structure.       

However, if not properly designed, such structures 
can force circulation patterns that enhance shoreline 
erosion rather than shoreline accretion.  

According to the simple response-function model 
proposed by Ranasinghe et al. [1], erosion at the 
shoreline is expected to occur when the resultant current 
field contains divergent alongshore currents in the entire 
protected zone and return off-shore again at the gaps 
transporting sediments out of the protected area 
(circulation of an erosive nature). Accretion at the 
shoreline is expected when convergent alongshore when 
an additional converging flow closer to the shoreline, 
promoting sediment deposition, is generated (circulation 
of an accretive nature). 

Coastal currents and, more generally, hydrodynamic 
phenomena produced by wave-structure interaction have 
features of three-dimensionality that are locally 
important [2]. The most important of the above three-
dimensional phenomena and the cause of offshore 
sediment transport is the undertow [3] which consists of 
a circulation in the vertical plane in which the near-bed 
current velocities are off-shore directed in the surf zone 
[4]. 

In literature, the current circulations are generally 
simulated by two-dimensional Boussinesq models 
[5,6,7,8]  
obtained by depth-averaging a simplified form of the 
three-dimensional Navier-Stokes equations. This 
approach, based on the depth-averaged motion 
equations, assumes a simplified distribution of the 
hydrodynamic quantities along the vertical direction and 
proves to be valid only in the cases in which a fully 
three-dimensional representation of the fluid flow is not 
needed.   

In this work, we propose a three-dimensional 
numerical model in which the non-hydrostatic Navier-
Stokes equations are expressed in integral form on a 
coordinate system in which the vertical coordinate is 
varying in time [9,10]. The boundary conditions for 
pressure are placed on the upper face of each 
computational cell. The solution is advanced in time by 
using a three-stage Strong Stability Preserving Runge-
Kutta (SSPRK) fractional step numerical method, and at 
each stage a pressure correction formulation is applied in 
order to get a fluid velocity field which is divergence-
free.  

A shock-capturing technique based on high-order 
WENO reconstructions is employed in order to 
discretize the fluid motion equations. At every cell 
interface, the numerical flux is computed by solving an 
approximate HLL Riemann problem. 

The proposed model is used to simulate the 
circulation patterns induced by normally incident waves 
on a beach with submerged longshore bars and rip 
channels [11,12].  

The results obtained show that features of three-
dimensionality in the fluid flow induced by wave-
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structure interaction are locally important and entails the 
need of a fully three-dimensional model. 

 
 
 

2 Governing integral three-dimensional 
𝝈𝝈-coordinate equations 
 
The integral form of the momentum equations over a 
control volume ∆V(t)  which varies in time is given by 
 

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜌𝜌𝑢𝑢𝑙𝑙
∆𝑉𝑉(𝑡𝑡)

𝑑𝑑𝑑𝑑 + � 𝜌𝜌𝑢𝑢𝑙𝑙(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚
∆𝐴𝐴(𝑡𝑡)

)𝑛𝑛𝑚𝑚𝑑𝑑𝑑𝑑 = 

 � 𝜌𝜌𝑓𝑓𝑙𝑙
∆𝑉𝑉(𝑡𝑡)

𝑑𝑑𝑑𝑑 + � 𝑇𝑇𝑙𝑙𝑙𝑙 𝑛𝑛𝑚𝑚𝑑𝑑𝑑𝑑
∆𝐴𝐴(𝑡𝑡)

                                    
(1)                    

 
where ∆𝐴𝐴(𝑡𝑡) is the surface of the control volume, 
𝑛𝑛𝑚𝑚 (𝑚𝑚 = 1,3) is the outward unit normal vector to the 
surface ∆𝐴𝐴(𝑡𝑡), ul ( l =1,3) and vm  ( m =1,3) are 
respectively the fluid velocity and the velocity of the 
surface of the control volume, both defined in a 
Cartesian reference system of coordinates xl  ( l =1,3),  ρ  
is the density of the fluid,  Tlm  is the stress tensor and fl  
( l =1,3) represents the external body forces per unit 
mass vector 

 𝑓𝑓𝑙𝑙 = −
1
𝜌𝜌
𝑝𝑝,𝑙𝑙 − 𝐺𝐺𝛿𝛿13               (2) 

in which δ13  is the Kroneker symbol and  p  is the total 
pressure defined by the sum of the hydrostatic and the 
dynamic component 

