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SUMMARY  

The plant cell wall is the barrier that pathogens must overcome to cause a disease and to this 

purpose they secrete degrading enzymes of the various cell wall components. Due to the 

complexity of these components, several types of oligosaccharide fragments may be released 

during pathogenesis and some of these can act as Damage-Associated Molecular Pattern 

(DAMPs). Well-known DAMPs are the oligogalacturonides (OGs) released upon degradation 

of homogalacturonan and the products of the cellulose breakdown, i.e. the cellodextrins 

(CDs). We have previously reported that four Arabidopsis Berberine Bridge Enzyme-like 

(BBE-like) proteins (OGOX1-4) oxidize OGs and  impair their elicitor activity. We show 

here that another Arabidopsis BBE-like protein, which is expressed coordinately with 

OGOX1 during immunity, specifically oxidizes CDs with a preference for cellotriose (CD3) 

and longer fragments (CD4-6). Oxidized CDs show a negligible elicitor activity and are less 

utilizable by the fungus Botrytis cinerea as a carbon source. The enzyme, named CELLOX 

(CELLODEXTRIN OXIDASE),  is encoded by the gene At4g20860. Plants overexpressing 

CELLOX display an enhanced resistance to B. cinerea likely because oxidized CDs are a less 

valuable carbon source. Thus, the capacity of oxidizing and impairing the biological activity 

of the cell wall-derived oligosaccharides seems to be a general trait of the family of BBE-like 

proteins, which may serve for the homeostatic control of the level of  DAMPs to prevent their 

hyper-accumulation.  

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

INTRODUCTION  

The plant cell wall contains a complex mixture of polysaccharides that represent a 

physical barrier for pathogenic microbes (Ferrari et al., 2013; Malinovsky et al., 2014; 

Lampugnani et al., 2018). To overcome this barrier pathogenic microbes secrete cell wall 

degrading enzymes (CWDEs) such as polygalacturonases (PGs), hemicellulases and 

cellulases, which target different cell wall components. CWDEs are produced sequentially 

during infection and, besides causing the necessary breaches in the cell wall to allow the 

microbial  invasion, may release oligosaccharides that, upon recognition by specific plant 

receptors, trigger plant immunity. These cell wall fragments therefore behave as Damage-

Associated Molecular Patterns (DAMPs) (Boutrot and Zipfel, 2017; Gust et al., 2017). Also 

endogenous plant-derived CWDEs, which participate to the dynamics and remodeling of the 

cell wall during growth and development or are induced during a mechanical rupture of the 

cell wall (Tucker et al., 2018), may potentially release cell wall fragments with regulatory 

and elicitor activity. These may be perceived as signals in the context of a cell wall integrity 

sensing system devoted to monitoring the cell wall status and the correct coordination of 

biochemical and mechanical cues (Savatin et al., 2014b; Wolf, 2017; De Lorenzo et al., 

2018a; De Lorenzo et al., 2018b; Engelsdorf et al., 2018; Franck et al., 2018).  

Considering the complexity of the plant cell wall many types of fragments can 

theoretically be released either by pathogen-derived enzymes during an attempted invasion or 

by endogenous enzymes during the physiological rupture/remodeling of the cell wall. 

Oligogalacturonides (OGs), derived from the degradation of homogalacturonan,  are well-

known DAMPs but also behave as regulatory molecules of growth and development (Ferrari 

et al., 2013; Cervone et al., 2015). Besides OGs, the cellulose degradation products, i.e. 

cellodextrins (CDs), have been shown to act as DAMPs, in both grapevine (Aziz et al., 2007) 

and Arabidopsis (Souza et al., 2017) and , very recently, the hemicellulose-derived 
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xyloglucan has  also been  reported to act as a DAMP in grape and Arabidopsis  (Claverie et 

al., 2018). In Arabidopsis, cellobiose (CD2) has been reported to be very active in triggering 

a signalling cascade similar to that triggered by OGs but is unable to induce ROS production 

or callose deposition (Suoza et al., 2017). On the other hand, cellotriose (CD3) induces 

cytoplasmic calcium elevation, changes in membrane potential, production of ROS and 

expression of genes involved in defense, such as those encoding the NADPH oxidase 

RBOHD, the mitogen-activated protein kinase MPK3, the key regulator of salicylic-mediated 

signaling NPR1 and the lipoxygenase LOX1, as well as genes involved in growth and root 

development (Johnson et al., 2018). Indeed, CD3 produced by Piriformospora indica, an 

endophytic root-colonizing fungus, has been shown to play a role in the interaction with 

Arabidopsis, by promoting the plant growth and inducing resistance against biotic and abiotic 

stresses (Johnson et al., 2018).  

DAMPs may act as important signals in the so-called growth-defense trade-off, 

namely a reduced plant growth as a consequence of the metabolic diversion towards defenses 

(Huot et al., 2014). The activation of the immune system also poses the risk of an 

exaggerated response that may be deleterious rather than advantageous and, if the immune 

response persists beyond the necessary time, it may lead to a hyper-immunity characterized 

by an excessive reduction of growth and, in some cases, cell death. For example, an intense 

release of OGs leads to a reduced growth (Benedetti et al., 2015) and may even cause the cell 

death (Cervone et al., 1987; Benedetti et al., 2015). Therefore, it is conceivable that the 

response to these signals is subject to a strict control through homeostatic mechanisms aimed 

at preventing hyper-immunity. 

A mechanism that likely regulates the homeostasis of OGs has been recently 

discovered in Arabidopsis. This relies on the activity of four berberine-bridge enzymes–like 

(AtBBE-like) proteins, named OGOX1 [(At4g20830 or BBE20 according to the nomenclature 
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reported in Daniel et al. (2015)], OGOX2 (At4g20840/BBE21), OGOX3 (At1g11770/BBE2) 

and OGOX4 (At1g01980/BBE1) (Benedetti et al., 2018). These enzymes have a FAD-binding 

domain, carry a N-terminal signal peptide for translocation into the ER and oxidize the 

galacturonic acid at the reducing end of OGs into galactaric acid, with the production of 

hydrogen peroxide (H2O2). Oxidized OGs display a much reduced ability of inducing defense 

responses. Nevertheless overexpression of OGOX1 confers increased resistance against 

Botrytis cinerea because the oxidation of OGs impairs their full utilization as a carbon source 

by the fungus (Benedetti et al., 2018). BBE-like enzymes that oxidize glucose and, at a minor 

extent, CD2, cellotetraose (CD4) and cellopentaose (CD5) have been described to behave as 

antifungal proteins in sunflower Heliantus annuus and Lactuca sativa (Custers et al., 2004).  

