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Abstract

In topology recognition, each node of an anonymous network has to de-
terministically produce an isomorphic copy of the underlying graph, with
all ports correctly marked. This task is usually unfeasible without any a
priori information. Such information can be provided to nodes as advice.
An oracle knowing the network can give a (possibly different) string of
bits to each node, and all nodes must reconstruct the network using this
advice, after a given number of rounds of communication. During each
round each node can exchange arbitrary messages with all its neighbors
and perform arbitrary local computations. The time of completing topol-
ogy recognition is the number of rounds it takes, and the size of advice is
the maximum length of a string given to nodes.

We investigate tradeoffs between the time in which topology recogni-
tion is accomplished and the minimum size of advice that has to be given
to nodes. We provide upper and lower bounds on the minimum size of
advice that is sufficient to perform topology recognition in a given time,
in the class of all graphs of size n and diameter D < an, for any constant
a < 1. In most cases, our bounds are asymptotically tight.
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1 Introduction

1.1 The model and the problem

Learning an unknown network by its nodes is one of the fundamental distributed
tasks in networks. Once nodes acquire a faithful labeled map of the network,
any other distributed task, such as leader election [2I) 28], minimum weight
spanning tree construction [5], renaming [4], etc. can be performed by nodes
using only local computations. Knowing topology also simplifies the task of
routing. More generally, constructing a labeled map converts all distributed
problems to centralized ones, in the sense that nodes can solve them simulating
a central monitor.

If nodes are a priori equipped with unique identifiers, they can deterministi-
cally construct a labeled map of the network, by exchanging messages, without
any additional information about the network. However, even if nodes have
unique identities, relying on them for the task of learning the network is not
always possible. Indeed, nodes may be reluctant to reveal their identities for
security or privacy reasons. Hence it is important to design algorithms recon-
structing the topology of the network without assuming any node labels, i.e., for
anonymous networks. In this paper we are interested in deterministic solutions.

Ports at each node of degree d are arbitrarily numbered 0,...,d — 1, and
there is no assumed coherence between port numbers at different nodes. A node
is aware of its degree, and it knows on which port it sends or receives a message.
The goal is, for each node, to get an isomorphic copy of the graph underlying the
network, with all port numbers correctly marked. (Port numbers are very useful,
e.g., to perform the routing task.) There are two variants of this task: a weaker
version, that we call anonymous topology recognition, in which the nodes of the
reconstructed map are unlabeled, and a stronger version, that we call labeled
topology recognition, in which all nodes construct a map of the network assigning
distinct labels to all nodes in the same way, and know their position in this
map. Even anonymous topology recognition is not always feasible without any
a priori information given to nodes, as witnessed, e.g., by the class of oriented
rings in which ports at each node are numbered 0,1 in clockwise order. No
amount of information exchange can help nodes to recognize the size of the
oriented ring and hence to reconstruct correctly its topology. Thus, in order
to accomplish (even anonymous) topology recognition for arbitrary networks,
some information must be provided to nodes. This can be done in the form of
advice. An oracle knowing the network gives a (possibly different) string of bits
to each node. Then nodes execute a deterministic distributed algorithm that
does not assume knowledge of the network, but uses message exchange and the
advice provided by the oracle to nodes, in order to reconstruct the topology of
the network by each of its nodes.

In this paper we study tradeoffs between the size of advice provided to nodes
and the time of topology recognition. The size of advice is defined as the length
of the longest string of bits given by the oracle to nodes. For communication, we
use the extensively studied LOCAL model [27]. In this model, communication
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Table 1: The summary of results. All our bounds are tight, except for those
in the line with the x when D € o(logn).

proceeds in synchronous rounds and all nodes start simultaneously. In each
round each node can exchange arbitrary messages with all its neighbors and
perform arbitrary local computations. The time of completing a task is the
number of rounds it takes. The central question of the paper is:

What is the minimum size of advice that enables (anonymous
or labeled) topology recognition in a given time 7T, in the class of
n-node networks of diameter D?

It should be stressed that the reason why we adopt the LOCAL model is
to focus on how deeply nodes should probe the network in order to discover
the topology. Since nodes are anonymous, this depth of probing may often go
beyond the diameter of the network, enabling the nodes to “see” other nodes
several times, along different paths, and deduce some information from these
deeper views. At the same time, as it is always done when using the LOCAL
model [27], the size of messages is ignored.

1.2 Our results

We provide upper and lower bounds on the minimum size of advice sufficient to
perform topology recognition in a given time, in the class C(n, D) of all graphs
of size n and diameter D < an, for any constant a < 1. All our upper bounds
are valid even for the harder task of labeled topology recognition, while our
lower bounds also apply to the easier task of anonymous topology recognition.
Hence we will only use the term topology recognition for all our results. We prove
upper bounds f(n, D,T) on the minimum size of advice sufficient to perform



topology recognition in a given time T, for the class C(n, D), by providing an
assignment of advice of size f(n, D,T) and an algorithm, using this advice, that
accomplishes this task, within time T, for any network in C(n, D). We prove
lower bounds on the minimum size of advice, sufficient for a given time 7', by
constructing graphs in C(n, D) for which topology recognition within this time
is impossible with advice of a smaller size. (Notice that, while our upper bounds
would hold even if D & n, our lower bound constructions rely on the constraint
D < an.)

The meaningful span of possible times for topology recognition is between 0
and 2D+1. Indeed, while advice of size O(n? log n) permits topology recognition
in time 0 (i.e., without communication), we show that topology recognition in
time 2D + 1 can be done with advice of size 1, which is optimal.

For most values of the allotted time, our bounds are asymptotically tight.
This should be compared to many results from the literature on the advice
paradigm (see, e.g., [9] [I4] [T5, 17, 26]), which often either consider the size of
advice needed for feasibility of a given task, or only give isolated points in the
curve of tradeoffs between resources (such as time) and the size of advice.

We show that, if the allotted time is D — k, where 0 < k < D, then the
optimal size of advice is ©((n?logn)/(D — k + 1)). If the allotted time is
D, then this optimal size is O(nlogn). If the allotted time is D + k, where
0 < k < D/2, then the optimal size of advice is ©(1 + (logn)/k). The only
remaining gap between our bounds is for time D + k, where D/2 < k < D. In
this time interval our upper bound remains O(1 + (logn)/k), while the lower
bound (that holds for any time) is 1. This leaves a gap if D € o(logn). See
Table [I] for a summary of our results.