 𝑝𝑝 = 𝜌𝜌𝜌𝜌(𝜂𝜂 − 𝑥𝑥3) + 𝑞𝑞     (3) 

where G is the constant of gravity, q is the dynamic 
pressure,  η  is the free surface elevation, the comma 
with an index in subscript denotes the derivative as 
[ ],l = ∂[ ]/ ∂xl  and (x1, x2, x3, t) is a Cartesian 
coordinate system. The first integral on the right-hand 
side of equation (1) can be rewritten as 

� 𝜌𝜌𝑓𝑓𝑙𝑙
∆𝑉𝑉(𝑡𝑡)

𝑑𝑑𝑑𝑑 = −� �(𝜌𝜌𝜌𝜌𝜌𝜌 + 𝑞𝑞),𝑙𝑙 �
∆𝑉𝑉(𝑡𝑡)

𝑑𝑑𝑑𝑑   (4)                           

 
By applying Green’s theorem, the right-hand side of 

equation (4) becomes 
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By introducing equation (5) in equation (1) 
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(6)                                        

 
 
 
In order to simulate the fully dispersive wave 

processes, equation (6) can be transformed in the 
following way. 

Let 𝐻𝐻(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) = ℎ(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) + 𝜂𝜂(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) where 
ℎ is the depth of still water. Let (𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏)  be a 
system of curvilinear coordinates which varies in time so 
as to follow the time variation of the free-surface 
elevation, the transformation from the Cartesian 
coordinates (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑡𝑡) to the curvilinear coordinates 
is 

 

𝜉𝜉1 = 𝑥𝑥1,   𝜉𝜉2 = 𝑥𝑥2,   𝜉𝜉3 =
𝑥𝑥3 + ℎ
𝐻𝐻

,   𝜏𝜏 = 𝑡𝑡 
 

(7)                                        

 
The following relation is valid 
 

 𝑣𝑣3 =
𝜕𝜕𝑥𝑥3

𝜕𝜕𝜕𝜕
 

                    
                    (8) 

 
This coordinate transformation basically maps the 

varying vertical coordinates in the physical domain to a 
uniform transformed space where 𝜉𝜉3 spans from 0 to 1.  

By following the procedure proposed by [8] we 
define the transformation matrix 𝐶𝐶𝑚𝑚𝑙𝑙 = 𝜕𝜕𝜕𝜕𝑙𝑙 𝜕𝜕𝜉𝜉𝑚𝑚⁄   and its 
inverse 𝐶𝐶𝑚̅𝑚𝑙𝑙 = 𝜕𝜕𝜕𝜕𝑙𝑙 𝜕𝜕𝜕𝜕𝑚𝑚⁄  ( 𝑙𝑙,𝑚𝑚 =1,3) . The metric tensor 
and its inverse are defined by 𝑔𝑔𝑙𝑙𝑙𝑙 = 𝐶𝐶𝑙𝑙𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘  and 𝑔𝑔𝑙𝑙𝑙𝑙 =
𝐶𝐶𝑙̅𝑙𝑘𝑘𝐶𝐶𝑚̅𝑚𝑘𝑘 , respectively. The Jacobian of the transformation 
is defined by �𝑔𝑔 = det⁡(𝐶𝐶𝑚𝑚𝑙𝑙 ). It is not difficult to verify 
that in the above-mentioned transformation �𝑔𝑔 = 𝐻𝐻. 

In the curvilinear coordinate system the expression of 
the momentum equation reds 

 

𝜕𝜕𝐻𝐻𝐻𝐻����𝑙𝑙
𝜕𝜕𝜕𝜕

=
1
Δ𝑉𝑉∗

{−� 

� �� [𝐻𝐻𝑢𝑢𝑙𝑙(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚 )𝐶𝐶𝑚̅𝑚𝛼𝛼 + 𝐺𝐺𝐻𝐻2𝐶𝐶𝑙̅𝑙𝛼𝛼 ]𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾
∆𝐴𝐴∗𝛼𝛼+

