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The difficulty of validating large-scale quantum devices, such as boson samplers, poses a major
challenge for any research program that aims to show quantum advantages over classical hardware.
Towards this aim, we propose a novel data-driven approach, wherein models are trained to identify
common pathologies using unsupervised machine-learning methods. We illustrate this idea by training a
classifier that exploitsK-means clustering to distinguish between boson samplers that use indistinguishable
photons from those that do not. We tune the model on numerical simulations of small-scale boson samplers
and then validate the pattern-recognition technique on larger numerical simulations as well as on photonic
chips in both traditional boson-sampling and scatter-shot experiments. The effectiveness of such a method
relies on particle-type-dependent internal correlations present in the output distributions. This approach
performs substantially better on the test data than previous methods and underscores the ability to further
generalize its operation beyond the scope of the examples that it was trained on.
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I. INTRODUCTION

There has been a flurry of interest in quantum science
and technology in recent years that has been focused on the
transformative potential that quantum computers have for
cryptographic tasks [1], machine learning [2,3], and quan-
tum simulation [4,5]. While existing quantum computers
fall short of challenging their classical brethren for these
tasks, a different goal has emerged that existing quantum
devices could address: namely, testing the extended
Church-Turing thesis. The extended Church-Turing thesis
is a widely held belief that asserts that every physically
reasonable model of computing can be efficiently simulated
using a probabilistic Turing machine. This statement is, of
course, controversial, since, if it were true, then quantum
computing would never be able to provide exponential
advantages over classical computing. Consequently, pro-
viding evidence that the extended Church-Turing thesis is
wrong is more philosophically important than the ultimate
goal of building a quantum computer.

Various intermediate computing models have been pro-
posed in the past few years that promise to be able to provide
evidence of a quantum computational supremacy, namely,
the regime where a quantum device starts outperforming its
classical counterpart in a specific task. Such models mostly
belong to the category of sampling problems, i.e., simulating
the distribution sampled from a quantum system, that is
believed to be classically hard to compute. These include
quantum circuits with commuting gates [6–8], quantum
simulators with fully certifiable final states [9], and quantum
random circuits [10].
A significant step in this direction has been achieved, in

particular, by Aaronson and Arkhipov [11] with the formal
definition of a dedicated task known as boson sampling.
This task is a computational problem that consists in
sampling from the output distribution of n indistinguishable
bosons evolved through a linear unitary transformation.
This problem has been shown to be classically intractable
(even approximately) under mild complexity-theoretic
assumptions. Indeed, the existence of a classical efficient
algorithm to perform boson sampling would imply the
collapse of the polynomial hierarchy to the third level [11].
Such a collapse is viewed among many computer scientists
as being akin to violating the laws of thermodynamics.
Thus, demonstrating that a quantum device can efficiently
perform boson sampling is powerful evidence against the
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extended Church-Turing thesis. Furthermore, the simplicity
of boson sampling has already allowed experiments at a
small scale with different photonic platforms [12–25], and
also alternative approaches have been proposed, e.g.,
exploiting trapped ions [26] or applying random gates in
superconducting qubits [10].
Despite the fact that boson sampling is within our reach, a

major caveat remains. The measurement statistics for boson
samplers are intrinsically exponentially hard to predict. This
difficulty implies that, even if someone manages to build a
boson sampler that operates in a regime beyond the reach of
classical computers, then the experimenter needs to provide
evidence that their boson sampler functions properly for the
argument against the extended Church-Turing thesis to be
convincing. This task is not straightforward, in general, for
large quantum systems [27–30], and it represents a critical
point for all the above-mentioned platforms seeking a first
demonstration of quantum supremacy. Indeed, to conclu-
sively certificate a sampler using a conventionalmetric, such
as a cross-entropy, it is necessary to estimate the probability
that the true boson sampler yields the outcome probability.
However, computing such a probability efficiently would
imply BQP = #P, which is totally implausible from a
complexity-theoretic standpoint even given a quantum
computer. Hence, one could consider providing progres-
sively more stringent tests able to exclude relevant alter-
native error models. A first approach to ensure quantum
interference could involve testing pairwise mutual indis-
tinguishability by two-photon Hong-Ou-Mandel experi-
ments [31]; however, such a method fails to completely
characterize multiphoton interference [32]. While tech-
niques exist that use likelihood ratios to validate
[17,33,34], theywork only for small systems. Other existing
techniques exploit statistical properties of bosonic states
[18,35–39] or symmetries of certain boson samplers [21,40–
45]; however, these methods are much more limited in
scope.
In this article, we devise a prototypical methodology

based on machine-learning techniques to detect known
types of malfunctions occurring in a quantum hardware
performing sampling tasks. We apply the test here in the
context of boson sampling; however, the intuition can be
reformulated for other problems. This method compares
features of the collected data sample with those of a second
one obtained from a reference distribution, evaluating their
compatibility. By generating the reference sample from an
efficiently computable distribution corresponding to a well-
defined pathology of the problem, it is then possible to
exclude that such pathology is observed in the measured
sample. More specifically, building on results of Wang and
Duan [46], we devise a compatibility test between a trusted
boson sampler and an untrusted device that looks at data
structure in a suitable space (see Fig. 1). We then test
experimentally our method on both traditional boson
sampling and scatter-shot boson sampling [19,20], showing

that the algorithm is able to identify relevant pathologies
in the measured samples. Finally, we provide a physical
insight on the mechanism behind the functioning of the
proposed clustering-based method in the investigated
boson-sampling framework. Thanks to their versatility
and their capability to operate without an in-depth knowl-
edge of the physical system under investigation, clustering
techniques may prove effective in a scope even broader
than boson sampling [6–10].