In this work, we identify an Arabidopsis member of the BBE-like protein family, 

At4g20860, as an enzyme capable of oxidizing specifically cellulose fragments but not 

glucose. We report here the biochemical characterization of the enzyme and show that the 

enzymatic oxidation of CDs reduces their elicitor activity. As in the case of oxidized OGs, 

the use of oxidized CDs as a carbon source does not allow the growth of B. cinerea and, as a 

consequence, overexpression of the CD oxidizing enzyme in planta restricts the plant 

colonization by the fungus. We suggest that oxidation of cell wall-derived oligosaccharides 

performed by the BBE-like enzymes is an important function of this family dedicated to the 

homeostasis of DAMPs. 

 

RESULTS  

The expression of At4g20860  and OGOX1 is coordinated during immunity 

Much of the function of the 27 members of the Arabidopsis BBE-like protein family (shown 

in the homology tree in Figure S1a) is still unknown. Transgenic plants expressing the so 

called  OG-machine, a chimeric protein constituted by the polygalacturonase-inhibiting 
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protein 2 from Phaseolus vulgaris and the PG from Fusarium phyllophilum under a β-

estradiol-inducible promoter, were instrumental for the identification of four BBE-like 

proteins as specific oxidases of OGs (Benedetti et al., 2018). Because enzymes that possess 

activity towards oligosaccharides other than OGs have never been identified in Arabidopsis, 

we used the plants expressing the OG-machine to search for a possible oxidizing activity of a 

cell wall fragment that, like OGs, has been reported to act as a DAMP, the cellobiose (CD2) 

(Souza et al., 2017). Total protein extracts from β-estradiol-induced plants expressing the 

OG-machine were assayed against CD2 and several saccharides including OGs. Oxidizing 

activity was found towards CD2 but not against the other sugars (Figure 1a). 

Chromatographic separation on a SP Sepharose cation exchange column of the protein 

extracts showed that the profile of the CD2-oxidizing activity was sulphite-sensitive and 

differed from that of the OG-oxidizing activity (Figure 1b). Activity was mainly present in 

the fractions containing the proteins At4g20860/BBE22 and At1g26390/BBE4, identified by 

LC-MS/MS analysis  (Figure 1c, Data S1). Other BBE-like proteins were identified by LC-

MS/MS analysis in the fractions of the SP Sepharose column chromatography. Fraction 3 

displayed no CD2- or OG-oxidizing activity and contained the enzyme FOX1/RET-OX 

encoded by the gene At1g26380/BBE3 that catalyzes the conversion of indole-3-acetaldoxime 

(IAOx) to indole-3-carbonyl nitrile, a metabolite with a role in defense (Rajniak et al., 2015). 

The accumulation of the At1g26380/BBE3/FOX1/RET-OX transcripts has been widely used 

as a readout of the response to elicitors (Denoux et al., 2008). Fraction 9 did not display 

CD2-oxidizing activity and contained the proteins At1g26420/BBE7, At1g30700/BBE8 and 

At1g26390/BBE4. The last protein is closely related to FOX1 (Figure S1a) and is unlikely 

an enzyme capable of oxidizing carbohydrates. Within the whole BBE-like family, the 

expression of the At4g20860/BBE22 gene was very similar to that of OGOX1/At4g20830 in 

response to several treatments representative of a biotic stress, as determined by the 
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hierarchical clustering analyses of the publicly available microarray data (Figure 2a; Figure 

S2). We therefore assessed, by quantitative RT-PCR (qRT-PCR), whether OGOX1 and 

At4g20860 are similarly expressed in response to infection and elicitors. Leaves infected with 

B. cinerea showed expression of both genes at 16, 24 and 48 h post infection (Figure 2b). 

Expression of both genes in seedlings was induced in response to flg22, elf18 and OGs. 

However, only At4g20860 responded to CD3  while CD2 did not significantly induce either 

OGOX1 and At4g20860 (Figure 2c and d). We focused on At4g20860 as a candidate gene 

encoding an oxidase of cellulose fragments. 

 

The protein encoded by At4g20860 is a cellodextrin oxidase (CELLOX) 

For biochemical characterization, the At4g20860 protein was expressed in Pichia pastoris as 

a secreted protein and tagged at the C-terminal with Myc-His epitopes. The presence of 

oxidizing activity in the medium of the recombinant P. pastoris towards OGs, xyloglucan, 

carboxy-methyl-cellulose (CMC), CD2 and several monosaccharides was tested by 

measuring the amount of H2O2 produced in the reaction mixture. As shown in Figure 3a and 

Figure S3, activity was detected only by using CD2 as a substrate. The CD2-oxidizing 

activity was purified through two sequential ion exchange chromatography steps. The culture 

medium of P. pastoris was loaded on an anion exchange Diethylaminoethyl-cellulose column 

and eluted with 1 M NaCl. Oxidizing activity was mainly detected in the flow-through (FT) 

(Figure S4a), which was then loaded on a cation exchange SP Sepharose column and 

subjected to stepwise  elution with increasing concentrations of NaCl (0.2, 0.5 and 1 M). 

Activity was recovered in the fraction eluted with 0.2 M NaCl (Figure S4a). CD2-oxidizing 

activity was optimal at pH 6.8 (Figure 3b) and exhibited a good thermal stability (Figure 

S4b). By using CDs with a degree of polymerization between 2 and 6 as substrates the 

calculated kinetic parameters indicated that the activity of the enzyme on longer oligomers is 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

higher than on cellobiose. The calculated Km is at least 40 times lower for CD3-CD6s than 

for CD2 and the higher Vmax was detected by using CD3 as a substrate (Figure 3c, Data 

S2). Overall these data indicate that CD3 is the cellulose fragment more efficiently oxidized 

by the enzyme. Oxidation of CDs caused the conversion into gluconic acid of the glucose 

residue at the reducing end as assessed by HPAEC-PAD and MS analyses (Figure S5; 

representative analyses of the oxidation of CD3 and CD4). Thereby, the enzyme encoded by 

At4g20860 was named CELLOX (CELLODEXTRIN OXIDASE). 

The CELLOX/At4g20860 gene is intron-less and clustered with OGOX1, OGOX2 

(At4g20840) and two other BBE-like genes of unknown function (At4g20800 and 

At4g20820) in a single locus on chromosome 4 (Figure S6a). CELLOX is a putative 

apoplastic protein sharing a similarity of 78.88 % with its only closest paralog (At5g44360) 

and 55.58 % with OGOX1. Similarity is lower (40.77 %) with the recently characterized 

cellobiose oxidase of Physcomitrella patens (here indicated a PpCBOX) (Toplak et al., 

2018). Homology analysis including PpCBOX and the true BBE enzyme P30986 from 

Eschscholzia californica (California poppy), which is involved in the formation of 

benzophenanthridine alkaloids and is the BBE family’s namesake (Winkler et al., 2006), 

supports the view that the diversification of plant BBEs and BBE-like paralogs occurred after 

the separation between mosses and higher plants, with the true BBE being evolutionary the 

most recent (Toplak et al., 2018).  

