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Abstract

This thesis deals with the study of algebraic structures arising from modern De-
formation Theory. We start with a (very) small introduction. The main results
contained in this work are contained in Chapter 2 and Chapter 3.

In Chapter 2 we study the notion of formality for differential graded Lie algebras,
but more in general for L∞-algebras. We begin a review of the formality criterion
from [29] and establish a relationship with a classical obstruction to formality which
is very well known in literature. Then we extend the notion of formality to formality
of higher degrees, and prove a criterion for formality of higher degrees.

In Chapter 3, using pre-Lie algebras, we develop a new fast algorithm which
computes the coefficients of the Baker-Campbell-Hausdorff series in any Hall basis
of a free Lie algebra. This part is inspired by [10].
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Introduction

The modern approach to deformation theory can be described by the following
principle due to Deligne: “In characteristic 0, a deformation problem is controlled by
a differential graded Lie algebra, with quasi-isomorphic DG Lie algebras giving the
same deformation theory”. The approach to deformation problems via differential
graded Lie algebras (DGLAs) can be traced back to the works by Nijenhuis and
Richardson, and sets the ground from which modern deformation theory grew out
from. Later the works by Kontsevich and Hinich consolidate a rising interest in this
modern approach.

During the nineties, the notion of L∞-algebra (or, equivalently, strongly homotopy
Lie algebra) was developed as a generalization of the notion of differential graded
Lie algebra, due to the works by Stasheff, Lada and Markl. L∞-algebras can be
described as the incarnation of higher brackets satisfying a higher Jacobi identity.
The interest in the theory of L∞-algebras is not contrasting with Deligne’s principle:
differential graded Lie algebras are still enough to describe deformation problems,
but the category of L∞-algebras has a nicer homotopy theory than the category of
differential graded Lie algebras, and for this reason it provides an easier theoretical
tool for many proofs where differential graded Lie algebras are involved. Moreover
L∞-algebras arise naturally in the study of deformations of morphisms and diagrams.

In this present work we address some algebraic aspects arising from the modern
approach to deformation theory, focussing on two major problems.

Chapter 1 In this first chapter we show a few basic notions which can be recovered
from many sources in literature. In the first sections we will present the basic
definitions from the theory of differential graded Lie algebras and L∞-algebras, for
which a good starting point is [31] and references therein. The last section of this
chapter deals with the basics of pre-Lie algebras, for which [7, 12, 14, 21] are good
references.

Chapter 2 In Chapter 2 we investigate the notion of formality for differential
graded Lie algebras and L∞-algebras. Deciding whether an object is formal is
usually a non-trivial task. It turns out that the cohomology of a differential graded
algebra contains higher order products, called Massey products, which are invariant
under surjective quasi-isomorphisms and vanish when the differential is trivial.
Therefore triple Massey products vanish on formal objects, and this provides a
simple obstruction for formality.

The notion of formality for differential graded Lie algebras appeared in the
context of deformation theory with the works [20, 25]. The Lie version of triple
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Massey products are called triple Lie-Massey products by Retakh [36], and work in
a very similar fashion. Given three cocycles x1, x2, x3 ∈ L, with [xi, xj ] = 0 ∈ H∗(L)
for every i < j, we will define in 2.0.7 their triple Lie-Massey product as a class

[x1, x2, x3] ∈ H∗(L)
[x1, H∗(L)] + [x2, H∗(L)] + [x3, H∗(L)] .

Triple Lie-Massey products provide a simple obstruction for formality, but such an
obstruction is not complete: we can find examples of non-formal differential graded
Lie algebras where every triple Lie-Massey product vanishes.

More recently Manetti [29] found a complete obstruction for the formality of
differential graded Lie algebras, and more in general for L∞-algebras: the formality of
a differential graded Lie algebra L is controlled by the degeneration of the Chevalley-
Eilenberg spectral sequence E(L,L) at page E2 (we recall this in 2.0.15). The key role
in the proof of this result is played by the Euler class: a single element e ∈ E(L,L)1,0

2
which controls the degeneration of the whole spectral sequence and is a homotopy
invariant for L. Quoting the main result from [29] we can state in more precise terms

Theorem 1 (Manetti [29], Theorem 3.3). Let (E(L,L)p,qr , dr) be the Chevalley-
Eilenberg spectral sequence of a differential graded Lie algebra L. Then the following
conditions are equivalent:

1. L is formal;

2. the spectral sequence E(L,L)p,qr degenerates at E2;

3. denoting the Euler class by

e ∈ E(L,L)1,0
2 = Der0

K(H∗(L), H∗(L))
{[x,−] | x ∈ H0(L)} , e(x) = x · x,

for every x ∈ H∗(L) (where x denotes the degree of x), we have dr(e) = 0 ∈
E(L,L)r+1,1−r

r for every r ≥ 2.

In this chapter we work on two sides. On one hand we establish a finer relationship
between the Euler class and triple Lie-Massey products, on the other we extend the
previous theorem from [29] to what we call formality of higher degree.

1. In the first part of this chapter we look more in depth at the formality criterion
in [29] and establish what is the relation between the Euler class and triple
Lie-Massey products. Since the Euler class controls formality, and triple Lie-
Massey products vanish on formal differential graded Lie algebras it makes
sense to understand if the Euler class controls triple Lie-Massey products as
well. The result we obtain is positive in the following sense: triple Lie-Massey
products can be recovered by looking at the Euler class. In 2.1.1, for any
choice of three cocycles x1, x2, x3 for which the triple Lie-Massey product is
defined, we will construct a morphism

µx1,x2,x3 : E(L,L)3,−1
2 → H∗(L)

[x1, H∗(L)] + [x2, H∗(L)] + [x3, H∗(L)] ,

which detects the triple Lie-Massey product [x1, x2, x3]. More precisely the
result we obtain is the following
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Theorem 2. Let L be a differential graded Lie algebra, and let xi ∈ Lni for
i = 1, 2, 3 such that dxi = 0 for every i, and [xi, xj ] = 0 ∈ H∗(L) for every
i < j. Then

µx1,x2,x3(d2e) = −[x1, x2, x3] .

2. In the second part of this chapter we investigate what we call formality of
higher degrees. We will say that an L∞-algebra has multiplicity k if for any
choice of its minimal model (H, 0, r2, . . . , rn, . . .) we have rn = 0 for every
n < k and rk 6= 0. We shall say that an L∞-algebra is formal of degree k
for some k ≥ 2 when it admits a minimal model where the only non-trivial
bracket is the one of order k. This notion coincides with the standard notion of
formality when we take k = 2. In this chapter we give a criterion for formality
of higher degrees which is highly inspired by the main result from [29]. In order
to find the right obstruction to formality of higher degrees we introduce new
homotopy invariants, which we call Euler classes of higher degrees. The Euler
class of degree k is defined by chosing a particular element ek ∈ E(L,L)1,0

1 ,
that we call Euler differential operator of degree k. We will show that when L
has multiplicity ≥ k we have E(L,L)1 ∼= . . . ∼= E(L,L)k−1, therefore we can
think ek as an element of E(L,L)1

k−1. Moreover we will show that dk−1e
k = 0

and when L has multiplicity ≥ k this allows to define the Euler class of degree
k as the cohomology class of ek in E(L,L)1,0

k . Euler classes of higher degrees
are homotopy invariants and provide the right tool to investigate formality of
higher degrees. More precisely the main result we obtain is the following

Theorem 3 (Corollary 2.2.30). Let k ≥ 2 and let L be an L∞-algebra of
multiplicity ≥ k. If (E(L,L)p,qr , dr) is the Chevalley-Eilenberg spectral sequence
of L we have d1 = . . . = dk−2 = 0 and E(L,L)1 ∼= . . . ∼= E(L,L)k−1. If we
denote by ek ∈ E(L,L)1,0

k−1
∼= Hom0

K(H∗(L), H∗(L)) the map defined by

ek(x) =
(
x+ 2− k

k − 1

)
x,

for every homogeneous x ∈ H∗(L) (where x denotes the degree of x), we have
dk−1ek = 0 and ek defines a cohomology class in E(L,L)1,0

k . Moreover the
following conditions are equivalent:

(a) L is formal of degree k;
(b) the spectral sequence E(L,L)p,qr degenerates at Ek;
(c) we have drek = 0 ∈ E(L,L)r+1,1−r

r for every r ≥ k.

The objective of deformation theory is to study deformations, which arise as solu-
tions of the Maurer-Cartan equation. The Maurer-Cartan equation in a differential
graded Lie algebra L = (L, d, [−,−]) is

dx+ 1
2 [x, x] = 0

and appears in different areas of mathematics. For instance in differential geometry
the condition for an almost complex structure to be integrable (i.e. induced by
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a proper complex one) is given by the Newlander-Nirenberg theorem, and can be
restated in terms of the Maurer-Cartan equation. In similar fashion the condition
for a connection defined by a differential form to be flat is satisfied if and only if the
form solves a certain Maurer-Cartan equation.

Every Maurer-Cartan element, i.e. a solution of the Maurer-Cartan equation,
gives a deformation. However for every deformation the Maurer-Cartan element
defining it is not unique. It turns out that there exists an action on the Maurer-
Cartan set, called gauge action which describes exactly this fact. The gauge action
on a differential graded Lie algebra (L, d, [−,−]) can be defined explicitely as the
mapping L0 × L1 → L1 given by

(a, x) 7→ ea ∗ x := x+
∑
n≥0

(ad a)n

(n+ 1)!([a, x]− da) .

Remarkably, when we compose two instances of the gauge action ea ∗ (eb ∗ x) we
can find some element c ∈ L0 such that ea ∗ (eb ∗ x) = ec ∗ x. It’s easy to prove that
the element c is obtained via the Baker-Campbell-Hausdorff product of a and b, that
we denote by BCH(a, b), i.e.

ea ∗ (eb ∗ −) = eBCH(a,b) ∗ − .

The Baker-Campbell-Hausdorff product is an associative product defined on any
nilpotent Lie algebra g (observe that L0 is a Lie algebra). Given a nilpotent Lie
algebra g, together with two elements x, y ∈ g, their Baker-Campbell-Hausdorff
product is the element BCH(x, y) living in the universal enveloping algebra Ug of
g, and is defined by

BCH(x, y) = log(ex · ey) ,

where · is the associative product defined on Ug and e− and log are defined as the
usual power series. The Baker-Campbell-Hausdorff product can be expressed in
terms of iterated Lie brackets (i.e. as a Lie series) as the Dynkin series

BCH(x, y) =
∑
n≥1

(−1)n−1

n

∑
rj+sj>0
j=1,...,n

[xr1 ys1 . . . xrn ysn ]∑n
i=1(ri + si)

∏n
i=1 ri! si!

= x+ y + 1
2 [x, y] + 1

12 ([x, [x, y]] + [y, [y, x]]) + . . . ,

where the symbol [xr1ys1 . . . xrnysn ] is defined as

[x, [x, . . . [x︸ ︷︷ ︸
r1

, [y, [y, . . . [y︸ ︷︷ ︸
s1

, . . . [x, [x, . . . [x︸ ︷︷ ︸
rn

, [y, [y, . . . y︸ ︷︷ ︸
sn

]] . . .]] .

Chapter 3 In Chapter 3 we address the study of the Baker-Campbell-Hausdorff
product. Here we develop a new recursive algorithm which computes the coefficients
of a Lie series for the Baker-Campbell-Hausdorff product of n elements x1, . . . , xn in
any Hall basis of the free Lie algebra Lie(x1, . . . , xn), generated by x1, . . . , xn. This
work is inspired by the work by Casas and Murua [10], where the authors show a
result of this type. The main difference from their work is in the algebraic approach
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we chose to follow. In [10] the authors work using a Lie structure defined via colored
rooted trees, here instead we consider a pre-Lie algebra structure which underlies
the Lie structure considered in [10].

Quoting from [14] “The notion of pre-Lie algebra sits between the notion of an
associative algebra and the notion of a Lie algebra: any associative algebra is an
example of a pre-Lie algebra and any pre-Lie product induces a Lie bracket”. A right
pre-Lie algebra is a structure (L,C) where L is a vector space and a biliner map
C : L⊗L→ L whose associator AC, defined by AC(x, y, z) = (xCy)Cz−xC (yCz),
is symmetric in the last two arguments, i.e.

AC(x, y, z) = AC(x, z, y) ,

for any x, y, z ∈ L. On any complete right pre-Lie algebra we can define recursively
higher operations {−|−, . . . ,−}, called braces by using the pre-Lie product C. More-
over, by adding a ficticious unit 1 (i.e. a symbol 1 such that 1 C x = x = x C 1
for every x), it’s possible to define an associative product, called circle product,
} : (1 + L)× (1 + L)→ (1 + L) as

(1 + x) } (1 + y) := 1 + y +
∑
n≥0

1
n! {x| y, . . . , y︸ ︷︷ ︸

n

} .

Given two generators, which we depict by • and ◦, the free complete right pre-Lie
algebra on the set {•, ◦} is denoted by T2 = (T2,x) and is defined in terms of
bicolored (non-planar) rooted trees and the pre-Lie product x on T2 is defined in
combinatorial fashion. When we consider the Lie algebra structure on T2 induced
by the commutator of x we can consider the pre-Lie exponential e−x − 1 and it’s
formal inverse, the pre-Lie logarithm logx (1 + −). The relationship between the
Baker-Campbell-Hausdorff product and the circle product is established by the
following result

Theorem 4 (Dotsenko, Shadrin, Vallette [14], Section 4, Theorem 2). In the free
complete pre-Lie algebra T2 we have

BCH(•, ◦) = logx (e•x } e◦x) .

This result suggests that it could be possible to write the Baker-Campbell-
Hausdorff product by solving the problem of computing the pre-Lie logarithm in T2.
In the recent paper [5], by Bandiera and Schaetz, the authors solve the problem of
determining the pre-Lie logarithm in order to compute the Eulerian idempotent. The
problem of finding formulas for the pre-Lie logarithm is addressed using techniques
inspired by umbral calculus (as formulated by Rota and Roman [38]). Under these
assumptions, denoting by ∅ the ficticious unit element on T2, it’s possible to recover
the Baker-Campbell-Hausdorff product in “umbral way” (we will show how in B).
Denoting by 〈 D

eD−1 |−〉 : K[t]→ K the linear functional defined as〈
D

eD − 1

∣∣∣∣ p〉 =
∞∑
k=0

Bk
k! D

k|t=0p ,

where D = d
dt and Bk is the k-th Bernoulli number (we follow the convention

B1 = −1/2), we can write BCH(•, ◦) by solving a Cauchy problem. After extending
〈 D
eD−1 |−〉 to T2[t] we have the following result
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Theorem 5. If Q ∈ T2[t] = T2 ⊗K[t] is the solution of the Cauchy problem{
Q′ = Qx 〈 D

eD−1 |Q〉
Q(0) = e•x } e◦x − ∅ ,

(0.1)

we have BCH(•, ◦) = 〈 D
eD−1 |Q〉.

The first part of this chapter is devoted to study this Cauchy problem. We will
see in 3.1 that it admits a recursive solution which we can write in terms of the only
combinatoric data of bicolored rooted trees. This gives a series for BCH(•, ◦) in
terms of all bicolored rooted trees, or, equivalently, in terms of the pre-Lie structure
on T2.

Going back to the original problem, the solution we obtain in the free complete
right pre-Lie algebra T2 can be used to recover a Lie series for BCH in a basis of
the free Lie algebra on two generators. It’s well known in literature (Reutenauer
[35]) that it’s possible to give an explicit basis of the free Lie algebra Lie(x, y) using
Lyndon words. A Lyndon word in x and y is any string in the ordered alphabet
{x < y} which is striclty smaller (in the lexicographic order) than any of its non-
trivial rotations. More in general an explicit basis of the free Lie algebra Lie(x, y)
can be given in terms of a Hall set of words on {x < y}. We can think the elements
of T2 as series in terms of bicolered rooted trees with values in K, and whenever
we have an element −→α ∈ T2 which can be written as a Lie series (as BCH) we can
recover such an expression in terms on any fixed Hall set of words on {1 < 2} using
the following theorem

Theorem 6 (Casas, Murua [10], Theorem 2.1). Let −→α be a Lie series in T2 written
as

−→α =
∑
T

α(T ) T

σ(T ) ,

where the sum ranges over all bicolored rooted trees, and σ(T ) is the symmetry factor
of T . If H is a Hall set of words on the ordered alphabet {1 < 2} we have

−→α =
∑
w∈H

α(Tw)
σ(Tw) Lw ,

where for each w ∈ H the element Lw ∈ Lie(•, ◦) and the tree Tw ∈ T2 are constructed
in the following way:

• we set L1 = • = T1 and L2 = ◦ = T2;

• if w ∈ H such that |w| > 1 let w = u|v be the standard factorization of w in H.
We set Lw = [Lu, Lv] and Tw = Tu ◦ Tv (the Butcher’s product of Tu with Tv).

Moreover the set {Lw|w ∈ H} defines a Hall basis for Lie(•, ◦).

Combining the previous result by Casas and Murua together with the recursive
solution we have (Theorem 3.1.3), we can write a Lie series for BCH(•, ◦) in terms
of the Lyndon basis for Lie(•, ◦). The result we obtain, after a proper improvement
obtained via color inversion, is the following
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Theorem 7. Let L2 be the set of Lyndon words on {1 < 2}. Let L− : L2 → Lie(•, ◦),
h : L2 → K[s, t], σ : L2 → K be the maps defined recursively in the following way:

• if |w| = 1 let Lw = •w. We set h(w)(s, t) = s and σ(w) = 1;

• otherwise if w ∈ L2 such that |w| > 1 let w = u|v be the standard factorization
of w in L2. We set Lw = [Lu, Lv] and Tw = Tu ◦ Tv, where ◦ denotes the
Butcher’s product. Then if

w = 1| 2| . . . |2︸ ︷︷ ︸
j

|w1| . . . |w1︸ ︷︷ ︸
j1

| . . . |wk| . . . |wk︸ ︷︷ ︸
jk

is the full factorization of w in L2 with 2 > w1 > . . . > wk we set

h(w)(s, t) = tj
∫ s

0

k∏
i=1

(
h(wi)(σ, t) +

t−1∑
τ=0

h(wi)(1, τ)
)ji

dσ ,

and
σ(w) = j! j1! . . . jk!σ(w1) . . . σ(wk) .

Then we have

BCH(•, ◦) =
∑
w∈L2

(−1)|w|−1
〈

D

eD − 1

∣∣∣∣ h(w)(1, t)
〉

Lw
σ(w) .

The last part of this chapter continues with a series of improvements of the
previous theorem, which mostly rely on symmetric properties of the Baker-Campbell-
Hausdorff product. The very last part will be a sketched out version of the algorithm
we desume from the previous theorem. Just to get an idea of the performance we
implemented the algorithm as a Python script. The time taken to compute the
coefficients of BCH up to order 20 is around 2-3 minutes on an Intel i5-4300U CPU
and appears to be faster than the other solutions present in literature.

Appendix The Appendix is devoted to contain those technical results which may
divert the reader from the big picture. The contents of this part either expand the
contens of the main chapters or provide theoretical support for minor problems.

Appendix A containes two examples related to the study of the notion of formality
for L∞-algebras. The first example comes from geometry, and it’s the interpretation
of Morse Lemma [32] as a result related to the notion of intrinsic formality. The
second part of this chapter is devoted to build an example of formal L∞-algebra of
degree higher than 2. We do this by hand, using the higher formality criterion from
Chapter 2.

Appendix B is a review of umbral calculus techniques used in order to express
the Baker-Campbell-Hausdorff product as a Cauchy problem. The contents of this
part are mostly borrowed from [5], where the problem of finding formulas for the
pre-Lie logarithm is addressed using techniques inspired by umbral calculus.

In Appendix C we borrow the notion of gauge action on L∞-algebras introduced
by Getzler in [17], where the author gives an explicit expression for the gauge action
in terms of a family of rooted trees. The L∞-algebra C(I;L) of (non-degenerate)
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cochains on I with values in L is induced by Dupont’s contraction via homotopy
transfer, and is related to the work of Getzler [17] and Bandiera [4], where C(I;L)
appears in the costruction of the Deligne∞-groupoid. Here we use a slightly different
expresison in order to describe in explicit terms the L∞-structure on C(I;L). We
consider the family Tr,m of (non-planar) rooted trees such that some of the leaves
are marked: we depict such trees by coloring the marked leaves in white, and all the
remaining vertices in black. For any L∞[1]-algebra L = (L, δ, {−,−}, . . .) we can
give a description of the gauge action − G − : L−1 × L0 → L0 as

a G x =
∑

T∈Tr,m

Ta(x, δa)
σ(T )T ! ,

where T ! and σ(T ) are scalars and T−(−,−) are operators determined by the
combinatoric data of T . Using tree summation formulas for homotopy transfer it
follows that the curvature of an element x

a−→y∈ C0(I;L) admits the expansion

R(x
a−→y) =R(x)

ξ−→R(y) , ξ = y − x− δa+
∑

T∈T ≥2
r,m

ξ(T )
σ(T )Ta(x, y) ,

where ξ(T ) ∈ Q are certain rational coefficients to be determined. The main result
we obtain is the following

Theorem 8. For any T ∈ Tr,m

• let Ṽ (T ) be the disjoint union of the set of internal vertices of T different from
the root and the set of white leaves of T ;

• for any susbet J ⊆ Ṽ (T ), let TJ be the rooted forest obtained first by blackening
the white leaves in J , and then by cutting T at the remaining internal vertices
in J .

Then we have
ξ(T ) =

∑
J⊆Ṽ (T )

(−1)|J |+1

TJ ! .

Given any L∞-algebra it’s possible to recover the L∞-structure from the curvature
using a standard polarization trick. In this way we can explicitely give the L∞-
structure on C(I;L).
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Chapter 1

Preliminaries

In this chapter we give a brief review of results well-known in literature. We will
always be working in a fixed field K of characteristic 0. The contents of this chapter
may be found scattered all over literature. The one which is most relevant to this work
is [31], which describes in detailed terms the usage of differential graded Lie algebras
in deformation theory and gives an introduction to the notion of L∞-algebras. In
this chapter we present the notion of pre-Lie algebra. A good starting point for
pre-Lie algebras are the work [27, 11], while a good reference for an overview of the
role of pre-Lie algebras in deformation theory is [14].