Our results show how sensitive is the minimum size of advice to the time
allowed for topology recognition: allowing just one round more, from D to D+1,
decreases exponentially the advice needed to accomplish this task. Our tight
bounds on the minimum size of advice also show a somewhat surprising fact
that the amount of information that nodes need to reconstruct a labeled map
of the network, in a given time, and that needed to reconstruct an anonymous
map of the network in this time, are asymptotically the same in most cases.

1.3 Related work

Many papers [11 [7, (9 10, [T, 14} 15, @6l 17, 18], 20, 22} 23] 24 26], B0] considered
the problem of increasing the efficiency of network tasks by providing nodes
with some information of arbitrary kind. This approach was referred to as
algorithms using informative labeling schemes, or equivalently, algorithms with
advice. Advice is given either to nodes of the network or to mobile agents
performing some network task. Several authors studied the minimum size of
advice required to solve the respective network problem in an efficient way.
Thus the framework of advice permits to quantify the amount of information
needed for an efficient solution of a given network problem, regardless of the
type of information that is provided.

In [9] the authors investigated the minimum size of advice that has to be



given to nodes to permit graph exploration by a robot. In [24], given a dis-
tributed representation of a solution for a problem, the authors investigated
the number of bits of communication needed to verify the legality of the rep-
resented solution. In [I5] the authors compared the minimum size of advice
required to solve two information dissemination problems using a linear number
of messages. In [16] the authors established the size of advice needed to break
competitive ratio 2 of an exploration algorithm in trees. In [I7] it was shown
that advice of constant size permits to carry on the distributed construction
of a minimum spanning tree in logarithmic time. In [II] the advice paradigm
was used for online problems. In [I4] the authors established lower bounds on
the size of advice needed to beat time ©(log™ n) for 3-coloring of a cycle and
to achieve time ©(log* n) for 3-coloring of unoriented trees. In the case of [20]
the issue was not efficiency but feasibility: it was shown that ©(nlogn) is the
minimum size of advice required to perform monotone connected graph clearing.
In [22] the authors studied radio networks for which it is possible to perform
centralized broadcasting in constant time. They proved that O(n) bits of advice
allow to obtain constant time in such networks, while o(n) bits are not enough.

Distributed computation on anonymous networks has been investigated by
many authors, e.g., [2, B] [6 12| 13 19, 25 27, BI] for problems ranging from
leader election to computing boolean functions and communication in wireless
networks. In [I2] the authors compared randomized and deterministic algo-
rithms to solve distributed problems in anonymous networks. In [I3] a hier-
archy of distributed problems in anonymous networks was studied. Feasibility
of topology recognition for anonymous graphs with adversarial port labelings
was studied in [3I]. The problem of efficiency of map construction by a mobile
agent, equipped with a token, exploring an anonymous graph has been studied
in [8]. In [T0] the authors investigated the minimum size of advice that has to
be given to a mobile agent, in order to enable it to reconstruct the topology of
an anonymous network or to construct its spanning tree. Notice that the mobile
agent scenario makes the problem of map construction much different from our
setting. Since all the advice is given to a single agent, breaking symmetry may
be very hard. Even anonymous map construction often requires providing a
large amount of information to the agent, regardless of the exploration time.
To the best of our knowledge, tradeoffs between time and the size of advice for
topology recognition have never been studied before.

2 Preliminaries

Unless otherwise stated, we use the word graph to mean a simple undirected
connected graph without node labels, and with ports at each node of degree d
labeled {0, ...,d—1}. Two graphs G = (V, E) and G’ = (V’, E') are isomorphic,
if and only if, there exists a bijection f : V — V' such that the edge {u,v},
with port numbers p at v and ¢ at v is in E, if and only if, the edge {f(u), f(v)}
with port numbers p at f(u) and ¢ at f(v) is in E’.

The size of a graph is the number of its nodes. Throughout the paper we



consider a fixed positive constant o < 1 and the class of graphs of size n and
diameter D < an. We use log to denote the logarithm to the base 2. For a
graph G, a node u in G, and any integer ¢, we denote by N;(u) the set of nodes
in G at distance at most ¢ from u.

We will use the following notion from [31]. The view from node w in graph
G is the infinite tree V(u) rooted at v with unlabeled nodes and labeled ports,
whose branches are infinite sequences of port numbers coding all infinite paths
in the graph, starting from node u. The truncated view V'(u) is the truncation
of this tree to depth [ > 0. to level [, for each .

Given a graph G = (V, E), a function f : V — {0,1}* is called a decoration
of G. Notice that an assignment of advice to nodes of G is a decoration of
G. For a given decoration f of a graph G we define the decorated graph G as
follows. Nodes of G are ordered pairs (v, f(v)), for all nodes v in V. Gy has an
edge {(u, f(u)), (v, f(v))} with port numbers p at (u, f(u)) and ¢ at (v, f(v)),
if and only if, E contains the edge {u, v}, with port numbers p at u and ¢ at v.

We define the decorated view at depth [ of node v in G, according to f, as the
truncated view at depth ! of node (v, f(v)) in the decorated graph Gy. Nodes
in the decorated view are labeled with the values assigned to the corresponding
nodes of G by the decorating function f.

The following two lemmas will be used in the proofs of our upper bounds.

Lemma 2.1 Let G be a graph and let r be a positive integer. There exists a set
X of nodes in G satisfying the following conditions.

e For any node w of G there exists a node u in X such that the distance
between w and u is at most r.

e For each pair {u,v} of distinct nodes in X, the distance between u and v
1s larger than r.

Proof: The set proving the lemma is any independent dominating set of the
rth power of the graph G. O

Lemma 2.2 Let G be a graph of diameter D and let A be an injective decoration
of G. Then each node u in G can accomplish topology recognition using its view,
decorated according to A, at depth D + 1, even without knowing D a priori.