Structural modelling of CELLOX showed the known features of BBE-like proteins (Daniel et 

al., 2017): i) the bicovalent linkage of the FAD isoalloxazine ring via the C6- and 8α-position 

to a cysteine and histidine residue (H91 and C154), respectively; ii) the remarkable 

conservation of the overall fold, also with respect to PpCBOX, as already discussed by other 

authors (Daniel et al., 2016; Toplak et al., 2018), and iii) the presence of a relatively large 

active site (Figure 4a and Figure S7a and b). CELLOX carries a type IV active site (Figure 
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S7c) (Daniel et al., 2016) that, within the Arabidopsis BBE-like protein family, is shared only 

by its closest paralog At5g44360/BBE23. The representative structure for the type IV active 

site has been described in the grass pollen allergen Phl p 4, another BBE-like enzyme (Zafred 

et al., 2015). As expected, the wide positively charged region that is present in OGOX1 is 

absent in CELLOX, which shows a denser distribution of negative charges around the active 

site compared to the other carbohydrate oxidases (Figure 4a). Amino acid sequence 

alignment shows several acidic residues that are specifically present in CELLOX and its 

closest paralog (Figure 4b) as well as H92 and C154 involved in the bicovalent binding of 

FAD, the conservation of the oxygen gate-keeper valine (V157) and the surrounding residues 

(Figure 4b, Figure S6b, Figure S7a and b). Moreover, several aromatic amino acids are 

present within and in proximity of the active site (Figure S7b and c), which may participate 

in substrate binding, as observed in the interaction of microbial expansins with CD6 

(Cosgrove, 2017). 

 

Oxidation impairs the elicitor activity of cellodextrins 

The elicitor capability of CD2, CD3, CD4, CD5 and CD6 was investigated using 

Arabidopsis Col-0 seedlings. Early-induced immune responses were analyzed, including the 

expression of RBOHD and WRKY30, as readouts of CD action (Souza et al., 2017; Johnson et 

al., 2018) , and of CYP81F2, as a readout of OG action (Savatin et al., 2014a; Gravino et al., 

2015), as well as phosphorylation of the MAP kinases MPK3/MPK6 and ROS production. 

All CDs tested with the exception of CD2 were able to induce the expression of the defense 

genes examined (Figure 5a), MAPK phosphorylation (Figure 5b) and ROS production 

(Figure 5c). CD3 showed the highest activity, which was comparable to that of OGs (Figure 

5a-c). However, maximal production of ROS with CDs was observed after 18 min, i.e. about 

10 min later than with OGs (Figure 5c). Next, the effect of the oxidation on CD elicitor 
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activity was investigated. Oxidized CD3 and CD4 were prepared using CELLOX purified 

from P. pastoris and their purity was assessed by HPAEC-PAD and MS analyses (Figure 

S5).  The oxidized oligosaccharides displayed a very limited or no capability of inducing the 

early expression of  RBOHD, WRKY30 and CYP81F2 (Figure 5d), thereby showing that 

oxidation of CDs by CELLOX impairs their elicitor activity. 

 

Overexpression of CELLOX indicates a role in immunity  

The effect of high levels of CELLOX on the response to pathogens was explored. 

Five independent homozygous single-insertion T3 lines overexpressing CELLOX were 

generated (CELLOX-OE #2.6, #4.4, #7.2, #8.5 and #9.7). Transcript levels of the transgene 

(Figure 6a) and enzymatic activity against CD3 (Figure 6b) were measured in adult leaves 

of the transgenic plants. Line 9.7 showed the highest expression of both transcript level and 

enzyme activity. Overexpressing lines 9.7 and 7.2 were chosen for further analyses; line 4.4, 

which showed CELLOX transcripts and enzyme activity similar to the wild type, was 

included as a control. Infection assays were performed using the necrotrophic fungus B. 

cinerea. The infected leaves of lines 9.7 and 7.2, but not those of the control line 4.4, showed 

smaller lesions compared to the wild type (Figure 6c), indicating that the presence of high 

levels of the enzyme restricts the fungal infection.We have previously shown that oxidization 

of OGs decreases their value as a carbon source for B. cinerea, making plants that 

overexpress OGOX1 more resistant to the fungus (Benedetti et al., 2018). We therefore 

assessed whether oxidized CDs are also a less valuable carbon source for B. cinerea. The 

fungus was grown in a minimal medium to which non-oxidized CD3 (positive control) or 

purified oxidized CD3 were added, as a sole carbon source. After 7 days of culture, growth of 

the fungus was observed in the presence of CD3 but not of oxidized CD3 (ox-CD3) (Figure 

6d). Moreover, B. cinerea  grown on a medium supplied with both CD3 and ox-CD3 showed 
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a fungal growth very similar to that of the fungus in the medium supplied only with CD3. 

These data indicate that oxidized CD3 cannot be utilized by the fungus as a carbon source but 

does not act as an antimicrobial compound. 

 

CELLOX overexpressing plants oxidize more efficiently CD3 in comparison to wild 

type plants 

The presence and the levels of oxidized CD3 was investigated in leaves of wild-type and  

CELLOX-overexpressing plants, upon syringe-infiltration of water or CD3, and HPAEC-

PAD analysis of the Intercellular Washing Fluids (IWF) prepared 30 min after the infiltration. 

The chromatographic profiles of the IWF from wild-type and transgenic plants were similar 

upon infiltration of water (Figure 7a, b). Upon infiltration of CD3 a predominant peak 

corresponding to the non-oxidized CD3 was observed in the wild-type plants while a peak  

corresponding to the oxidized CD3 was mainly detected in the CELLOX-overexpressing 

plants (Figure 7c, d). This result clearly demonstrates that CELLOX is  active in planta and 

rapidly oxidizes the infiltrated CD3. 

 

DISCUSSION  

Previous reports show that CDs behave as DAMPs in grape and Arabidopsis (Aziz et 

al., 2007; Souza et al., 2017). In our analyses the defense genes RBOHD, WRKY30 and 

CYP81F2 were strongly induced by CD3 and, at a lesser extent, by CD4, CD5 and CD6, 

while the elicitor activity of CD2 was negligible. In this work we have identified a 

CELLODEXTRIN OXIDASE named CELLOX encoded by At4g20860 that oxidizes and 

inactivates CDs with a preference for CD3. Thus, in addition to enzymes that oxidize OGs, 

the Arabidopsis family of BBE-like proteins is shown here to contain one more enzyme that 

oxidizes cell wall-derived DAMPs. Our observations confirm that the BBE-like family, in 
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addition to other functions, may have the important role of maintaining the homeostasis of 

the cell wall-derived DAMPs and regulating their activity. The genes encoding CELLOX, 

OGOX1 and OGOX2 are located in the same locus, although CELLOX does not exhibit a 

high similarity to the OGOXs (Benedetti et al., 2018). It is likely that during evolution both 

diversification and duplication have shaped this locus for defense functions. The presence of 

both OGOXs and CELLOX in a single locus may respond to the need of coordinating the 

regulation of both types of enzymes either at the promoter and at the chromatin level. Indeed, 

CELLOX and OGOX1 show a remarkably similar expression profile during immunity, 

suggesting that their activity is coordinated. The hierarchical clustering analysis of the 

expression profiles of the whole BBE-like family, beside the small clade comprising 

At4g20860 and OGOX1, showed a second immunity-related clade comprising the five other 

BBE-like genes whose products were among the proteins identified in Figure 1c, plus three 

other members of the family (see Figure 2a and Figure S1a). Thus, at least 10 BBE-like 

members are likely to play a role in immunity. 