1.1 Differential Graded Lie Algebras
Definition 1.1.1. A differential graded vector space, or DG-vector space, is the
data (V, d) of a Z-graded vector space V = ⊕n∈ZV n over a field K, together with a
degree-1 linear map d : V ∗ → V ∗+1, called differential, such that d2 = 0

. . . // V n−1 d // V n d // V n+1 // . . .

Definition 1.1.2. A morphism of differential graded vector spaces f : (V, dV ) →
(W,dW ) is a degree-0 linear map f : V →W such that dW f = fdV

. . . // V n−1 d //

f
��

V n d //

f

��

V n+1 //

f
��

. . .

. . . //Wn−1 d //Wn d //Wn+1 // . . . .

The category of differential-graded vector spaces will be denoted with DG, and
a DG-vector space is also called cochain complex.
Definition 1.1.3. The cohomology of a DG-vector space (V, d) is the DG-vector
space (H∗(V ), 0) where

Hn(V ) = Zn(V )
Bn(V ) ,

where

Zn(V ) = ker(d : V n → V n+1)
Bn(V ) = Im(d : V n−1 → V n) .
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When d = 0 the space V is called minimal, and when V has trivial cohomology it is
called acyclic.

Any morphism f in DG commutes with differentials therefore cocycles and
coboundaries are preserved, thus f induces a morphism in cohomology.

. . . // Hn−1(V ) 0 //

f

��

Hn(V ) 0 //

f

��

Hn+1(V ) //

f

��

. . .

. . . // Hn−1(W ) 0 // Hn(W ) 0 // Hn+1(W ) // . . .

Definition 1.1.4. A quasi-isomorphism of DG-vector spaces is a morphism f : (V, dV )→
(W,dW ) which induces an isomorphism in cohomology.

Example 1.1.5 (Hom Complex of DG Vector Spaces). Given two DG-vector spaces
(V, dV ) and (W,dW ) consider the space Hom∗K(V,W ) defined by

Homn
K(V,W ) = {f : V →W s.t. f is linear, f(V i) ⊆W i+n for every i}.

The differential on Hom∗K(V,W ) is defined by

(df)(v) = dW (f(v))− (−1)nf(dV (v)).

The space Hom∗K(V,W ) is a DG-vector space, called Hom complex.

Example 1.1.6 (Tensor Product of DG Vector Spaces). Given two DG-vector
spaces (V, dV ) and (W,dW ) their tensor product V ⊗W is the DG-vector space
defined by

(V ⊗W )n =
⊕

p+q=n
V p ⊗W q

together with the differential d = dV ⊗ Id + Id⊗dW given by

d(v ⊗ w) = dV (v)⊗ w + (−1)v v ⊗ dW (w) .

Lemma 1.1.7 (Homotopy Classification of DG Vector Spaces). Every DG-vector
space V = (V, d) is the direct sum

V = W ⊕H

of a minimal DG-vector space H = (H, 0) and of an acyclic DG-vector space
W = (W,d).

Proof. We can split (V, d) as a direct sum of DG-vector spaces

V n = Zn(V )⊕ Cn , Zn(V ) = Bn(V )⊕Hn .

Since d : Cn → Bn+1(V ) is an isomorphism for every n, the DG-vector space (W,d)
defined by Wn = Bn(V )⊕ Cn is acyclic, H is minimal and (V, d) = (W,d)⊕ (H, 0)
is the decomposition we want.
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Lemma 1.1.8. A DG-vector space (V, d) is acyclic if and only if the identity is a
coboundary in Hom∗K(V, V ), i.e., if and only if there exists some h ∈ Hom−1

K (V, V )
such that hdv + dV h = IdV for every v ∈ V .

Proof. If there exists h as above, for every cocycle v ∈ Zn(V ), since dv = 0 we have
v = dhv + hdv = dhv = dw ∈ Bn(V ), w = hv, and then v is trivial in cohomology.
Conversely we can split V n as V n = Zn(V ) ⊕ Cn. Defining h ∈ Hom−1

K (V, V )
by setting h(C) = 0 and h : Z(V ) → Cn−1 the bijective map d : C → Z(V ), it is
immediate to check that dh+ hd = IdV .

Theorem 1.1.9 (Künneth formulas). Given a DG-vector space (V, d), consider its
cohomology H∗(V ) =

⊕
n∈ZH

n(V ) as a DG vector space with trivial differential.
Then for every pair of DG vector spaces V,W there exist two natural isomorphisms:

1. H∗(V )⊗H∗(W )→ H∗(V ⊗W );

2. H∗(HomK(V,W ))→ Hom∗K(H∗(V ), H∗(W )).

The the tautological map s : V → V [−1] of degree 1, defined in each degree n
as the identity map V n → V [−1]n+1 = V n is called suspension; more generally, for
every integer p there exists a tautological morphism s−p : V → V [p] of degree −p,
defined in each degree n as the identity map V n → V [p]n−p = V n; the definition of
dV [p] implies that s−p is a cocycle in Hom∗K(V, V [p]). Given two DG-vector spaces
V,W , we define the twisting involution

tw : V ⊗W →W ⊗ V

as the unique linear map such that tw(v ⊗ w) = (−1)vww ⊗ v for every pair of
nontrivial homogeneous vectors v, w. The naturality of tw is granted by the Koszul
rule of signs which goes by the following motto: whenever you swap two elements
xi, xj in any expression of type x1 ⊗ x2 ⊗ . . .⊗ xn multiply by a sign (−1)xi·xj . For
any transposition τ = (i j) this defines the symmetric Koszul sign ε(τ ;x1, . . . , xn).
Given any permutation σ ∈ Sn the symmetric Koszul sign of σ is the product
ε(σ;x1, . . . , xn) = ε(τ1;x1, . . . , xn) · . . . · ε(τm;x1, . . . , xn), where σ = τ1 · . . . · τm and
every τi ∈ Sn is a transposition. Equivalently we can see ε(σ;x1, . . . , xn) as the sign
of σ restricted to the set of indices i such that xi has odd degree, and using this
observation we see that ε(σ;x1, . . . , xn) is well defined. The antisymmetric Koszul
sign of σ is χ(σ;x1, . . . , xn) = (−1)σ ε(σ;x1, . . . , xn). Moreover, whenever we have
σ = τ ρ ∈ Sn we have

ε(σ;x1, . . . , xn) = ε(ρ;x1, . . . , xn) ε(τ ;xρ(1), . . . , xρ(n))
χ(σ;x1, . . . , xn) = χ(ρ;x1, . . . , xn)χ(τ ;xρ(1), . . . , xρ(n)) .

Definition 1.1.10. A filtered DG-vector space is the data (V, d, F ∗V ) of a DG-vector
space (V, d) and a decreasing filtration

F ∗V : . . . ⊆ F p+1V ⊆ F pV ⊆ F p−1V ⊆ . . .

of DG-vector subspaces of V (i.e. vector subspaces of V such that d(F pV n) ⊆ F pV n+1

for every p, n). A morphism f : (V, dV , F ∗V ) → (W,dW , F ∗W ) of filtered DG-
vector spaces is a morphism of DG-vector spaces f : (V, dV )→ (W,dW ) such that
f(F pV ) ⊆ F pW for every p.
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Definition 1.1.11. A filtered DG-vector space (V, d, F ∗V ) is called

• exhaustive if
⋃
p F

pV = V ;

• complete if, denoting with lim← V
F ∗V the inverse limit, i.e.

lim
←

V

F ∗V
=
{

(an + FnV )n ∈
∏
n

V

FnV

∣∣∣∣an − am ∈ FnV for any n ≤ m
}
,

the natural map V → lim← V
F ∗V is an isomorphism.

Definition 1.1.12. Given a filtered DG-vector space (V, d, F ∗V ) its associated
spectral sequence is defined, following [19], by

Zpr = {x ∈ F pV |dx ∈ F p+rV } , Epr = Zpr

Zp+1
r−1 + dZp−r+1

r−1
,

and the maps dr : Epr → Ep+rr are induced by d in the obvious way. The space Zpr
inherits a second grading from the one on V , by setting Zp,qr = (Zpr )p+q. Therefore
Epr inherits a natural gradation from V by setting Ep,qr = (Epr )p+q. More explicitely:

Zp,qr = {x ∈ F pV p+q | dx ∈ F p+rV p+q+1}, Ep,qr = Zp,qr

Zp+1,q−1
r−1 + dZp−r+1,q+r−2

r−1
,

Epr =
⊕
q

Ep,qr , dr : Ep,qr → Ep+r,q−r+1
r , Ep,qr+1 '

ker(dr : Ep,qr → Ep+r,q−r+1
r )

dr(Ep−r,q+r−1
r )

.

The basic property of spectral sequences say that d2
r = 0 and there exists natural

isomorphisms

Epr+1
∼=

ker(dr : Epr → Ep+rr )
drE

p−r
r

.

Definition 1.1.13. A spectral sequence (Epr , dr) degenerates at Ek if dr = 0 for
every r ≥ k. Equivalently, a spectral sequence (Epr , dr) degenerates at Ek if Epk = Epr
for every p and every r ≥ k.

Definition 1.1.14. A differential graded commutative algebra, or DGA, is a DG-
vector space (A, d) with a product A⊗A→ A such that

1. (ab)c = a(bc);

2. ab = (−1)abba;

3. d(ab) = (da)b+ (−1)aa(db).

A morphism of DG-algebras f : (A, dA)→ (B, dB) is a morphism of DG-vector
spaces such that f(a1a2) = f(a1)f(a2) for every a1, a2 ∈ A.
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Example 1.1.15 (Polynomial DG-Algebra). Consider the graded algebra K[t, dt] =
K[t] ⊕ K[t]dt where t, dt are symbols of degree t = 0, dt = 1. Then consider the
differential given by

d(a(t) + b(t)dt) = a′(t)dt.

The DG-vector space K[t, dt] is a differential graded commutative algebra, called
Polynomial DG-Algeba in t.

Definition 1.1.16. A differential graded Lie algebra (or DGLA) is the data (L, d, [−,−])
of a DG-vector space (L, d) together with a bilinear bracket [−,−] : L ⊗ L → L
which satisfies the following properties:

1. [a, b] + (−1)ab[b, a] = 0;

2. d[a, b] = [da, b] + (−1)a[a, db];

3. [a, [b, c]] = [[a, b], c] + (−1)ab[b, [a, c]].

A morphism of differential graded Lie algebras is a map f : (L, dL, [−,−]L) →
(M,dM , [−,−]M ) where f : (L, dL)→ (M,dM ) is a morphism of DG-vector spaces
such that f([x, y]L) = [f(x), f(y)]M for every x, y ∈ L.

Example 1.1.17 (Hom DGLA). Consider the Hom complex of a DG-vector space
(V, d) together with the bracket

[−,−] : Hom∗K(V, V )⊗Hom∗K(V, V )→ Hom∗K(V, V )

defined by the graded commutator

[f, g] = f g − (−1)f g g f .

This defines a structure of DGLA on the Hom complex.

Example 1.1.18 (Derivations). Given a DGLA (L, d, [−,−]) consider the graded
subspace Der∗K(L,L) ⊆ Hom∗K(L,L) defined by

Der∗K(L,L) =
⊕
n∈Z

DernK(L,L) ,

DernK(L,L) = {f ∈ Homn
K(L,L)|f([u, v]) = [f(u), v] + (−1)nu [u, f(v)]} .

This is the DGLA of derivations of L and is a Lie subalgebra of Hom∗K(L,L).

Definition 1.1.19. Two DGLAs L andM are quasi-isomorphic if they are equivalent
under the equivalence generated by quasi-isomorphisms, i.e. if there exists a zig-zag
of quasi-isomorphisms between them

L1

��   

· · ·

~~ ""

Ln

||   
L L2 Ln−1 M
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We can give a more explicit characterization of quasi-isomorphic DGLAs as an
application of the following result:

Theorem 1.1.20 (Factorization Lemma). Every morphism f : L→M of differential
graded Lie algebras over a field of characteristic 0 can be factored as f = gi, where g
is surjective and i is a right inverse of a surjective quasi-isomorphism (in particular
i is an injective quasi-isomorphism).

Corollary 1.1.21. Two differential graded Lie algebras L,M over a field of char-
acteristic 0 are quasi-isomorphic if and only if there exist two surjective quasi-
isomorphisms of DG-Lie algebras K → L, K →M .

Definition 1.1.22. A differential graded Lie algebra is called homotopy abelian if
it is quasi-isomorphic to an abelian DG-Lie algebra.

1.1.1 Maurer-Cartan Equation and Deformation Functor

Definition 1.1.23. Given a differential graded Lie algebra (L, d, [−,−]) consider
the Maurer-Cartan equation

dx+ 1
2[x, x] = 0.

An element x ∈ L1 which satisfies the Maurer-Cartan equation is called a Maurer-
Cartan element. The set of Maurer-Cartan elements is denoted by

MC(L) =
{
x ∈ L1

∣∣∣∣dx+ 1
2[x, x] = 0

}
.

For every differential graded Lie algebra L and every maximal ideal mA of any
Artin local K-algebra A, the DG-Lie algebra L ⊗ mA is nilpotent. When L is a
nilpotent DG-Lie algebra, the component L0 is a nilpotent Lie algebra, and then we
can consider its exponential group exp(L0). By Jacobi identity, for every a ∈ L0 the
corresponding adjoint operator

ad(a) : L→ L, ad a = [a,−], (ad a)b = [a, b],

is a nilpotent derivation of degree 0 and then its exponential

ead a : L→ L, ead a(b) =
∑
n≥0

(ad a)n

n! (b)

is an isomorphism of graded Lie algebras, i.e., for every b, c ∈ L we have

ead a[b, c] = [ead a(b), ead a(c)].

In particular, the quadratic cone {b ∈ L1|[b, b] = 0} is stable under the adjoint action
of exp(L0).

Given a differential graded Lie algebra (L, [−,−], d) we can construct a new
DG-Lie algebra (L′, [−,−]′, d′) by setting (L′)i = Li for every i 6= 1, (L′)1 = L1⊕Kd
(here d is considered as a formal symbol of degree 1) with the bracket and the
differential defined as
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[a+ vd, b+ wd]′ = [a, b] + vd(b)− (−1)awd(a), d′(a+ vd) = [d, a+ vd]′ = d(a).

It is easy to prove by induction on n that d(L[n]) ⊆ L[n] and (L′)[2n] ⊆ L[n] for
every n ≥ 1; in particular, if L is nilpotent, then also L′ is nilpotent. The natural
inclusion L ⊆ L′ is a morphism of DG-Lie algebras; denote by φ the affine embedding

φ : L1 −→ (L′)1, φ(x) = x+ d.

Since [L′, L′]′ ⊆ L, the image of φ is stable under the adjoint action and then it
makes sense the following definition.

Definition 1.1.24. Let L be a nilpotent differential graded Lie algebra. The gauge
action ∗ : exp(L0)× L1 → L1 is defined, in the above notation, as

ea ∗ x = φ−1(ead a(φ(x))) = ead a(x+ d)− d

where the rightmost expression is obviously intended in L′. More explicitly:

ea ∗ x =
∑
n≥0

1
n! (ad a)n(x) +

∑
n≥1

1
n! (ad a)n(d)

=
∑
n≥0

1
n! (ad a)n(x)−

∑
n≥1

1
n! (ad a)n−1(da)

= x+
∑
n≥0

(ad a)n

(n+ 1)!([a, x]− da)

The fact that ∗ is a right action, i.e., that ea ∗ (eb ∗ x) = (eaeb) ∗ x follows from
the properties of Baker-Campbell-Hausdorff product, together with the fact that the
image of the Lie morphism ad: L0 → Hom0

K(L,L) is contained in the nilpotent ideal

{f ∈ HomK(L,L)|f(L[n]) ⊆ L[n+1]∀n > 0}.

Lemma 1.1.25. Let L be a nilpotent differential graded Lie algebra, then:

1. the set of Maurer-Cartan elements is stable under the gauge action;

2. ea ∗ x = x if and only if [x, a] + da = 0;

3. for every x ∈ MC(L) and every u ∈ L−1 we have e[x,u]+du ∗ x = x.

Example 1.1.26 (Deformation of a DG-vector space). We give a very simple
example of how deformation theory via DGLAs work. Consider a finite complex of
vector spaces

(V, d) : 0→ V 0 d−→ V 1 d−→ . . .
d−→ V n → 0 .

Given an Artin local K-algebra A with maximal ideal mA and residue field K, we
define a deformation of (V, d) over A as a complex of A-modules of the form

(V ⊗A, dA) : 0→ V 0 ⊗A dA−→ V 1 ⊗A dA−→ . . .
dA−→ V n ⊗A→ 0
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such that its residue modulo mA gives the original complex (V, d). Since, as a
K-vector space, A = K⊕mA, this last condition is equivalent to

dA = d+ ξ , ξ ∈ Hom1(V, V )⊗mA .

The “integrability” condition d2
A = 0 becomes

0 = (d+ ξ)2 = dξ + ξd+ ξ2 = dξ + 1
2 [ξ, ξ] ,

where d and [−,−] are the differential and the bracket on the differential graded Lie
algebra Hom∗K(V, V )⊗mA. Two deformations dA, d′A are isomorphic if there exists
a commutative diagram

0 // V 0 ⊗A dA //

φ0
��

V 1 ⊗A dA //

φ1
��

. . .
dA // V n ⊗A //

φn
��

0

0 // V 0 ⊗A
d′A // V 1 ⊗A

d′A // . . .
d′A // V n ⊗A // 0

such that every φi is an isomorphism of A-modules whose specialization to the
residue field is the identity. Therefore we can write φ =

∑
i φi = Id +η, where

η ∈ Hom0(V, V )⊗mA and, since K is assumed of characteristic 0, we can take the
logarithm and write φ = ea for some a ∈ Hom0(V, V ) ⊗ mA. The commutativity
of the diagram is therefore given by the equation d′A = ea ◦ dA ◦ e−a. Writing
dA = d+ ξ, dA = d+ ξ′ and using the relation ea ◦ b ◦ e−a = ead a(b) we get

ξ′ = ead a(d+ ξ)− d = ξ + ead a − 1
(ada) ([a, ξ] + [a, d]) = ξ +

∞∑
n=0

(ad a)n

(n+ 1)!([a, ξ]− da) .

In particular both the integrability and the isomorphism conditions are entirely
written in terms of the DG-Lie structure of Hom∗(V, V )⊗mA, and more precisely
in terms of Maurer-Cartan equation and gauge action, respectively.

Definition 1.1.27. Let ArtK be the category of Artin local K-algebras with residue
field K. For any A ∈ ArtK we denote with mA the maximal ideal of A. Given a
differential graded Lie algebra L = ⊕iLi over a field K, we can define the following
three functors:

1. The Exponential Functor expL : ArtK −→ Grp,

expL(A) = exp(L0 ⊗mA).

2. The Maurer-Cartan Functor MCL : ArtK −→ Set defined by

MCL(A) = MC(L⊗mA).

3. The Deformation Functor DefL : ArtK −→ Set defined by

DefL(A) = MCL(A)
expL(A) .
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1.2 Graded Coalgebras
The notion of (graded) coalgebra is the categorical dual of the notion of associative
algebra: coassociativity is obtained from associativity by reversing all the arrows

Definition 1.2.1. A graded coalgebra is the data (C,∆) of a graded vector space C
together with a morphism of graded vector spaces

∆: C → C ⊗ C

such that
(IdC ⊗∆)∆ = (∆⊗ IdC)∆.

The map ∆ is called coproduct and the above property is called coassociativity.

Remark 1.2.2. The algebraic dual of every graded coalgebra (C,∆) is a graded
algebra with the convolution product.

Definition 1.2.3. A graded coalgebra (C,∆) is called cocommutative if tw ◦∆ = ∆.

Definition 1.2.4. Given a graded coalgebra (C,∆) using coassociativity we can
define the iterated coproducts ∆n : C → C⊗n+1 as{

∆0 = IdC
∆n = (IdC ⊗∆n−1) ◦∆.

Definition 1.2.5. A graded coalgebra (C,∆) is called conilpotent if ∆n = 0 for
n >> 0. It’s called locally conilpotent if C = ∪n ker ∆n.

Proposition 1.2.6. Given a coalgebra (C,∆) we have

1. ∆n = (∆a ⊗∆n−1−a)∆ for every 0 ≤ a < n;

2. (∆a0 ⊗ . . .⊗∆as)∆s = ∆s+
∑

ai for every s ≥ 1, a0, . . . , as ≥ 0.

Definition 1.2.7. Given two graded coalgebras (C,∆) and (B,Γ), a morphism
of graded coalgebras F : (C,∆) → (B,Γ) is a morphism of graded vector spaces
F : C → B such that

ΓF = F⊗2∆.

Remark 1.2.8. The category of graded coalgebras is not abelian

Proposition 1.2.9. Given a morphism of graded coalgebras F : (C,∆) → (B,Γ)
for every n ≥ 0 we have

ΓnF = F⊗n+1∆n : C → B⊗n+1.

Definition 1.2.10. Given a graded coalgebra (C,∆) and a graded vector space V
a cogenerator is a morphism of graded vector spaces p : C → V such that

(p, p⊗2∆, . . . , p⊗n+1∆n) : C −→
∏
n>0

V ⊗n

is injective. Given a cogenerator p : C → V and a linear map f : B → C the
composition pf is called the corestriction of f to p.
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Proposition 1.2.11. Given a graded coalgebra (B,Γ) and a cogenerator p : B → V
every morphism of graded coalgebras F : (C,∆)→ (B,Γ) is uniquely determined by
its corestriction pF .

Proof. Given two morphisms of graded coalgebras F,G : C → B such that pF = pG
we have

p⊗n+1ΓnF = p⊗n+1F⊗n+1∆ = (pF )⊗n+1∆
= (pG)⊗n+1 = p⊗n+1G⊗n+1∆ = p⊗n+1ΓnG

Therefore we have (p, p⊗2∆, . . . , p⊗n+1∆n)F = (p, p⊗2∆, . . . , p⊗n+1∆n)G, and by
the injectivity of (p, p⊗2∆, . . . , p⊗n+1∆n) the claim is proved.