�
3

𝛼𝛼=1
 

�− � [𝐻𝐻𝑢𝑢𝑙𝑙(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚 )𝐶𝐶𝑚̅𝑚𝛼𝛼 + 𝐺𝐺𝐻𝐻2𝐶𝐶𝑙̅𝑙𝛼𝛼 ]𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾
∆𝐴𝐴∗𝛼𝛼−

� + 

� �� 𝐺𝐺ℎ𝐻𝐻𝐶𝐶𝑙̅𝑙𝛼𝛼𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾
∆𝐴𝐴∗𝛼𝛼+

−�
3

𝛼𝛼=1
 

�� 𝐺𝐺ℎ𝐻𝐻𝐶𝐶𝑙̅𝑙𝛼𝛼𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾
∆𝐴𝐴∗𝛼𝛼−

� 

−
1
𝜌𝜌
�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉𝑘𝑘𝛥𝛥𝛥𝛥∗

𝐶𝐶𝑙̅𝑙𝑘𝑘𝐻𝐻𝐻𝐻𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3 + 
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�
1
𝜌𝜌
�� 𝑇𝑇𝑙𝑙𝑙𝑙𝐶𝐶𝑚̅𝑚𝛼𝛼𝐻𝐻𝑑𝑑𝑑𝑑𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾

∆𝐴𝐴∗𝛼𝛼+
� +

3

𝛼𝛼=1
 

��� 𝑇𝑇𝑙𝑙𝑙𝑙 𝐶𝐶𝑚̅𝑚𝛼𝛼𝐻𝐻𝑑𝑑𝑑𝑑1𝑑𝑑𝑑𝑑𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾
∆𝐴𝐴∗𝛼𝛼−

�� (9) 

 
where 𝐻𝐻𝐻𝐻����𝑙𝑙  is the average of  𝐻𝐻𝑢𝑢𝑙𝑙  over the volume 
element ∆𝑉𝑉∗ = ∆𝜉𝜉1∆𝜉𝜉2∆𝜉𝜉3; ∆𝐴𝐴∗𝛼𝛼+ and ∆𝐴𝐴∗𝛼𝛼− indicate 
the contour surfaces of the volume element 𝛥𝛥𝛥𝛥∗ on 
which 𝜉𝜉𝛼𝛼  is constant and which are located at the larger 
and at the smaller value of 𝜉𝜉𝛼𝛼  respectively. Here the 
indexes 𝛼𝛼, 𝛽𝛽 and  γ  are cyclic.   

In order to ensure conservation of mass over the 
water column, we define a time-varying control volume, 
ΔV� = ΔAxy

∗ H where ΔAxy
∗ = ∆ξ1∆ξ2, and derive the 

following integral form of the continuity equation  
 
𝜕𝜕𝐻𝐻�
𝜕𝜕𝜕𝜕

+
1

Δ𝐴𝐴𝑥𝑥𝑥𝑥∗
� � �� 𝐻𝐻𝑢𝑢𝛼𝛼𝑑𝑑𝜉𝜉𝛽𝛽

𝜉𝜉𝛼𝛼+

� −
2

𝛼𝛼=1

1

0
 

�� 𝐻𝐻𝑢𝑢𝛼𝛼𝑑𝑑𝜉𝜉𝛽𝛽
𝜉𝜉𝛼𝛼−

�𝑑𝑑𝜉𝜉3 = 0 

 
 
 

(10)                                        

 
in which 𝜉𝜉𝛼𝛼+ and 𝜉𝜉𝛼𝛼− indicate the contour lines of the 
surface element ∆𝐴𝐴∗  on which 𝜉𝜉𝛼𝛼  is constant and which 
are located at the larger and at the smaller value of 𝜉𝜉𝛼𝛼  
respectively. Equation (10) represents the governing 
equation for the surface movements. 

Equations (9) and (10) represent the expressions of 
the three-dimensional motion equations as a function of 
the 𝐻𝐻𝐻𝐻����𝑙𝑙  and 𝐻𝐻� variables in the time dependent 
coordinate system (𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏). The numerical 
integration of the mentioned equations (9) and (10) 
allows the fully dispersive wave processes simulation.  

The turbulent kinematic viscosity in the stress tensor 
is estimated by a Smagorinsky sub grid model. 