Proof: Let [ be the minimum integer such that the views at depth [ and [ + 1,
decorated according to A, contain the same set of values. Then the view at
depth [ + 1 contains all nodes and all edges of the graph G, and thus it is
sufficient to reconstruct the graph G and its decoration A. The lemma follows
from the fact that the view at depth D contains all nodes of the graph. O

The following proposition can be easily proved by induction on the round
number. Intuitively it says that, if two nodes executing the same algorithm have
the same decorated views at depth ¢, then they behave identically for at least ¢
rounds.



Proposition 2.1 Let G and G’ be two graphs, let u be a node of G and let
u’ be a node of G'. Let A be a decoration of G and let A’ be a decoration of
G'. Let A be any topology recognition algorithm. Let oy be the set of triples
(p,r,m), where m is the message received by node u in round r < t through port
p when executing algorithm A on the graph G, decorated according to A. Let o
be defined as oy, but for v', G', and A’ instead of u, G, and A.

If the view of u at depth t, decorated according to A is the same as the view
of v at depth t, decorated according to A’, then oy = 0.

We will use the above proposition to prove our lower bounds as follows. If
the size of advice is too small, then there are two non-isomorphic graphs G
and G’ resulting, for some node u in G and some node v’ in G’, in the same
decorated view at the depth equal to the time available to perform topology
recognition. Hence either u or ' must incorrectly reconstruct the topology
(even anonymous) of G or G'.

3 Time 2D +1

We start our analysis by constructing a topology recognition algorithm that
works in time 2D + 1 and uses advice of size 1. Since we will show that, for
arbitrary D > 3, there are networks in which topology recognition without
advice is impossible in any time, this shows that the meaningful time-span to
consider for topology recognition is between 0 and 2D + 1.

Algorithm TR-1

Advice:

The oracle assigns bit 1 to one node (call it v), and bit 0 to all others. Let A
be this assignment of advice.

Node protocol:

In round ¢, each node u sends its view at depth i—1, decorated according to A, to
all its neighbors; it receives such views from all its neighbors and constructs its
view at depth i, decorated according to A. This task continues until termination
of the algorithm.

Let ¢ be the smallest round number at which node u sees a node with advice 1
in its view decorated according to A (at depth ¢). Node u assigns to itself a label
in round ¢ as follows. The label ¢(u) is the lexicographically smallest shortest
path, defined as a sequence of consecutive port numbers (each traversed edge
corresponds to a pair of port numbers), from u to any node with advice 1, in its
decorated view at depth ¢. (Notice that since there can be many shortest paths
between u and v, this node can appear many times in the decorated view at
depth ¢ of u.) Let A* be the decoration corresponding to the labeling obtained
as above. (We will show that labels in A* are unique.)

After round ¢, node u starts constructing its decorated view, according to
decoration A*. In any round ¢’ > ¢, node u sends both its view, decorated
according to A, at depth ¢, and its view, decorated according to A*, at the
largest possible depth. Messages required to perform this task are piggybacked



to those used for constructing views, decorated according to A, at increasing
depths. In each round t’, node u checks for newly discovered values of A*.
As soon as there are no new values, node u reconstructs the labeled map and
outputs it. Then node v computes the diameter D of the resulting graph and
continues to send its views, decorated according to A and according to A*, at
increasing depths, until round 2D + 1. After round 2D + 1 node u terminates.
o

Proposition 3.1 Algorithm TR-1 completes topology recognition for all graphs
of size n and diameter D in time 2D + 1, using advice of size 1.

Proof: We first prove that the topology reconstructed at each node is correct.

Uniqueness of labels assigned according to A* follows from the fact that
the node v with advice 1 is unique and, for each node u, the lexicographically
smallest shortest path between u and v is unique. Since, in a graph of diameter
D, every node is at distance at most D from v, each node u computes its label
£(u) within D rounds.

Notice that some nodes will acquire their unique label earlier than others.
However, since each node acquires its complete decorated view (according to
A*) at depth ¢ within 7 rounds after all nodes at distance at most 4 from it
have acquired their unique label, after 2D + 1 rounds of communication all
nodes have their decorated view (according to A*) at depth D + 1. By making
each node continue to participate in the construction of decorated views at
increasing depths until round 2D + 1 (even after it reconstructed the topology),
the algorithm guarantees that all nodes will be able to get their views, decorated
according to A*, at depth D + 1. Correctness of the reconstructed topology
follows from Lemma Since all nodes stop in round 2D + 1 and the advice
provided to each node consists of 1 bit, the proof is complete. O

The following proposition, cf. [31], shows that advice of size 1, as used by
Algorithm TR-1, is necessary, regardless of the allotted time. As opposed to the
n-node rings mentioned in the introduction as graphs that require at least one
bit of advice, but whose diameter is |n/2], the class of graphs we will use to
prove the proposition allows greater flexibility of the diameter.

Proposition 3.2 Let D > 3 and let n > D + 6 be an even integer. The size of
advice needed to perform topology recognition for the class of all graphs of size
n and diameter D is at least 1.

Proof: Consider the two graphs G; and G5 in Figure[T]a that where constructed
in [31]. They have the following properties:

e they are non-isomorphic;

both of them have size 6 and diameter 3;

all black nodes in both graphs have the same view;

the black nodes are adjacent in both graphs.
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The graphs G} and G} in Figure b are obtained from G and Gs, respec-
tively, replacing the edge connecting the two black nodes by two paths of length
2. These graphs have the following properties:

e they are non-isomorphic;

e both of them have size 8 and diameter at most 4;
e all black nodes in both graphs have the same view;
e the black nodes are at distance 2 in both graphs.

For D > 3 and even n > D+6 we construct two graphs H; and Hs, of size n and
diameter D, as follows. If D is odd and D = 2k+1, we obtain H; by connecting
two identical copies of a path of length k£ and of a clique of size (n — 2k — 6)/2
to each black node of the graph G1, in a symmetric fashion. We obtain Hs
by doing the same for graph G5. If D is even and D = 2k + 2, we obtain H;
by connecting two identical copies of a path of length k and of a clique of size
(n — 2k — 8)/2 to each black node of the graph G, in a symmetric fashion. We
obtain Hs by doing the same for graph G4. (See Figure [T}c.)