Definition 1.2.12. Given a morphism of graded coalgebras F : (C,∆) → (B,Γ)
the set of F -coderivations of degree n is

Codern(C,B;F ) = {Q ∈ Homn
K(C,B)|ΓQ = (F ⊗Q+Q⊗ F )∆}

and we set
Coder∗(C,B;F ) =

⊕
n∈Z

Codern(C,B;F ).

We denote Coder∗(C,C; IdC) simply with Coder∗(C).

Example 1.2.13. When α : C → C is a nilpotent coderivation the map eα

eα =
∑
n≥0

αn

n! : C → C

is a morphism of graded coalgebras.

1.2.1 The Reduced Tensor Coalgebra

Given a graded vector space V the reduced tensor coalgebra of V is the graded
coalgebra Tc

V = (TV, a) where

TV =
⊕
n>0

V ⊗n

and a : Sc
V → Sc

V ⊗ Sc
V is given by

a(v1 ⊗ . . .⊗ vn) =
n−1∑
k=1

(v1 ⊗ . . .⊗ vk)⊗ (vk+1 ⊗ . . .⊗ vn).

Remark 1.2.14. Given any locally conilpotent graded coalgebra (C,∆) the map∑
n≥0

∆n : (C,∆)→ (Tc
C, a)

is a morphism of locally conilpotent graded coalgebras.
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The reduced tensor coalgebra is locally conilpotent and the projection map
pV : Tc

V → V is a cogenerator. Moreover the reduced tensor coalgebra Tc
V has a

very remarkable universal property: it’s the cofree object on V in the category of
locally conilpotent graded coalgebras.

Proposition 1.2.15 (Tc
V is cofree on V ). Every morphism of (locally conilpotent)

coalgebras F : (C,∆) → (Tc
V, a) is uniquely determined by its corestriction f =

pV F : C → V .

C
F //

f
''

Tc
V

pV
��
V

Moreover we have
F = T c(f) ◦

∑
n≥0

∆n =
∑
n≥1

f⊗n∆n−1.

1.2.2 The Reduced Symmetric Coalgebra

Given a graded vector space V the reduced symmetric coalgebra of V is the graded
coalgebra (Sc

V, l) where
Sc
V =

⊕
n>0

V �n

and l : Sc
V → Sc

V ⊗ Sc
V is given by

l(v1 � . . .� vn) =
n−1∑
a=1

∑
σ∈S(a,n−a)

ε(σ)(vσ(1) � . . .� vσ(a))⊗ (vσ(a+1) � . . .� vσ(n)),

where we denote with S(a, n−a) the set of (a, n−a)-shuffles, i.e. those permutations
σ ∈ Sn such that σ(1) < . . . < σ(a) and σ(a + 1) < . . . < σ(n). For every
j1, . . . , jk > 0 such that

∑k
i=1 ji = n we denote with lj1,...,jk the projection of lk−1

on V �j1 ⊗ . . .⊗ V �jk ⊆ (Sc
V )⊗k, i.e.

lj1,...,jk(v1, . . . , vn) =∑
σ∈S(j1,...,jk)

ε(σ)(vσ(1) � . . .� vσ(j1))⊗ . . .⊗ (vσ(n−jk+1) � . . .� vσ(n)).

Remark 1.2.16. Given any cocommutative locally conilpotent graded coalgebra (C,∆)
the map ∑

n≥1

π

n!∆
n−1 : (C,∆)→ (Sc

C, l)

is a morphism of cocommutative locally conilpotent graded coalgebras.

The reduced symmetric coalgebra is cocommutative and locally conilpotent and
the projection map pV : Sc

V → V is a cogenerator. The object Sc
V is the cofree

object on V in the category of cocommutative locally conilpotent coalgebra:



12 1. Preliminaries

Proposition 1.2.17 (Sc
V is cofree on V ). Every morphism of locally conilpo-

tent cocommutative coalgebras F : (C,∆) → (Sc
V, l) is uniquely determined by its

corestriction f = pV F : C → V .

C
F //

f
''

Sc
V

pV
��
V

Moreover we have

F = Sc(f) ◦
∑
n≥1

π

n!∆
n−1 =

∑
n≥1

f�n
π

n!∆
n−1.

Concerning coderivations we have a similar result

Proposition 1.2.18. Every coderivation of (reduced symmetric) coalgebra Q ∈
Coder∗(Sc

V ) is uniquely determined by its corestriction pVQ =
∑
n>0 qn : Sc

V → V .
Moreover we have

Qn−k+1
n =

∑
i,j

(qi � Id�j)li,j .

More explicitely we have

Q(v1 � . . .� vn) =
n∑
i=1

∑
σ∈S(i,n−i)

ε(σ) qi(vσ(1) � . . .� vσ(i))� vσ(i+1) � . . .� vσ(n)

for every homogeneous v1, . . . , vn ∈ V .

Proposition 1.2.19 (Corestriction Isomorphism). The corestriction map gives an
isomorphism of graded vector spaces

Coder∗(Sc
V ) pV ◦−−−−→ Hom∗K(Sc

V, V ) =
∏
k≥0

Hom∗K(V �k, V ).

whose inverse map

Hom∗K(V �k, V ) 3 q −→ q̂ ∈ Coder∗(Sc
V )

is described explicitly by the formulas

q̂(v1, . . . , vn) =
∑

σ∈S(k,n−k)
ε(σ)q(vσ(1) � . . .� vσ(k))� vσ(k+1) � . . .� vσ(n).

1.2.3 The Symmetric Coalgebra

Given a graded vector space V the symmetric coalgebra of V is the graded coalgebra
(Sc V,∆) where

Sc V =
⊕
n≥0

V �n = K⊕ Sc
V
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and ∆: Sc V → Sc V ⊗ Sc V is given by

∆(1) = 1⊗ 1, ∆(v) = 1⊗ v + v ⊗ 1, v ∈ V
∆(x) = 1⊗ x+ x⊗ 1 + l(x), x ∈ Sc

V.

More explicitely, using the convention that v1 � . . .� vk = 1 whenever k = 0, we
can write

∆(v1 � . . .� vn) =
n∑
k=0

∑
σ∈S(k,n−k)

ε(σ)(vσ(1) � . . .� vσ(k))⊗ (vσ(k+1) � . . .� vσ(n)).

For every j1, . . . , jk ≥ 0 such that
∑
i ji = n we denote with ∆j1,...,jk the projection

of ∆k−1 on V �j1 ⊗ . . .⊗ V �jk ⊆ (Sc V )⊗k, i.e.

∆j1,...,jn(v1, . . . , vn) =∑
σ∈S(j1,...,jn)

ε(σ)(vσ(1) � . . .� vσ(j1))⊗ . . .⊗ (vσ(n−jk+1) � . . .� vσ(n)).

Proposition 1.2.20. Given a morphism of symmetric coalgebras F : (Sc V,∆)→
(ScW,∆) we have

1. if F (1) = 0 then F = 0;

2. if F (1) 6= 0 then F (1) = 1 and F (Sc
V ) ⊆ Sc

W .

Proposition 1.2.21. Let V,W be graded vector spaces, then the map

HomK(Sc
V,Sc

W )→ HomK(Sc V,ScW ), f 7→ IdK⊕f

restricts to a bijection between the set of morphisms of (reduced symmetric) coalgebras
(Sc

V, l)→ (Sc
W, l) and the set of nontrivial morphisms of (symmetric) coalgebras

(Sc V,∆)→ (ScW,∆).

Proposition 1.2.22. Let V be a graded vector space. Then for every Q ∈ Coder∗(Sc V )
we have Q(Sc

V ) ⊆ Sc
V and Q(1) ∈ V . Via the natural inclusion of graded Lie alge-

bras Hom∗K(Sc
V,Sc

V ) ⊆ Hom∗K(Sc V,Sc V ) induced by the direct sum decomposition
Sc V = K⊕ Sc

V , we have an isomorphism

Coder∗(Sc
V ) = {Q ∈ Coder∗(Sc V )|Q(1) = 0}.

Definition 1.2.23. The graded commutator on Coder∗(Sc V ) induces a bracket
[−,−]NR on HomK(Sc V, V ) via corestriction, i.e. ̂[f, g]NR = [f̂ , ĝ], called Nijenhuis-
Richardson bracket

[−,−]NR : Hom∗K(Sc V, V )×Hom∗K(Sc V, V ) −→ Hom∗K(Sc V, V )

which is given in explicit terms by

[−,−]NR : Hom∗K(V �n, V )×Hom∗K(V �m, V ) −→ Hom∗K(V �n+m−1, V ),

[f, g]NR = fĝ − (−1)fggf̂ .
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1.3 L∞-Algebras
Definition 1.3.1. An L∞-algebra is the data (L, l1, l2, . . .) where L is a graded
vector space, li ∈ Hom2−i

K (L∧i, L) such that
n∑
k=1

(−1)n−k
∑

σ∈S(k,n−k)
χ(σ) ln−k+1

(
lk(xσ(1) ∧ . . . ∧ xσ(k)) ∧ xσ(k+1) ∧ . . . ∧ xσ(n)

)
= 0

for every homogeneous x1, . . . , xn ∈ L.

Remark 1.3.2. A DGLA is an L∞-algebra (L, d, [−,−]) is and L∞-algebra with
l1 = d, l2 = [−,−] and li = 0 for every i > 2. The equations which appear in the
definition of L∞-algebras reduce in this case to

• d2 = 0;

• d[a, b] = [da, b] + (−1)a[a, db];

• [a, [b, c]] = [[a, b], c] + (−1)ab[b, [a, c]].

for every homogeneous a, b, c ∈ L, which are the equations defining a DGLA.
To make computations easier we will prefer the slightly different (but equivalent)

notion of L∞[1]-algebra. Given an L∞-algebra (L, l1, l2, . . .) we consider the graded
vector space V = L[1] obtained by shifting the degrees of L by one, i.e. by setting
V n = Ln−1 for every n. Moreover if we consider the tautological map s−1 : V → L
of degree −1 (called desuspension) it’s easy to see that s−1 sends skew-symmetric
maps to symmetric maps. We now define the maps qk : V �k → V which make the
following diagram commute

L⊗k
−lk //

��

L

��
V ⊗k

qk // V

If we rewrite the definition of L∞-structure in terms of the qk’s we obtain the
following easier definition

Definition 1.3.3. An L∞[1]-algebra is the data (V, q1, q2, . . .) where V is a graded
vector space, qi ∈ Hom1

K(V �i, V ), such that
n∑
k=1

∑
σ∈S(k,n−k)

ε(σ) qn−k+1
(
qk(vσ(1) � . . .� vσ(k))� vσ(k+1) � . . .� vσ(n)

)
= 0

for every n and homogeneous v1, . . . , vn ∈ V .

We can give an equivalent more elegant definition of L∞[1]-algebra in terms of
symmetric coalgebras

Definition 1.3.4. An L∞[1]-algebra is the couple (V,Q) where V is a graded vector
space, and Q ∈ Coder1(ScV ), such that

Q(1) = 0 , Q2 = 1
2[Q,Q] = 0 .
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Remark 1.3.5. The first definition can immediately be restated using the Nijenhuis-
Richardson bracket. An L∞[1]-algebra is the data (V, q1, q2, . . .) where V is a graded
vector space, qi ∈ Hom1

K(V �i, V ), such that
n∑
k=1

[qn−k+1, qk]NR = 0

for every n. Using the corestriction isomorphism it’s easy to see why the two
definitions are equivalent. An advantage of using the second definition it’s the
possibility to define L∞-morphism more easily.

Definition 1.3.6. An L∞-morphism of L∞[1]-algebras F : (V,Q) 99K (W,R) is a
morphism of symmetric coalgebras F : ScV → ScW such that FQ = RF .

Whenever we work with an L∞-morphism F : V 99KW we may want to consider
it either as a map between symmetric coalgebras or as it’s corestriction. We’ll use the
capital letter F to denote the map between symmetric coalgebras F : ScV → ScW
and the lower case to denote the corestriction f = pWF : ScV →W . We’ll denote
with F kn the composition V �n → ScV

F−→ ScW → W�k. We’ll denote with Fn the
composition V �n → ScV

F−→ ScW , and with fn the composition V �n → ScV
f−→W .

We’ll use the same convention for coderivations.

Definition 1.3.7. Given an L∞[1]-algebra V = (V, q1, q2, . . .) the map q1 : V → V
is a differential. We define the tangent cohomology of V as the graded vector space
H∗(V ) = H∗(V, q1). Moreover an L∞-morpshims of L∞[1]-algebras f : (V, q) 99K
(W, r) restricts to a morphism of DG-vector spaces f1 : (V, q1) → (W, r1), and we
shall say that f is a weak-equivalence if f1 is a quasi-isomorphism.

Definition 1.3.8. Given a complete L∞[1]-algebra (V, q1, q2, . . .) the curvature of
an element v ∈ V 0 is

R(v) =
∑
n>0

1
n! qn(v, . . . , v) .

Definition 1.3.9. Given a complete L∞[1]-algebra (V, q1, q2, . . .) the Maurer-Cartan
equation is the equation R(x) = 0. A Maurer-Cartan element in V is any v ∈ V 0

such that R(x) = 0. The set of Maurer-Cartan elements of V is denoted with
MC(V ).

Definition 1.3.10. Given an L∞-morphism F : (ScV,Q)→ (ScW,R) the pushfor-
ward of F is the morphism (of sets) F∞ : V 0 →W 0 given by

F∞(x) =
∑
n>0

1
n! F

1
n(x, . . . , x) .

By a direct computation we have that

R(F∞(x)) =
∑
n>0

1
n! F

1
n+1(R(x)� x� . . .� x)

for every x ∈ V 0. Therefore F∞ restricts to a map of sets

F∞ : MC(V )→ MC(W ) .
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Definition 1.3.11. Given a map f : V ⊗n →W of degree m and a commutative DG-
algebra (A, d) the scalar extension of f along A is the map fA : (A⊗V )⊗n → A⊗W
given by

fA(a1 ⊗ v1, . . . , an ⊗ vn) = (−1)
∑

i<j
viaj+m

∑
i
ai (a1 . . . an) ⊗ f(v1, . . . , vn)

for every homogeneous v1, . . . , vn ∈ V, a1, . . . , an ∈ A.

Proposition 1.3.12. Given an L∞[1]-algebra (V, q1, q2, . . .) and a commutative DG-
algebra (A, d) the tensor product A⊗V has a natural L∞[1]-structure (V⊗A, r1, r2, . . .)
given by

r1 = d⊗ IdV + IdA⊗q1 , rn = (qi)A , n > 1 .

1.3.1 Homotopy Transfer

The notion of differential graded Lie algebra is not stable under homotopy equivalence:
this means in particular that, given a differential graded Lie algebra L, a DG-vector
space V and an isomorphism φ : H∗(V ) → H∗(L), in general its not possible to
find a bracket on V and a morphism of differential graded Lie algebras f : V → L
inducing φ in cohomology. As an example one can take a non formal differential
graded Lie algebra L, V = H∗(L) and φ the identity.

However the Lie structure on L can be transferred to an L∞ structure on V and
φ can be lifted to an L∞-morphism. More generally we shall see that every L∞
structure on L can be transferred to an L∞ structure on V . To prove this, we first
consider the case where V is a deformation retract of L. As usual, for simplicity of
calculations, we work in the framework of L∞[1]-algebras.

Definition 1.3.13. A (complete) contraction of DG-vector spaces is the data

(V, q)
g //

h

��
(W, r)

f
oo

where

• (V, d) is a (complete) DG-vector space,

• (W, r) is a DG-vector space,

• f and g are morphisms of DG-vector spaces, h is a linear map of degree −1
such that:

1. qh+ hq = gf − IdV , fg = IdW ;
2. fh = 0, hg = 0, h2 = 0 .

Definition 1.3.14. A perturbation of a DG-vector space (V, d) is a degree-1 linear
map

δ : V → V

such that (V, d+ δ) is still a DG-vector space, i.e. (d+ δ)2 = 0.
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Lemma 1.3.15 (Perturbation Lemma). Given a contraction of DG-vector spaces

(V, dV )
π //

h

��
(W,dW )

ı
oo

and a perturbation δ of (V, dV ) there exists a new contraction

(V, dV + δ)
πδ //

hδ

��
(W,DW )

ıδ
oo

where

• ıδ =
∑
n≥0(hδ)nı;

• πδ =
∑
n≥0 π(δh)n;

• Dδ = πδıδ = πδδı;

• hδ =
∑
n≥0(hδ)nh =

∑
n≥0 h(δh)n.

Theorem 1.3.16 (Homotopy Transfer). Given a (complete) L∞[1]-algebra (V, q1, q2, . . .)
any (complete) contraction of DG-vector spaces

(V, q1)
g1 //

h

��
(W, r1)

f1
oo

yields a (complete) L∞[1]-structure (W, r1, r2, . . .), together with a (continuous)
L∞-morphism f which extends f1

(W, r1, r2, . . .)
f−→ (V, q1, q2, . . .) .

Moreover f and r are determined recursively by

fn = h ◦
n∑
k=2

qkF
k
n , rn = g1 ◦

n∑
k=2

qkF
k
n , n > 1 ,

where F : ScW → ScV is the unique morphism of symmetric coalgebras which
corestricts to f .

Remark 1.3.17. Since g1 f1 = IdW there exists an L∞-morphism g : W → V which
extends g1 must satisfy GF = IdW . It’s possible to give a recursive expression for
gn, but it turns out to be more tricky. A good starting point is [4] and references
therein [6].
Remark 1.3.18. The previous recursive equation for f admits a unique solution.
Infact, using the equation

F kn = 1
k

n−k+1∑
i=1

π ◦ (fi ⊗ F k−1
n−i ) ◦∆i,n−i ,

we can easily prove by induction that the value of F kn depends only by f1, . . . , fn−k+1.
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Corollary 1.3.19. Let (V, q1, q2, . . .) be an L∞[1]-algebra such that the complex
(V, q1) is acyclic. Then (V, q1, q2, q3, . . .) is L∞-isomorphic to (V, q1, 0, 0, . . .).

Definition 1.3.20. An L∞[1]-algebra (V, q1, q2, . . .) is called:

1. minimal if q1 = 0;

2. contractible if the complex (V, q1) is acyclic;

3. linear contractible if (V, q1) is an acyclic complex and qj = 0 for every j > 1.

Theorem 1.3.21 (Minimal Model Theorem). Every L∞[1]-algebra is homotopy
equivalent to a minimal L∞[1]-algebra, unique up to L∞-isomorphism. In particular,
homotopy equivalence of L∞[1]-algebras is an equivalence relation.

Theorem 1.3.22 (Formal Kuranishi Theorem). Given an L∞[1]-algebra (V, q1, q2, . . .)
and a contraction of DG-vector spaces

(V, q1)
π //

h

��
(W, r1)

ı
oo

consider the structure of L∞[1]-algebra (W, r1, r2, . . .) on W induced by homotopy
transfer. The correspondence

ρ : MC(V )→ MC(W )× h(V 1) , ρ : x 7→ (MC(π)(x), h(x))

is bijective. Moreover, ρ−1(−, 0) = ı∞ : MC(W )→ MC(V ) is a bijective correspon-
dence between the sets MC(W ) and kerh ∩MC(V ), whose inverse is the restriction
of π.

Tree Summation Formulas for Homotopy Transfer

We can give a more explicit non-recursive expression for homotopy transfer. First we
introduce some combinatoric notions. A (non-planar) rooted tree is a finite directed
graph which has a vertex, called root, with the property that for every vertex v there
exists a unique directed path from v to the root. A rooted forest is a finite directed
graph such that every connected component is a rooted tree. A rooted forest is
reduced is every vertex is a leaf or has arity ≥ 2. Given a rooted forest Ω we denote
by V (Ω) the set of vertices, by R(Ω) the set of roots and by L(Ω) the set of leaves.
If u, v ∈ V (Ω) are two vertices of a rooted forest we shall write u→ v if there exists
a directed path from u to v (such a path is necessarily unique). This relation (→) is
a partial ordering in the set of vertices.

Let Ω,Γ be rooted forests. An isomorphism α : Ω → Γ is a bijective map
α : V (Ω)→ V (Γ) such that α(u)→ α(v) if and only if u→ v. We denote by Aut(Ω)
the group of automorphisms of a rooted forest Ω. Every isomorphism α : Ω→ Γ is
uniquely determined by its restriction α : L(Ω) → L(Γ). The set of isomorphism
classes of reduces forests with n leaves and m roots will be denoted with F (n,m).
An orientation of a rooted forest Ω ∈ F (n,m) is a bijection ν : {1, 2, . . . , n} → L(Ω)
such that if i < j, ν(i)→ z and ν(j)→ z for some vertex z ∈ V (Ω), then ν(h)→ z
for every h = i, i+ 1, . . . , j. An oriented rooted forest is a pair (Ω, ν) where ν is an
orientation of Ω.
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Definition 1.3.23. Given a graded linear map F : ScV → W and a forest Ω ∈
F (n,m) the map FΩ : V ⊗n →W�m is defined by the recursive rule

• F• = IdV ,

• If Ω = Ω1 . . .Ωk we set FΩ = FΩ1 � . . .� FΩk ,

• If Ω = Ω1
•
. . .Ωk
• we set FΩ = F 1

k (FΩ1 � . . .� FΩk) .

Definition 1.3.24. Given a contraction of DG-vector spaces

(V, q)
g //

h

��
(W, r)

f
oo

and a rooted tree Ω ∈ F (n, 1) let Ω′ ∈ F (n,m) the tree obtained from Ω by removing
its root and all incoming edges. Then we denote with ZΩ(q, f, h) the operator defined
by

ZΩ(q, f, h) = qm ◦ (hq)Ω′ N ◦ f�n : V �n →W .

We now have all the elements to restate the theorem 1.3.16 as follows

Theorem 1.3.25. Given a (complete) L∞[1]-algebra (V, q1, q2, . . .) any (complete)
contraction of DG-vector spaces

(V, q1)
g1 //

h

��
(W, r1)

f1
oo

yields a (complete) L∞[1]-structure (W, r1, r2, . . .), together with a (continuous)
L∞-morphism f =

∑
n fn which extends f1

(V, q1, q2, . . .) (W, r1, r2, . . .)
f

oo .

Moreover for every n > 1 we have

rn =
∑

Ω∈F (n,1)

1
|Aut Ω| g1 ZΩ(q, f, h)

fn =
∑

Ω∈F (n,1)

1
|Aut Ω| hZΩ(q, f, h)

These expressions for fn and rn are called tree summation formulas.