3 Numerical scheme 
 
A combined finite-volume and finite-difference scheme 
with a Godunov-type method has been applied to 
discretize equations (9) and (10). By following the 
strategy described by [2-10] a staggered grid framework 
is introduced, in which the velocities are placed at the 
cell centres and the pressure is defined at the horizontal 
cell faces. The state of the system is known at the centre 
of the calculation cells and it is defined by the cell-
averaged values 𝐻𝐻𝐻𝐻����𝑙𝑙  and 𝐻𝐻�. 𝜏𝜏(𝑛𝑛)  is the time level of the 
known variables while 𝜏𝜏(𝑛𝑛+1) is the time level of the 
unknown variables. The solution procedure uses a three-
stage third-order nonlinear strong stability-preserving 
(SSP) Runge-Kutta scheme for equations (9) and (10).  

A pressure correction formulation is applied to obtain 
a divergence free velocity field at each time level.  By 
this  
method, an auxiliary velocity field, obtained by 
numerically integrating equation (9) devoid of the 
dynamic pressure term, is corrected by introducing a 

scalar potential  Ѱ , which is calculated by the well-
known Poisson pressure equation 
 

∇2Ψ(𝑝𝑝) = −
𝜌𝜌
∆𝑡𝑡
∇�𝑢𝑢�𝑙𝑙∗(𝑝𝑝)�                                     

(11) 
 
Equation (11) is defined at the horizontal cell centre 

and it is discretized by a second order cell centred finite-
difference scheme. By this way, equation (11) can be 
reduced to an algebraic linear system like  AΨ = b , 
where  A  is the coefficient matrix (with 15 non-zero 
diagonal coefficient),  Ψ  is the scalar potential vector 
and 𝑏𝑏 is the vector of constant terms. This algebraic 
linear system is solved by using an implicit scheme 
based on a four-colour Zebra line Gauss-Seidel alternate 
method [13] and a multigrid V-cycle accelerator as 
described in [14]. 

The updating of the flow variables 𝐻𝐻𝐻𝐻����𝑙𝑙  and 𝐻𝐻� is 
based on the following sequence. 

(1) High order WENO reconstructions, from cell 
averaged values, of the point values of the unknown 
variables at the centre of the contour faces which define 
the calculation cells. At the centre of the contour face 
which is common with two adjacent cells, two-point 
values of the unknown variables are reconstructed by 
means of two WENO reconstruction defined on two 
adjacent cells [15,16]. 

(2) Advancing in time of the point values of the 
unknown variables at the centre of the contour faces by 
solving, by an HLL Riemann solver [17], a local 
Riemann problem with initial data given by the pair of 
point-values computed by two WENO reconstructions 
defined on the two adjacent cells. 

(3) Calculation of the spatial integrals on the right-
hand side of equations (9) and (10). 

 (4) Solution of the Poisson pressure equation by 
using a four-color Zebra line Gauss-Seidel alternate 
method and a multigrid V-cycle. 

(5) Correction of the hydrostatic velocity field by 
using a scalar potential Ψ. 

(6) Advancing in time of the total local depth 
(equation (10) by using the non-hydrostatic velocity 
field. 

4 Three-dimensional nearshore currents 
induced by submerged breakwaters 
The model is used to simulate the circulation patterns 
induced by normally incident waves on a beach with a 
longshore bar and rip channels. The experimental tests 
performed by [11] and the one performed by [4] on a 
fixed barred beach with periodically spaced rip channels 
are here reproduced by the presented three-dimensional 
non-hydrostatic model.  

In the validations, we focus on the circulation 
patterns enhanced by the presence of submerged 
breakwaters – that produce the erosion or accretion of 
the shoreline – and the undertow. 

4.1. Nearshore current circulation patterns 
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A deep insight about the different circulation patterns 
that can arise in presence of submerged breakwaters and 
normally incident waves can be found in [1] and in [12]. 
They presented a relationship linking environmental and 
geometrical properties of the system to the shoreline 
mode of response, i.e. accretive or erosive, thus 
identifying two different types of structure-induced 
circulation current. 

Because of the presence of the submerged 
breakwaters, the incoming waves break at different 
abscissa along the shoreline: the incoming waves 
directly approaching the shore through the gaps steepen 
and finally break due to water depth limitations; whilst 
the reduction of wave energy due to the wave breaking 
over the structure causes the transmitted waves to break 
closer to the shoreline than those at the gaps and with a 

smaller wave set-up. These set-up variations govern the 
flow patterns in the protected area behind the structures. 