Notice that graphs H; and Hy have diameter D and size n, they are non-
isomorphic both for D odd and for D even, and all black nodes in both graphs
have the same view. Hence, in view of Proposition black nodes cannot
correctly perform (even anonymous) topology recognition in Hy or in Hs without
any advice. O

4 Time above D

In this section we study the size of advice sufficient to perform topology recog-
nition in arbitrary time larger than D (but smaller than 2D + 1), i.e., large
enough for allowing each node to see all nodes and edges of the graph. We first
give an algorithm using advice of size O(1 + log(n)/k) that performs topology
recognition in time D + k.

Algorithm TR-2
Advice:
Let G be a graph of size n and diameter D. Let ¢ = [k/4] — 1.

If ¢ = 0 then the oracle gives a unique label of size [logn] as advice to each
node.

Suppose that ¢ > 1. The oracle picks a set of nodes X satisfying Lemma [2.1]
for r = 2t. Then it chooses a unique label ¢(v) from the set {0,...,n — 1} for
each node v in X. For any node u € N;_1(v) let 7, (u) be the lexicographically
smallest shortest path (coded as a sequence of consecutive port numbers) from
u to v. Sort the nodes u in N;_;(v) in the increasing lexicographic order of
7y (u). The binary representation of £(v) is partitioned into |N;—1(v)| consecu-
tive segments, each of length at most [(logn)/|N:—1(v)|]. The oracle assigns the
first segment, with a trailing bit 1, as advice to node v. For 1 < i < |N¢_1(v)],
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the i-th segment, with a trailing bit 0, is assigned as advice to the i-th node
of N;_1(v). (Notice that some nodes in N;_;(v) could receive only the trailing
bit 0 as advice.) All other nodes get the empty string as advice. Let Ay be the
above assignment of advice.

Node protocol:

We first describe the protocol when ¢ > 1. In round ¢, each node u sends its
view at depth 7 — 1, decorated according to A;, to all its neighbors; it receives
such views from all its neighbors and constructs its view at depth i, decorated
according to A;. This task continues until termination of the algorithm.

Each node u whose advice has a trailing bit 0 assigns to itself a temporary
label ¢'(u) as follows. Let s be the smallest round number at which node u sees
a node with advice with a trailing bit 1 in its view decorated according to A; (at
depth s). The label ¢'(u) is the lexicographically smallest shortest path, defined
as a sequence of consecutive port numbers, from u to any node with advice with
a trailing bit 1 in its view, decorated according to A;, at depth s.

Let u be a node whose advice has a trailing bit 0. After reconstructing its
label ¢'(u), node w sends (¢'(u), A1(u)) to the node v € X closest to it, along
the lexicographically smallest shortest path that determined label #'(u). Nodes
along this path relay these messages piggybacking them to any message that
they should send in a given round.

Each node v € X (having a trailing bit 1 in its advice) computes ¢ as the
first depth in which its view, decorated according to A; contains nodes without
any advice. In round 2t each such node reconstructs its label £(v) from messages
(¢ (u), A1 (u)) it received (which it sorts in the increasing lexicographic order of
0 (u)), and from A;(v).

Let A be the decoration of G where each node v in the set X is mapped to
the binary representation of its unique label £(v), and each node outside of X
is mapped to the empty string.

Nodes outside of X start constructing their decorated view, according to
As. This construction is put on hold by a node v in X until the time when it
reconstructs its unique label ¢(v). Upon reconstructing its label £(v), each node
v € X starts constructing its view decorated according to As, hence allowing its
neighbors to construct their view, decorated according to As, at depth 1. This
process continues for 2¢ steps, during which nodes construct and send their
views at increasing depth, decorated according to As.

Each node u assigns a label £”(u) to itself as follows. Let s’ be the smallest
depth at which the view of u, decorated according to A, contains a node v with
label £(v) and let A(u,v) be the lexicographically smallest path connecting u to
such a node v (coded as a sequence of consecutive port numbers). Node u sets
0 (u) = (A(u,v), £(v)).

Let Az be the decoration of G where each node u is mapped to ¢ (u). (We
will prove that As is an injective function.) Upon computing its value in As
each node starts constructing its decorated view, according to Az. In each round
t’, node u checks for newly discovered values of As. As soon as there are no
new values, node u reconstructs the labeled map and outputs it. Then node
computes the diameter D of the resulting graph and continues to send its views,
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decorated according to A, according to As, and according to Az, at increasing
depths, until round D + 4t + 1. After round D + 4t + 1 node u terminates.

If ¢t = 0, the protocol consists only of the last step described above, with
decoration Ajz replaced by the assignment of advice given to nodes by the oracle.
o

Theorem 4.1 Let 0 < k < D. Algorithm TR-2 completes topology recognition
for all graphs of size n and diameter D within time D + k, using advice of size
O(1 + (logn)/k).

Proof: Let G be a graph of size n and diameter D. If t = [k/4] —1 = 0, then k
is constant and each node receives advice of size [logn|. In this case the proof
follows from Lemma Hence in the sequel we can assume that ¢ > 1.

Let X be the set of nodes satisfying Lemma for r = 2t, selected by the
oracle. Due to the properties of the set X, the sets N¢(v) and consequently the
sets Ni_1(v) are pairwise disjoint for distinct nodes v € X. Hence, no node
would receive more than one segment of a label ¢(v), for some node v € X.

Within round 2t — 2, each node v € X receives the complete set of segments
A1 (u), for u € Ny_1(v), of its label £(v). Moreover, it can reconstruct the order
of the segments according to the lexicographic order of temporary labels ¢'(u)
received together with the corresponding segments. Hence, by round 2t, all
nodes in X know their unique label £(v).

Since each node of G is at distance at most 2¢ from some node in X and
As is an injective function for nodes in X, the view decorated according to As
at depth 2t of each node contains some uniquely labeled node. Consequently,
As(u) can be computed by each node u within 4¢ rounds. The decoration As
is an injective function, due to uniqueness of labels ¢(v) and due to the fact
that, if nodes u # u’ used the same node v € X to compute A(u,v) and A(v',v),
respectively, then A(u,v) # A(v/,v). In view of Lemma all nodes accomplish
(labeled) topology reconstruction within additional D+ 1 rounds after all nodes
have computed their value according to decoration Az. Hence the algorithm
terminates within time D + 4t +1 < D + k.