II. BOSON SAMPLING AND ITS VALIDATION

Before going into detail about our approach, we need to
discuss the boson-sampling problem at a more technical
level. Boson sampling is a computational problem [11] that
corresponds to sampling from the output probability dis-
tribution obtained after the evolution of n identical, i.e.,
indistinguishable, bosons through an m-mode linear trans-
formation. Inputs of the problem are a given m ×m Haar-
random unitary matrix U, describing the action of the
network on the bosonic operators according to the input-
output relation a†i ¼

P
jUi;jb

†
j , and a mode occupation list

S ¼ fs1;…; smg, where si is the number of bosons on input
mode i, being

P
isi ¼ n. For m ≫ n2 and considering the

case where at most one photon is present in each input
(si ¼ f0; 1g) (collision-free scenario), sampling, even
approximately, from the output distribution of this problem
is classically hard. Indeed, in this regime for ðn;mÞ the
probability of a collision event becomes negligible, and,
thus, the only relevant subspace is the collision-free one
[11,16]. The complexity, in n, of the known classical
approaches to perform boson sampling relies on the
relationship between input-output transition amplitudes
and, therefore, on the calculation of permanents of complex
matrices, which is #P hard [47]. More specifically, given an
input configuration S and an output configuration T, the
transition amplitude AUðS; TÞ between these two states is
obtained as AUðS; TÞ ¼ perðUS;TÞ=ðs1!…sn!t1!…tn!Þ1=2,

Output
Unknown device

Processing

? = Boson sampling ? = Alternative sampler

FIG. 1. Validation of boson-sampling experiments. An agent
has to discriminate whether a finite sample obtained from an
unknown device has been generated by a quantum device
implementing the boson-sampling problem or by an alternative
sampler.
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where perðUS;TÞ is the permanent of the n × n matrix US;T

obtained by selecting columns and rows of U according to
the occupation lists S and T [48].
From a practical perspective, an essential aspect of any

algorithm is that of verifying the correctness of its outputs.
Verification can be trivial, as for factoring [1], or exponen-
tially hard, as for boson sampling. In the latter case, which
likely involves the evaluation of permanents, this stage is
commonly referred to as certification. A similar goal,
which aims to reduce the required physical resources in
view of large-scale applications, is instead that of valida-
tion. In this case, one does not exactly attempt to verify the
correctness of an outcome but, rather, to exclude known
undesired models for the system that produced it. This
approach has the advantage of being able to rule out many
of the most likely pathologies that a boson sampler can
face, without impacting the algorithm’s practicality.
Thus, due to the complexity of evaluating the permanent,

it is necessary to identify methods that do not require the
calculation of input-output probabilities to validate the
functioning of the device. Furthermore, in a quantum
supremacy regime, the number of input-output combina-
tions becomes very large, since it scales as ðmnÞ. Hence, it is
also necessary to develop suitable techniques that are
tailored to deal with a large amount of data. In Table I,
we report a summary of the currently developed techniques,
highlighting their main features and performances, in
comparison with the method proposed in this article.

III. PATTERN-RECOGNITION TECHNIQUES FOR
VALIDATION

In the regime where a boson-sampling device is expected
to outperform its classical counterpart, the validation
problem has inherently to deal with the exponential growth
of the number of input-output combinations. A promising
tool in this context is provided by the field of machine

learning, which studies how a computer can acquire infor-
mation from input data and learn to make data-driven
predictions or decisions [49]. Significant progress has been
achieved in this area over the past few years [50,51]. One of
its main branches is represented by unsupervised machine
learning, where dedicated algorithms have to find an inner
structure in an unknown data set. One of the main unsu-
pervised learning approaches is clustering, where data are
grouped in different classes according to collective proper-
ties recognized by the algorithm [52]. Since this approach is
designed to identify hidden patterns in a large amount of
data, clustering techniques are promising candidates to be
applied for the boson-sampling validation problem.
Let us discuss the general scheme of the proposed

validation method based on pattern-recognition techniques.
This approach allows us to employ various clustering
methods within the protocol, which allow us to choose
the method that optimizes the performance on the training
data. Given two samples obtained respectively from a bona
fide boson sampler, that is, a trusted device, and a boson
sampler to be validated, the sequence of operations
consists in (i) finding a cluster structure inside the data
belonging to the first sample, (ii) once the structure is
completed, organizing the data of the second sample by
following the same structure of the previous set, and
(iii) performing a χ2 test on the number of events per
cluster for the two independent samples. The χ2 variable is
evaluated as χ2 ¼ PNc

i¼1

P
2
j¼1½ðNij − EijÞ2=Eij�, where

index j refers to the samples and index i to the Nc clusters,
Nij is the number of events in the ith cluster belonging to
the jth sample, and Eij is the expected value of observed
events belonging to the jth sample in the ith cluster
Eij ¼ NiNj=Nc, with Ni¼

P
2
j¼1Nij, Nj ¼

PNc
i¼1Nij, and

N ¼ PNc
i¼1

P
2
j¼1Nij. If the null hypothesis of the

two samples being drawn from the same probability

TABLE I. Summary of the available protocols to validate quantum interference (Q) against experiments with
distinguishable photons (D) or mean-field states (MF). Ideal validations should be reliable and efficient, meaning
that they should not require resources exponential in the size of the problem, neither computational (e.g., the
evaluation of permanents) nor physical (e.g., in the number of samples N). Also, they could provide insights on the
multiphoton dynamics for a given transformation, as well as being applicable to conditions other than Q, D, or MF.
LR, likelihood ratio [17,20,23–25]; ZTL, zero-transmission law (or suppression law) [21,34,40–45]; Bayesian
[23–25,33,34]; bunching [18,35]; CG, coarse-graining [46]; n ¼ m [38]; statistical benchmark [36,39].

Rules out: Does not require: Gives insights on: Proved in:
Test D MF U N large dynamics other Û Theory Exp

Likelihood ratio ✓ ? ✓ ✓ ✓ ✓
Bayesian test ✓ ? ✓ ✓ ✓ ✓
Bunching ✓ ✓ ? ✓
Suppression laws ✓ ✓ ✓ ✓ ✓
Coarse-grained ✓ ✓ ✓ ✓ ? ✓ ✓
n ¼ m ✓ ✓ ✓ ✓
Statistical ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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distribution is correct, the evaluated variable must follow
a χ2 distribution with ν ¼ Nc − 1 degrees of freedom
(d.o.f.). This scheme can be applied by adopting different
metric spaces and different clustering techniques.
Concerning the choice of the metric, both 1-norm and 2-
norm distances can be employed as the distance d between
two Fock states Ψ and Φ, namely, d¼L1¼

P
M
i¼1 jΨi−Φij

or d ¼ L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
i¼1 jψ i − ϕij2

p
, with Ψi and Φi being,

respectively, the occupation numbers of Ψ and Φ in the
ith mode.