CELLOX does not show a high similarity to previously described carbohydrate 

oxidases such as HaCHOX and LsCHOX (see Figure S1). HaCHOX prefers glucose as a 

substrate and shows decreasing activity on CDs of increasing size (Custers et al., 2004). 

CELLOX does not oxidize glucose and has a preference for CDs with a degree of 

polymerization higher than 2, especially CD3. CELLOX is the only BBE-like enzyme so far 

identified that oxidizes cellulose fragments but not glucose and it is different from the 

Nectarin V of tobacco, which is a glucose oxidase (Carter and Thornburg, 2004). PpCBOX, 

which oxidizes CD2 and lactose but not glucose, appears to be more similar to CELLOX; this 

enzyme however does not oxidize CD3 (Toplak et al., 2018). Notably, CELLOX carries a 

type IV active site (Huang et al., 2005), similar to the gluco-oligosaccharide oxidase from the 

saprophytic fungus Sarocladium strictum (Vuong et al., 2013). The type IV active site is 
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found in BBE-like proteins from fungi and lower plants (Daniel et al., 2017). The affinities of 

CELLOX and the fungal enzyme for CD3-CD6 are comparable, but in general the latter has a 

higher turnover with these CDs. 

In our experiments, CD3 induces the defense genes RBOHD, WRKY30 and CYP81F2, 

MAPK phosphorylation and production of ROS, showing an elicitor activity similar to that of 

OGs and stronger than that of longer CDs. In our experiments we observed a different timing 

of ROS production in response to CD3 and OGs that was not observed in previous 

experiments performed on grapevine suspension cultured cells (Aziz et al., 2007). This 

difference is unlikely due to a faster diffusion of OGs into the tissues compared to CDs, since 

both molecules were vacuum-infiltrated into the leaf disk for the bioassay. The observed 

difference may likely reflect different features of the early perception/transduction events of 

the two types of DAMPs. Moreover, CD3 emerges as both the best substrate of CELLOX and 

the best elicitor among the cellodextrins used in our analyses, strongly pointing to a role of 

CELLOX, along with OGOXs, as components of an enzymatic system involved in the 

control and homeostasis of the cell wall-derived DAMPs. The elucidation of such a role, 

however, is complicated by the redundancy of these enzymes. While we uncovered that there 

are at least four OGOXs (Benedetti et al., 2018) and one CELLOX in Arabidopsis, how many 

CELLOXs exist is not known yet. Probably double and multiple mutants are necessary to 

address their biological role. On the other hand, notwithstanding the reduced elicitor activity 

of oxidized CDs and oxidized OGs, the overexpression of CELLOX and OGOX1 enhances 

the resistance to B. cinerea (Benedetti et al., 2018). The enhanced resistance may depend at 

least in part on the difficulty of utilizing oxidized oligosaccharides as a carbon source by the 

fungus and we show that in planta the overexpressed CELLOX is functional and rapidly 

transforms CD3 into oxidized CD3. In addition, in both plants overexpressing CELLOX and 

OGOXs, the production of H2O2 may contribute to render more efficient the plant immunity 
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response. CELLOX and OGOXs therefore display an indirect antimicrobial activity against 

B. cinerea that likely cooperates with and supports the antimicrobial activity of the plant 

CWDE-inhibiting proteins. CWDE-inhibiting proteins and carbohydrate oxidases may 

synergistically act for plant defense. However, while the inhibitors require a specific 

molecular recognition of microbial proteins that may possibly be evaded by pathogens 

(Casasoli et al., 2009; Benedetti et al., 2011; Benedetti et al., 2013), the activity of OGOXs 

and CELLOX does not.  

Since the release of DAMPs without a proper control poses the risk of activating an 

exaggerated response that may be deleterious for plant growth and survival, BBE-like 

proteins are good candidates as players in reducing the effects of the hyperaccumulation of 

DAMPs (De Lorenzo et al., 2018b). Their redundancy suggests a need for a fine regulation at 

the level of both enzyme activity and transcription, to ensure both robustness and tunability 

of the system. A more complete biochemical characterization of the BBE-like family may 

uncover how the activity of these enzymes may be finely regulated by the extracellular 

environment. For example, our data show that enzyme activity of both CELLOX (this work) 

and OGOXs (Benedetti et al., 2018) is pH-dependent, and is higher at pH values higher than 

that occurring at the physiological conditions of the apoplast. The alkalinization that is 

typically induced by most elicitors may therefore lead to their activation. Moreover, in the 

case of OGOXs, different isoforms show a different pH-dependence, pointing to a different 

regulation of the activity of these enzymes. The flavin cofactor itself may contribute to the 

regulation of the function of these enzymes, through its ability to function as a redox sensor 

(Becker et al., 2012). Whether the important changes of the redox state of the apoplast 

occurring during the immune response modulate the activity of BBE-like proteins, by 

regulating the flavin redox state or the thiol/disulfide balance, which also is crucial for the 

regulation of the activity (Yi and Khosla, 2016; Meyer et al., 2018) is a key aspect to be 
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investigated. On the other hand, elicitation and pathogen infection up-regulate the expression 

of both OGOXs and CELLOX. Our data show that expression of CELLOX and OGOX1 is 

subject to different but also overlapping regulatory feedback loops, since, for example, OGs 

and flg22 induce the expression of both enzymes, whereas CD3 only induces the expression 

of CELLOX.  

It can be speculated that other members of the BBE-like family may control the 

homeostasis of CW fragments other than OGs and CDs, likely constituting a battery of 

enzymes important to cope with alterations of CW integrity. The characterization of the BBE-

like family, therefore, may potentially uncover novel CW bioactive fragments that are 

relevant in immunity and growth-defense trade-off. The existence of CW-entrapped bioactive 

structures other than OGs has been hypothesized by several authors (Darvill et al., 1994; 

Wolf, 2017; Bacete et al., 2018; Engelsdorf et al., 2018; Oelmuller, 2018) and  recently the 

hemicellulose-derived xyloglucan has also been  reported to act as a DAMP (Claverie et al., 

2018). 