1.4 Pre-Lie Algebras

In this section we present the very basic notions that we need in order to present
our result. We introduce some dictionary about trees and their combinatorics.
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Definition 1.4.1. Let V be a vector space over a field K and let C be a bilinear map
C : V ⊗V → V . The associator of C is the map, denoted with AC : V ⊗V ⊗V → V ,
and defined by

AC(x, y, z) = (xC y) C z − xC (y C z) .

The couple (V,C) is called a right pre-Lie algebra if the associator AC of C is
symmetric in the last two variables, i.e.

AC(x, y, z) = AC(x, z, y) for every x, y, z ∈ V.

Given two right pre-Lie algebras (V,CV ) and (W,CW ) a morphism of right pre-Lie
algebras between V and W is a linear map f : V →W which is compatible with the
right pre-Lie products, i.e.

f(xCV y) = f(x) CW f(y) .

Remark 1.4.2. If (V,C) is a right pre-Lie algebra then the commutator associated to
C is the map [−,−]C : V ⊗ V → V

[x, y]C = xC y − y C x .

It’s straightforward to see that [−,−]C defines a structure of Lie algebra on V .

Definition 1.4.3. Given a right pre-Lie algebra (V,C) we can define the braces
operations

{−|−, . . . ,−︸ ︷︷ ︸
n

} : V ⊗ V ⊗n → V

as the maps defined recursively by

{x} = x

{x|y} = xC y

{x|y1, . . . , yn} = {x|y1, . . . , yn−1}C yn −
n−1∑
j=1
{x|y1, . . . , yj C yn, . . . , yn−1}

for any x, y, y1, . . . , yn ∈ V .

Remark 1.4.4. We can immediatly see that {x|y, z} is the associator of x, y, z.
Moreover for any fixed x ∈ V the maps {x|−, . . . ,−} are symmetric. Therefore they
define maps

{−|−, . . . ,−︸ ︷︷ ︸
n

} : V ⊗ V �n → V .

Definition 1.4.5. A complete right pre-Lie algebra is a right pre-Lie algebra (V,C)
equipped with a filtration

. . . ⊆ F pV ⊆ F p−1V ⊆ . . . F 2V ⊆ F 1V = V

such that
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• the filtration is complete, that is, the natural morphism of vector spaces

V → lim
←
V/F pV

is an isomorphism;

• the filtration is compatible with the pre-Lie product, that is

F kV C F lV ⊆ F k+lV for all k, l ≥ 1 .

Definition 1.4.6. Given a complete right pre-Lie algebra (V,C) we introduce a
new symbol 1 which acts as a unit, i.e. 1 C x = xC = x for any x ∈ V . We define a
new operation, called circle product } : (1 + V )× (1 + V )→ 1 + V defined by

(1 + x) } (1 + y) = 1 + y +
∑
k≥0

1
k! {x| y, . . . , y︸ ︷︷ ︸

k

} ,

for any x, y ∈ V .

Remark 1.4.7. By this definition it’s not immediate to see that } is associative. We
will show later on that it’s possible to express } in terms of a convolution product
induced by a coassociative coproduct.

1.4.1 Combinatorics of Trees

We fix here some basic notions in order to deal with trees and their combinatoric
properties.

Definition 1.4.8. A rooted tree is a tree T with a distinguished vertex, the root,
that we denote with ρT . We denote with V (T ) the set of vertices of T . The order of
T , denoted by |T |, is the number of its vertices (including the root). A morphism of
rooted trees is any morphism of trees T 7→ S which sends the root of T to the root
of S.

• A rooted subtree X of T is any injective morphism of rooted trees η : X 7→ T .
With an abuse of notation we will denote a rooted subtree of T by writing
X ⊆ T to identify the image in T of such an injective mapping η. The quotient
of T over X is the rooted tree T/X obtained by collapsing the vertices of X
into a single vertex.

• Given any vertex v ∈ V (T ), there is a unique shortest path from v to the
root. The set V (T ) of vertices of T inherits a partial order by declaring v ≤ v0
whenever v lies on the shortest path from v0 to the root.

• The factorial of T is the number

T ! =
∏

v∈V (T )
|{u ∈ V (T )|v ≤ u}| .

• The automorphisms of T are the bijective morphisms of rooted trees T 7→ T .
They define a group with respect to composition which we denote with Aut(T ).
The symmetry factor of T is the number σ(T ) = |Aut(T )|.
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Definition 1.4.9. Given two rooted trees T, S we define the following operations

• For any v ∈ V (T ) the grafting T ↙v S of S in v is the rooted tree which has
the same root of T and is obtained by joining the root of S with v using a new
edge.

v

•
•
↙v

•
•
•
•
•

•
=

•
•
•
•
•

••
•
•

•

• The Butcher’s product of T and S is the rooted tree T ◦S obtained by grafting
S in the root of T , i.e.: T ◦ S = T ↙ρT S.

•
•
•

•
◦
•
•
•
•
•

•
=

•
•
•
•
•

••
•
•
•
•

•

• The merging product of T and S is the rooted tree T ·S obtained by identifying
the roots of T and S.

•
•
•

•
·
•
•
•
•
•

•
=
•

•
•
•
•
•
•

•
•

•

Later on we will operate on trees by removing certain rooted subtrees. The set of
rooted trees is not closed under such operations, as they produce new disconnected
collections of trees, which we call rooted forests. We introduce here a very small
vocabulary about rooted forests.

Definition 1.4.10. A rooted forest F is a set T1 T2 . . . Tk of rooted trees
T1, T2, . . . , Tk. The order of F is |F | = |T1| + . . . + |Tk|. A morphism of rooted
forests is a map of forests F 7→ F ′ which restricts to a morphism of rooted trees on
each Ti.

• A rooted subforest of F is any injective morphism of rooted forests η : X 7→ F .
With an abuse of notation we will denote a rooted subforest of F by writing
X ⊆ F to identify the image in F of such an injective mapping η. The
difference between F and X is the rooted forest F −X obtained by removing
all the vertices of X from F .

• Given any vertex v ∈ V (F ), there is a unique Ti such that v ∈ V (Ti). The set
V (F ) of vertices of F inherits a partial order induced by extending the partial
order defined on the connected components T1, . . . , Tk.

• The factorial of F is the number

F ! = T1!T2! . . . Tk! .

• The automorphisms of F are the bijective morphisms of rooted forests F 7→ F .
They define a group with respect to composition, which we denote with Aut(T ).
The symmetry factor of F is the number σ(F ) = |Aut(F )|.
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Definition 1.4.11. An increasing ordering of a rooted forest F = T1 T2 . . . Tk is
an increasing bijective map

ν : V (F )→ {1, . . . |F |} .

We denote with O(F ) the set of all increasing orderings of F and by Ord(F ) the
number of increasing orderings, i.e. Ord(F ) = |O(F )|. For instance

O
(
•
•
•

•
•
•
)

=

 • • •• ••
1

2 3
4
, •

•
•

•
•
•

1
3 2

4
, •

•
•

•
•
•

1
4 2

3 
We can establish a nice relation between rooted trees and forests.

Definition 1.4.12. We call suspension the map defined on rooted forests by

s(T1 . . . Tk) =
(
T1

•
T2

•
· · · Tk
•

)
.

Definition 1.4.13. We call pruning the map p defined on rooted trees by

p

(
T1

•
T2

•
· · · Tk
•

)
= T1 T1 . . . Tk .

The maps s and p establish a relation between the operations of quotient on
rooted trees and difference on rooted forests

Proposition 1.4.14. For any rooted tree T and any rooted subtree ∅ 6= X ⊆ T we
have

p(T/X) = pT − pX .

Conversely for any rooted forest F and any rooted subforest Y ⊆ F we have

s(F − Y ) = sF/sY .

Remark 1.4.15. Ord is invariant under suspension

Lemma 1.4.16 (Number of Increasing Orderings). Given a rooted forest F the
number of increasing orderings of F is

Ord(F ) = |F |!
F ! .

Proof. We first prove the lemma for rooted trees. If T = • then the claim is trivial.
If T has the form

T =
T1

•
T2

•
· · · Tk
•

any increasing ordering ν of T is uniquely determined by an iterated choice of ν on
the vertices V (Tk), V (Tk−1), . . . , V (T1). Assume we have already chosen the image
of ν on V (Tk), . . . , V (Ti+1). Thus all the possible choices on V (Ti) are exactly(

|T1|+ . . .+ |Ti|
|Ti|

)
Ord(Ti) ,
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and therefore

Ord(T ) =
k∏
i=1

(
|T1|+ . . .+ |Ti|

|Ti|

)
Ord(Ti) = (|T | − 1)!

k∏
i=1

Ord(Ti)
|Ti|!

.

The identity we obtain is equivalent to the recursive equation

Ord(T )
(|T | − 1)! =

k∏
i=1

Ord(Ti)
|Ti|!

,

and it’s easy to see that setting Ord(T ) = |T |!
T ! for each rooted tree T we obtain a

solution. Indeed, after a substitution we obtain

T ! = |T |
k∏
i=1

Ti! ,

which is trivial to verify.
The statement for rooted forests can be easily proven by observing that for any

rooted forest F = T1 T2 . . . Tk we have

Ord(F ) = Ord(T ) ,

where T is the rooted tree obtained from F by connecting all the roots of the trees
Ti’s to a new common root:

T =
T1

•
T2

•
· · · Tk
•

Proposition 1.4.17. For any rooted tree T and any 1 ≤ k ≤ |T | we have

Ord(T ) =
∑

X⊆T,|X|=k
Ord(X) Ord(T/X) .

For any rooted forest F and any 0 ≤ k ≤ |F | we have

Ord(F ) =
∑

X⊆F,|X|=k
Ord(X) Ord(F −X) .

Proof. First we prove the second identity when F = T is a rooted tree. Any
increasing ordering of T determines a rooted subtree X ⊆ T of order k by taking
the vertices labelled from 1 to k. By restriction we induce an increasing ordering
on T −X. Conversely if we fix a rooted subtree X ⊆ T of order k, an increasing
ordering of X, and an increasing ordering of T − X, then there exists a unique
ordering of T which is compatible with both, i.e. consider the ordering given by
extending the labelling on X by adding +k to the labels given by the ordering on
T −X. We’ve just defined a bijective mapping

O(T )→
⋃

X⊆T,|X|=k
O(X)×O(T −X) .
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When F = T1 T2 . . . Tn is a generic rooted forest we define T = {•|T1, . . . , Tn} and
by definition Ord(F ) = Ord(T ). Using the previous part of the proof we can write

Ord(F ) = Ord(T )
=

∑
X⊆T,|X|=k+1

Ord(X) Ord(T −X)

=
∑

X1⊆T1,...,Xn⊆Tn,|X1|+...+|Xn|=k
Ord(X1 . . . Xn) Ord(T − {•|X1, . . . , Xn})

=
∑

Y⊆F,|Y |=k
Ord(Y ) Ord(F − Y ) .

For the first identity observe that for any rooted tree T we have T = sF for some
rooted forest F . We have

Ord(T ) = Ord(F )
=

∑
X⊆F,|X|=k

Ord(X) Ord(F −X)

=
∑

Y⊆T,|Y |=k+1
Ord(Y ) Ord(T − Y )

=
∑

Y⊆T,|Y |=k+1
Ord(Y ) Ord(s(T − Y )) .

Since we have s(T − Y ) = sT/sY = T/Y the last identity becomes

Ord(T ) =
∑

Y⊆T,|Y |=k+1
Ord(Y ) Ord(T/Y ) ,

and this concludes the proof.

Definition 1.4.18. Given a rooted forest F and a rooted subforest X ⊆ F we
define the binomial of F over X as(

F

X

)
= F !
X! (F −X)! .

This will come handy later on because of a combinatoric version of the binomial
theorem for rooted forests

Proposition 1.4.19 (Binomial Theorem for Rooted Forests). Let A be a commuta-
tive algebra. Then for any rooted forest F and for any a, b ∈ A we have

∑
X⊆F

(
F

X

)
a|X| b|F−X| = (a+ b)|F | .
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Proof. Let F be a rooted forest, we have

∑
X⊆F

(
F

X

)
a|X| b|F−X| =

|F |∑
k=0

∑
X⊆F,|X|=k

(
F

X

)
ak b|F |−k

=
|F |∑
k=0

∑
X⊆F,|X|=k

F !
X! (F −X)! a

k b|F |−k

=
|F |∑
k=0

∑
X⊆F,|X|=k

F !
|F |!

|X|!
X!
|F −X|!
(F −X)!

(
|F |
|X|

)
ak b|T |−k

=
|F |∑
k=0

1
Ord(F )

(
|F |
k

) ∑
X⊆F,|X|=k

Ord(X) Ord(F −X) ak b|F |−k

=
|F |∑
k=0

(
|F |
k

)
ak b|F |−k = (a+ b)|F | ,

where the last identity is a consequence of Proposition 1.4.17.

Corollary 1.4.20. Let F be a rooted forest, then we have

∑
X⊆F

(−1)|X|
(
F

X

)
= 0 .

Proof. Use Binomial Theorem 1.4.19 with a = −1 and b = 1.

Definition 1.4.21. A colored rooted tree T is the data of a rooted tree T together
with a coloring, i.e. a map c : V (T ) → N. The order of T is |T | = |V (T )|. A
morphism of colored rooted trees is a morphism of rooted trees T 7→ S.

• We shall say that T is non-decreasing (non-increasing) if the coloring c is
non-decreasing (non-increasing) with respect to the order on V (T ). We shall
say that T is constant if c is a constant function. In the following we denote
with χ↑n the characteristic function of the set of all non-decreasing colored
rooted trees on n colors, and by χi the characteristic function of constant
colored rooted trees of color i.

• We shall denote with T ↑ the maximal non-decreasing rooted subtree of T ,
with T ↓ his maximal non-increasing rooted subtree, and with T l his maximal
constant rooted subtree.

• An edge e = {u, v} ∈ E(T ) with u < v is called decreasing (increasing) if
c(u) > c(v) (c(u) < c(v)). The set of all decreasing (increasing) edges of T is
denoted with D(T ) (I(T )). The factorial T ! of T is the factorial of the rooted
forest T − (D(T ) ∪ I(T )).

• We shall denote with Aut(T ) those bijective morphism of colored rooted trees
T 7→ T . We define the symmetry factor of T the number σ(T ) = |{f ∈
Aut(T )|f preserves the coloring}|.
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Although we denote the generators with •1, . . . •n it’s pictorially convenient in
the case n = 2 to use the identification •1 = •, •2 = ◦.

Definition 1.4.22. First we need to introduce some proper notation: consider a
fixed colored rooted tree R and some subset τ ⊆ E(R). We call τ a partition. The
marking of R by τ is the couple (R, τ). The rooted tree R induces a partial order ≤
on E(R). We shall say that for any two e1 = {u1 < v1}, e2 = {u2 < v2} ∈ E(R) we
have e1 < e2 if v1 ≤ u2. We call a τ antichain if any two edges in τ are incomparable.

• The partitioning of (R, τ) if the colored rooted forest Rτ = R− τ obtained by
removing from R all the edges in τ .

• The root component of (R, τ) is the colored rooted subtree of Rτ denoted by
R∗τ which contains the root of R. When τ = {e} is a singleton we’ll denote R∗τ
simply as R∗e. The non-root component of Rτ is the colored rooted subforest
of Rτ denoted by Rτ −R∗τ which is obtained by removing R∗τ .

• The quotient tree induced by (R, τ) is the rooted tree R/τ ∈ T obtained from
R by collapsing all the connected components of Rτ into a single vertex.

For instance, if (R, τ) is the colored rooted tree

(R, τ) =
◦
•
•
•
•

••
•
•
•
•

•

where the edges in τ are denoted by dashed lines, we have

Rτ =
•
•
•

•
◦
•
•

•
•, R∗τ =

•
•
•

•
, Rτ −R∗τ =

◦
•
•

•
•, R/τ =

•
••
•
.

Definition 1.4.23. Given two colored rooted trees T, S we define the following
operations

• For any v ∈ V (T ) the grafting T ↙v S of S in v is the colored rooted tree
which has the same root of T and is obtained by joining the root of S with v
using a new edge.

v

◦
•
↙v

◦
•
•
•
•

•
=

◦
•
•
•
•

•◦
•
•

•

• The Butcher’s product of T and S is the colored rooted tree T ◦ S obtained by
grafting S in the root of T , i.e.: T ◦ S = T ↙ρT S.

◦
•
•

•
◦
◦
•
•
•
•

•
=

◦
•
•
•
•

•◦
•
•
•
•

•

1.4.2 Combinatorics of Pre-Lie Algebras

We show here how the combinatoric notions we presented so far come into play when
we deal with pre-Lie algebras.
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Definition 1.4.24. Let T (n) be the vector space spanned by all rooted trees with n
vertices. The space of rooted trees T is the direct sum T =

⊕
n>0 T (n). The space of

series of rooted trees T is the dual of T , i.e. the direct product T = T ∗ ∼=
∏
n>0 T (n).

We can define a complete filtration on the space T by setting F pT =
∏
n≥p T (n).

• , •
• ,

•
•
•

• , •
•

•
• , •

•
•
•
•

• , •
•
•

•

•
• , •

•

•
•
•

• , •
•

•
•

•
•
, . . .

Remark 1.4.25. The space T can be though as the subspace of T whose elements are
series with a finite number of non-trivial coefficients. Later on we will see that many
of the computations we are addressing turn out to be much easier after a proper
normalization. Whenever we have a series in terms of trees a =

∑
T aT T we will use

its normalized form, which is defined by setting

a =
∑
T

f(T ) T

σ(T ) ,

where σ(T ) is the symmetry factor of T (cf. 1.4.8). With this notation the map f
will be called the generating function of a, and we will write a =

−→
f .

Definition 1.4.26. The space of rooted forests F is the direct sum
⊕

k≥0Fk, where
Fk is spanned by the rooted forests with k connected components. We can think
F as the symmetric space on T , i.e. F ∼= ST =

⊕
k≥0 T

�k. The space of series of
rooted forests F is the dual of F , i.e. F = F∗ ∼=

∏
k≥0Fk. We denote the empty

forest with ∅.

Remark 1.4.27. Whenever we have a series of rooted trees
−→
f we will automatically

extend f to rooted forests by setting f(F ) = f(T1) . . . f(Tk) for any rooted forest
F = T1 . . . Tk.

Definition 1.4.28. We can now define a bilinear operation x : T ⊗ T → T , called
grafting product which for any couple of rooted trees T, S is defined by

T x S =
∑

v∈V (T )
T ↙v S .

This defines x on T , but it’s easy to see that x extends to T .

The operation of grafting product x on T , together with the filtration F ∗T ,
makes (T ,x) a complete right pre-Lie algebra. Moreover T is identified by a
universal property: it’s the free complete right pre-Lie algebra on one generator [11].
Moreover we use the empty forest ∅ as the ficticious unit on T .

Theorem 1.4.29. The complete right pre-Lie algebra T = (T ,x, F ∗) is the free
complete right pre-Lie algebra on one generator, i.e., it satisfies the following universal
property: given any complete right pre-Lie algebra L and any element x ∈ L, there
is a unique morphism of right pre-Lie algebras Ψ: T → L such that Ψ(•) = x.

{•} //

!!

T

Ψ
��
L .
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Proof. See [11].

Definition 1.4.30. In similar fashion as with T we can consider the colored
generators •1, . . . , •n (the colors range from 1 to n) and define the space T n as
T n =

⊕
m>0 Tn(m), where Tn(m) is the vector space generated by all colored rooted

trees with m vertices. We define Tn as the dual of T n. We will identify T with T1.
When n = 2 it’s pictorially convenient to denote •1 with • and •2 with ◦.

Again Tn is a complete right pre-Lie algebra with the natural extension of the
operation x and the filtration F ∗ to colored rooted trees. Again Tn satisfies a
universal property: it’s the free complete right pre-Lie algebra on n generators [11].

Theorem 1.4.31. The complete right pre-Lie algebra Tn = (Tn,x, F ∗) is the free
complete right pre-Lie algebra with n generators, i.e., it satisfies the following
universal property: given any complete right pre-Lie algebra L and any element
x1, . . . , xn ∈ L, there is a unique morphism of right pre-Lie algebras Ψ: Tn → L
such that Ψ(•i) = xi for every 1 ≤ i ≤ n.

{•1, . . . , •n} //

%%

Tn
Ψ
��
L

Remark 1.4.32. Given a commutative K-algebra A we can extend the pre-Lie product
x to Tn ⊗ A. We will write Tn[t] for Tn ⊗K[t]. Many of the following results are
proved on Tn[t] but extend easily on be easily on Tn ⊗A for a generic K-algebra A.

Definition 1.4.33. Let A be a commutative K-algebra and let
−→
f ∈ Tn⊗A. We call

the substitution morphism Ψf the unique pre-Lie morphism Ψf : T ⊗A→ Tn ⊗A
such that Ψf (•) =

−→
f .

Lemma 1.4.34 (Substitution Formula). Given −→f ∈ T [t] and −→g ∈ Tn[t] we have

Ψg(
−→
f ) =

−→
h , h(T ) =

∑
τ⊆E(T )

f(T/τ) g(Tτ ).

Proof. This can be proved directly. It’s related to the “substitution law” in the
context of B-series [21].

We have a nice description of the braces operations on Tn, infact it’s easy to see
that

Lemma 1.4.35. For any colored rooted trees T, T1, . . . , Tk we have

{T |T1, . . . , Tk} =
∑

v1,...,vk∈V (T )
(. . . (T ↙v1 T1)↙v2 . . .)↙vk Tk .
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Proof. We give a proof by induction on the number of vertices in T .