IV. ADOPTED CLUSTERING TECHNIQUES

Several clustering methods are employed within our
validation scheme: (a) a recent proposal by Wang and Duan
[46], whose concept is shown in Fig. 2, and two unsu-
pervised machine-learning techniques, (b) agglomerative
hierarchical clustering and (c) K-means clustering. Two
variations of the latter approach are also examined, to
increase the strength of our model. A short description of
each adopted method follows briefly.
(a) The protocol proposed by Wang and Duan [46], and

hereafter named bubble clustering, determines the
inner cluster structure of a sample by (i) sorting in
decreasing order the output events according to their
frequencies, (ii) choosing the observed state with the
highest frequency as the center of the first cluster,
(iii) assigning to such a cluster all the states belonging
to the sample whose distance d from its center is
smaller than a cutoff radius ρi, and (iv) iterating the
procedure with the remaining states until all the
observed events are assigned.

(b) Hierarchical clustering, in its bottom-up version, starts
by assigning each observed event to a separate class.
Then, the two nearest ones are merged to form a single
cluster. This grouping step is iterated, progressively
reducing the number of classes. The agglomeration
stops when the system reaches a given halting con-
dition predetermined by the user. In the present case,
the algorithm halts when no more than 1% of the
observed events are included in some cluster contain-
ing less than five events (see Supplemental Material
[53]). All of these smallest clusters are considered as
outliers and removed from the structure when perform-
ing the χ2 test. The distance between two clusters is
evaluated as the distance between their centroids. The
centroid of a cluster is defined as the point that
minimizes the mean distance from all the elements
belonging to it.

(c) K means is a partitioning clustering algorithm where
the user has to determine the number of classes (k)
[54–56]. With this method, the starting points for
centroid coordinates are chosen randomly. Then, two
operations are iterated to obtain the final cluster
structure that are selecting elements and moving
centroids. The first one consists in assigning each

observed event to the cluster whose centroid has the
smallest distance from it. Then, once the k clusters are
completed, the centroid of each cluster is moved
from the previous position to an updated one, given
by the mean of the element coordinates. These two
operations are repeated until the structure is stable.
Given a set of k centroids (c1;…; ck) made of
(N1;…; Nk) elements (e11;…; e1n1 ;…; ek1;…; eknk),
where

P
k
i¼1Ni ¼ n, the operations of selecting ele-

ments andmoving the centroids minimize the objective

(e)

(a)

(c)

(b)

(d)

Sample 1 Sample 2

Events

Bubble 3 Bubble 2

Events

Bubble 3 Bubble 2

f

f

Bubble 1 Bubble 1

FIG. 2. Pattern-recognition techniques for validation. (a) A
sample is drawn from each of the two boson samplers to be
compared. The events belonging to one of the two samples are
partitioned according to the criteria of the pattern-recognition
technique. (b),(c) Bubble clustering sorts the events according
to their observation frequency, and the state with the highest
frequency is chosen as the center of the first cluster: All events
with a distance from the center smaller than a cutoff radius ρ1 are
included in this cluster (b). Then, starting from the unassigned
events, this procedure is iterated until all of the observed events
are included in some bubble. At this point, each cluster is
characterized by a center and a radius (c). (d) The observed
events belonging to the second sample are classified by using the
structure tailored from the first sample: Each event belongs to the
cluster with the nearest center. (e) A χ2 test with ν ¼ Nbubbles − 1
d.o.f. is performed (here using K means) to compare the number
of events belonging to each of the two samples [green, quantum
(Q) with indistinguishable photons; orange, classical (C) with
distinguishable photons; purple, mean-field state] by using the
obtained cluster structure. This variable quantifies the compat-
ibility between the samples.
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function 1
Nc

P
k
j¼1

PNk
i¼1 dðeij; cjÞ. Several trials are

made to determine the optimal number of clusters,
showing that the performance of the test improves for
higher values of k and then reaches a constant level. We
then choose to balance the two needs of clusters made
up of at least five elements, since the compatibility test
requires a χ2 evaluation, and of a high efficacy of the
validation test (see Supplemental Material [53]).

V. VARIATIONS OF K-MEANS CLUSTERING

With K means, different initial conditions can lead to a
different final structure. Hence, the algorithm can end up in
a local minimum of its objective function. To avoid this
issue, we consider three different strategies: (I),(II) replac-
ing the random starting condition with two initialization
algorithms, namely, (I) K means++ and (II) a preliminary
run of hierarchical clustering, and (III) building on the same
data set several cluster structures. (I) Once the user sets the
number of clusters k, the first center is picked uniformly
among the observed events. Then, for each observed
element e, the distance dðeÞ from the nearest of the picked
centroids is evaluated. A new centroid is subsequently
chosen randomly among the observed events, by assigning
to each one a different weight given by dðeÞ2. This
procedure is iterated until all k cluster centers are initial-
ized. Then, standard K-means clustering can be applied.
(II) The user has to set the halting condition for hierarchical
clustering. As discussed previously, in our case the process
is interrupted when the fraction of outliers is smaller than a
chosen threshold condition (≤ 0.01). The centroids of the
final cluster structure obtained from hierarchical clustering
are used as the starting condition forK means. (III) As said,
when adopting K-means clustering, the final structure is
not deterministic for a given data set. Hence, to reduce the
variability of the final condition and thus avoid the
algorithm getting stuck in a local minimum, the K-means
method is run an odd number of times (for instance, 11),
and majority voting is performed over the compatibility test
results. Finally, the adoption ofK means++ (I) and majority
voting (III) can also be simultaneously combined.