 

EXPERIMENTAL PROCEDURES 

Plant material and growth 

Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 (Col-0) wild-type seeds were 

purchased from Lehle Seeds (Round Rock, TX, USA). Seeds were washed two times in 1 ml 

of sterile water, then treated with 1 ml of sterilization solution (1.6% NaClO, 0.01% SDS) for 

7 min in slow agitation, followed by 7 washing steps in 1 ml of sterile water. For 

stratification, seeds were left in 50 μl of sterile water for 4 days at 4 °C.  Col-0 seedlings were 

grown in liquid MS/2 medium [Murashige and Skoog Medium including vitamins (2.2 g/l), 

0.5% sucrose, pH 5.5] at 22°C and 70% relative humidity under a 16 h light/8 h dark cycle. 
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Adult plants of Col-0 and CELLOX-OE were grown on soil at 22°C and 70% relative 

humidity under a 12 h light/12 h dark cycle (approximately 120 μmol m
−2

 s
−1

). 

 

Enzyme assays  

Carbohydrate-oxidizing activities were determined by measuring H2O2 produced by the 

reaction using a luminol peroxidase-based assay (Roux et al., 2011) or a xylenol orange 

colorimetric assay (Gay et al., 1999), as indicated in the figure legends. Assays were 

performed at 30°C in 50 mM Tris-HCl, 50 mM NaCl, at pH 7.8 for the identification of 

cellobiose-oxidizing activity in OGM plant extracts (Figure 1; for 12 h for Figure 1b), and at 

pH 6.8 for 30 min in all the other assays, unless otherwise indicated. 

 

Identification of a cellobiose-oxidizing activity 

Total proteins were extracted from 5 grams of fresh leaf material of OGM plants collected 

170 h after spraying with 25 µM β-estradiol using 20 ml of extraction buffer [20 mM Na-

Acetate pH 5.0, 0.8 M NaCl; ratio 4:1 (ml : g of tissue)]. Carbohydrate-oxidizing activities 

were determined by the luminol-based assay.  

For enzyme separation, the protein extract was diluted 20-fold in 20 mM Na-acetate pH 5.0 

and loaded on a 1 ml Sulphopropyl-Sepharose (SP Sepharose) FF column (GE Healthcare). 

Elution was carried out using a step-wise gradient of NaCl (from 0 to 1 M NaCl in 10 

volumes of column). Carbohydrate-oxidizing activity was evaluated in each eluted fraction 

by using standard OGs (1 mg ml
-1

) or cellobiose (0.16 mg ml
-1

) as substrates and the xylenol 

orange assay.  
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Protein digestion and proteomic analysis by LC-MS/MS 

For each fraction obtained by the protein extract of the OGM leaves after elution from SP 

Sepharose cation exchange column, aliquots (100 μl) were freeze-dried and dissolved in 100 

μl of freshly prepared 8 M urea in 10 mM Tris-HCl pH 8.0. For each sample, proteins were 

subjected to reduction and alkylation  of cysteines as previously described (Mattei et al., 

2016). Proteolytic digestion was carried out overnight with proteomics grade trypsin 

(Promega, trypsin:protein ratio 1:50) at room temperature. The digestion mixture was 

subsequently acidified with 1% (v/v) formic acid and centrifuged to remove insoluble 

material. Peptides were desalted using home-made microcolumns using R3 beads (Thermo 

Fisher) packed in gel loader tips. Proteomic analysis by LC-MS/MS were performed as 

previously described (Benedetti et al., 2018). 

 

Expression of CELLOX in Pichia pastoris and its purification 

The At4g20860 DNA sequence encoding the mature form of CELLOX was amplified from 

Arabidopsis genomic DNA by using the EcoRI-Fw and NotI-Rev primers (Table S1) and 

cloned in the EcoRI-NotI sites of the constitutive expression vector pGAPzαA, downstream 

of the sequence encoding the yeast alpha factor signal peptide for translocation into the ER, 

and upstream of the c-myc/HIS epitope-encoding sequence. The recombinant plasmid was 

introduced in P. pastoris by electroporation and transformants were grown in yeast extract 

(1%), peptone (2%) and glucose (2%) for 2 days. The culture was centrifuged and the 

medium was collected and enzyme activity was detected using 0.4 mM CD2 as a substrate. 

Purification of CELLOX was performed by two sequential ion exchange chromatography 

steps. Pichia medium (20 ml) was loaded on a Diethylaminoethyl-cellulose (DEAE) (Sigma-

Aldrich) column (10 ml), previously washed with 1 column volume (CV) of high salt buffer 

(1 M NaCl in 50 mM Na-Acetate, pH 5.0) and then equilibrated with 5 CV of  low salt buffer 
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(50 mM Na-Acetate pH 5.0). Before loading, the pH of the Pichia medium was checked; 

since it was lower than 5.0, 3 M Na-Acetate was added to obtain a final pH of 5.0. Flow-

through was collected and absorbed proteins were eluted with 1.5 ml of high salt buffer. In 

the second chromatographic step, the flow-through of the DEAE column was loaded on an 

HiTrap SP-Sepharose FF (GE Healthcare) column (5 ml) previously washed with 2 CV of 3 

M Na-Acetate followed by 2 CV of high salt buffer and finally equilibrated with 10 CV of 

low salt buffer. Flow-through was collected and elution was performed stepwise with 0.2, 0.5 

and 1 M NaCl.  

Pichia culture medium was used for substrate specificity analyses. The fraction eluted with 

0.2 M NaCl from the SP-sepharose column and containing CD2-oxidizing activity (10 μl) 

was used for the determination of kinetics parameters on CDs with a degree of 

polymerization from 2 to 6 (results are reported in Data S2). The half-life of the enzyme was 

calculated as previously reported (Maisuria et al., 2010). 

 

Analysis of native and oxidized oligosaccharides by HPAEC-PAD 

HPAEC was conducted using an ICS3000 system (Dionex Themo Fischer, USA) set up with 

a pulsed amperometric detector (PAD) using a gold electrode with waveform A, according to 

the manufacturer’s instructions. Sample (10 μl) was injected on a CarboPac PA1 2× 250 mm 

analytical column with a CarboPac PA1 2×50 mm guard column (Dionex Thermo Fischer, 

USA) kept at 35 °C. Separation of  oligosaccharides was obtained at a flow rate of 1 ml/min 

with initial conditions set to 0.05 M KOH (100% eluent A), and applying a 20 min linear 

gradient to 10% B (1 M K-acetate in 0.05 M KOH) and then to 50% B in 2 min, followed by 

a 5 min linear gradient to 100% B; 100% B was kept for 3 min before returning to 100% A. 