Mass conservation requires that the water flowing 
onshore over the barrier returns off-shore again trow 
through the gaps. The resulting diverging current 
circulation system in the lee of the breakwater is 
composed of two symmetric circulation cells and drive 
sediments out of the protected area causing shoreline 
erosion (Fig. 1). Nevertheless, depending on the 
direction of the alongshore gradient in the mean water 
level close to the shoreline, the alongshore flow direction 
may reverse and be directed towards the centreline of the 
barrier leading to a converging current circulation 
system that cause shoreline accretion (Fig. 2). 

 

 

 
Fig. 1 Erosive circulation pattern. 

 
 

 
Fig. 2. Accretive circulation pattern. 

 
 
A plan view and a cross section of the wave basin 

used to perform the test is illustrated in Figure 3. The 
basin is characterized by a length equal to 17.2m and 
width equal  
to 18.2m. The beach has an initial steep slope (1:5) 
followed by a milder slope (1:30). There are three 
submerged breakwaters: the two lateral ones are 3.66m 
long, and the central one is 7.32m. The distance between 
the submerged breakwaters is 1.82m. The seaward edges 
of the bar sections are located at approximately 
𝑥𝑥 =11.1m with the bar crest at 𝑥𝑥 =12m and their 
shoreward edges at 𝑥𝑥 =12.3m.  

Thanks to the equations [18] it was possible to obtain 
the dimensions of the hump considered as composed of 
two branches of a parabola. 

In order to study the influence of rip channels and 
submerged breakwaters on the nearshore dynamics, the 
test cases B and D, with incident and monochromatic 
waves, have been selected (Table 1). The computational 

grid resolution is ∆x  =0.025m, ∆y =0.05m and the time 
step is 0.025s. 
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Fig.3. Plan view and cross section of the basin. 

 
 

 

Table 1. Test conditions. Deepwater wave height H0, wave 
period  T , average water depth at the bar crest hc  and cross-

shore location of the still water line xSWL . 
 

Test 𝐻𝐻0 [cm] 𝑇𝑇 [s] ℎ𝑐𝑐  [cm] 𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆  [cm] 
B 5.12 1 4.73 1490 
D 8.26 1 2.67 1430 

 
In Figure 4(a) and 4(b) the resulting plane view of 

the time-averaged velocity fields are shown respectively 
for test B and test D.  

From a comparison with the above-mentioned 
circulation patterns (Figs. 1-2), the numerical model 
results clearly show an accretive mode of response for 
test B and an erosive mode of response for test D, in 
agreement with [12]. 

Figure 5 shows the comparison between the resulting 
time-averaged velocity field for test B and the 
experimental results obtained by [19]. The numerical 
results are in good agreement with the experimental data 
both in the gap between the bars and in the region area 
between the submerged breakwaters and the coastline

 

 
a) 

 
b) 

Fig.4. Time-averaged velocity fields for test B (a)  and test D (b). A vector out of three is represented. 
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Fig.5. Time-averaged velocity fields for test B. Comparison between the numerical results (black arrows) and the experimental 
measurements (red arrows) obtained by [19]

A more detailed current comparison has been 
analysed for two different longshore sections: the first 
placed in correspondence of the onshore side of the bar, 
at x =12.2m (Figs. 6a and 6b); the second placed 
between the bar and the shoreline, at x =13.0m (Figs. 6c 
and 6d). 

Figure 6 shows the comparison between the cross-
shore (U1) and longshore (U2) time-averaged velocity 
components obtained by the proposed numerical model 
and the laboratory data relative to test B in [11] and [20], 
at the two different longshore sections. A very good 
agreement observed at the two sections for both the 
cross-shore and longshore currents shows the ability of 
the numerical model to simulate the current variations. 

 
 

a)  
 

 
 

b)  
 
 

c)  
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d)  
 
 
Fig.6. Cross-shore (U1) and longshore (U2) time-averaged currents for test B. Comparison between the numerical results (solid line) 
and the experimental measurements (circles) obtained by [11] at  x =12.2m (a;b) ;  x =13m (c;d) 
 

Figures 7 shows the comparison between the 
computed time-averaged cross-shore velocity and the 
experimental measurements, relative to three different  
 
 
 
longshore sections within the gap, located respectively 
at: 11.5m,  x =11.8m and  x =12m.  