{T |T1, . . . , Tk} = {T |T1, . . . , Tk−1}x Tk −
k−1∑
i=1
{T |T1, . . . , Ti x Tk, . . . , Tk−1}

=

 ∑
v1,...,vk−1∈V (T )

(. . . (T ↙v1 T1)↙v2 . . .)↙vk−1 Tk−1

x Tk

−
k−1∑
i=1

∑
u1,...,uk−1

(. . . ((. . . (T ↙u1 T1)↙u2 . . .)↙ui (Ti x Tk))↙uk−1 Tk−1

=
∑

v1,...,vk−1∈V (T )

 k∑
i=1

∑
v∈V (Ti)

(. . . (T ↙v1 T1)↙v2 . . .)↙vk Tk

↙v Tk

+
∑

v1,...,vk−1∈V (T )

∑
v∈V (T )

(. . . (T ↙v1 T1)↙v2 . . .)↙v Tk

−
k−1∑
i=1

∑
u1,...,uk−1

(. . . ((. . . (T ↙u1 T1)↙u2 . . .)↙ui (Ti x Tk))↙uk−1 Tk−1

=
∑

v1,...,vk∈V (T )
(. . . (T ↙v1 T1)↙v2 . . .)↙vk Tk.

Lemma 1.4.36 (Product Formula). Given −→f ,−→g ∈ Tn[t] we have

−→
f x −→g =

−→
f g ,

where f g is the generating function defined by setting for every colored rooted tree T

(f g)(T ) =
∑

e∈E(T )
f(T ∗e ) g(T − T ∗e ) .

Proof. This is almost the same as lemma 2.8 from [40] in the context of B-series. We
give a shorter and more readable proof for reference. In order to prove the identity
we need to consider two different (but strictly related) group actions: first, given
any colored rooted tree T , consider the action of Aut(T ) on E(T ). The stabilizer of
any chosen e ∈ E(T ) is the subgroup of Aut(T ) of those automorphisms which split
as a composition of automorphisms of T ∗e and automorphisms of T − T ∗e , therefore

StabAut(T )(e) = Aut(T ) ∩ (Aut(T ∗e )×Aut(T − T ∗e ))

|OAut(T )(e)| =
|Aut(T )|

|Aut(T ) ∩ (Aut(T ∗e )×Aut(T − T ∗e ))| .

Shifting the picture we now fix two colored rooted trees R,S and consider a
second group action: the action of Aut(R)×Aut(S) on the set of all possible graftings

{R↙v S|v ∈ V (R)} .
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The stabilizer of any grafting R↙v S is the subgroup of those automorphisms in
Aut(R)×Aut(S) which act like an automorphism of R↙v S, therefore

StabAut(R)×Aut(S)(R↙v S) = Aut(R↙v S) ∩ (Aut(R)×Aut(S))

|OAut(R)×Aut(S)(R↙v S)| = |Aut(R)×Aut(S)|
|Aut(R↙v S) ∩ (Aut(R)×Aut(S))| .

In order to make these two group actions work together we first point out that
when R = T ∗e , S = T − T ∗e , if we call ve the lower vertex of e, we can write

|OAut(T )(e)|
|Aut(T )| =

|OAut(R)×Aut(S)(R↙ve S)|
|Aut(R)| |Aut(S)| .

Therefore, if for any colored rooted tree T ∈ {R ↙v S|v ∈ V (R)} we denote with
eT the new edge from the root of S to v, we can write

−→
f x −→g =

∑
R,S

f(R) g(S)

 ∑
v∈V (R)

R↙v S

σ(R)σ(S)


=
∑
R,S

f(R) g(S)

 ∑
T∈{R↙vS|v∈V (R)}

|OAut(R)×Aut(S)(T )|
σ(R)σ(S) T


=
∑
R,S

f(R) g(S)

 ∑
T∈{R↙vS|v∈V (R)}

|OAut(T )(eT )|
σ(T ) T


=
∑
T

∑
R,S

∑
e∈E(T ),R=T ∗e ,S=T−T ∗e

f(T ∗e ) g(T − T ∗e ) |OAut(T )(e)|
T

σ(T )

=
∑
T

 ∑
e∈E(T )

f(T ∗e ) g(T − T ∗e )

 T

σ(T ) ,

and the claim is proved.

As an immediate result we have a combinatoric description of the Lie bracket
defined by the commutator of x on Tn.

Corollary 1.4.37. Given −→f ,−→g ∈ Tn[t] we have

[
−→
f ,−→g ] =

−−→
[f, g]

where [f, g] is the function defined by setting for every colored rooted tree T

[f, g](T ) = (f g)(T )− (g f)(T ) =
∑

e∈E(T )
f(T ∗e ) g(T − T ∗e )− g(T ∗e ) f(T − T ∗e ) .

Corollary 1.4.38. Given −→f ,−→g ∈ Tn[t] we have

(−x −→g )k(
−→
f ) =

−→
h , h(T ) =

∑
τ⊆E(T ),|τ |=k

f(T ∗τ ) g(Tτ − T ∗τ ) Ord(T/τ) .
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Proof. We can give a proof by induction on k. The case k = 1 is exactly lemma
1.4.36. Assume k > 1, we have

(−x −→g )k(
−→
f ) = (−x −→g )k−1(

−→
f x −→g ) = (−x −→g )k−1(

−→
h ) ,

where h is the map defined by setting

h(T ) =
∑

e∈E(T )
f(T ∗e ) g(T − T ∗e ) .

Therefore, by induction, (−x −→g )k(
−→
f ) =

−→
h′ , where h′ is defined by

h′(T ) =
∑

τ⊆E(T ),|τ |=k−1
h(T ∗τ ) g(T − T ∗τ )Ord(T/τ)

=
∑

τ⊆E(T ),|τ |=k−1

∑
ω∈O(T/τ)

h(ω1) g(ω2) . . . g(ωk) ,

where for each ordering ω ∈ O(T/τ) the rooted tree ωi is the connected component
of T − τ which gets collapsed into the i-th vertex of ω. Therefore we can write

h′(T ) =
∑

τ⊆E(T ),|τ |=k−1

∑
e∈E(ω1∗e

f(ω1
∗
e) g(ω1 − ω1

∗
e) g(ω2) . . . g(ωk) g(T − T ∗e )

=
∑

τ⊆E(T ),|τ |=k

∑
ω′∈O(T/τ)

f(ω′1) g(ω′2) . . . g(ω′k+1)

=
∑

τ⊆E(T ),|τ |=k
f(T ∗τ ) g(T − T ∗τ ) Ord(T/τ) .

and the claim is proved.

Corollary 1.4.39. Given −→f ,−→g ∈ Tn[t] we have

{
−→
f | −→g , . . . ,−→g︸ ︷︷ ︸

k

} =
−→
φ , φ(T ) = k!

∑
τ⊆E(T ),|τ |=k
τ antichain

f(T ∗τ ) g(T − T ∗τ ) .

Proof. We have

{
−→
f | −→g , . . . ,−→g︸ ︷︷ ︸

k

} =
∑

T,S1,...,Sk
v1∈V (S1),...,vk∈V (Sk)

f(T ) g(S1) . . . g(Sk)
σ(T )σ(S1) . . . σ(Sk)

T ↙v1 S1 . . .↙vk Sk .

This corollary is a generalization of Lemma 1.4.36. With very little effort it’s possible
to adapt the proof of Lemma 1.4.36 itself to work with higher values of k, and prove
the statement in similar fashion.

We end this section with a more abstract overview of the algebraic structures
we want to use. The vector spaces T and F can be endowed with two structures
of counital coassociative coalgebras defined respectively in terms of quotient of
subtrees and difference of rooted subforests (cf 1.4.8, 1.4.10). These two coalgebras
are isomorphic via pruning and suspension.
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Definition 1.4.40. The tree coproduct is the linear map ∆: T → T ⊗T defined by

∆(T ) =
∑
∅6=X⊆T

X ⊗ (T/X) .

The tree counit is the linear map ε : T → K the map defined by

ε(X) =
{

1 X = •
0 otherwise .

We have
Proposition 1.4.41. T = (T ,∆, ε) is a coassociative counital coalgebra.
Proof. First we prove coassociativity, i.e. (Id⊗∆)∆ = (∆⊗ Id)∆:

(∆⊗ Id)(∆T ) =
∑
∅6=X⊆T

∑
∅6=Y⊆X

Y ⊗ (X/Y )⊗ (T/X)

=
∑
∅6=X⊆T

X ⊗

 ∑
X 6=Y⊆T

(Y/X)⊗ (T/Y )


=

∑
∅6=X⊆T

X ⊗

 ∑
∅6=Y⊆T/X

Y ⊗ (T/X)/Y

 = (Id⊗∆)(∆T ) .

Then we need to prove (Id⊗ε)∆ = Id = (ε⊗ Id)∆:

(Id⊗ε)(∆T ) =
∑
∅6=X⊆T

X ⊗ ε(T/X) = T ⊗ ε(•) = T

(ε⊗ Id)(∆T ) =
∑
∅6=X⊆T

ε(X)⊗ (T/X) = ε(•)⊗ T/• = T .

Definition 1.4.42. The forest coproduct is the linear map Ω: F → F ⊗F defined
by

Ω(F ) =
∑
X⊆F

X ⊗ (F −X) .

The tree counit is the linear map η : F → K defined by

η(X) =
{

1 X = ∅
0 otherwise .

Proposition 1.4.43. F = (F ,Ω, η) is a coassociative counital coalgebra.
Proof. First we prove the coassociativity of Ω

(Id⊗Ω)(ΩF ) =
∑
X⊆F

X ⊗ Ω(F −X)

=
∑

X⊆F,Y⊆F−X
X ⊗ Y ⊗ (F −X − Y )

=
∑

Z⊆F,W⊆Z
W ⊗ (Z −W )⊗ (F − Z)

= (Ω⊗ Id)(ΩF ) ,
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then we prove that η is a counit

(Id⊗η)(ΩF ) =
∑
X⊆F

X η(F −X) = F ,

(η ⊗ Id)(ΩF ) =
∑
X⊆F

η(X) (F −X) = F .

Remark 1.4.44. The coproduct defined by Ω is related to the Connes-Kreimer
coproduct [12], which is defined in terms of “admissible cuts”.

Proposition 1.4.45. The maps p : T → F and it’s inverse s : F → T are isomor-
phisms of counital coalgebras.

Proof. Let F be a rooted forest, then we have

s⊗2Ω(F ) =
∑
X⊆F

sX ⊗ s(F −X)

=
∑

∅6=Y⊆sF
Y ⊗ (sF − Y ) = ∆(sF ) .

Moreover it’s immediate to see that η(F ) = ε(sF ). Let T be a rooted trees, then we
have

p⊗2∆(T ) =
∑
∅6=X⊆T

pX ⊗ p(T/X)

=
∑
∅6=X⊆T

pX ⊗ (pT − pX)

=
∑
Y⊆pT

Y ⊗ (pT − Y ) = Ω(pT ) .

Again we have ε(T ) = η(pT ), and this concludes the proof.

Remark 1.4.46. In similar fashion we can consider the coproduct defined on colored
rooted forests by

Ω(F ) =
∑
X⊆F

X ⊗ (F −X) ,

and a counit

η(F ) =
{

1 F = ∅
0 otherwise .

for any colored rooted forest F . This defines a structure of counital coassociative
coalgebra. We observe that in the colored case we restrict our attention to the
coalgebra structure on Fn, and we have no unique proper extension of the coalgebraic-
theoretic relation between Fn and T n. The reason for this is that we can define the
suspension map s : Fn → T n in multiple ways because for any colored rooted forest
F we would have to chose a color for the new root of sF . This choice of course is
not unique, and with any such choice we lose many of the properties we have in the
non-colored case.
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Remark 1.4.47. The fact that F is a coalgebra makes possible to define an associative
product on the dual, and therefore on F , via convolution.

Proposition 1.4.48. Given −→f ,−→g ∈ Tn[t] we have

(∅+
−→
f ) } (∅+−→g ) = ∅+

−−→
f ∗ g , (f ∗ g)(T ) =

∑
X⊆T

f(X) g(T −X) .

Proof. It’s a consequence of corollary 1.4.39. We have

(∅+
−→
f ) } (∅+−→g ) = ∅+−→g +

∑
n≥0

1
n! {
−→
f | −→g , . . . ,−→g︸ ︷︷ ︸

n

} = ∅+
−−−−−−−−−→
g +

∑
n≥0

1
n! φn ,

where the liner map φn is defined, as in Corollary 1.4.39, by

φn(T ) = n!
∑

τ⊆E(T ) antichain,|τ |=n
f(T ∗τ ) g(T − T ∗τ ) ,

and we have

g(T ) +
∑
n≥0

1
n! φn(T ) = g(T ) +

∑
n≥0

∑
τ⊆E(T ) antichain,|τ |=n

f(T ∗τ ) g(T − T ∗τ )

= g(T ) +
∑

τ⊆E(T ) antichain
f(T ∗τ ) g(T − T ∗τ )

= g(T ) +
∑
∅6=X⊆T

f(X) g(T −X)

=
∑
X⊆T

f(X) g(T −X) = (f ∗ g)(T ) ,

and this concludes the proof.

Corollary 1.4.49. For any complete right pre-Lie algebra V = (V,C) the circle
product } : (1 + V )× (1 + V )→ 1 + V is associative.

Proof. Since we can write } in terms of nested compositions of C it’s sufficient
to prove this in the universal case, i.e. for V = T . In this case we can use
Proposition 1.4.48 and observe that f ∗ g is actually the convolution with respect to
the (coassociative) coproduct Ω. In explicit terms we have

((∅+
−→
f ) } (∅+−→g )) } (∅+

−→
h ) = ∅+

−−−−−−−→
(f ∗ g) ∗ h

= ∅+
−−−−−−−→
f ∗ (g ∗ h)

= (∅+
−→
f ) } ((∅+−→g ) } (∅+

−→
h )) .
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Chapter 2

Formality of L∞-Algebras

In this chapter we investigate the notion of formality for differential graded Lie
algebras and L∞-algebras. In Section 2.0.1 we review the definition of triple Lie-
Massey product given by Retakh in [37], following the original definition up to a
sign. In Section 2.0.2 we describe the Chevalley-Eilenberg spectral sequence and the
Euler class, and give a brief review of the formality criterion found by Manetti in
[29]. In Section 2.1 we investigate the relationship between the Euler class and triple
Lie-Massey products and show how we can recover triple Lie-Massey products from
the differential of the Euler class. In Section 2.2 we develop the notion of higher
formality and extend the formality criterion in [29] to higher degrees.

Definition 2.0.1. A differential graded Lie algebra (L, d, [−,−]) is called formal if
it is quasi-isomorphic to its cohomology graded Lie algebra H∗(L), intended as a
DG-Lie algebra with trivial differential. In other terms if there exists a zig-zag of
quasi-isomorphisms between them

L1

��   

· · ·

~~ ""

Ln

|| ##
L L2 Ln−1 H∗(L)

Proving that a differential graded Lie algebra is formal is usually a non-trivial
task. We give the following remarkable example in order to show how tricky it can
be. We shall see later how the Euler class, introduced by Manetti in [29], provides a
simpler tool to prove formality.

Proposition 2.0.2 (Formality of Hom Complex). For every DG vector space (V, d),
the differential graded Lie algebra Hom∗K(V, V ) is formal.

Proof. For every DG-vector space V , the differential graded Lie algebra Hom∗K(V, V )
is formal. In fact, for every index i we may choose a vector subspace H i ⊆ Zi(V )
such that the projection H i → H i(V ) is bijective. Then the inclusion of DG-
vector space H = ⊕iH i → V is a quasi-isomorphism. The subspace K = {f ∈
Hom∗K(V, V )|f(H) ⊆ H} is a differential graded Lie subalgebra and there exists a
commutative diagram of complexes with exact rows
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0 // K α //

β

��

Hom∗K(V, V ) //

γ

��

Hom∗K(H,V/H) //

Id
��

0

0 // HomK(H,H) // HomK(H,V ) // Hom∗K(H,V/H) // 0

The maps α and β are morphisms of differential graded Lie algebras. By
Künneth formula the complex Hom∗K(H,V/H) is acyclic and γ is a quasi-isomorphism,
therefore also α and β are quasi-isomorphisms.

2.0.1 Triple Lie-Massey Products

The notion of triple Massey product provides a first obstruction to formality, but,
quoting from [39], “Massey product structures can be very helpful, though they are
in general described in a form that is unsatisfactory”. For differential graded Lie
algebras a similar notion was developed by Retakh in [37] and goes by the name of
triple Lie-Massey product. Later on we will present a new way to interpret triple
Lie-Massey products using the Euler class. In this work we follow the definition of
triple Lie-Massey product given by Retakh in [37] up to a sign.

Definition 2.0.3. Take a differential graded Lie algebra (L, d, [−,−]) and consider
three cocycles x1, x2, x3, with xi ∈ Zni(L), such that [xj , xk] = 0 in cohomology for
every j < k. Then it must be [xi, xj ] = dyi,j for some yi,j ∈ Lni+nj−1. We define
〈xi, yj,k〉 ∈ Ln1+n2+n3−1 as the element

〈xi, yj,k〉 = [y1,2, x3]− (−1)n2 n3 [y1,3, x2] + (−1)n1 (n2+n3) [y2,3, x1]
=

∑
σ∈S(2,1)

χ(σ) [yσ(1),σ(2), xσ(3)] ∈ Ln1+n2+n3−1 .

Remark 2.0.4. The original definition of 〈xi, yj,k〉 is given by Retakh in [36]. To
recover the original definition we only have to multiply 〈xi, yj,k〉 by the sign (−1)n2 .
The reason underneath our choice is suggested by the context of L∞-algebras, where
the antisymmetric Koszul signs appear more naturally and allow us to work easily
and systematically with the signs. Finally observe that we could write yi,j with the
notation y(xi, xj) and the antisymmetric Koszul sign would be preserved:

〈xi, yj,k〉 =
∑

σ∈S(2,1)
χ(σ) [y(xσ(1), xσ(2)), xσ(3)] .

Proposition 2.0.5. The element 〈xi, yj,k〉 ∈ Ln1+n2+n3−1 is a cocycle.

Proof. We have

d〈xi, yj,k〉 =
∑

σ∈S(2,1)
χ(σ) [[xσ(1), xσ(2)], xσ(3)] = 0

by the Jacobi identity [37].
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Remark 2.0.6. The choice of elements yi,j is of course not unique. Every different
choice y′i,j such that dy′i,j = [xi, xj ] differs from yi,j by a cocycle. Therefore to make
the definition of 〈xi, yj,k〉 independent from the choices of yi,j ’s we can consider
instead its class.

Definition 2.0.7. Let (L, d, [−,−]) be a differential graded Lie algebra, and let
x1, x2, x3 ∈ L be cocycles such that [xi, xj ] = 0 ∈ H∗(L) for any i < j. Chose any
yj,k ∈ Lnj+nk−1 such that dyj,k = [xj , xk] for every j < k. We define the triple
Lie-Massey product of x1, x2, x3 as

[x1, x2, x3] = class of 〈xi, yj,k〉 ∈
H∗(L)

[x1, H∗(L)] + [x2, H∗(L)] + [x3, H∗(L)] .

Remark 2.0.8. The element [x1, x2, x3] is not independent from the choices of the
xi’s. Replacing the xi’s even with equivalent representatives in the same cohomology
class affects the value of [x1, x2, x3].

Definition 2.0.9. Given three cohomology classes α1, α2, α3 ∈ H∗(L) the triple
Lie-Massey product of α1, α2, α3 is the set

[α1, α2, α3] =
{

[x1, x2, x3]
∣∣∣∣ [xi] = αi, i = 1, 2, 3

}
.

Proposition 2.0.10. Let f : L → M be a morphism of differential graded Lie
algebras. Then if x1, x2, x3 ∈ L are cocycles such that [xj , xk] is a coboundary for
every j < k then f(x1), f(x2), f(x3) define a triple Lie-Massey product in M , and
we have

[f(x1), f(x2), f(x3)] = f([x1, x2, x3]) .

Moreover if f is a surjective quasi-isomorphism we have [x1, x2, x3] = 0 if and only
if [f(x1), f(x2), f(x3)] = 0.

Proof. In L the triple Lie-Massey product [x1, x2, x3] is the class of 〈xi, yj,k〉. Since
f is a morphism of DGLAs it’s immediate to see that f(x1), f(x2), f(x3) are cocycles
and [f(xj), f(xk)] are coboundary for every j < k. Therefore [f(x1), f(x2), f(x3)] is
well-defined and, since 〈f(xi), f(yj,k)〉 = f(〈xi, yj,k〉) we have [f(x1), f(x2), f(x3)] =
f([x1, x2, x3]).

Now let f be a surjective quasi-isomorphism and let f(x1), f(x2), f(x3) be cocy-
cles in M such that [f(xj), f(xk)] = f([xj , xk]) vanish in cohomology for every j < k
and let [f(x1), f(x2), f(x3)] = 0. The element [f(x1), f(x2), f(x3)] is the class of some
〈f(xi), zj,k〉 with dzj,k = [f(xj), f(xk)] for every j < k. Since [f(x1), f(x2), f(x3)] =
0 we have 〈f(xi), zj,k〉 =

∑
i[f(xi), wi] in cohomology for some wi cocycles in M .

Since f is a surjective quasi-isomorphism we can write wi = f(αi) for some αi cocycle
in L. Since f is a quasi-isomorphism and f([xj , xk]) = [f(xj), f(xk)] is trivial in
cohomology the cocycles [xj , xk] are trivial in cohomology as well. Therefore the
triple Lie-Massey product of x1, x2, x3 is defined and is the class of some 〈xi, yj,k〉 for
some yj,k in L such that dyj,k = [xj , xk] for every j < k. Therefore in cohomology we
have f(〈xi, yj,k〉) = 〈f(xi), zj,k〉 = f(

∑
i[xi, αi]) and, since f is a quasi-isomorphism,

we have 〈xi, yj,k〉 =
∑
i[xi, αi] in cohomology, and therefore [x1, x2, x3] = 0.
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Remark 2.0.11. The role of triple Lie-Massey products is well known in deformation
theory. Take a differential graded Lie algebra L = (L, d, [−,−]) together with three
cocycles x1, x2, x3 ∈ L, with xi = ni for every i. Consider now the graded Artin
algebras

Ai = K[ei]
(e2
i )

, A = K[e1, e2, e3]
(e2

1, e
2
2, e

2
3, e1 e2 e3)

, B = K[e1, e2, e3]
(e2

1, e
2
2, e

2
3)

,

where ei’s are symbols of degree ei = 1− ni (when ei is odd the condition e2
i = 0 is

already satisfied) and trivial differential. It’s immediate to see that for every i the
set of Maurer-Cartan elements in L⊗mAi is Zni(L) ei, and we have the following
characterizations

• The elements x1, x2, x3 can be lifted to some ξ ∈ MC(L⊗mA) if and only if
[xj , xk] is a coboundary for every j < k. Indeed a generic element ξ ∈ L⊗mA

of degree 1 which lifts x1, x2, x3 has the form

ξ =
∑
i

xi ei +
∑
j<k

(−1)nj yj,k ekej ,

for some scalars y1,2, y1,3, y2,3. If we impose that ξ is a Maurer-Cartan element
in L⊗mA we obtain

0 = dξ + 1
2 [ξ, ξ]

=
∑
j<k

(−1)nj dyj,k ek ej +
∑
j<k

[xj , xk] ek ej (−1)1−nj

=
∑
j<k

(−1)nj (dyj,k − [xj , xk]) ek ej .