Since the size of the set Ny_1(v) is at least ¢, the size of advice is at most
[(logn)/t]+1 € O(1+ (logn)/k), which completes the proof of the theorem. OJ

We now provide a lower bound on the minimum size of advice sufficient to
perform topology recognition. This bound matches the upper bound given by
Algorithm TR-2 in the time-interval [D +1,...,3|D/2]].

Theorem 4.2 Let 2 < D < an and 0 < k < D/2. The size of advice needed to
perform topology recognition in time D + k in the class of graphs of size n and
diameter D is in Q((logn)/k).

Proof: Our lower bound will be proved using the following classes B(n, D, k)
of graphs of size n and diameter D, called brooms. We define these classes for
n sufficiently large and for k < logn. (For k > logn Proposition applies.)
Nodes in a broom B € B(n,D,k) are partitioned into three sets, called the
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bristles, the stick, and the handle. Let m be the largest even integer such that
km+D—k<n.

The set bristles consists of km nodes, partitioned into m pairwise disjoint
sets Bi,..., By, each of size k. The stick consists of D — k nodes, and the
remaining n — (km + D — k) nodes are in the handle. Hence the bristles, the
stick, and the handle are non-empty sets. We now describe the set of edges in
each part.

Edges of the bristles are partitioned into two sets, £1 and Es. Edges in E;
connect nodes of each set B; into a path with port numbers 0 and 1 at each
edge. We call head of each set B; the endpoint of the path to which port number
1 has been assigned, and tail the other endpoint (to which port number 0 has
been assigned). Notice that sets B; can be of size 1, in which case heads coincide
with tails. Edges in Fs form a perfect matching M among tails of the bristles.
These edges have port number 1 at both endpoints.

Edges of the stick form a path of length D — k — 1 with port numbers 0 and
1 at each edge. (Notice that this path is of length 0, i.e., the stick consists of a
single node, when D = 2.) The handle has no edges.

The bristles, the stick, and the handle are connected as follows. Let u be
the endpoint of the stick to which port number 1 has been assigned, and let v
be the other endpoint of the stick (to which port number 0 has been assigned).
Nodes v and u coincide when D = 2. Node v is connected to the head of each
set B; by an edge with port numbers ¢ at v and 0 at each head. Node u is
connected to each node in the handle. Port numbers at u corresponding to
these connecting edges are numbered {0,2,...,n— (km+ D —k)}, if u # v, and
{0,m+1,...,n—(k—1)m—2}, if u = v. Nodes in the handle are of degree 1, so
they have a unique port with number 0. See Figure|2|for an example of a broom
in B(23,6,3). Notice that all brooms in B(n, D, k) are defined over the same
set of nodes and share the same edges, apart from those in sets forming perfect
matchings among tails of the bristles. Moreover notice that growing the length
of the bristles above | D /2] would result in a graph of diameter larger than D
(due to the distance between any pair of unmatched tails of the bristles), which
explains the assumption & < D/2.

For two brooms B’ and B” in B(n, D, k) we define corresponding nodes as
follows. Let A’ and h” in B’ and B", respectively, be the nodes in the handles
whose only incident edge has port number 0 at both endpoints. Node v’ € B’
corresponds to node u” € B”, if and only if, the (unique) shortest path (defined
as the sequence of port numbers on consecutive edges) from h’ to v’ is the same
as the shortest path from h” to u”.

The idea of the proof is to show that if the size of advice is smaller than
c(logn)/k, for a sufficiently small constant 0 < ¢ < 1, then there exist two
brooms in B(n, D, k), whose corresponding nodes receive the same advice, for
which the decorated view at depth D + k of each node in the handle remains
the same in both brooms. Since different brooms are non-isomorphic, this will
imply the theorem, in view of Proposition [2.1

Observe that for k € Q(logn), we have that c¢(logn)/k is constant, and (1)
is a lower bound on the size of advice for topology recognition, regardless of the
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Figure 2: A broom in 5(23,6,3).

allowed time. Hence we do not need to define brooms when k > logn to prove
the theorem.

We now provide a lower bound on the size of the class B(n, D, k). This size
depends on the number m of tails of the bristles among which perfect matchings
M can be defined. For given n and k, the size of the class B(n, D, k) cannot
increase when D grows. Hence the class is smallest for the largest considered
value of D, i.e., D = |an]. We do the estimation for this value of D.

The number of perfect matchings among tails is at least (m —1) - (m — 3) -
(m—=5)-...-3-1> (m/2)\.

Suppose, from now on, that the size of advice is bounded by c(logn)/k,
for some constant 0 < ¢ < 1. Then there are at most 2(c(1ogm)/k+1)n wavg of
assigning advice to nodes of a broom in B(n, D, k). Hence there are at least
(m/2)!1/2(clogn)/k+1)n bhrooms in B(n, D, k) for which corresponding nodes get
the same advice. Fix one such assignment A of advice.

We now provide an upper bound on the number of distinct decorated views,
at depth D + k, of any node in the handle, when advice is assigned to nodes
according to A. Consider two brooms B’ and B” in B(n, D, k), decorated ac-
cording to assignment A. Let M’ and M" be the perfect matchings among tails
of the bristles corresponding to brooms B’ and B”, respectively. B’ and B”
result in distinct decorated views, at depth D + k, of corresponding nodes in
the handle, if and only if, there exist corresponding tails of the bristles ¢, € B’
and t{ € B”, such that the decorated path B}, whose tail ¢} is matched to
t; in M’ and the decorated path B}, whose tail ¢} is matched to ¢ in M",
are different. The number of distinct decorated paths B; of length k — 1 is at
most x = 2(¢logn)/k+Dk — GQince m < n/k, it follows that there are at most
z/k = 2(clogn)/k+1)n distinet decorated views, at depth D + k, for any node in
the handle, for assignment A.

We will show that the following inequality (m/2)! > 22(c(ogn)/k+1)n which
we denote by (*), holds for ¢ < (1 —a)/128, when n is sufficiently large. Indeed,
for sufficiently large n we have m > n(1 — «)/(2k); in view of k < logn, taking

14



the logarithms of both sides we have

1-— 1- 1
log<%!) >%log% > n 7 @) logn( 2 @) >2<c (;an—i—l) n.