VI. BENCHMARKING THE PROTOCOL

As a first step, we perform a detailed analysis to identify
the most suitable among the mentioned clustering algo-
rithms. More specifically, we proceed with the two follow-
ing steps: (i) a tuning stage and (ii) a cross-validation stage.
The figure of merit quantifying the capability of each test to
perform correct decisions is the success percentage, i.e., the
probability that two samples drawn from the same stat-
istical population are labeled as compatible while two
samples drawn from different probability distributions are
recognized as incompatible.
(i) In the tuning stage, we look for the most effective

clustering algorithm for our validation protocol. We are not

yet applying it to validate boson-sampling data; rather, we
are optimizing the set of hyperparameters that will define
its operation (see Sec. VII and Supplemental Material [53]).
Indeed, our protocol is based on unsupervised algorithms
that, as such, do not need data with different labels to learn
effective patterns.
To this aim, we apply all algorithms on numerically

generated samples of output states, belonging to the
collision-free subspace of n ¼ 3 photons evolved through
a fixed unitary transformation U with m ¼ 13 modes.
Hence, the dimension of the Hilbert space in this case is
ð13
3
Þ ¼ 286. Each algorithm is run several times, while

varying the number of events within the tested samples. For
each sample size, the hyperparameters proper of each
technique are optimized. To evaluate the success percent-
ages for each configuration of hyperparameters, we numeri-
cally generate 100 distinct data sets made of three samples:
two of them are drawn from the boson-sampling distribu-
tion, while a third is drawn from the output probability
distribution obtained when distinguishable particles are
evolved with the same input state and unitary transforma-
tion U. We perform two compatibility tests for each data
set: the first between two compatible samples and the
second between two incompatible ones. The results of this
analysis for samples with 500 output events are shown in
Table II. We observe that the best success percentage is
obtained for the K-means++ method with majority voting
and employing the L2 distance. The reason for which K
means is outperforming bubble clustering lies in its learn-
ing capability. Indeed, due to its convergence properties
through the iterations, K means gradually improves its
insight into the internal structure that characterizes the data.
This feature enables a better discrimination between
compatible and incompatible samples (see Supplemental
Material [53]).
(ii) In the cross-validation stage, we cross-validated the

algorithm for random unitary transformations with a fixed
size (ii.a) and for an increasing dimension of the Hilbert
space (ii.b). As a first step (ii.a), we perform the test with
n ¼ 3 photons evolving through 20 Haar-random trans-
formations with m ¼ 13 modes. For each transformation,
we perform 100 tests between compatible samples and 100
between incompatible ones, by fixing the number of
clusters and trials to the values determined in stage (i).
In Table III, we report the means and standard deviations of
the success percentages for a sample size of 1000 events
and compare the obtained values with the ones character-
izing the bubble clustering method. We observe that the
chosen approach, K means++ with majority voting and L2

distance, indeed permits one to achieve better success
percentages.
To extend the cross-validation to larger-dimensional

Hilbert spaces (ii.b), we exploit an efficient algorithm to
sample from the distribution with distinguishable photons
[28] and a recent algorithm by Clifford and Clifford [58] to
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sample indistinguishable photons, with a much more
efficient approach compared to the brute-force one. With
this approach, we are able to test the efficacy of our
protocol up to n ¼ 25 photons in m ¼ 625 modes (see
Table IV). Note that, in this case, to validate a sample we
require only 105 events, a negligible fraction (10−40) of the
total output states. In the case where m ∼ n2, while results
are shown with fixed N ∼ 5 × 104 events for the sake of
clarity and to avoid biases, in most instances N ∼ 104

events are already sufficient. An aspect of our test that is
worth noticing, as shown in Table III, is that the probability
of error is lopsided, which is a feature that can be valuable

for applications where falsely concluding that trustworthy
boson samplers are unreliable is less desirable than the
converse. Another crucial point is that we do not need to
perform a tuning of the hyperparameters for each pair
(n,m). We discuss this aspect in more detail in Sec. VII.
During the cross-validation stage, we also perform

numerical simulations to verify whether the present
approach is effective against other possible failure modes
different from distinguishable particles, namely, the mean-
field sampler [43] and a uniform sampler (see Sec. IV in
SupplementalMaterial [53]). The former performs sampling
from a suitable tailored single-particle distribution which

TABLE III. Confusion matrix for bubble clustering and K means++ with majority voting random unitary evolution [cross-validation
stage, step (ii.a)]. Success percentages of the compatibility test for bubble clustering and K means initialized with K means++ and
majority voting. These percentages are evaluated through numerical simulations, by drawing 20 Haar-random unitary transformations,
and by adopting the same hyperparameters obtained from stage (i) corresponding to the results in Table II.

Output classification

1-norm 2-norm

Events Ind. Dis. Ind. Dis.

Bubble
500

95.6� 2.8 4.4� 2.8 95.7� 1.7 4.3� 1.7 Ind.
69� 13 31� 13 75� 14 25� 14 Dis.

1000
95.9� 2.0 4.1� 2.0 93.1� 2.8 6.9� 2.8 Ind.
62� 30 38� 30 51� 23 49� 23 Dis.

K-means++ m.v.
500

99.1� 1.2 0.9� 1.2 99.70� 0.57 0.30� 0.57 Ind.
45� 23 55� 23 66� 22 34� 22 Dis.

1000
98.7� 2.7 1.3� 2.7 96.2� 3.9 3.8� 3.9 Ind.
3.6� 6.4 96.4� 6.4 0.30� 0.73 99.70� 0.73 Dis.

TABLE II. Confusion matrix for different clustering techniques and fixed unitary evolution [tuning stage, step (i)]. Success
percentages of the compatibility tests for all the different clustering techniques studied, i.e., bubble clustering, hierarchical clustering,
and K-means clustering. The latter algorithm is investigated in its standard version and initialized by K means++ or a preliminary run of
hierarchical clustering [57]. Then, majority voting is performed on the nondeterministic versions of K means. The reported success
percentages are evaluated through numerical simulations by keeping the unitary evolution operator fixed. This choice is motivated by the
need of tuning the different algorithms in order to subsequently classify new data sets.

Output classification

1-norm 2-norm

Ind. Dis. Ind. Dis.