Therefore ξ is a Maurer-Cartan element in L⊗mA if and only if dyj,k = [xj , xk]
for every j < k, and their triple Lie-Massey product [x1, x2, x3] is defined.

• Moreover if we take ξ ∈ MC(L⊗mA) as defined above, i.e.

ξ =
∑
i

xi ei +
∑
j<k

(−1)nj yj,k ekej ,

with dxi = 0 for every i and dyj,k = [xj , xk] for every j < k, the obstruction
to lift ξ to some ξ ∈ MC(L ⊗ mB) is given by the vanishing of 〈xi, yj,k〉 in
cohomology. Indeed any such ξ′ ∈ L⊗mB can be written as

ξ′ =
∑
i

xi ei +
∑
j<k

(−1)nj yj,k ekej + η e1 e2 e3 ,

for some scalar η. If we require ξ′ to solve the Maurer-Cartan equation in
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L⊗mB we have

0 = dξ′ + 1
2 [ξ′, ξ′]

=
∑
j<k

(−1)nj dyj,k ek ej +
∑
j<k

[xj , xk] ek ej (−1)1−nj

+ dη e1 e2 e3 +
∑
i,j<k

(−1)nj [yj,k ek ej , xi ei]

= dη e1 e2 e3 +
∑
i,j<k

(−1)m+nk+1 [yj,k, xi] ej ek ei ,

where we denote with m the integer m = n1 n2 +n1 n3 +n2 n3. We can rewrite
the previous equation in terms of shuffles and obtain

0 = dη e1 e2 e3

+ (−1)m+1 ∑
σ∈S(2,1)

(−1)nσ(2) ε(σ; e1, e2, e3) [yσ(1),σ(2), xσ(3)] e1e2e3 .

Computing the symmetric Koszul signs explicitely we have

ε(Id) = 1 ,
ε((2 3)) = (−1)(1−n2)(1−n3) ,

ε((2 3 1)) = (−1)(1−n1)(2−n3−n2) ,

and substituting we obtain

0 = dη e1 e2 e3

+ (−1)m+1+n2
(
[y1,2, x3]− (−1)n2n3 [y1,3, x2] + (−1)n1(n2+n3) [y2,3, x1]

)
e1e2e3

= dη e1 e2 e3 + (−1)m+1+n2 〈xi, yj,k〉 e1 e2 e3 ,

which implies dη = ±〈xi, yj,k〉.

2.0.2 The Chevalley-Eilenberg Spectral Sequence

We recall here the notions we need from [29] and give a brief review in order to
present our result.

Definition 2.0.12. Let f : L→M be a morphism of DG-Lie algebras, then M is
an L-module via the adjoint representation [m,x] = [m, f(x)]. Consider now the
DG-vector space

CE(L,M)p,∗ = Hom∗K(L∧p,M) ,

together with the differential δ : CE(L,M)p,q → CE(L,M)p,q+1 defined by

(δφ)(x1, . . . , xp) = d(φ(x1, . . . , xp))−
p∑
i=1

(−1)φ+x1+···+xi−1 φ(x1, . . . , dxi, . . . , xp) ,

where we identify every element of CE(L,M)p,∗ with a p-linear graded skewsym-
metric map L⊗p →M (and as usual L∧0 = K, CE(L,M)0,∗ = M).
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The Chevalley-Eilenberg complex of L with coefficients in M is the complex of
DG-vector spaces:

CE(L,M) : 0→ CE(L,M)0,∗ δ−→ CE(L,M)1,∗ δ−→ CE(L,M)2,∗ → · · · ,

i.e., the complex

CE(L,M) : 0→M
δ−→ Hom∗K(L,M) δ−→ Hom∗K(L∧2,M)→ · · ·

where the differential δ is defined as:

1. for every m ∈M we have (δm)(x) = (−1)m [m,x];

2. for every φ ∈ Hom∗K(L,M) we have

(δφ)(x, y) = (−1)φ+1
(
[φ(x), y]− (−1)x y [φ(y), x]− φ([x, y])

)
;

3. for p ≥ 2 and φ ∈ Hom∗K(L∧p−1,M) we have:

(δφ)(x1, . . . , xp) = (−1)φ+p−1

 ∑
σ∈S(p−1,1)

χ(σ)[φ(xσ(1), . . . , xσ(p−1)), xσ(p)]

−
∑

ρ∈S(p−2,2)
χ(ρ)φ(xρ(1), . . . , xρ(p−2), [xρ(p−1), xρ(p)])

 .

Remark 2.0.13. The Chevalley-Eilenberg complex is a double complex (with anti-
commuting squares, following the definition of Godement [19]). It’s possible to prove
directly the identities δ = 0, δ = 0, δ δ + δ δ, but it’s tedious, as mentioned in [29].
This fact will appear more evident after defining the Chevalley-Eilenberg spectral
sequence for L∞-algebras.

As with any double complex with anti-commuting squares we have (δ + δ)2 = 0.
Therefore we can define the total complex

Definition 2.0.14. Let f : L→M be a morphism of DG-Lie algebras. The total
complex of CE(L,M) is the DG-vector space

A = Tot
∏

(CE(L,M), δ, δ̄) : · · · → Ai
δ+δ−−→ Ai+1 → · · · ,

whereAn =
∏
p+q=n Homq

K(L∧p,M). The Chevalley-Eilenberg cohomology H∗CE(L,M)
of the differential graded Lie algebra L with coefficients in the L-module M is the
cohomology of the total complex Tot

∏
(CE(L,M), δ, δ̄).

In order to define the Chevalley-Eilenberg spectral sequence consider the following
decreasing, exhaustive and complete filtration

F pCE(L,M) = Hom∗K

⊕
i≥p

L∧i,M

 ∼= ∏
i≥p

Hom∗K(L∧i,M), p ≥ 0 .
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In these notes we follow the definition of cohomology spectral sequence according to
Godement [19], which we report here for the sake of readability. Let (F ∗,M, d) be a
filtered differential abelian group, i.e M is an abelian group, d is a homomorphism
d : M →M such that d2 = 0 and F ∗ is a decreasing filtration which is preserved by
d, i.e. d(F pM) ⊂ F pM . The associated spectral sequence (Epr , dr), r ≥ 0, is defined
as

Zpr = {x ∈ F pM | dx ∈ F p+rM}, Epr = Zpr

Zp+1
r−1 + dZp−r+1

r−1
,

and, since d sends Zp+1
r−1 + dZp−r+1

r−1 to Zp+r−1
r−1 + dZp+1

r−1 the maps

dr : Epr → Ep+rr

are induced by d in the obvious way. We shall say that a cohomology spectral
sequence (Ep,qr , dr) degenerates at Ek if dr = 0 for every r ≥ k.

Definition 2.0.15. Let f : L → M be a morphism of DG-Lie algebras. We shall
denote by (E(L,M)p,qr , dr) the Chevalley-Eilenberg spectral sequence, i.e. the co-
homology spectral sequence associated to the total complex Tot

∏
CE(L,M) with

the filtration F ∗CE(L,M). The differential on E(L,M)p,qr is induced by the total
differential on CE(L,M)p,q.

Remark 2.0.16. The lowest pages of the spectral sequence can be easily computed.
Page 0 is immediatly recovered as E(L,M)p,q0 = Homq

K(L∧p,M). For page one we
just apply the Künneth formula for HomK and obtain

E(L,M)p,∗1 = H∗(Hom∗K(L∧p,M))
= Hom∗K(H∗(L)∧p, H∗(M)) = E(H∗(L), H∗(M))p,∗1 .

The differential d1 : E(L,M)p,q1 → E(L,M)p+1,q
1 depends only by the graded Lie

algebra H∗(L) and its module H∗(M), giving

E(L,M)p,∗2 = E(H∗(L), H∗(M))p,∗2 = Hp(CE(H∗(L), H∗(M)), δ) ,

and therefore

E(L,M)1,∗
2 = E(H∗(L), H∗(M))1,∗

2 = {derivations H
∗(L)→ H∗(M)}

{inner derivations} .

Definition 2.0.17. Given a morphism of DGLAs f : L→M the Euler derivation
of f , is the map E(L,M ; f)1,0

1 3 ef : H∗(L)→ H∗(M) defined by

ef (x) = x f(x)

for every x ∈ H∗(L), where x denotes the degree of x.

It turns out that ef is actually a derivation in cohomology. This fact is equivalent
to the equation given by d1ef = 0.

Lemma 2.0.18. Let ef ∈ E(L,M ; f)1,0
1 be the Euler derivation of a morphism of

DGLAs f : L→M . Then d1(ef ) = 0.
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Definition 2.0.19 (Euler class). The Euler class of a morphism of differential graded
Lie algebras f : L → M is the element ef ∈ E(L,M)1,0

2 = E(H∗(L), H∗(M))1,0
2

corresponding to the Euler derivation

ef : H∗(L)→ H∗(M) , ef (x) = x f(x) .

The Euler class of a DG-Lie algebra L is defined as the Euler class of the identity
on L.

Every morphism of differential graded Lie algebras f : L → M induces by
composition two natural morphisms of double complexes

CE(L,L) f∗ // CE(L,M) CE(M,M)f∗oo

and then also two morphisms of spectral sequences

E(L,L)p,qr
f∗ // E(L,M)p,qr E(M,M)p,qr

f∗oo . (2.1)

preserving Euler classes. Moreover the Euler class is invariant under weak equiva-
lences.

Theorem 2.0.20 (Manetti [29], Theorem 3.3). Let (E(L,L)p,qr , dr) be the Chevalley-
Eilenberg spectral sequence of a differential graded Lie algebra L. Then the following
conditions are equivalent:

1. L is formal;

2. the spectral sequence E(L,L)p,qr degenerates at E2;

3. denoting by

e ∈ E(L,L)1,0
2 = Der0

K(H∗(L), H∗(L))
{[x,−] | x ∈ H0(L)} , e(x) = x · x,

the Euler class of L, we have dr(e) = 0 ∈ E(L,L)r+1,1−r
r for every r ≥ 2;

Remark 2.0.21. The cohomology of any differential graded Lie algebra L = (L, d, [−,−])
inherits a structure of L∞-algebra (H∗(L), 0, [−,−], r3, r4, . . .) which is unique up to
isomorphism. As proved in [29], on the minimal model of L the differential d2 can
be interpreted as the left-adjoint action of r3 via the Nijenhuis-Richardson bracket,
and the vanishing of d2e is equivalent to the vanishing of the cubic component r3.
Therefore the Maurer-Cartan equation can be written by using non-cubic terms.
Remark 2.0.22. The total differential d on F pCE(L,M)∗ ∼=

∏
k≥p Hom∗K(L∧k,M) is

given by

dφ = (
p︷ ︸︸ ︷

0, . . . , 0, δφp, δφp+1 + δφp, δφp+2 + δφp+1, . . .)

for any φ = (
p︷ ︸︸ ︷

0, . . . , 0, φp, φp+1, . . .) ∈ F pCE(L,M)∗. Therefore, in order to evaluate
d2 on any element x ∈ E(L,M)p2, we just need to take some representative φ =
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(0, φ1, φ2, . . .) ∈ Z(L,M)p2 ⊆
∏
k≥p Hom∗K(L∧k,M) of the class x ∈ E(L,M)p2 and

compute the class in E(L,M)p+2
2 of the element

dφ = (
p︷ ︸︸ ︷

0, . . . , 0, δφp, δφp+1 + δφp, δφp+2 + δφp+1, . . .).

If we want to study the Euler class e ∈ E(L,L)1,0
2 we just need to take any

cocycle φ representing e, i.e. any element

φ = (0, φ1, φ2, . . .) ∈
∏
k≥0

Hom1−k
K (L∧k, L)

such that the “cocycle condition” for d1{
δφ1 = 0
δφ1 + δφ2 = 0

is satisfied, and that induces the Euler derivation x 7→ x ·x on H∗(L). Note that the
cocycle condition is the requirement for φ1 to be a derivation on H∗(L), because for
any cocycles x, y ∈ Z∗(L) we can write

0 = (δφ2)(x, y) + (δφ1)(x, y) = dφ2(x, y)− ([x, φ1(y)] + [φ1(x), y]− φ1([x, y])),

therefore φ1([x, y]) = [x, φ1(y)] + [y, φ1(x)] in cohomology. The differential of the
Chevalley-Eilenberg spectral sequence can be read inside dφ, and since

dφ = (0, δφ1, δφ2 + δφ1, δφ3 + δφ2, . . .)

the element d2e, up to coboundaries, is the element δφ3 + δφ2.

2.1 Euler Classes and Triple Lie-Massey Products

Definition 2.1.1. Given a morphism of differential graded Lie algebras f : L→M
and xi ∈ L for i = 1, 2, 3 such that dxi = 0 for every i and [xi, xj ] = 0 for any i < j,
let x′i = f(xi). Using the previous notations we can define a map, called Lie-Massey
evaluation

µx1,x2,x3 : E(L,M)3,−1
2 −→ H∗(M)

[x′1, H∗(M)] + [x′2, H∗(M)] + [x′3, H∗(M)]

by setting
µx1,x2,x3(α) = φ(x1, x2, x3)

for any choice of a representative φ ∈ Z(L,M)3,−1
2 of the class α ∈ E(L,M)3,−1

2 .

This assignment defines an actual map, as proven below

Lemma 2.1.2. In the previous settings the map µx1,x2,x3 is well-defined.
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Proof. Take some class α ∈ E(L,M)3,−1
2 , and recall that

E(L,M)3,−1
2
∼=

Z(L,M)3,−1
2

Z(L,M)4,−2
1 + dZ(L,M)2,−1

1
.

Fix any cocycle φ ∈ Z(L,M)3,−1
2 representing α. First observe that φ(x1, x2, x3) ∈

H∗(M), due to the equation δφ3 = 0. In order to show that µx1,x2,x3 is well-defined
we have to prove that if φ ∈ Z(L,M)4,−1

1 + dZ(L,M)2,−1
1 we have

φ2(x1, x2, x3) ∈ [x′1, H∗(M)] + [x′2, H∗(M)] + [x′3, H∗(M)] .

It’s not restrictive to assume φ ∈ dZ(L,M)2,−1
1 , since every φ′ ∈ Z(L,M)4,−2

1 is
trivial on L∧3.

Let φ = dψ for some ψ ∈ Z(L,M)2,−1
1 , then we have

φ = (0, 0, 0, δψ3 + δψ2, . . .) ,

for some ψ2 with δψ2 = 0. Therefore µx1,x2,x3(α) is represented by

(δψ2)(x1, x2, x3) ∈ H∗(M)
[x′1, H∗(M)] + [x′2, H∗(M)] + [x′3, H∗(M)] .

Up to the right signs we have

(δψ2)(x1, x2, x3) =
∑
± [ψ2(xi, xj), x′k] +

∑
±ψ2(xi, [xj , xk]) ,

where both sums range over distinct choices of i, j, k.

• First we have [ψ2(xi, xj), x′k] ∈ [x′k, H∗(M)] in cohomology. This is because we
have δψ2 = 0, and (δψ2)(xi, xj) = 0 implies dψ2(xi, xj) = 0;

• Then we have ψ2(xi, [xj , xk]) = 0 in cohomology. We can write [xi, xj ] = dyi,j
for some yi,j ∈ L for every i < j. Due to the equation δψ2 = 0, we have
(δψ2)(xi, yj,k) = 0 and this implies dψ2(xi, yj,k)±ψ2(xi, [xj , xk]) = 0. Therefore
ψ2(xi, [xj , xk]) is a coboundary, and this concludes the proof.

Consider now this simple construction: let L be the free graded Lie algebra
generated by six elements

ui ∈ Lni , hj,k ∈ Lnj+nk−1

for every i, j, k ∈ {1, 2, 3} with j < k, equipped with the differential d defined by the
relations

dui = 0 , dhj,k = [uj , uk]

for every i, j, k ∈ {1, 2, 3} with j < k. The differential graded Lie algebra L is a
universal object among all those DGLAs for which the triple Lie-Massey product of
three cocycles of degrees n1, n2, n3 is defined: ifM is a DGLA and xi ∈ Zni(M) such
that [xi, xj ] = dyi,j for some yi,j ∈Mni+nj−1 then there exists a unique morphism
of DGLAs f : L→M such that f(ui) = xi and f(hi,j) = yi,j .



2.1 Euler Classes and Triple Lie-Massey Products 47

{ui, hj,k|j < k} ı //

&&

L

f

��
M

Remark 2.1.3. A representative of the Euler class e ∈ E(L,L)1,0
2 is any element

φ = (0, φ1, φ2, . . .) ∈
∏
k≥0

Hom1−k
K (L∧k,L)

such that {
δφ1 = 0
δφ1 + δφ2 = 0

is satisfied, and such that φ1 : x 7→ x · x on H∗(L). The element d2e is represented
by

dφ = (0, 0, 0, δφ3 + δφ2, . . .),
therefore, when we want to compute µu1,u2,u3(d2e) we just need to compute the
cohomology class of (δφ2)(u1, u2, u3) modulo [x1, H

∗(L)] + [x2, H
∗(L)] + [x3, H

∗(L)].
In order to study the Euler class we have to chose a representative in Z(L,L)1,0

2 ,
but the choice is not unique. Any other choice which differs by some element of
Z(L,L)2,−1

1 + dZ(L,L)0,0
1 will fit as well. Due to this freedom of choice we can make

a further simplification to the representative that we intend to use.
Lemma 2.1.4. Let L be the DGLA defined above. Then there exists some φ =
(0, φ1, φ2, . . .) ∈ Z(L,L)1,0

2 representing the Euler class e ∈ E(L,L)1,0
2 such that

φ1(ui) = ni ui for every i ∈ {1, 2, 3}.
Proof. Take some representative φ = (0, φ1, φ2, . . .) of the Euler class. Then we
have φ1(ui) = ni ui + dαi for some αi ∈ Lni−1. Consider now the element ψ =
(0, ψ1, 0, . . .) ∈ Z(L,L)0,0

1 defined by setting ψ1(ui) = −αi and ψ1(hj,k) = 0 for every
j < k. The map δψ1 vanishes in cohomology and (δψ1)(ui) = −dαi. Therefore
φ′ = φ+ dψ is the representative we are looking for.

Theorem 2.1.5. Let L be the DGLA defined above, and let e ∈ E(L,L)1,0
2 be the

Euler class of L. We have

µu1,u2,u3(d2e) = −[u1, u2, u3] ∈ H∗(L)
[u1, H∗(L)] + [u2, H∗(L)] + [u3, H∗(L)] .

Proof. By the definition the element [u1, u2, u3] is the class of

〈ui, hj,k〉 =
∑

σ∈S(2,1)
χ(σ) [hσ(1),σ(2), uσ(3)] .

Following lemma 2.1.4 take some element φ = (0, φ1, φ2, . . .) ∈
∏
k≥0 Hom1−k

K (L∧k,L)
representing e such that φ1(ui) = ni ui. We have

(δφ2)(u1, u2, u3) =−
∑

σ∈S(2,1)
χ(σ) [φ2(uσ(1), uσ(2)), uσ(3)]

+
∑

ρ∈S(1,2)
χ(ρ)φ2(uρ(1), [uρ(2), uρ(3)]),
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and setting τ = (213) ∈ S3 we can write

(δφ2)(u1, u2, u3) =
= −

∑
σ∈S(2,1)

χ(σ) [φ2(uσ(1), uσ(2)), uσ(3)]

−
∑

ρ∈S(1,2)
χ(ρ)χ(τ)φ2([uρτ(1), uρτ(2)], uρτ(3))

= −
∑

σ∈S(2,1)
χ(σ) [φ2(uσ(1), uσ(2)), uσ(3)]

−
∑

ρ′∈S(2,1)
χ(ρ′)φ2([uρ′(1), uρ′(2)], uρ′(3))

= −
∑

σ∈S(2,1)
χ(σ)

(
[φ2(uσ(1), uσ(2)), uσ(3)] + φ2([uσ(1), uσ(2)], uσ(3))

)
.

We have (δφ2+δφ1)(hi,j , uk) = 0 for every i < j, which gives (up to coboundaries)

φ2([ui, uj ], uk) = [φ1(hi,j), xk] + nk [hi,j , xk]− φ1([hi,j , xk]),

therefore we can write

(δφ2)(u1, u2, u3) =

= −
∑

σ∈S(2,1)
χ(σ)

(
[φ2(uσ(1), uσ(2)) + φ1(hσ(1),σ(2)) + nσ(3) hσ(1),σ(2), uσ(3)]

−φ1([hσ(1),σ(2), uσ(3)])
)

= φ1(〈ui, hj,k〉)
−

∑
σ∈S(2,1)

χ(σ) [φ2(uσ(1), uσ(2)) + φ1(hσ(1),σ(2)) + nσ(3) hσ(1),σ(2)︸ ︷︷ ︸
yσ

, uσ(3)]

Which, by setting yσ = φ2(uσ(1), uσ(2)) + φ1(hσ(1),σ(2)) + nσ(3) hσ(1),σ(2), we can
rewrite as

(δφ2)(u1, u2, u3) = φ1(〈ui, hj,k〉)−
∑

σ∈S(2,1)
χ(σ) [yσ, uσ(3)].

Finally we prove that dyσ = (n1 +n2 +n3) [xσ(1), xσ(2)]. First observe that using
the equation (δφ2 + δφ2)(ui, uj) = 0 for i < j we obtain

dφ2(ui, uj) + φ1([xi, xj ]) = (ni + nj) [xi, xj ] ,

and therefore

dyσ = dφ2(uσ(1), uσ(2)) + φ1([uσ(1), uσ(2)]) + nσ(3) [uσ(1), uσ(2)]
= (n1 + n2 + n3) [xσ(1), xσ(2)] .