Column reconditioning was achieved by running initial conditions for 10 min. 
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Oxidation and purification of cellodextrins 

Cellobiose (CD2), cellotriose (CD3), cellotetraose (CD4), cellopentose (CD5) and 

celloesaose (CD6) were purchased from ELICITYL S.A. (France). Cellodextrin purity was 

indicated in the datasheet purchased by the manufacturer: CD2: 99.3%, CD3: 96.1% (with 1.2% 

CD2 and 1.5% CD4), CD4: 97.5% (with 2.3% CD3), CD5: >90% (composition not indicated), 

CD6: >85% (85.8% CD6, 14.2% CD5).  

CD3 or CD4 (1 mg) were dissolved in 50 mM Tris–HCl pH 6.8 at a final concentration of 0.8 

mM. The reaction mixture (500 μl, final volume) containing 10 μL of SP Sepharose purified 

CELLOX was incubated at 30°C for 30 h. After incubation, a small aliquot was analyzed by 

HPAEC-PAD in order assess the oxidation (see below). The sample was incubated at 80°C 

for 15 min in order to inactivate the enzyme. 

Purification of oxidized cellodextrins was performed by HPAEC on a preparative CarboPac 

PA1 22×250 mm column (Dionex Thermo Fischer, USA) with a CarboPac PA1 9×50 mm 

guard column kept at 30 °C. Compared to the analytical method described above, the gradient 

profile was adjusted to meet the changed column dimensions. The sample volume of the 

injection loop was 500 μL and each injection contained approximately 1 mg of each 

cellodextrin. The flow rate was 5 ml/min and eluents A (0.05 M KOH) and B (1 M K-acetate 

in 0.05 M KOH) were applied as follows after injection: a 25 min linear gradient to 15% B 

and then 50% of B in 2 min, followed by a 8 min linear gradient to 100% B. 100% B was 

kept for 5 min before returning to 100% A and equilibrating for 15 min. Fractionation of 

individual cello-oligosaccharides was done without PAD detection and oligosaccharide 

content of each fraction was analyzed by Dubois assay (1956), checked by HPAEC-PAD 

using a CarboPac PA1 analytical column and mass spectrometric analysis (see above). The 

fraction containing ox-CD3 was collected at 33 min at a K-Acetate concentration of 150 mM 

(15% B); the ox-CD4 fraction was instead collected at 34.5 min at a K-acetate concentration 
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of 450 mM (45% B). Fractions containing pure ox-CDs were desalted by using GlycoProfile 

Glycan Clean-up Cartridges (SIGMA), according to the manufacturers’ instructions. Filters 

were incubated for 3 h with 10% acetic acid, then washed with 1 ml of acetonitrile; the 

carbohydrate-containing samples were loaded and left to dry for 15 min. After washing with 

8 ml of acetonitrile, oligosaccharides were eluted with 2 ml of water. The eluates were 

lyophilized and re-dissolved in water. 

 

Mass spectrometric analysis of oxidized cellodextrins 

ESI-MS analyses of ox-CD3 were performed on LTQ-Orbitrap mass spectrometer (Thermo 

Fisher Scientific in Bremen, Germany) using positive electrospray as the ionization process. 

The ox-CD3 purified (10 μl of the purified fraction with a concentration of 354 μg/ml) were 

diluted in in 250 μl of methanol:water:formic acid solvent (50:49:1 (v:v:v)) (Vuong et al., 

2013). Sample was introduced by direct infusion into the ESI source at a flow rate of 5 μl/min 

via a syringe pump. MS analyses were carried out using a needle voltage of 4.5 kV and a 

heated capillary temperature of 300 °C. Spectra were acquired in the LTQ using an AGC 

target of 5*10 
4 

three microscans were recorded at a normal resolution  and the maximum 

injection time was 200 ms. We performed MS
2
 analyses for structural confirmation. The 

various parameters (collision energy, qz activation value and activation time) were adjusted 

in order to optimize the signal and obtain maximal structural information from the ion of 

interest. In the positive ionization mode, the MS
2
 on modified OGs only produced glycosidic 

bond cleavage fragments, generating B- and Y-ions, according to the nomenclature proposed 

by Domon and Costello (1988). Fragment ion pattern was in agreement with that obtained by 

Vuong et al. (2013). 
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Bioinformatic analyses 

Meta-analysis of publicly available microarray data were performed using Genevestigator 

(Hruz et al., 2008). The 3D-model of CELLOX (Figure S4) was obtained through the 

SWISS-MODEL software (https://swissmodel.expasy.org) (Biasini et al., 2014) using the 

amino acid sequence of the mature protein (i.e. without the predicted signal peptide) and the 

crystal structure of the monolignol oxidase (AtBBE15, pdbID: 4ug8) as template. The images 

of structural features and electrostatic potential surface were obtained using CCP4mg 

(http://www.ccp4.ac.uk/MG/references.html) (McNicholas et al., 2011). The modeled 

structure was compared with the 3D structure AtBBE15 to analyze the interaction between 

OGOX and its cofactor FAD, using Chimera (http://www.rbvi.ucsf.edu/chimera) (Pettersen et 

al., 2004). Signal peptide predictions were carried out using the Signal IP 4.1 Server 

(http://www.cbs.dtu.dk/services/SignalP/). Amino acid identity analysis between CELLOX 

and the other BBE-like members was carried out using the sequences of the mature proteins 

and the LAlign software (http://www.ch.embnet.org/software/LALIGN_form.html). Multiple 

amino acid alignment was generated using Kalign (http://msa.sbc.su.se/cgi-bin/msa.cgi) and 

using the Fasta_aln file output for the software Multiple Align Show 

(http://www.bioinformatics.org/sms/multi_align.html).   

 

Analyses of elicitor activity of native and oxidized cellodextrins 

For gene expression analysis, ten-day-old Col-0 seedlings (grown in liquid medium) were 

treated for 30 min with cellodextrins with a degree of polymerization of 2 to 6 (CD2-6) or 

oxidized CD3 and CD4 (all at 25 µg/ml), and OGs (25 µg/ml) as a positive control. Gene 

expression analyses were performed on RNA extracted from plant tissues with Nucleazol 

Reagent (MACHEREY-NAGEL GmbH & Co. KG) according to the manufacturer's protocol. 

cDNA was synthesized in a 20 μl reaction mix by using ImProm.II™ Reverse Transcriptase 
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(PROMEGA). Real-time quantitative PCR analysis was performed using a CFX96 Real-

Time System (BIO-RAD) and the reaction was carried out in a mix containing 1 × Go Taq 

qPCR Master Mix (PROMEGA) and 0.5 μM of each primer. Expression levels of each gene, 

relative to UBQ5, were determined using a modification of the Pfaffl method (Pfaffl, 2001) 

as previously described (Ferrari et al., 2006). 