Inequality (*) implies that (m/2)!/2(c(ogn)/k+1n ~ olellogn)/k+1)n  Hence
the number of brooms from B(n, D, k), decorated according to assignment A,
exceeds the number of distinct decorated views, at depth D + k, of any node
in the handle, for these brooms. It follows from the pigeonhole principle that
some decorated view corresponds to different brooms from B(n, D, k). In view
of Proposition this proves that (even anonymous) topology recognition in
time D + k, for the class of graphs of diameter D and size n, requires advice of
size at least (1 — «)(logn)/(128k) € Q(logn/k). O

Since the lower bound (1) on the size of advice holds regardless of time,
theorems [{.1] and [£.2] imply the following corollary.

Corollary 4.1 Let D < an and 0 < k < D/2. The minimum size of advice
sufficient to perform topology recognition in time D + k in the class of graphs of
size n and diameter D is in ©(1 + (logn/k)).

5 Time D

In this section we provide asymptotically tight upper and lower bounds on the
minimum size of advice sufficient to perform topology recognition in time equal
to the diameter D of the network. Together with the upper bound proved in
Theorem |4.1} applied to time D + 1, these bounds show an exponential gap in
the minimum size of advice due to time difference of only one round.

Algorithm TR-3

Advice:

The oracle assigns a unique label £(u) from the set {0, ...,n—1} to each node w.
The advice given to each node u consists of the diameter D, the label ¢(u), and
the collection of all edges incident to u, coded as quadruples (£(u),p,q, {(v)),
where p is the port number at node u corresponding to edge {u, v}, and ¢ is the
port number at node v corresponding to this edge.

Node protocol:

In round ¢, each node sends to all its neighbors the collection of edges learned in
all previous rounds. After D rounds of communication each node reconstructs
the topology and stops. o

Proposition 5.1 Algorithm TR-3 completes topology recognition for all graphs
of size n and diameter D in time D, using advice of size O(nlogn).

Proof: Since each node is within distance D from all others, each node learns
the whole collection of edges of the graph within D rounds. Since these edges
are coded using unique labels of adjacent nodes and contain port numbers, this
is enough to reconstruct the (labeled) topology.
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Figure 3: A lollipop in £(6, 3).

Since, in a graph of size n, the diameter can be coded with O(logn) bits and
there are O(n) edges incident to a node, each edge being coded with O(logn)
bits, the size of advice is O(nlogn). O

The following lemma will be used for our lower bound.

Lemma 5.1 There are at least ((n — 1)1)/(n!) non-isomorphic cliques of size
n.

Proof: Assume first that the nodes are labeled 0,...,n — 1. For each node
i € [0,n — 1] there are (n — 1)! ways to assign ports at it. These assignments are
independent for each node, hence there are ((n — 1)) distinct assignments of
port numbers. Since from one clique without node labels it is possible to obtain
at most n! distinct cliques with nodes labeled 0,...,n — 1, our lower bound
follows. O

We define the following classes L£(n, D) of graphs of size n and diameter
D < an, called lollipops. These graphs will be used to prove our lower bounds
for time D and below. Nodes in a lollipop L € £(n, D) are partitioned into two
sets, called the candy and the stick. The candy consists of n — D nodes; for the
purpose of describing our construction we will call these nodes wi,...,w,_p.
The stick consists of the remaining D nodes (see fig. [3| for an example of a
lollipop in £(6, 3)).

Nodes in the candy are connected to form a clique; port numbers for these
edges are assigned arbitrarily from the set {0,...,n— D —2}. Edges of the stick
form a path of length D — 1 with port numbers 0 and 1 at each edge.

The stick and the candy are connected as follows. Let v be the endpoint
of the stick to which port number 1 has been assigned and let u be the other
endpoint of the stick (to which port number 0 has been assigned). Notice that
u and v coincide, when D = 1. Node v is connected to all nodes in the candy.
The port number, at node v, corresponding to edge {v,w;} is 0, if « = 1. For
i > 1 this port number is ¢, when v # v and i — 1, when v = v. The port
number, at all nodes w;, corresponding to edge {v,w;} isn— D — 1.

Since, for D < an, the size of the candy of a lollipop in £(n, D) is at least
[n(1 — a)], Lemma [5.1] implies the following corollary:

Corollary 5.1 The size of the class L(n, D), for D < an is at least (([n(1 —
)] = HE=T/([n(1 - a)]).
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Theorem 5.1 Let D < an. The size of advice needed to perform topology
recognition in time D in the class of graphs of size n and diameter D is in
Q(nlogn).

Proof: If we consider a lollipop of diameter D < an, then there are Q(n?)
edges of the candy that are outside of the view at depth D of the endpoint u
of the stick. The idea of the proof is based on the fact that information about
these edges has to be assigned to nodes of the graph as advice that will become
available to w within time D.

First observe that the view at depth D of the endpoint u of the stick is the
same for all lollipops in £(n, D). Hence, if the size of advice is at most cnlogn,
then the number of distinct decorated views of node wu is at most 2°7° legntn <
2en*(logn+1)  We will show that, if ¢ < (1 — «)?/5, then, for sufficiently large n,
the number of lollipops in £(n, D) exceeds this bound. Indeed, by Corollary
the size of the class L(n, D) is at least

([n(l — a)] — lna-a]
[n(1—a)]!

For sufficiently large n we have

([n(1 —a)] =IO n(1— )™/
(1 —a)]! T :

It is enough to show that
n?(1—-a)?/4
<n(1 — a)) ( / > 2n2(10gn+1)(1—a)2/5
2 )

which is immediate to verify by taking the logarithm of both sides.

It follows that the same decorated view at depth D of node u corresponds
to different lollipops from L(n, D). In view of Proposition this proves that
(even anonymous) topology recognition in time D, for the class of graphs of size
n and diameter D < an, requires advice of size at least (nlogn)(1 — «)?/5 €
Q(nlogn). O

Proposition and Theorem imply the following corollary.

Corollary 5.2 Let D < an. The minimum size of advice sufficient to perform
topology recognition in time D in the class of graphs of size n and diameter D
is in ©(nlogn).

6 Time below D

In this section we study the minimum size of advice sufficient to perform topol-
ogy recognition when the time allotted for this task is too short, for some node,
to communicate with all other nodes in the network.
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Algorithm TR-4

Advice:

Let G be a graph of size n and diameter D. The oracle assigns a unique label
£(v) from {0,...,n— 1} to each node v in the graph G. It codes all edges of the
graph as quadruples (¢(u),p,q,£(v)), where ¢(u) and £(v) are the labels of two
adjacent nodes uw and v, p is the port number at node u corresponding to edge
{u,v}, and ¢ is the port number at node v corresponding to this edge. Let E
be the set of all these codes.