(a) Bubble 95 5 96 4 Ind.
clustering 33 67 31 69 Dis.
(b) Hierarchical 1 99 8 92 Ind.
clustering 2 98 5 95 Dis.

(c) K-means
clustering

Uniformly distributed Single trial 98 2 95 5 Ind.
10 90 21 79 Dis.

initialized centroids Majority 100 0 99 1 Ind.
voting 1 99 2 98 Dis.

K means++
Single trial

95 5 97 3 Ind.
17 83 17 83 Dis.

initialized centroids Majority 98 2 100 0 Ind.
voting 1 99 0 100 Dis.

Hierarchical clustering 97 3 95 5 Ind.
initialized centroids 16 84 5 95 Dis.
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reproduces the same features of multiphoton interference,
while the latter performs sampling from a uniform distri-
bution. We observe that the test is capable to distinguish
between a bona fide boson sampler and a uniform or mean-
field sampler. This capability highlights a striking feature
of this algorithm, namely, the ability of our algorithm to
generalize beyond the training set of distinguishable and
indistinguishable samples used to learn the hyperpara-
meters, into situations where the data come from approx-
imations to the boson-sampling distribution that prima facie
bear no resemblance to the initial training examples.

VII. SCALABLE TUNING OF THE
HYPERPARAMETER

To increase the applicability of the compatibility test, we
can choose suitable sets of hyperparameters for the
embedded clustering algorithms. This preliminary stage,
typical in machine learning, may require proper methods
such as a grid search or randomized search and is, in general,
very beneficial [51]. In the case of the clustering algorithms
described in Sec. VI, one common hyperparameter is related

to the minimum number of elements (sampled output
events) assigned to any cluster. Specifically, bubble cluster-
ing, hierarchical clustering, and K means require one to set,
respectively, the minimum cutoff radius, the maximum
acceptable fraction of outliers (events belonging to clusters
with less than N elements), and the number of clusters K.
Also, these algorithms can be applied with different notions
of distance, potentially beyond the L1 and L2 already
discussed, to reflect different knowledge on the character
of a system. In this section, we clarify how to best configure
the protocol to operate in instances of large dimensionality,
where no algorithm for classical simulations is available to
probe its functioning.
In the following, let us then focus on the L2 distance (see

Sec. VI) and on the number of clusters K for K means,
which we identify as the most effective technique for our
purpose. We quantify the performance of the compatibility
test with its accuracy, namely, the success probability in
ruling out samples that are not compatible with quantum
boson sampling. In particular, we study how the choice of
K influences the test in two different scenarios: (i) when
m ∼ n2 [Fig. 3(a)] and (ii) for the specific instance of

TABLE IV. Efficacy of K means++ for large-size boson sampling [cross-validation stage, step (ii.b)]. The algorithm is highly effective
to discern quantum (Q) boson samplers from classical (C) and mean-field states (MF ), even for a large number of photons n and modes
m and using very small sample sizes (N) as compared to the number of output combinations. For all probed (n, m), K means correctly
identifies the nature of the Q sample, while, when tested with adversarial samples, it still correctly identifies all their instances after
proper training. K means is initialized by K means++, with optimized hyperparameters and majority voting. Numerical samples of bona
fide boson samplers are generated using the algorithm by Clifford and Clifford [58].
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ðn;mÞ ¼ ð3; 100Þ, among the hardest ones presented in
Table IV with m ≫ n [Fig. 3(b)]. Indeed, in the latter case,
the probability of bunching is practically negligible, and the
distributions with distinguishable and indistinguishable
photons become much harder to discern for K means.
From this analysis, we observe that the accuracy increases
with the number of samples N, as expected, as well as with
K. Indeed, the observation supports the intuition that a

larger N provides more information to the algorithm to
understand the spatial distribution in the Hilbert space,
while a larger K allows one to probe it more finely. In
particular, K should be sufficiently large to appreciate the
detailed spatial dishomogeneities in the Hilbert space.
Moreover, smaller values of K imply larger and more
populated clusters that tend to average local fluctuations, so
that less reliable evidence can be drawn from the compat-
ibility test. Naturally, we also recall that K cannot be
chosen overly large, since, in that case, each cluster would
contain not enough points for the χ2 test to make robust
predictions. Thus, provided that the number of samples
and clusters increases accordingly, the protocol is effective
even in the nonfavorable condition ðn;mÞ ¼ ð3; 100Þ [see
Table IV and Fig. 3(b)]. In the regime where m ∼ n or
m ∼ n2 [Fig. 3(a)], the algorithm is instead successful for
almost all choices of K when N ∼ 104–105, again in
accordance with Table IV. As a general rule of thumb,
which proves effective in all combinations (n,m) investi-
gated, we set ðm=2Þ ≤ K ≤ m to satisfy the need for a
bounded-abovevalue that growswith the size of the problem.
Anyway, the ultimate relevance of this specific choice can be
further relaxed by collecting a larger number of samples.
In this sense, the analysis reported in Fig. 3 removes the
burden of a fine-tuning at low dimensions, thus extending
the applicability of the protocol. Moreover, the whole
approach gains much also in terms of simplicity, a feature
that can prove beneficial for practical applications besides the
assessment of quantum supremacy.

VIII. EXPERIMENTAL RESULTS

Through the experimental apparatus shown in Fig. 4(a),
we collect samples corresponding to the boson-sampling
distribution with indistinguishable and distinguishable
particles. The degree of distinguishability between the
input photons is adjusted by modifying their relative arrival
times through delay lines (see Supplemental Material [53]).
The unitary evolution is implemented by an integrated
photonic chip realized exploiting the 3D-geometry capabil-
ity of femtosecond laser writing [59] and performs the same
transformation U employed for the numerical results in
Table II. We then perform the same compatibility tests
described previously on experimental data sets with differ-
ent sizes, by using two methods: K means++ with majority
voting and bubble clustering, both with 2-norm distance.
The results are shown in Fig. 4(a), for the case of
incompatible samples. This result implies that the reported
percentages represent the capability of the test to recognize
a boson sampler fed with distinguishable photon inputs.
Reshuffling of the experimental data is used to have a
sufficient number of samples to evaluate the success
percentages (see Supplemental Material [53]). Hence, the
tests are performed on samples drawn randomly from the
experimental data.