For MAPK3/6 phosphorylation analysis, seedlings were treated for 5 and 15 min with 30 µM 

CDs  (CD2: 9.96 µg/ml; CD3: 15 µg/ml; CD4: 19.5 µg/ml; CD5: 25.5 µg/ml; CD6 30 µg/ml) 

and OGs (40 µg/ml). Protein extraction  and immunoblot assays were performed as 

previously described (Galletti et al., 2011; Savatin et al., 2014a). For ROS measurements, 

leaf disks of 4-week-old Col-0 plants were vacuum-infiltrated with CDs or OGs (all at 350 

µg/ml) and H2O2 detection was performed by a luminol-based assay as previously described 

(Gigli-Bisceglia et al., 2015).  

 

Generation of transgenic plants  

The At4g20860 DNA sequence from the translation initiation codon to the termination 

codon, was amplified from Arabidopsis gDNA using the SmaI-Fw and SacI-Rev primers 

(Table S1). The fragment was cloned using the SmaI and SacI restriction sites of pBI121, 

replacing the β-glucuronidase gene sequence. The recombinant plasmid was introduced into 

A. tumefaciens GV3101 strain by electroporation and A. thaliana Col-0  plants were 

transformed using the floral-dip method. For segregation analysis, seeds were germinated on 

plates containing solid MS/2 medium [(MS Basal Medium (2.15 g/l), 1% sucrose, 0.8% plant 

agar, pH 5.5)], supplemented with kanamycin (20 μg/ml) as a selective agent and grown at 

22°C and 70% relative humidity under a 16 h light/8 h dark cycle. From 18 independent 

transformed lines, five T3 homozygous lines (CELLOX-OE #2.6, #4.4, #7.2, #8.5 and #9.7) 

carrying a single insertion of the transgene cassette were selected for further analyses. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

For measurements of the oxidizing activity, total proteins were extracted from 2 g of fresh 

leaf material of CELLOX-OE  plants, using 8 ml of extraction buffer (20 mM Na-Acetate pH 

5.0, 0.8 M NaCl). Activity was determined using 0.2 M CD3, a 60 min incubation time and 

the xylenol orange assay. 

 

Botrytis cinerea infection assay and growth 

B. cinerea was grown on 20 g l
−1

 malt extract, 10 g l
−1

 proteose peptone n.3 (Difco, Detroit, 

USA), and 15 g l
−1

 agar for 7–10 days at +24 °C with a 12-h photoperiod before collection of 

spores. Rosette leaves from 4-week-old soil-grown Arabidopsis plants were placed in Petri 

dishes containing 0.8% agar, with the petiole embedded in the medium. Inoculation was 

performed by placing 5 μl of a suspension of 5 × 10
5
 conidiospores ml

−1
 in 24 g l

−1
potato 

dextrose broth (PDB; Difco, Detroit, USA) on each side of the middle vein. The plates were 

incubated at 22°C with a 12 h photoperiod. High humidity was maintained by covering the 

plates with a clear plastic lid. Under these experimental conditions, most inoculations resulted 

in rapidly expanding water-soaked lesions of comparable diameter. Lesion size was 

determined by measuring the diameter or, in case of oval lesions, the major axis of the 

necrotic area by using ImageJ software.  

B. cinerea growth in vitro assay was performed in a 24-well MULTIWELL plate (Falcon, 

Becton Dickinson Labware) containing 0.5 ml of a modified Pectic Zymogram (PZ) medium 

[20 mM (NH4)2SO4, 2.5 mM KH2PO4 and 0.6 mM MgSO4]. For growth in presence of CD3, 

PZ was supplied with 0.15% (w/v) CD3, purified ox-CD3 (prepared as described above) or 

both; pH was adjusted to 4.7 in all cases. Each well was inoculated with 7x10
4
 conidiospores. 

Six replicates were prepared for each sample. Plates were incubated at 22°C for 96 h at 75 

rpm. For fungal biomass determination, two pools of three replicates were obtained, dried and 

weighted. Standard deviation was calculated by the mean of the two different pools.  
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Analysis of CD3 and ox-CD3 in Col-0 and CELLOX-OE plants by HPAEC-PAD 

Four-week-old Col-0 and CELLOX-OE leaves were infiltrated with H2O (control) and CD3 

(500 ng/µl) by using a 1-ml syringe without needle (approximately 100 µl per leaf). Thirty 

min after infiltration, the infiltrated tissues of a pool of 10 leaves, cut into strips, for each 

genotype and treatment were collected and vacuum-infiltrated for 10 min with Intercellular 

Washing Fluid (IWF) extraction buffer (50 mM KPO4 pH 8.0, 0.5 M KCl). IWFs were 

recovered by centrifuging for 10 min at 5000 xg. About 100 µl of  IWF were collected for 

each sample and analyzed by HPAEC-PAD as described above.   

 

ACCESSION NUMBERS: At4g20860 
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Figure S1. Homology tree of the BBE-like family protein members. 

Figure S2. Heatmap of the expression of the 27 members of BBE-like family upon treatment 

with elicitors or pathogens. 
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Figure S3. Substrate specificity of CELLOX. 

Figure S4. Enrichment of recombinant CELLOX secreted by the transformed Pichia pastoris 

through a 2-step ion exchange chromatography. 

Figure S5. HPAEC-PAD and MS analysis of native and oxidized CD3 and CD4. 

Figure S6. Characteristics of CELLOX and its gene. 

Figure S7. Active site of CELLOX. 

Table S1. Primers used in this work. 

Data S1. Proteins identified by LC-MS/MS analysis of the fractions obtained by OGM leaf 

protein extract after elution from SP Sepharose cation exchange column. 

Data S2. Calculation of KM ,Vmax  and thermostability  of CELLOX expressed in P. pastoris. 
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FIGURE LEGENDS  

Figure 1. Carbohydrate-oxidizing activity and BBE-like proteins in β-estradiol-induced 

OGM plants. (a) Activity of protein extracts, analyzed by measuring the production of H2O2 

through a luminol peroxidase-based assay, after supplying the indicated carbohydrates as 

substrates to the reaction mixture. Fucose, rhamnose, xylose and galactose gave results 

similar to the «no substrate» sample. (b) Activity in the fractions eluted from a SP Sepharose 

column loaded with the protein extracts from the OGM plants, analyzed by supplying OGs 

and cellobiose to each fraction in the presence and in the absence of 1 mM SO3
2- 

and 

measuring the H2O2 produced through an orange xylenol-based assay. (c) Identification of 

BBE-like proteins in the fractions eluted from the SP Sepharose column as determined by 

LC-MS/MS analysis. Score indicates the sum of the ion scores of all peptides that were 

identified for each BBE-like enzyme  

 

Figure 2. Expression of both At4g20860 and OGOX1 is up-regulated upon infection with 

Botrytis cinerea and elicitation with elf18, flg22 and OGs. Only the expression of At4g20860 

is up-regulated by CD3. (a) Representative heatmap of expression of the 27 members of 

BBE-like gene family during pathogen infection or elicitor treatment. The red and green 

colors indicate induction and repression, respectively. On top, the hierarchical clustering 

generated from publicly available microarray data using Genevestigator (Hruz et al., 2008). 