 
The cross-shore current is offshore directed in the 

whole gap and reaches its maximum value in the central 
section. As can be noticed from Figure 7, the proposed 

numerical model is able to simulate the current 
variations in fairly good agreement with the 
experimental measurements.  

Figure 7 shows a small underestimation of the 
simulated  
rip current in comparison with the experimental 
measurements. As underlined in [4], the rip current tends 
to become a surface current as it flows offshore and, 
consequently, in this case the small differences between 
numerical and experimental results could be likely due to 
the choice of the measurement points in the water 
column.

 
 
 

a)  
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b)  
 

c)  
 

Fig.7. Cross-shore (U1) time-averaged currents for test B. Comparison between the numerical results (solid line) and the 
experimental measurements (circles) obtained by [11] in the channel at  x =11.5m (a) ,  x =11.8m (b) and  x =12m (c)
 

 

4.2 Three-dimensional structure of the 
circulation currents  

As shown in this section, for this test case, the proposed 
model is able to well reproduce the three-dimensional 
structure of the circulation currents by adopting only 
eight layers along the water depth. 

The hydrodynamic phenomena produced by the 
wave-structure interaction have features of three-
dimensionality that are locally important [4].  

The most important of the above three-dimensional 
phenomena – which is the cause of offshore sediment 
transport – is the undertow [3], which consists of a 
circulation in the vertical plane in which the near-bed 
current velocities are off-shore directed in the surf zone. 

Here, the vertical velocity profiles of test B obtained 
by means of the presented three-dimensional model are 
validated against the laboratory measurement of [4]. 

Figure 8 shows the comparison between the vertical 
distribution of  time-averaged cross-shore velocity 
obtained by the three-dimensional numerical model and 

the experimental measurements presented in [4] at a 
location 2m offshore of the bar (x = 9.0m, y =13.6m) 
and a location inside the channel (x =11.75m, 
y =13.6m). 

The results are normalized by the celerity  c = √Gh 
where  G  is the constant of gravity and ℎ is the depth of 
still water.  

From Figure 8, it can be seen that the vertical 
velocity exhibit strong depth variations, twisting over 
depth, with the surface velocity going mainly offshore 
and the bottom current going shoreward.  

In particular, at the offshore location (x = 9.0m, 
 y =13.6m) the largest (offshore directed) current is 
located at the free surface, whereas the weakest (onshore 
directed) current is near the bottom. 

 Inside the channel (x = 11.75m,  y =13.6m) the 
cross-shore current shows higher magnitude and a 
maximum value at mid-depth.  

The good agreement between numerical results and 
experimental measurements shows the ability of the 
model to simulate the variations of the velocity field  
along the vertical direction.
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a)  
 
 

 

b)  
 
 
Fig.8. Vertical distribution of cross-shore time-averaged current for test B. Comparison between the numerical results (solid line) and 
the experimental measurements (circles) obtained by [4] at points:  x = 9.0m ,  y = 13.6m (a) and  x = 11.75m,  y = 13.6m (b) 
 
 
 
 
 
 
 
5 Conclusions 
 
The proposed model is based on an integral form of the 
Navier-Stoked equations in a time-dependent coordinate 
system. The equations of motion are discretized by 
means of a Shock Capturing finite-volume numerical 
procedure based on high-order WENO reconstructions. 
The solution procedure for the equations of motion uses 
an accurate third-order Runge-Kutta fractional step 
method and applies a pressure correction in order to 
obtain a divergence free velocity field. At each cell 
interface an HLL Riemann solver is used to numerically 
solve a local Riemann problem. Fully three-dimensional 
numerical results obtained by the proposed three-
dimensional model has been compared with 
experimental measurements by [11,4]. Such comparison 
demonstrates the capacity of the proposed three-
dimensional model to simulate the strong variations of 
the velocity fields along the water depth that occur near 
the submerged breakwaters. The good agreement with 

the experimental results shows that the proposed three-
dimensional model can be a useful tool for the 
simulation of nearshore hydrodynamics fields and the 
design of submerged burrier defence systems. 
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