(c)

(b)

(a)

FIG. 3. Test accuracy versus number of clusters and sample
size. The compatibility test based on K means improves its
accuracy (ratio of correct assessments) with the number of
samples N and clusters K. Hence, instead of fine-tuning K for
each (n,m), we can directly set the hyperparameter to a large
value, say, ðm=2Þ ≤ K ≤ m, with negligible computational over-
head [56]. This feature is investigated by numerically sampling
N ¼ 5 × 103 (a) or N ¼ 104 (b) photonic states with n ¼ 6, 8, 10
photons in m ¼ n2 modes. Accuracies are estimated by applying
the test to numerically simulated experiments with both indis-
tinguishable and distinguishable photons from 200 Haar-random
unitary transformations. Points are connected for the sake of
clarity. (c) Contour plot for the accuracy in excluding classical
boson sampling in the harder instance of n ¼ 3 distinguishable
photons in m ¼ 100 modes, for different values of K and N.
Colors describe the efficacy of the test, from red (poor) to green
(perfect). All tests are performed considering a significance level
of 5% for the χ2 test and using K means.
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IX. GENERALIZATION FOR SCATTER-SHOT
BOSON SAMPLING

The scatter-shot version of boson sampling [19,20] is
implemented through the setup in Fig. 4(b). Six indepen-
dent parametric down-conversion photon pair sources
are connected to different input modes of the 13-mode
integrated interferometer. In this case, two input modes
(6 and 8) are always fed with a single photon. The third
photon is injected probabilistically into a variable mode,
and the input is identified by the detection of the twin
photon at trigger detector Ti. We consider a generalization
of the proposed algorithm to be applied for scatter-shot
boson sampling. In this variable-input scenario, a boson
sampler to be validated provides N samples that correspond
to N different inputs of the unitary transformation, that is,
N Fock states Φi with i ∈ f1; ng. Hence, our validation
algorithm in its standard version needs to perform N
separate compatibility tests. Indeed, it brings N distinct
chi-square variables χ2i , where the ith variable quantifies the
agreement between the distribution of the data belonging
to the input Φi and the distribution of a sample drawn by a
trusted boson sampler with the same input state. Hence,
each input state is tested separately.

In order to extract only one quantity to tell whether the
full data set is validated or not, for all inputs, a new variable
can be defined as χ̃2 ¼ P

N
i¼1 χ

2
i . This variable is a chi-

square one with ν ¼ P
N
i¼1 νi d.o.f., provided that the χ

2
i are

independent. We perform this generalized test on the
experimental data by adopting the same clustering tech-
nique previously discussed in the single-input case.

X. EXPERIMENTAL RESULTS FOR
SCATTER-SHOT BOSON SAMPLING

We collect output samples given by eight different inputs
both with indistinguishable photons and with distinguish-
able ones. Through the evaluation of the new variable χ̃2,
the algorithm is able to distinguish between a trustworthy
scatter-shot boson sampler and a fake one at the significance
level of 5%, using a total number of observed events up
to 5000 events (over all inputs), as shown in Fig. 4(b). The
standard version of the test, validating each input separately,
requires samples of 2000 events per input to reach a success
percentage ≥ 80%, that is, an overall amount of 16 000
events. Hence, the generalized version of the test permits one
to significantly reduce the amount of necessary resources to
validate scatter-shot boson-sampling experiments.

FIG. 4. Experimental validation of boson-sampling experiments. Experimental setups for an n ¼ 3 standard (a) and scatter-shot
(b) boson-sampling experiments in an integrated m ¼ 13 interferometer (see Supplemental Material [53]). Bottom insets: The
corresponding success probabilities of the compatibility test between inputs with indistinguishable and distinguishable photons for
different sample sizes. (a) Black and orange dots refer, respectively, to K means++ with majority voting and bubble clustering. The
discrepancy from the numerical results in Table III is due to the nonideal indistinguishability of the injected photons [60]. (b) Input states
are generated probabilistically by six independent parametric down-conversion sources (represented as boxes) in three different BBO
crystals Ci (see the inset). Experimental data correspond to eight different inputs. The number of events for all input states randomly
varies for each sample size drawn from the complete data set. The clustering algorithm is K means, initialized by K means++, with
majority voting. In both panels: BBO, beta barium borate crystal; IF, interferential filter; PBS, polarizing beam splitter; PC, polarization
controller; FA, fiber array. Tests are performed with a significance level of 5% and using d ¼ L2.

PATTERN RECOGNITION TECHNIQUES FOR BOSON … PHYS. REV. X 9, 011013 (2019)

011013-9



XI. STRUCTURE OF THE PROBABILITY
DISTRIBUTIONS

Our previous discussion conclusively shows that, at least
for the values of ðn;mÞ considered, K-means clustering
algorithms are highly effective at discriminating boson
samplers that use distinguishable photons versus those with
indistinguishable ones.Here,we provide further analysis that
shows why our approach is effective at this task and sheds
light on how future tests could be devised to characterize
faulty boson samplers. We address this aspect by providing
numerical evidence to explain the physical mechanism
behind the correct functioning of our validation test.
The clustering techniques that form the basis of our

pattern-recognition methodology rely on aggregating the
experimental data according to the distance between the
output states. The key observation is that the number of
events necessary to effectively discriminate the samples is
dramatically lower than the number of available output
combinations. In particular, such a fraction drops fast to
smaller values by increasing the system size ðn;mÞ. For
instance, 104 events correspond to 0.08 of the Hilbert
space dimension for (4, 40), to 10−10 for (10, 100), and to
only 10−30 for (20, 400). Accordingly, the output sample
from the device mostly consists of output states occurring
with no repetition. Hence, only the configurations presenting
higher probability effectively contribute to thevalidation test.
For the sake of clarity, let us focus on the discrimination

between indistinguishable and distinguishable particles.
We leave for subsequent work the task of explaining
why other alternative models, such as mean-field states,
are also noticed by our approach. More specifically, we
analyze the structure of the outcome distributions for the
two cases. Since data clustering is performed according to
the distance between states, the method can be effective if
(i) the distributions of the output states exhibit an internal
structure and (ii) correlations between distributions with
different particle types are low.
As a first step towards this goal, we compute the