The complete heatmap obtained from the analysis is shown in Figure S2. (b) Adult leaves 
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were drop-inoculated with 5x10
5 

B. cinerea conidia or mock (PDB). Transcript levels of 

At4g20860 and OGOX1 were analyzed by qRT-PCR at the indicated times [hours post-

inoculation (hpi)]. (c) and (d) Seedlings were treated with elf18 (10 nM), flg22 (10 nM), OGs 

(25 µg/ml) or CD3 (25 µg/ml) for 30 min and OGOX1 and At4g20860 transcript levels were 

analyzed by qRT-PCR and normalized to UBQ5 expression  

 

Figure 3. Substrate specificity and biochemical features of CELLOX. P. pastoris medium 

containing the recombinant CELLOX was tested for substrate specificity. 30 µl were added 

to the reaction buffer (50 mM  TrisHCl pH 7.6, 50 mM NaCl) containing the substrate. The 

reaction was performed at 30 °C for 30 min. The H2O2 produced was measured using an 

orange xylenol colorimetric assay (OD560). (a) Relative activity towards different types of 

sugars at a concentration of 0.4 mM except for cellobiose (CD2), which was used at 0.4, 5 

and 10 mM. CMC=carboxy-methyl-cellulose; OG=oligogalacturonides; GalUc=glucuronic 

acid; Glc=glucose; Gal=galactose; Xyl=xylose; Rha=rhamnose; Fuc=fucose; Ara=arabinose; 

Mann=mannose; XG=xyloglucan. (b) pH optimum analysis, performed at 30 °C using CD2 

(5 mM) as a substrate. (c) Calculated Km, Vmax and kcat  using CD2, CD3, CD4, CD5 and 

CD6 as substrates (see Data S2). Vmax is expressed in µmol H2O2 min
-1

 mg
-1

 enzyme. In (b) 

and (c), assays were performed using CELLOX partially purified from Pichia medium (SP 

eluate) 

 

Figure 4. Shared and distinctive features of CELLOX and other BBE-like enzymes. (a) 

Electrostatic surface potential representation of CELLOX, H. annuus carbohydrate oxidase 

(HaCHOX), and OGOX1, short isoform, all obtained by homology-based molecular 

modelling using as a template the crystallographic structure of the monolignol oxidase 

At2g34790/BBE15 from A. thaliana, shown on the left [MLOX; code 4UD8 in the Protein 
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Data Bank (http://wwpdb.org)], and P. patens  cellobiose oxidase (PpCBOX). Red and blue 

indicate regions of negative and positive electrostatic potential, respectively. (b) Multiple 

amino acid alignment between the mature CELLOX, its closest paralog At5g44360, 

HaCHOX and L. sativa carbohydrate oxidase (LaCHOX). Different colors highlight amino 

acids with different chemical properties; non-polar amino acids are shown in black. A red 

frame indicates the reactive oxygen motif (PTVGVGG) and the red arrow shows residue 

V157 of CELLOX as the oxygen reactivity gatekeeper residue. Black squares above the 

amino acid sequence indicate the sites involved in the covalent binding of the FAD cofactor; 

red squares indicate negatively charged residues at apoplastic pH that appear only in 

CELLOX and At5g44369. Numbering is from the first amino acid of the mature proteins 

Figure 5. CD3-6 are able to induce defense-related responses, whereas oxidized CDs are not. 

(a) Col-0 wild-type seedlings were treated for 30 min with 25 µg/ml of CD2, CD3, CD4, 

CD5, CD6, OGs or water (control). Transcript levels were analyzed by qRT-PCR and 

normalized to UBQ5 expression. (b) Levels of phosphorylated MPK3 and MPK6 (pMPK3 

and pMPK6) in seedlings of wild‐type (Col‐0) after elicitation with OGs (30 µg/ml), CD2, 

CD3, CD4, CD5, CD6 (30 µM) or water (control) at the indicated time points were 

determined by immunoblot analysis using an anti‐p44/42‐ERK antibody (top panels). Levels 

of MPK3 and MPK6 total proteins were determined using specific antibodies (middle 

panels). Total proteins were detected by Ponceau Red staining and the Rubisco band is shown 

(bottom panels). The identity of individual MAPKs, as determined by their mobility, is 

indicated by arrows. (c) Production of H2O2 in 4-week old leaves of Col-0 after OGs and CDs 

treatment (350 µg/ml) was analyzed by a luminol/peroxidase-based assay. (d) Seedlings were 

treated for 30 min with 25 µg/ml of pure CD3, CD4 or pure oxidized CD3 and CD4 (ox-CD3 

and ox-CD4) or water (control). Transcript levels were analyzed by qRT-PCR and 

normalized to UBQ5 expression 
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Figure 6. Over-expression of CELLOX in transgenic Arabidopsis leads to enhanced basal 

resistance to B. cinerea, which is not able to grow on oxidized CD3 in vitro. Levels of (a) 

CELLOX transcripts and (b) CD3-oxidizing activity in adult leaves of plants overexpressing 

CELLOX (lines #2.6, #4.4, #7.2, #8.5 and 9.7). (c) Adult leaves of wild type (Col-0) and 

CELLOX-OE (#4.4, #9.7 and #7.2) were drop-inoculated with B. cinerea conidia (5 x 10
5
 

conidia/ml). Lesion areas were measured at 48 h post-inoculation using the ImageJ software. 

Bars indicate lesion areas average ± SE of at least three independent experiments (n=20 

lesions, in each experiment). Asterisks indicate statistically significant differences compared 

to the control (Col-0), according to the Student’s t-test (***P<0.001; *P<0.01). (d) Dried B. 

cinerea mycelium biomass was measured after 7 days of growth in a medium supplemented 

with 0.15% CD3, purified oxidized CD3 (ox-CD3) or both (CD3 + ox-CD3) as a sole carbon 

source. Water was used as a control. Asterisks indicate statistically significant differences 

compared to the fungus grown on CD3, according to the Student’s t-test (***P<0.001). (e) 

Representative pictures of B. cinerea  hyphae grown for 4 days as described in (c)   

 

Figure 7. Enhanced oxidation of CD3 in CELLOX overexpressing (OE) plants compared to 

wild-type plants. Chromatograms of Intercellular Washing Fluids (IWF) prepared from 4-

week-old leaves of Col-0 (a) and CELLOX-OE plants (b) 30 min after infiltration with water.  

Chromatograms of IWF from Col-0 (c) and CELLOX-OE (d) leaves 30 min after infiltration 

with CD3. Chromatograms of pure CD3 (e) and oxidized CD3 (ox-CD3) (f). Graph shows 

signal intensity (nC) at each retention time (minutes)  
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