We can finally write

(δφ2)(u1, u2, u3) = φ1(〈ui, hj,k〉)− (n1 + n2 + n3) 〈ui, hj,k〉 = −〈ui, hj,k〉,

and this concludes the proof.



2.2 Formality of Higher Degrees 49

Corollary 2.1.6. Let M be a DGLA, and xi ∈ Zni(M) for i = 1, 2, 3 such that
[xi, xj ] ∈ Bni+nj (M) for every i < j. Consider the map

µx1,x2,x3 : E(M,M)3,−1
2 → H∗(M)

[x1, H∗(M)] + [x2, H∗(M)] + [x3, H∗(M)] .

then

µx1,x2,x3(d2e) = −[x1, x2, x3] ∈ H∗(M)
[x1, H∗(M)] + [x2, H∗(M)] + [x3, H∗(M)] .

Proof. Consider a morphism of DGLAs f : L→M which sends every ui to xi and
every hi,j to any yi,j such that dyi,j = [xi, xj ]. We have a commutative diagram

E(L,L)3,−1
2

µu1,u2,u3 //

f◦−
��

H∗(L)
[u1,H∗(L)]+[u2,H∗(L)]+[u3,H∗(L)]

f◦−
��

E(L,M)3,−1
2

µu1,u2,u3 // H∗(M)
[x1,H∗(M)]+[x2,H∗(M)]+[x3,H∗(M)]

E(M,M)3,−1
2

µx1,x2,x3 //

−◦f

OO

H∗(M)
[x1,H∗(M)]+[x2,H∗(M)]+[x3,H∗(M)]

Id

OO

When we take the elements d2e (where e are the right Euler classes on the left
column) we obtain

d2eL
µu1,u2,u3 //

f◦−
��

−[u1, u2, u3]

f◦−
��

d2ef
µu1,u2,u3 // −[x1, x2, x3]

d2eM
µx1,x2,x3 //

−◦f
OO

−[x1, x2, x3]

Id

OO

and we can conclude the proof.

2.2 Formality of Higher Degrees

Definition 2.2.1. We shall say that an L∞[1]-algebra V = (V, q1, q2, . . .) has
multiplicity k if in any minimal model (H, 0, r2, r3, . . .) of V we have r2 = . . . =
rk−1 = 0 and rk 6= 0. We shall say that V is formal of degree k if weak-equivalent to
some L∞[1]-algebra (W, 0, . . . , 0, rk, 0, 0, . . .).

Remark 2.2.2. Having multiplicity ≥ k is condition which is closed under weak-
equivalences because the minimal models of a given L∞-algebra are all isomorphic,
and it’s easy to see that every L∞-isomorphism preserve this condition.
Remark 2.2.3. Every geometric deformation problem in characteristic 0 is controlled
by a differential graded Lie algebra L. This means that the geometric deformation
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functor is isomorphic to the deformation functor of L. Since weak-equivalent
differential graded Lie algebras give rise to isomorphic deformation functors, when L
is formal of degree k we may replace L with its minimal model (L, 0, . . . , 0, rk, 0, . . .),
where the Maurer-Cartan equation has the very simple form rk(x, . . . , x) = 0. This
implies that in such cases, if the geometric problem admits a local moduli spaceM
then it is defined by homogeneous equations of degree k.

Proposition 2.2.4. Let L be a formal L∞-algebra of degree k. Then the two maps

DefL(K[t]/(tk+1))→ DefL(K[t]/(t2))
DefL(K[[t]]) = lim

←n
DefL(K[t]/(tn))→ DefL(K[t]/(t2))

have the same image. Moreover the map DefL(K[t]/(tk)) → DefL(K[t]/(t2)) is
surjective.

Proof. Up to L∞-isomorphism we can say that the minimal model of L has the form
H = (H∗(L), 0, . . . , 0, rk, 0, . . .). Since Def− is invariant under weak-equivalences we
can say that DefL ∼= DefH . The Maurer-Cartan equation in H is

1
k! rk(x, . . . , x︸ ︷︷ ︸

k

) = 0 .

An element ξ = t x1 ∈ DefH(K[t]/(t2)) lifts to and element ξ′ = t x1 + . . .+ tk xk ∈
DefH(K[t]/(tk+1)) if and only if rk(x1, . . . , x1) = 0, which implies ξ = t x1 ∈
DefH(K[[t]]). The surjectivity of DefH(K[t]/(tk))→ DefH(K[t]/(t2)) is trivial.

2.2.1 The Chevalley-Eilenberg Spectral Sequence for L∞-Algebras

Definition 2.2.5 (Manetti [29]). Given an L∞-morphism of L∞[1]-algebras f : V 99K
W the Chevalley-Eilenberg spectral sequence E(V,W ; f) is defined as the spectral
sequence (E(V,W ; f)p,qr , dp,qr ) arising from the differential complex (CE(V,W ; f), d)
where

CE(V,W ; f) = Coder∗(Sc V,ScW ; f)
dα = Qα− (−1)α αR

together with the filtration

F pCE(V,W ; f) = {α ∈ CE(V,W ; f)|α(V �i) = 0 for every i < p} .

Remark 2.2.6. Corestriction is an isomorphism of filtered DG-vector spaces which
makes the following diagram commute

F pCE(V,W ; f)
∼= pW
��

d // F pCE(V,W ; f)
∼= pW
��∏

k≥p Hom∗K(V �k,W ) δ // ∏
k≥p Hom∗K(V �k,W )
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where, denoting by q =
∑
j qj and r =

∑
j rj , we have

δ(α) = q α̂− (−1)α α r̂ =
∑
j≥1

qj α̂− (−1)α α r̂j .

When V = W and f = Idv the map δ can be expressed in terms of the Nijenhuis-
Richardson bracket

δ =
∑
k≥1

[qk,−]NR .

This diagram will be helpful when working with the Chevalley-Eilenberg spectral
sequence because the Nijenhuis-Richardson bracket offers a better control over the
symmetric powers involved in computations. We will often denote an element in
F pCE(V,W ; f) as its corestriction, i.e. as a sequence

φ = (0, . . . , 0, φp, φp+1, . . .) ∈
∏
i≥0

Hom∗K(V �i, V ) .

Definition 2.2.7 (Manetti, [29]). Given an L∞-morphism of L∞[1]-algebras f : V 99K
W the Euler derivation of f is the map ef ∈ Hom0

K(H∗(V ), H∗(W )) ∼= E(V,W ; f)1,−1
1

defined by
ef (v) = (v + 1) f1

1 (v)

for every homogeneous element v ∈ H∗(V ).

Proposition 2.2.8 (Manetti, [29], Lemma 5.8). Given an L∞-morphism of L∞[1]-
algebras f : V 99KW we have d1ef = 0 ∈ E(V,W ; f)2,−1

1 .

Definition 2.2.9 (Manetti, [29]). Given an L∞-morphism of L∞[1]-algebras f : V 99K
W the Euler class of f is the class of the Euler derivation ef ∈ E(V,W )1,−1

2 .

Consider two L∞-morphisms of L∞[1]-algebras V
f //W

g // U . This data
induces two morphisms of filtered differential complexes

CE(V,W ; f) g∗−→ CE(V,U ; g f) f∗←− CE(W,U ; g) ,

where g∗ = g ◦ − and f∗ = − ◦ f , which pass to spectral sequences

Proposition 2.2.10 (Manetti [29], Proposition 5.5). For any couple of L∞-morphisms

of L∞[1]-algebras V
f //W

g // U we have two induced morphisms of spectral
sequences

E(V,W ; f) g∗−→ E(V,U ; g f) f∗←− E(W,U ; g) .

Moreover

• If f is a weak equivalence then f∗ is an isomorphism on pages E(W,U ; g)k for
every k ≥ 1;

• If g is a weak equivalence then g∗ is an isomorphism on pages E(V,W ; f)k for
every k ≥ 1.
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Theorem 2.2.11 (Manetti [29], Theorem 5.7). Let V be an L∞[1]-algebra and let
W be a minimal model of V . Then there exists a morphism of spectral sequences

E(V, V )→ E(W,W )

which restrics to an isomorphism on page E(V, V )k for every k ≥ 1.

Remark 2.2.12. It follows from Proposition 2.2.10 and Theorem 2.2.11 that when-
ever in the Chevalley-Eilenberg spectral sequence we want to consider pages and
differentials from level 1 onward we may replace the L∞-algebras with their minimal
models. Moreover the Euler class is invariant under weak-equivalences (we shall see
this later on).

Theorem 2.2.13 (Manetti [29], Theorem 6.3). Let V be an L∞[1]-algebra with
Euler class e ∈ E(V, V )1,−1

2 . The following conditions are equivalent:

1. V is formal;

2. the spectral sequence E(V, V )p,qr degenerates at E2;

3. dr(e) = 0 ∈ E(V, V )r+1,−r
r for every r ≥ 2.

When an L∞[1]-algebra V is minimal of multiplicity k ≥ 2 we can easily compute
the lower pages of the Chevalley-Eilenberg spectral sequence. It follows from the
next two lemmas that the vanishing of lower brackets of V is equivalent to the
vanishing of the differentials of the lower pages of E(V, V ).

Lemma 2.2.14. Let k ≥ 2 and let f : V 99K W be an L∞-morphism of L∞[1]-
algebras of multiplicity ≥ k. Then we have dr = 0 for every 1 ≤ r < k − 1, and
therefore E(V,W ; f)1 ∼= . . . ∼= E(V,W ; f)k−1.

Proof. We can assume V and W minimal. We give a proof by induction on k. It’s
sufficient to prove that if qk = 0 and rk = 0 then dk−1 = 0. Consider the maps

q =
∑
i>k

qi , r =
∑
i>k

ri .

An element x ∈ E(V,W ; f) is represented by a map α ∈ Hom∗K(V �p,W ) such that
dα ∈

∏
i≥p+k−1 Hom∗K(V �i,W ). The differential dα is represented by the map

φ = r α̂− (−1)α α q̂ .

In order to prove dk−1 = 0 we show dα ∈
∏
i≥p+k−1 Hom∗K(V �i,W ), i.e. that φ

vanishes on V �p+k−1. First observe that α̂(V �p+k−1) ⊆W�k. Since rk = 0 we have
r(α̂(W�k)) = 0. Moreover, since q1 = . . . = qk = 0, we have q̂(W�k) = 0, therefore
φ(W�k) = 0, and this concludes the proof.

Lemma 2.2.15. Let k ≥ 2 and let V be an L∞[1]-algebra such that in E(V, V ) we
have dr = 0 for every 1 ≤ r < k − 1. Then V has multiplicity ≥ k.
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Proof. We can always assume V to be minimal. We give a proof by induction on
k > 1. For k = 2 there is nothing to prove because of minimality. So take k > 2 and
assume that qr = 0 for every r < k − 1 by inductive hypothesis: we want to prove
that qk−1 = 0. Since dr = 0 for every r < k − 1 we have

Hom∗K(V �p, V ) ∼=
F pCE(V, V )
F p+1CE(V, V ) = E(V, V )p0 = . . . = E(V, V )pk−2 = E(V, V )pk−1.

The differential d : F pCE(V, V )→ F pCE(V, V ) commutes with∏
j≥p

Hom∗K(V �j , V ) [qk−1+qk+...,−]NR−−−−−−−−−−−−→
∏
j≥p

Hom∗K(V �j , V )

under corestriction, therefore the map dk−2 corresponds to

E(V, V )pk−2
∼= Hom∗K(V �p, V ) [qk−1,−]NR−−−−−−−→ Hom∗K(V �p+k−2, V ) ∼= E(V, V )p+k−2

k−2 .

Therefore, for p = 1 we can consider the identity IdV ∈ E(V, V )1
k−2 and write

0 = dk−2(IdV ) = [qk−1, IdV ]NR = 1
k − 2qk−1.

2.2.2 Euler Classes of Higher Degrees

Definition 2.2.16. Let f : V 99KW be an L∞-morphism of L∞[1]-algebras, k ≥ 2.
The Euler differential operator of degree k of f is ekf ∈ Hom0

K(H∗(V ), H∗(W )) ∼=
E(V,W ; f)1,−1

1 defined by setting

ekf (v) =
(
v + 1

k − 1

)
f1

1 (v)

for every homogeneous element v ∈ H∗(V ). When V = W and f = IdV we simply
write ekV , and we call ekV the Euler differential operator of degree k of V .
Remark 2.2.17. When k = 2 we recover the Euler derivation from [29].

Remark 2.2.18. When we take two L∞-morphisms of L∞[1]-algebras V f //W
g // U

the morphisms induced on spectral sequences

E(V,W ; f) g∗−→ E(V,U ; g f) f∗←− E(W,U ; g)

preserve the Euler differential operators. Indeed we have

(g∗ekf )(x) = g(ekf (x))

= g

((
x+ 1

k − 1

)
f(x)

)
=
(
x+ 1

k − 1

)
(g f)(x) = ekg f (x) ,

(f∗ekg)(x) = ekg(f(x))

=
(
f(x) + 1

k − 1

)
g(f(x))

=
(
x+ 1

k − 1

)
(g f)(x) = ekg f (x) .
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Proposition 2.2.19. Let f : (V, 0, q2, . . .) 99K (W, 0, r2, . . .) be an L∞-morphism of
minimal L∞[1]-algebras and k ≥ 2. Denote by φk the representative of the Euler
differential operator ekf in Z(V,W ; f)1,−1

1 given, under corestriction, by

φk = (0, φk1, 0, 0, . . .) ∈
∏
i≥0

Hom1−i
K (V �i,W )

where the map φk1 : V →W is given by

φk1(x) =
(
x+ 1

k − 1

)
f1

1 (x)

for every homogeneous x ∈ V . Then the differential d1e
k
f is represented, under

corestriction, by
δφk = (0, 0, δ2φ

k
1, . . . , δnφ

k
1, . . .)

where for any n ≥ 1 we have

(δnφk1)(x1, . . . , xn) =
(
x1 + . . .+ xn + n

k − 1

)
rn (f1

1 )�n(x1, . . . , xn)

−
(
x1 + . . .+ xn + k

k − 1

)
f1

1 qn(x1, . . . , xn)

for every homogeneous x1, . . . , xn ∈ V .

Proof. Let q =
∑
n qn and r =

∑
n rn. Since V and W are minimal we have

E(V,W ; f)0 = E(V,W ; f)1 and the Euler class of degree k is represented by the
element (0, φk, 0, . . .) ∈ Z(V,W ; f)1,−1

1 . We have δnφk = (r φ̂k −φk q̂)|V �n = rn φ̂k −
φk q̂n, and we can write

φ̂k(v1 � . . .� vn) =
∑

σ∈S(1,n−1)
ε(σ)φk(vσ(1))� f1

1 (vσ(2))� . . .� f1
1 (vσ(n))

=
∑

σ∈S(1,n−1)
ε(σ)

(
vσ(1) + 1

k − 1

)
f1

1 (vσ(1))� . . .� f1
1 (vσ(n))

=
n∑
i=1

(
vi + 1

k − 1

)
f1

1 (v1)� . . .� f1
1 (vn)

=
(
v1 + . . .+ vn + n

k − 1

)
f1

1 (v1)� . . .� f1
1 (vn) .

(δnφk)(v1 � . . .� vn) =
(
v1 + . . .+ vn + n

k − 1

)
rn(f1

1 (v1)� . . .� f1
1 (vn))

−
(
qn(v1 � . . .� vn) + 1

k − 1

)
f1

1 qn(v1 � . . .� vn)

=
(
v1 + . . .+ vn + n

k − 1

)
rn(f1

1 (v1)� . . .� f1
1 (vn))

−
(

1 + v1 + . . . vn + 1
k − 1

)
f1

1 qn(v1 � . . .� vn) .
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Remark 2.2.20. Using proposition 2.2.19 it’s easy to see that a version of the Leibniz
rule holds

ekfqk(v1, . . . , vk) =
k∑
i=1

rk(f1
1 v1, . . . , e

k
fvi, . . . , f

1
1 vk) .

Corollary 2.2.21. Let k ≥ 2 and let f : (V, 0, . . . , 0, qk, . . .) 99K (W, 0, . . . , 0, rk, . . .)
be an L∞-morphism of minimal L∞[1]-algebras of multiplicity ≥ k. Then Lemma
by 2.2.14 we have ekf ∈ E(V,W ; f)1

k−1 and a representative of the Euler differential
operator ekf in Z(V,W ; f)1

k−1 is given by

φk = (0, φk1, 0, 0, . . .) ∈
∏
i≥0

Hom1−i
K (V �i,W )

where the map φk1 : V →W is given by

φk1(x) =
(
x+ 1

k − 1

)
f1

1 (x)

for every homogeneous x ∈ V . Moreover the differential dk−1e
k
f is given by

δφk = (0, . . . , δkφk1, δk+1φ
k
1, . . .) ,

where for any n we have

δne
k
f = n− k

k − 1 f
1
1 qn = n− k

k − 1 rn (f1
1 )�n .

Moreover we have dk−1e
k
f = 0 ∈ E(V,W ; f)kk−1.

Proof. When qm = rm = 0 for every m < k the condition f Q = r F implies the
identity f1

1 qn = sn (f1
1 )�n. Using Proposition 2.2.19 we conclude.

Corollary 2.2.22. Let V be a minimal L∞[1]-algebra, then for every k ≥ 2 we have

[qn, ek]NR = n− k
k − 1 qn .

Proof. Using Proposition 2.2.19 when V = W , q = r, f = IdV we obtain the
statement.

Definition 2.2.23. Let f : V → W be an L∞-morphisms between two L∞[1]-
algebras of multiplicity ≥ k. Then by Lemma 2.2.14 we have d1 = . . . = dk−2 = 0
and E(V,W ; f)1

k−1
∼= E(V,W ; f)1

1 = Hom∗K(H∗(V ), H∗(W )). Moreover by Corollary
2.2.21 we have dk−1e

k
f = 0. Therefore we define the Euler class of degree k of f as

the class ekf ∈ E(V,W ; f)1,−1
k of the Euler differential operator of degree k of f .

Remark 2.2.24. If V is an L∞[1]-algebra of multiplicity ≥ k then it’s Euler class
of degree k defines an invariant under weak equivalences. This is a consequence of
Theorem 2.2.10 together with the invariance of Euler differential operators.
Remark 2.2.25. The reader must be careful. The definition of the Euler differential
operator (of degree k) may suggest that the Euler classes have simple representatives
in
∏
i≥0 Hom1−i

K (V �i,W ). This is true when V and W are minimal, as we prove
in proposition 2.2.19. In the general case finding a suitable representative φ =
(0, φ1, φ2, . . .) ∈

∏
i≥0 Hom1−i

K (V �i,W ) of ekf in Z(V,W ; f)1,−1
k−1 may not be easy, and

with respect to proposition 2.2.19, the higher maps φ2, φ3, . . . may be thought as
non-trivial correction terms obtained by imposing d0e

k
f = . . . = dk−2e

k
f = 0.
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2.2.3 A Criterion for Formality of Higher Degrees

Proposition 2.2.26 (Manetti [29], Lemma 6.1). Let k ≥ 2 and let V be a formal
L∞[1]-algebra of degree k. Then the Chevalley-Eilenberg spectral sequence E(V, V )
degenerates at page Ek.

Lemma 2.2.27. Let V be an L∞[1]-algebra and let k ≥ 2. If in E(V, V ) we have
dre

k = 0 for every 1 ≤ r < k − 1 then V has multiplicity ≥ k.

Proof. We can assume V to be minimal by replacing V with its minimal model. By
induction on 1 ≤ r < k − 1 we prove that if d1e

k = . . . = dr−1e
k = 0 then we have

q2 = . . . = qr = 0. Therefore it’s sufficient to assume that q2 = . . . = qr−1 = 0 and
dr−1e

k = 0. By Lemma 2.2.14 we have d1 = . . . = dr−2, therefore E(V, V )pr−1
∼=

Hom∗K(V �p, V ) and we have a commutative diagram

E(V, V )1
r−1

dr−1 //

∼=
��

E(V, V )rr−1

∼=
��

Hom∗K(V, V )
[qr,−]NR // Hom∗K(V �r, V ) .

If dr−1e
k = 0 then it must be [qr, ek]NR = 0. Using Proposition 2.2.22 we have

qr = 0.

Lemma 2.2.28. Let k ≥ 2 and let i > k > 1. If (V, 0, . . . , 0, qk, 0, . . . , 0, qi, qi+1, . . .)
is a minimal L∞[1]-algebra such that qj = 0 for every k < j < i then we have

1. [qk, qi]NR = 0;

2. dr(ek) = 0 ∈ E(V, V )r+1,−r
r for every k ≤ r < i− 1;

3. If di−1(ek) = 0 ∈ E(V, V )i,1−ii−1 = E(V, V )i,1−ik , then there exists some α ∈
Hom0

K(V �i−k+1, V ) such that qi = [qk, α]NR.

Proof. The first claim is due to the equation satisfied by L∞[1]-structures on V :

[qk, qi]NR = 1
2

∑
a+b=k+i

[qa, qb]NR = 0.

The differential d : F pCE(V, V )∗ → F pCE(V, V )∗ commutes with the map

∏
j≥p

Hom∗K(V �j , V ) [qk+qi+...,−]NR−−−−−−−−−−→
∏

j≥p+k−1
Hom∗K(V �j , V ) ⊆

∏
j≥p

Hom∗K(V �j , V ).

Therefore, since d1 = . . . = dk−2 = 0 by lemma 2.2.14, we have

ek ∈ Hom0
K(V, V ) ∼= E(V, V )1

1
∼= E(V, V )1

k−1.