probability distributions with n ¼ 4 indistinguishable pho-
tons ðPjÞ and distinguishable particles ðQjÞ, for a fixed
unitary transformation U with m ¼ 40 modes. Figure 5(a)
reports the two distributions sorted according to the
following procedure, in order to highlight their different
internal structure. The distribution with indistinguishable
photons is sorted in decreasing order starting from the
highest probability, while the distribution with distinguish-
able particles is sorted by following the same order adopted
for the indistinguishable case. More specifically, the first
element is the value ofQj for the output state corresponding
to the highest value ofPj, the second element corresponds to
the state with the second-highest value of Pj, and analo-
gously for all other terms. We observe a small correlation
between thePj andQj distributions. To quantify this feature,
we compute two different statistical coefficients (the Pearson

r and the Spearman’s rank ρ ones), that are employed to
evaluate the presence of linear or generic correlations
between two random variables. In particular, we find that
the Pearson correlation coefficient is r ∼ 0.56, while the
Spearman’s rank coefficient is ρ ∼ 0.55, which suggests that
the two distributions have different supports over the out-
comedistributions. The same analysis is performed forn ¼ 5
and m ¼ 50, showing that a similar behavior is obtained for
increasing size [see Fig. 5(b)]. By averaging overM0 ¼ 100
different unitaries, the correlation coefficients are r∼0.62�
0.03 and ρ∼0.64�0.04 (1 standard deviation) for n ¼ 4 and
m ¼ 40 and r ∼ 0.57� 0.03 and ρ ∼ 0.62� 0.04 (1 stan-
dard deviation) for n ¼ 5 and m ¼ 50. These results show
that the low values of the correlations between Pj andQj do
not depend on the specific transformation U and that this
behavior is maintained for larger size systems. Similar
conclusions are observed in the cumulative distributions
[see Fig. 5(c)], where the distinguishable case is sorted
by following the same order as the indistinguishable
one. We observe that, for the cumulative probability for
distinguishable bosons to reach the same value attained
for indistinguishable bosons, a significantly larger por-
tion of the Hilbert space has to be included. For instance,
when n ¼ 4 and m ¼ 40, 50% of the overall probability
is achieved by using approximately 13% of the overall
number of outputs for indistinguishable photons, while
approximately 32% are necessary for the distinguishable
case (by following the above-mentioned ordering pro-
cedure). Similar numbers are obtained for larger dimen-
sionalities (approximately 11% and approximately 30%,
respectively, when n ¼ 5 and m ¼ 50).
The second crucial aspect of our method is related to the

localization of outcomes with the highest probabilities.
More specifically, this approach can be effective in con-
structing useful cluster structures if the most probable states
are surrounded by other states with high probability. In this
way, when a number of events much lower than the number
of combinations is collected, the outcomes actually occur-
ring in the data sample present lower distance values, thus
justifying the application of a clustering procedure. An
intuition for this feature is provided in Figs. 5(d) and 5(e),
which show that centroids tend to locate in the positions of
the m-dimensional vector space corresponding to the out-
put modes with the highest probability, averaged over the
input modes.
We further probe how these correlations become visible

through a clustering method by performing numerical
simulations that randomly vary the unitary transformation
U for (n ¼ 4, m ¼ 40) and (n ¼ 5, m ¼ 50). For each
sampled transformationU, we calculate the probabilities Pj

and Qj for both cases (indistinguishable and distinguish-
able photons) and then sort the distribution Pj in decreasing
order. Let us call J the outcome with the highest Pj value,
which is to say J ¼ argmaxðPjÞ. Let us for simplicity fix the
distance to be the L1-norm (analogous results are obtained

IRIS AGRESTI et al. PHYS. REV. X 9, 011013 (2019)

011013-10



for the L2-norm). Note that the L1-norm defined in the
main text has only N possible nontrivial values k ¼ 2s,
with s ¼ 1;…; n. We then estimate the overall probability
PðkÞ ¼ P

j∶kj−Jk1≤kPj, where PðkÞ is the probability
included in a sphere with a distance ≤ k computed using
the L1 norm. The same calculation is performed for the

distinguishable particle case QðkÞ ¼ P
j∶kj−Jk1≤kQj, by

using the same outcome value J as a reference.
We study the ratio RpðkÞ ¼ PðkÞ=QðkÞ between the two

probabilities, that can be thought of as a likelihood ratio
test, whereinRpðkÞ > 1 implies that the evidence is in favor
of indistinguishable particles and, conversely, RpðkÞ < 1

FIG. 5. Analysis of the structure of the distributions. (a),(b) Probability distributions for a fixed unitaryU in the case of indistinguishable
(blue) and distinguishable (red) photons. (a) n ¼ 4, m ¼ 40 and (b) n ¼ 5, m ¼ 50. The distributions are sorted by following the same
ordering so as to have decreasing probability values for the indistinguishable distributionPi. Inset: Enlargement corresponding to the 1000
most probable output states. (c) Cumulative distributions for indistinguishable (blue) and distinguishable (red) photons, by following the
same ordering as (a),(b). Solid lines, n ¼ 4,m ¼ 40. Dashed lines, n ¼ 5,m ¼ 50. Black lines highlight the levels corresponding to 50%
and 80% of the overall probability, which require approximately twice the number of output states in the distinguishable case. Inset:
Enlargement corresponding to the 0.01% most probable output states. (d),(e) In the m-dimensional vector space where K means is
performed on quantum (Q) and classical (C) samples, centroids tend to be located where the output modes have a high probability
averaged over the input modes. This property is signaled by a vector with one coordinate, out ofm for a Fock state, significantly higher
than the others. Zeroing the small ones out yields a plot analogous to the one shown here for ten clusters with (d) n ¼ 4, m ¼ 40 and
(e) n ¼ 5, m ¼ 50. (f)–(k) Histograms of the ratios RpðkÞ (cyan) and RqðkÞ (orange) between the overall probability included within a
sphere ofL1-norm≤ k. (f),(h)n ¼ 4,m ¼ 40. (i)–(k)n ¼ 5,m ¼ 50. Vertical lines correspond to the averages hRxðkÞi, with x ¼ p (blue)
and x ¼ q (red). (f),(i) k ¼ 2, (g),(j) k ¼ 4, and (h),(k) k ¼ 6. Insets: Schematic view of the spheres at a distance ≤ k, represented by
concentric circles, where states are represented by brown points.
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suggests that the particles are distinguishable. Such a
comparison is then performed for M00 ¼ 100 different
unitary matrices U and by using as reference outcome J
the Mmax ¼ 100 highest-probability outcomes for each U.
The results are reported in Figs. 5(d)–5(f) for n ¼ 4,m ¼ 40
with k ¼ 2, 4, 6 (being k ¼ 8 a trivial one,which includes all
output states given four-photon input states). The analysis is
also repeated in the opposite case, where the data are sorted
according to the distinguishable particle distribution Qj