Let t = [(D — k)/3], for D > k > 0, be the time available to complete the
topology recognition. If ¢ = 0, then the advice provided by the oracle to each
node u is: £(u), the collection E of all edges, and the integer 0.

If t > 1, then the oracle picks a set X of nodes in G satisfying Lemma [2.1]
for r = 2t. For each node = € X, let z(x) = |[N¢(x)|. Moreover, let Ey, ..., E, )
be a partition of the edges in F into z(x) pairwise disjoint sets of sizes differing
by at most 1. Let vy, ..., v.(;) be an enumeration of nodes in Ny(x). The advice
given by the oracle to node v; € Ny(z) consists of the label ¢(v;), of the set E;,
and of the integer t. Every other node u only gets £(u) and ¢ as advice. Let A
be the resulting assignment of advice.

Node protocol:
Let t be the integer received by all nodes as part of their advice.

In round ¢, with 1 < ¢ < 3¢, each node sends to all its neighbors the collection
of edges learned in all previous rounds. (In particular, if ¢ = 0, then there is no
communication.) After 3¢ rounds of communication each node reconstructs the
topology and stops. o

Theorem 6.1 Let 0 < k < D. Algorithm TR-4 completes topology recognition
for all graphs of size n and diameter D within time D — k, using advice of size
O((n?logn)/(D — k +1)).

Proof: If t = 0 then D —F is constant. In this case each node uses the collection
FE of edges received as advice to reconstruct the topology in time 0. Since there
are O(n?) edges in a graph of size n, and each edge can be coded with O(logn)
bits, the size of advice is O(n?logn) = O((n?logn)/(D — k + 1)).

Hence we can assume that ¢ > 1. Since each node is at distance at most 2t
from some node in X, and the decorations of the nodes in N¢(v), for each such
node v, assigned according to A, collectively contain the entire set E, after time
3t < D —k each node of the graph can reconstruct the whole (labeled) topology.
It remains to be shown that the size of advice is in O((n?logn)/(D — k + 1)).
Indeed, z(z) >t € Q(D—k+1) and the size of each set E; is at most [|E|/z(z)].
Each edge can be coded with O(logn) bits and sets Ny(x), for x € X, are
disjoint. The theorem follows from the fact that |E| € O(n?). O

The following lower bound shows that the size of advice used by Algo-
rithm TR-4 is asymptotically optimal.

Theorem 6.2 Let D < an and 0 < k < D. The size of advice needed to
perform topology recognition in time D — k in the class of graphs of size n and
diameter D is in Q((n?logn)/(D — k + 1)).
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Proof: The argument follows closely the proof of Theorem The only
difference is that we consider decorated views of the endpoint u of the stick at
depth D — k instead of D. Since there are only D — k + 1 nodes in the lollipop
at distance D — k from wu, if the size of advice is at most (cn?logn)/(D — k +
1), then the number of distinct decorated views of node u at depth D — k is
at most 2((cn2 logn)/(D—k+1)+1)(D—k+1) _ 2cn2 logn+(D—k+1) < 2cn2(logn+1)’ for
sufficiently large n.

The same computation as in the proof of Theorem [5.1] shows that, if ¢ <
(1—«)?/7, then the same decorated view at depth D — k of node u corresponds
to different lollipops from £(n, D). In view of Proposition this proves that
(even anonymous) topology recognition in time D — k, for the class of graphs of
diameter D and size n, requires advice of size at least ((1—«)?/7)-(n?logn)/(D—
k+1)€Q((n?logn)/(D —k+1)).

Theorems and imply the following corollary.

Corollary 6.1 Let D < an and 0 < k < D. The minimum size of advice
sufficient to perform topology recognition in time D — k in the class of graphs of
size n and diameter D is in ©((n?logn)/(D — k + 1)).

7 Conclusion and open problems

We presented upper and lower bounds on the minimum size of advice sufficient to
perform topology recognition, in a given time 7, in n-node networks of diameter
D. Our bounds are asymptotically tight for time "= 2D 4 1 and, if D < an
for some constant o < 1, in the time interval [0,...,3D/2]. Moreover, in the
remaining time interval (3D/2,...,2D] our bounds are still asymptotically tight
if D € Q(logn). Closing the remaining gap between the lower bound 1 and the
upper bound O(1+ (logn)/k) in this remaining time interval, for graphs of very
small diameter D € o(logn), is a natural open problem. In particular, it would
be interesting to find the minimum time in which topology recognition can be
accomplished using advice of constant size, or even of size exactly 1.

Other open problems remain in the case of networks with very large diameter,
those which do not satisfy the assumption D < an for some constant a < 1, or
equivalently those for which n — D € o(n). Our upper bounds do not change in
this case (we did not use the assumption D < an in their analysis), while our
lower bounds change as follows, using the same constructions. The lower bound
for time above D, i.e., when T'= D + k, where 0 < k < D, becomes Q((log(n —
D))/k); our lower bound for time D becomes Q(((n — D)?log(n — D))/n); the
lower bound for time below D, i.e., when T' = D — k, where 0 < k < D, becomes
Q(((n — D)?log(n — D))/(D — k + 1)). It remains to close the gaps between
these lower bounds and the upper bounds that we gave for each allotted time.

Another open problem is related to the communication model used. As
mentioned in the Introduction, we chose the LOCAL model which ignores the
size of messages. It would be interesting to study how the results change in
the CON'GEST model in which messages are limited to logarithmic size. Some
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compression of the information transmitted should be possible, e.g., along the
lines of [29].

Let us also address the issue of node identities vs. advice given to nodes. We
did our study for unlabeled networks, arguing that nodes may be reluctant to
disclose their identities for security or privacy reasons. As we have seen, however,
for anonymous networks some advice has to be given to nodes, regardless of the
allotted time. Does the oracle have to provide new distinct labels to nodes? Our
results show that for time above D this is not the case, as the minimum size
of advice enabling topology recognition in this time is too small for assigning
a unique identifier to each node. Hence, in spite of not having been given, a
priori, unique identifiers, nodes can perform labeled topology recognition in this
time span. On the other hand for time at most D, the minimum size of advice is
sufficiently large to provide distinct identifiers to nodes, and indeed our oracles
inserted unique identifiers as part of advice. However, this should not raise
concerns about security or privacy, as these identifiers may be arbitrary and
hence should be considered as “nicknames” temporarily assigned to nodes.

A different set of problems would appear if (unlike in our scenario) random-
ization were allowed. For many time values the size of required advice would
then be drastically reduced. For example, for time D, advice of size O(logn)
would suffice. Indeed, providing nodes with the diameter D and the size n of the
network would enable them to first acquire different labels with high probability
(the size n, or some bound on it, is needed to know how long the random labels
should be, but such labels can be randomly produced with no communication),
and then learn the topology of the resulting labeled graph in D rounds. We
leave the analysis of tradeoffs between time and advice for randomized topology
recognition as an open problem.

References

[1] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for ancestor
queries, Proc. 12th Annual ACM-STAM Symposium on Discrete Algorithms
(SODA 2001), 547-556.

[2] D. Angluin, Local and global properties in networks of processors. Proc.
12th Annual ACM Symposium on Theory of Computing (STOC 1980),
82-93.

[3] H. Attiya, M. Snir, M. Warmuth, Computing on an anonymous ring, Jour-
nal of the ACM 35, (1988), 845-875.

[4] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, R. Reischuk, Re-
naming in an asynchronous environment, Journal of the ACM 37 (1990),
524-548.

[5] B. Awerbuch, Optimal distributed algorithms for minimum weight span-
ning tree, counting, leader election and related problems, Proc. 19th Annual
ACM Symposium on Theory of Computing (STOC 1987), 230-240.

20



[6]

P. Boldi, S. Vigna, Computing anonymously with arbitrary knowledge,
Proc. 18th ACM Symposium on Principles of Distributed Computing
(PODC 1999), 181-188.

S. Caminiti, I. Finocchi, R. Petreschi, Engineering tree labeling schemes: a
case study on least common ancestor, Proc. 16th Annual European Sym-
posium on Algorithms (ESA 2008), 234-245.

J. Chalopin, S. Das, A. Kosowski, Constructing a map of an anonymous
graph: Applications of universal sequences, Proc. 14th International Con-
ference on Principles of Distributed Systems (OPODIS 2010), 119-134.

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-guided
graph exploration by a finite automaton, ACM Transactions on Algorithms
4 (2008).

D. Dereniowski, A. Pelc, Drawing maps with advice, Journal of Parallel
and Distributed Computing 72 (2012), 132-143.

Y. Emek, P. Fraigniaud, A. Korman, A. Rosen, Online computation with
advice, Theoretical Computer Science 412 (2011), 2642-2656.

Y. Emek, C. Pfister, J. Seidel, R. Wattenhofer, Anonymous networks: Ran-
domization= 2-hop coloring, Proc. 32nd ACM Symposium on Principles of
Distributed Computing (PODC 2014), 96-105.

Y. Emek, J. Seidel, R. Wattenhofer, Computability in anonymous networks:
Revocable vs. irrecovable outputs, Proc. 41th International Colloquium on
Automata, Languages and Programming (ICALP 2014), 183-195.

P. Fraigniaud, C. Gavoille, D. Ilcinkas, A. Pelc, Distributed computing with
advice: Information sensitivity of graph coloring, Distributed Computing
21 (2009), 395-403.

P. Fraigniaud, D. Ilcinkas, A. Pelc, Communication algorithms with advice,
Journal of Computer and System Sciences 76 (2010), 222-232.

P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Informa-
tion and Computation 206 (2008), 1276-1287.

P. Fraigniaud, A. Korman, E. Lebhar, Local MST computation with short
advice, Theory of Computing Systems 47 (2010), 920-933.

E. Fusco, A. Pelc, Trade-offs between the size of advice and broadcasting
time in trees, Algorithmica 60 (2011), 719-734.

E. Fusco, A. Pelc, How much memory is needed for leader election, Dis-
tributed Computing 24 (2011), 65-78.

C. Gavoille, D. Peleg, S. Pérennes, R. Raz. Distance labeling in graphs,
Journal of Algorithms 53 (2004), 85-112.

21



[21]

[29]

[30]

[31]

D.S. Hirschberg, J.B. Sinclair, Decentralized extrema-finding in circular
configurations of processes, Communications of the ACM 23 (1980), 627
628.

D. Tlcinkas, D. Kowalski, A. Pelc, Fast radio broadcasting with advice,
Theoretical Computer Science, 411 (2012), 1544-1557.

M. Katz, N. Katz, A. Korman, D. Peleg, Labeling schemes for flow and
connectivity, SIAM Journal of Computing 34 (2004), 23-40.

A. Korman, S. Kutten, D. Peleg, Proof labeling schemes, Distributed Com-
puting 22 (2010), 215-233.

E. Kranakis, D. Krizanc, J. van der Berg, Computing Boolean functions on
anonymous networks, Information and Computation 114 (1994), 214-236.

N. Nisse, D. Soguet, Graph searching with advice, Theoretical Computer
Science 410 (2009), 1307-1318.

D. Peleg, Distributed computing, a locality-sensitive approach, SIAM
Monographs on Discrete Mathematics and Applications, Philadelphia 2000.

G.L. Peterson, An O(nlogn) unidirectional distributed algorithm for the
circular extrema problem, ACM Transactions on Programming Languages
and Systems 4 (1982), 758-762.

S. Tani, Compression of view on anonymous networks - Folded view -. IEEE
Trans. Parallel Distrib. Syst. 23 (2012), 255-262.

M. Thorup, U. Zwick, Approximate distance oracles, Journal of the ACM,
52 (2005), 1-24.

M. Yamashita, T. Kameda, Computing on anonymous networks: Part I -
characterizing the solvable cases, IEEE Transactions on Parallel and Dis-
tributed Systems 7 (1996), 69-89.

22



	1 Introduction
	1.1 The model and the problem
	1.2 Our results
	1.3 Related work

	2 Preliminaries
	3 Time 2D+1
	4 Time above D
	5 Time D
	6 Time below D
	7 Conclusion and open problems