andRq ¼ QðkÞ=PðkÞ.We observe thatRpð2Þ has an average
of hRpð2Þi ∼ 1.4 and that P½Rpð2Þ > 1� ∼ 0.904. For
increasing values of k, hRpðkÞi converges to unity, since
a progressively larger portion of the Hilbert space is
included, thus converging to Rpðk ¼ 8Þ ¼ 1 (respectively,
approximately 0.16% for k ¼ 2, approximately 4.3%
for k ¼ 4, and approximately 35.5% for k ¼ 6). Similar
results are obtained also for n ¼ 5 and m ¼ 50 [see
Figs. 5(g)–5(j)], where hRpð2Þi∼2.08, and that P½Rpð2Þ>
1�∼0.986. This behavior for RpðkÞ and RqðkÞ highlights a
hidden correlation within the output state distributions,
where outcomes with higher probabilities tend to be more
strongly localized at low L1 distance from the reference
outcome for indistinguishable bosons than those drawn
from a distribution over distinguishable particles. This
behavior is why basing an algorithm on this feature is
effective for diagnosing a faulty boson sampler that uses
distinguishable photons.
The same considerations can be obtained also from a

different perspective. Indeed, it has been recently shown [36]
that information on particle statistics from a multiparticle
experiment can be retrieved by low-order correlation mea-
surements of Cij ¼ hninji − hniihnji, where ni is the num-
ber operator. Correlations between the states of the output
distribution, originating from the submatrix of U that
determines all output probabilities, correspond to correla-
tions between the output modes. Such correlations are
different depending on the particle statistics (indistinguish-
able or distinguishable particles) due to interference effects
and can thus be exploited to identify the particle type
given an output data sample. More specifically, a difference
between particle types is observed in the moments of the
Cij set, thus highlighting different structures in the output
distributions. As previously discussed, such different struc-
tures can be detected by clustering approaches.
In summary, all these analyses show that boson-sampling

distributions with indistinguishable and distinguishable
particles present an internal structure that can be caught
by the clustering procedure at the basis of our validation
method, thus rendering our method effective to discrimi-
nate between the two hypotheses.

XII. DISCUSSION

In this article, we show that pattern-recognition techniques
can be exploited to identify pathologies in boson-sampling

experiments. Themain feature of the devised approach relies
on the absence of any permanent evaluation, thus not
requiring the calculation of hard-to-compute quantities dur-
ing the process. The efficacy of these pattern-recognition
techniques relies on the presence of marked correlations in
the output distributions that are related to the localization
of the outcomes with the highest probabilities and that
depend on the particle type. Additionally, the absence of
any assumptions on the system under study allows one to
apply the compatibility test to a much broader class of
multiparticle states: One just needs a trusted sample from
an arbitrary class to check whether or not a different sample
is compatible with it.
This approach can also be adopted in larger Hilbert spaces

with arguably no need for a fine-tuning of clustering hyper-
parameters, which makes it a promising approach for
identifying flaws in the next generation of boson samplers.
We can further adopt the test as part of the validation toolbox
at the boundaries of quantum supremacy, where classical and
quantum sampling take approximately the same time, and it
is still possible to numerically generate the trusted samples.
We also envisage that other protocols, based on more

sophisticated machine-learning methods, might in the future
provide even more effective solutions to this aim. Moreover,
our experimental demonstration shows that it is possible to
successfully test boson sampling even in lossy scenarios,
which have already been shown to maintain the same
computational hardness of the original problem [61].
Looking forward, it is our hope that when building data-
driven (rather than first-principles) models for error, cross-
validation will be used to report the performance of such
algorithms. For example, ourmethodhas 100%classification
accuracy for the training data but has roughly 95% accuracy
in the test data. Had we reported only the performance of the
algorithm on the training data, it would have provided a
misleading picture of the method’s performance for larger
boson-sampling experiments. For this reason, it is important
that, if we are to use the tools of machine learning to help
validate quantum devices, then we should also follow the
lessons of machine learning when reporting our results.
While our work shows that machine learning can be used

to provide evidence that a boson sampler is faulty, it does
not provide a definitive test. Furthermore, even if a boson
sampler passes such tests, it need not also be a valid boson
sampler, which means that, while machine learning is a
valuable tool to help build confidence in boson samplers,
it does not solve the validation problem in and of itself.
Finding ways to clearly state the assumptions under which
such machine-learning approaches validate a boson sam-
pler, and the a posteriori probability with which it is found
to be valid, remains an open problem.
Finally, although our work is focused on the validation

of boson samplers, it is important to note that the lessons
learned from this task are more generally applicable.
Unsupervised methods, such as clustering, can be used
to find patterns in high-dimensional data that allow simple
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algorithms to learn facts about complex quantum systems
that humans can easily miss. As a simple example, we show
that the centroids’ positions are correlated to the modes
where the single-particle probability is higher on average.
By continuing to incorporate ideas from computer vision
into our verification and validation toolbox, we may not
only develop the toolbox necessary to provide a convincing
counterexample to the extended Church-Turing thesis, but
also provide the means to debug the first generation of
fault-tolerant quantum computers.
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