Since [qk, ek]NR = 0, we have d(ek) ∈ F iCE(V, V )∗ ⊆ F j+1CE(V, V )∗ for every
j < i. Then d(ek) ∈ Zj+1,−j

j for every j < i, therefore dr(ek) = 0 ∈ E(V, V )r+1,−r
r

for every k − 1 ≤ r < i− 1.
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If di−1(ek) = 0 ∈ E(V, V )i,1−ii−1 = E(V, V )i,1−ik it must be d(ek) ∈ Zi+1,−i
i−2 +dZ2,−2

i−2 ,
then [qi, ek]NR + [qi+1, e

k]NR + . . . ∈ Zi+1,−i
i−2 + dZ2,−2

i−2 . Therefore we can write

[qi, ek]NR + [qi+1, e
k]NR + . . . = φ+ dα = φ+ [qk + qi + qi+1 + . . . , α]NR

for some φ ∈ Zi+1,−i
i−2 and α =

∑
j≥2 αj ∈ Z2,−2

i−2 . Projecting this identity on
Hom∗K(V �i, V ) we obtain

(i− k)qi = [qi, ek]NR = [qk, αi−k+1]NR.

Then the map 1
i−kαi−k+1 is the required element.

Theorem 2.2.29. Let k ≥ 2 and let V = (V, 0, . . . , 0, qk, qk+1, . . .) be a minimal
L∞[1]-algebra of multiplicity ≥ k. The following conditions are equivalent:

1. There exists an L∞-isomorphism

f : (V, 0, . . . , 0, qk, 0, . . .) 99K (V, 0, . . . , 0, qk, qk+1, . . .) ;

2. The Chevalley-Eilenberg spectral sequence E(V, V ) degenerates at E(V, V )k,
i.e. dr = 0 for every r ≥ k;

3. In the Chevalley-Eilenberg spectral sequence E(V, V ) we have drek = 0 for
every r ≥ k.

Proof. (1) =⇒ (2). It’s a consequence of Proposition 2.2.26. (2) =⇒ (3). It’s
trivial. (3) =⇒ (1). If qi = 0 for every i > k there is nothing to prove. Otherwise
let i > k be the smallest integer such that qi 6= 0. Using lemma 2.2.28 we can
write qi = [qk, α]NR for some α ∈ Hom∗K(V �i−k+1,W ). Using α we can transfer the
structure of V on a new L∞[1]-algebra with trivial i-th differential. Let Q =

∑
j≥k q̂j .

Define
R = e−α̂Qeα̂ = e[α̂,−]Q = Q+ [α̂, Q] + 1

2[α̂, [α̂, Q]] + . . .

This defines a new coderivation R ∈ Coder1(Sc V,Sc V ) (note that the sum is finite
over every element of Sc V , and Coder∗(Sc V,Sc V ) is closed under graded commutator
[−,−]) which satisfies

1. R2 = (e−α̂Qeα̂)2 = e−α̂Q2eα̂ = 0,

2. R(1) = e[α̂,−]Q(1) = 0.

Therefore if r = pvR and q = pVQ we have

r = e[α,−]NR(q) = q + [α, q]NR + . . . = qk + qi + . . .+ [α, qk] + . . .

= qk + (qi − [qk, α]NR) + . . . ≡ qk

mod
∏
j>i

Hom1
K(V �j , V )

 .
We then have r = qk + ri+1 + ri+2 + . . ., therefore R is an L∞[1] structure on V
which makes the map

eα̂ : (V, 0, . . . , 0, qk, 0, ri+1, ri+2, . . .) 99K (V, 0, . . . , 0, qk, 0, . . . , 0, qi, . . .)
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an L∞-isomorphism. Since eα̂ is the identity on V �j for every j < i− k + 1 we can
use induction on i and compose infinitely many times these exponential maps to
produce an L∞-isomorphism

f : (V, 0, . . . , 0, qk, 0, . . .) 99K (V, 0, . . . , 0, qk, qk+1, . . .) = V.

Corollary 2.2.30. Let k ≥ 2 and let V be an L∞[1]-algebra of multiplicity k. The
following conditions are equivalent:

1. V is formal of degree k;

2. The Chevalley-Eilenberg spectral sequence E(V, V ) degenerates at page Ek;

3. In the Chevalley-Eilenberg spectral sequence E(V, V ) we have drek = 0 for
every r ≥ k.

Proof. Use Theorem 2.2.29 replacing V with its minimal model.

Theorem 2.2.31. Let k ≥ 2 and let L be a differential graded Lie algebra of
multiplicity ≥ k. The following conditions are equivalent:

1. L is formal of degree k;

2. The Chevalley-Eilenberg spectral sequence E(L,L) degenerates at page Ek;

3. In the Chevalley-Eilenberg spectral sequence E(L,L) we have drek = 0 for
every r ≥ k where ek is the class in E(L,L)1,0

k of the map

ek : v 7→
(2− k
k − 1 + v

)
v ,

for every v ∈ H∗(L).

Proof. This is the result of applying the décalage functor to Corollary 2.2.30 when
V has qk = 0 for every k ≥ 2.
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Chapter 3

The Baker-Campbell-Hausdorff
Product

Given a nilpotent Lie algebra g, together with two elements x, y ∈ g, their Baker-
Campbell-Hausdorff product is the element BCH(x, y) ∈ Ug defined by

BCH(x, y) = log(ex · ey) ,

where · is the associative product in Ug and log(−) and e− are defined as the usual
formal power series. In the work [10], given two non commuting operators X,Y , the
authors write BCH(X,Y ) as a Lie series, i.e. a series of iterated brackets, in terms
of a basis of the free Lie algebra on X and Y . This chapter is inspired by their work:
we will deduce the same series for BCH following a different algebraic approach,
and at the same time provide a faster algorithm to compute it’s coefficients.

In order to write a Lie series for BCH we’ll be working in the Lie algebra of Lie
series on two symbols x and y. This Lie algebra is generated by the series in terms of
a basis of the free Lie algebra on x and y, that we denote with Lie(x, y). As proved
in [33], and mentioned in [10], the Lie algebra of Lie series in x and y is embedded
in the Lie algebra on T2, which is induced by the commutator of the pre-Lie product
x. The pre-Lie product x is defined in terms of grafting (cf. 1.4) as

T x S =
∑

v∈V (T )
T ↙v S

for each colored rooted trees T, S. Each element a ∈ Tn can be written as a formal
series in terms of colored rooted trees a =

∑
T aT T with coefficients aT ∈ K. For any

such series a we the generating function of a is the map f defined by the following
identity

a =
∑
T

aT T =
∑
T

f(T ) T

σ(T ) ,

where σ(T ) is the symmetry factor of T , i.e. the number of automorphisms of T (as
a rooted tree) which preserve it’s color. Under this normalization we will write

−→
f : =

∑
T

f(T ) T

σ(T ) .
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We depict the generators of Tn with the symbols •1, . . . , •n meaning that •i is
the rooted tree determined by a single vertex with color i. When n = 2 we will
prefer to write • instead of •1 and ◦ instead of •2. The space of Lie series in
two non-commuting elements x, y considered by Casas and Murua can be thought
as the space of Lie series generated by • and ◦ (where we use the Lie bracket
induced by the commutator with respect to x), and for this reason from now on
instead of considering te elements x and y we will use • and ◦. We consider a
ficticious unit element on Tn which we depict with ∅, i.e. an element ∅ which satisfies
∅x x = xx ∅ = x for any x ∈ Tn.

By introducing the notions of pre-Lie exponential and pre-Lie logarithm it’s
possible to recover the Baker-Campbell-Hausdorff product using the pre-Lie structure
on Tn. The pre-Lie exponential in Tn is the map e−x − ∅ : Tn → Tn defined by the
formal series

exx − ∅ =
∑
n≥1

1
n! x

xn =
∑
n≥1

1
n! (. . . (xx x) x . . .) x x︸ ︷︷ ︸

n

.

The pre-Lie exponential defines a bijection, therefore it’s possible to invert it. The
formal inverse of e−x−∅ is the pre-Lie logarithm logx ∅+−. It’s possible to prove that
the Baker-Campbell-Hausdorff product can be recovered via the pre-Lie logarithm
in the following way

Theorem 3.0.1 (Dotsenko, Shadrin, Vallette [14], Section 4, Theorem 2). In the
free complete right pre-Lie algebra T2 we have

BCH(•, ◦) = logx (e•x } e◦x) ,

In Section 3.1 we write BCH(•, ◦) as a series in terms of colored rooted trees.
We do this by writing BCH(•, ◦) as a series

−→
ζ , where for any colored rooted tree

T the coefficient ζ(T ) is obtained by evaluating a particular linear functional on
a polynomial q(T ) which is computed recursively. As shown in [33], when a series
in Tn is a Lie series, such as BCH(•1, . . . , •n), it’s possible to rewrite it in terms
of any fixed Hall basis of the free Lie algebra Lie(•1, . . . , •n). In Section 3.2 the
computation will be carried out using the Lyndon basis, which appears to be be
particularly efficient and prone to improvements in the case of two generators. The
algorithm we found is new and turns out to be very fast. Just to get an idea we
implemented the algorithm as a Python script and the time taken to compute the
coefficients of BCH up to order 20 is around 2-3 minutes on an Intel i5-4300U CPU.

Remark 3.0.2. Throughout all this chapter we will make extensive use of the notions
and notations introduced in 1.4, especially in 1.4.8 and 1.4.21.

3.0.1 The Umbral Approach

Using computational techniques from umbral calculus we can write BCH(•, ◦) in
terms of the combinatorics of rooted trees. First we denote by Bk the k-th Bernoulli
number (following the convention B1 = −1/2) and by D the differentiation d/dt then
it’s possible to show (see B for a detailed discussion) that, if 〈 D

eD−1 |−〉 : Tn[t]→ Tn
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is the linear operator defined by setting〈
D

eD − 1

∣∣∣∣ −〉 =
∑
k≥0

Bk
k! D

k|t=0 ,

where we denote with Bk the k-th Bernoulli number (and follow the convention
B1 = −1/2), we have

Theorem 3.0.3 (B.2). If Q ∈ Tn[t] is the solution of the Cauchy problem{
Q′ = Qx 〈 D

eD−1 |Q〉
Q(0) = e•1x } . . .} e•nx − ∅ ,

(3.1)

then BCH(•1, . . . , •n) = logx (e•1x } . . .} e•nx ) = 〈 D
eD−1 |Q〉.

Therefore the problem we address in this chapter is to find a solution for the
Cauchy problem 3.1. Throughout all this chapter we will stick to the notations
adopted for pre-Lie algebras in 1.4. Since throughout all this chapter we will always
refer to the Cauchy problem 3.1 we fix here some related notation that we want to
keep

• We will denote with q the map that generates the solution Q of the Cauchy
problem 3.1 by the identity

Q =
∑
T

Q(T )T =
∑
T

q(T ) T

σ(T ) = −→q ,

where the sum ranges over all the colored rooted trees T with colors from 1 to
n.

• We will denote with ζ the map obtained by applying the functional 〈 D
eD−1 |−〉

to q, i.e.

ζ(T ) =
〈

D

eD − 1

∣∣∣∣ q(T )
〉
.

By this notation we will have BCH(•, ◦) =
−→
ζ =

∑
T ζ(T ) T

σ(T ) .

• We will call
−→̂
q ∈ Tn[t] the element defined by setting

q̂(T )(t) =
∫ t

0

D

eD − 1 q(T )(s) ds =
t−1∑
τ=0

q(T )(τ) ,

which turns out to be even more useful than q when we want to compute ζ(T ),
since we have ζ(T ) = q̂(T )′(0).

We will need the following definition of Bernoulli coefficient for rooted trees. This
notion is introduced in [5] and is used to compute explicitely the pre-Lie logarithm
in T (see B for a more detailed treatment).

Definition 3.0.4. For any rooted tree T we denote by
( t
T

)
∈ K[t] the polynomial

defined recursively by setting
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1.
(t
•
)

= 1;

2.
( t
{•|T}

)
=
∑t−1
τ=0

(τ
T

)
=
∫ t

0
D

eD−1
(s
T

)
ds;

3.
( t
{•|T1,...,Tk}

)
=
( t
{•|T1}

)
· . . . ·

( t
{•|Tk}

)
.

And we call the Bernoulli coefficient of T the scalar BT ∈ K obtained by evaluating
the functional 〈 D

eD−1 |−〉 on
( t
T

)
, i.e.

BT =
〈

D

eD − 1

∣∣∣∣
(
t

T

)〉
.

First, in order to solve the Cauchy problem 3.1, we give a tree-combinatoric
description of the initial data Q(0) = e•1x } . . .} e•nx − ∅.

Proposition 3.0.5. Let n ≥ 1 and let χ↑n be the characteristic function of non-
decreasing colored rooted trees with n colors (cf. 1.4.21). Then we have

e•1x } . . .} e•nx = ∅+
∑
T

χ↑n(T )
T !

T

σ(T ) .

Proof. We give a proof by induction on n. For n = 1 this is a classical result, and
can be recovered from [5], where the the authors prove the identity

•xn =
∑

T,|T |=n

n!
T !

T

σ(T ) .

Let n > 1, then using associativity we have e•1x } . . .} e•nx = (e•1x } . . .} e•n−1
x )} e•nx .

Let φ(T ) = χ↑n−1(T )/T ! and ψ(T ) = χn(T )/T !. By using the inductive hypotesis
and Proposition 3.0.8 we have

e•1x } . . .} e•nx = (∅+
−→
φ ) } (∅+

−→
ψ ) = ∅+

−−−→
φ ∗ ψ .

Denoting with T ∗n−1 the maximal colored rooted subtree of T with colors from 1 to
n− 1 we have

(φ ∗ ψ)(T ) =
∑
X⊆T

φ(X)ψ(T −X)

=
χ↑n−1(T ∗n−1)

T ∗n−1!
1

(T − T ∗n−1)! = χ↑n(T )
T ! ,

and this concludes the proof.

Using the proof of Proposition 3.0.5 we can write e•1x } . . . } e•nx − ∅ as the
series generated by the function χ↑n/(−)!. Applying a very general method from
umbral calculus in pre-Lie algebras (Proposition B.2.1 applied to p(T ) =

( t
T

)
, f(T ) =

χ↑n(T )/T ! and Proposition B.2.5) we obtain a solution for the Cauchy problem 3.1
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Theorem 3.0.6. Let Q = −→q ∈ Tn[t] be solution of the Cauchy problem 3.1. Then
we have

q(T )(t) =
∑

D(T )⊆τ⊆E(T )

( t
T/τ

)
Tτ ! ,

q̂(T )(t) =
∑

τ⊆E(T )

ζ(Tτ )
T/τ ! t

|T/τ | ,

where E(T ) is the set of edges of T , D(T ) is the set of decreasing edges of T , Tτ
is the forest obtained from T by removing the edges in τ , and the quotient T/τ is
obtained from T by collapsing into a single vertex those vertices of T which belong
to the same connected component in Tτ (cf. 1.4.22).

Remark 3.0.7. The explicit solution we obtain for q from Theorem 3.0.6 has the
drawback to be quite hard to compute when the tree T is large. For example in the
worst case, when the tree T is non-decreasing, the number of subsets τ ⊆ E(T ) is
2|T |−1, which is exponential in the size of the argument.

There is a combinatorial way to prove Theorem 3.0.1, which we present in the
next proposition

Proposition 3.0.8. Given −→f ,−→g ∈ Tn[t] we have

e(−x−→g )(∅+
−→
f ) = (∅+

−→
f ) } e

−→g
x (3.2)

e(−x−→g )(e
−→
f
x) = e

−→
f
x } e

−→g
x . (3.3)

Proof. These identities appear in [14]. Using Proposition 1.4.34 and Proposition
1.4.48 we have

(∅+
−→
f ) } e

−→g
x = (∅+

−→
f ) } (∅+ Ψg(e•x − ∅)) = ∅+

−−−→
f ∗ h ,

where
h(T ) =

∑
τ⊆E(T )

1
(T/τ)! g(Tτ ) ,

and we have

(f ∗ h)(T ) =
∑
X⊆T

f(X)h(T −X)

= h(T ) +
∑
∅6=X⊆T

f(X)
∑

τ⊆E(T−X)

1
((T −X)/τ)! g((T −X)τ )

= h(T ) +
∑

τ ′⊆E(T )
f(T ∗τ ′) g(Tτ ′ − T ∗τ ′)

|T/τ ′|
(T/τ ′)! ,

where the last identity is obtained by taking τ ′ ⊆ E(T ) to be that subset such that
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τ ⊆ τ and T ∗τ ′ = X. On the other hand, by using 1.4.38, we have

e(−x−→g )(∅+
−→
f ) = e(−xg)(∅) + e(−xg)(

−→
f )

= e
−→g
x +

∑
k≥0

1
k! (−x g)k(

−→
f )

= ∅+ Ψg(e•x − ∅) +
∑
k≥0

1
k! (−x g)k(

−→
f )

= ∅+
−−−−−−−−−→
h+

∑
k≥0

1
k! φk ,

where
φk(T ) =

∑
τ⊆E(T ),|τ |=k

Ord(T/τ) f(T ∗τ ) g(Tτ − T ∗τ ) .

Therefore we have

h(T ) +
∑
k≥0

1
k! φk(T ) = h(T ) +

∑
τ⊆E(T )

|T/τ |
(T/τ)! f(T ∗τ ) g(Tτ − T ∗τ )

= (f ∗ h)(T ) ,

and the claim is proved.

Remark 3.0.9. By the previous proposition we have (∅+ x) } egx = e(−xf) for every
x, f, g ∈ Tn. Therefore for every x, f, g ∈ Tn we have

(∅+ x) } efx } egx = (e(−xg) e(−xf))(x) = eBCH(−xg,−xf)(x) .

Since Tn is a right pre-Lie algebra we have [− x g,− x f ] = − x [f, g], which
implies BCH(−x g,−x f) = −x [f, g]. This fact allows to write

(∅+ x) } (efx } egx) = (∅+ x) } eBCH(f,g)
x ,

which implies BCH(f, g) = logx(efx } egx).

3.1 A Recursive Solution for BCH
For any colored rooted tree T we denote with ρ the color of ρT (the root of T , cf.
1.4.8). Using Theorem 3.0.6 we can give an explicit expression for q({•α|T}). It’s
easy to see that

q({•α|T}) =
∑

D(T )⊆τ⊆E(T )

 ( t
T/τ

)
{•α|T}τ ! +

( t
{•|T/τ}

)
Tτ !

 ,

since every partition D({•α|T}) ⊆ τ ⊆ E({•α|T}) can be obtained by chosing a
partition D(T ) ⊆ τ ′ ⊆ E(T ) and eventually the edge between the root of T and the
root of {•α|T}. We can go further and find a recursive expression of q({•α|T}) in
terms of q(T ). We discuss separately the three possible cases: α < ρ , α = ρ , α > ρ.
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• When α < ρ any partition D({•α|T}) ⊆ τ ⊆ E({•α|T}) contains the edge
between the root of T and the root of {•α|T} because it’s descending. Therefore
the previous expression becomes

q({•α|T}) =
∑

D(T )⊆τ⊆E(T )

( t
T/τ

)
Tτ ! +

t−1∑
λ=0

( λ
T/τ

)
Tτ !

 = q(T )(t) +
t−1∑
τ=0

q(T )(τ) .

• When α = ρ the edge between the root of T and the root of {•α|T} is not
descending. Therefore we have

q({•α|T}) =
∑

D(T )⊆τ⊆E(T )

 ( t
T/τ

)
Tτ ! (|T ∗τ l|+ 1)

+
t−1∑
λ=0

( λ
T/τ

)
Tτ !


=
∫ 1

0

∑
D(T )⊆τ⊆E(T )

( t
T/τ

)
Tτ ! σ|T

∗
τ
l| dσ +

t−1∑
τ=0

q(T )(τ) .

• When α > ρ the edge between the root of T and the root of {•α|T} is
descending. Therefore we have

q({•α|T}) =
∑

D(T )⊆τ⊆E(T )

( t
{•|T/τ}

)
Tτ ! =

t−1∑
τ=0

q(T )(τ) .

Following the previous computation it makes sense, in order to make statements
more readable, to introduce two new polynomials in the variables s and t.

Definition 3.1.1. For any colored rooted tree T we define two polynomials q(T ), q̂(T ) ∈
K[s, t] by setting

q(T )(s, t) =
∑

D(T )⊆τ⊆E(T )

( t
T/τ

)
Tτ ! s|T

∗
τ
l| ,

q̂(T )(s, t) = q(T )(s, t) + q̂(T )(t) .

Remark 3.1.2. As a first consequence observe that{
q(R)(0, t) = 0 ,
q(R)(1, t) = q(R)(t)

{
q̂(R)(0, t) = q(R)(0, t) + q̂(R)(t) = q̂(R)(t) ,
q̂(R)(1, t) = q(R)(1, t) + q̂(R)(t) = q̂(R)(t+ 1) .

We can now give a recursive expression for the general case. The proof follows
the same idea of what we have done so far.

Theorem 3.1.3. For any colored rooted tree T we have

• If T = •ρ then
q(T )(s, t) = s ,
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• If T = {•ρ|T1, . . . , Tk} let ρ be the color of the root of T and ρi the color of
the root of Ti, then

q(T )(s, t) =
∫ s

0

∏
ρi<ρ

q̂(Ti)(0, t) ·
∏
ρi=ρ

q̂(Ti)(σ, t) ·
∏
ρi>ρ

q̂(Ti)(1, t)

 dσ .

Proof. Any partition D(T ) ⊆ τ ⊆ E(T ) is given by a unique choice of partitions
D(T1) ⊆ τ1 ⊆ E(T1), . . . , D(Tk) ⊆ τk ⊆ E(Tk) and a unique choice of edges for any
I ⊆ {i, ρi ≥ ρ}. Therefore

q(T )(s, t) =
∑

τ1,...,τk,I

( t
T/τ

)
Tτ ! s|T

∗
τ
l| , τ = ∪ki=1τi ∪ I ∪ {i, ρi < ρ} .

Then using this notation we can write T/τ as the merging product (as defined in
1.4.9)

T/τ =
∏
ρi<ρ

{•|Ti/τi} ·
∏
i∈I
{•|Ti/τi} ·

∏
i 6∈I

Ti/τi(
t

T/τ

)
=
∏
ρi<ρ

(
t

{•|Ti/τi}

)
·
∏
i∈I

(
t

{•|Ti/τi}

)
·
∏
j 6∈I

(
t

Tj/τj

)
.

Moreover

|T ∗τ
l| = 1 +

∑
j 6∈I,ρj=ρ

|Tj∗τj
l| , Tτ ! = |T ∗τ

l| ·
k∏
i=1

Tiτi ! .
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Replacing these identities in the expression for q(T )(t, s) we get

q(T )(s, t) =

=
∑

τ1,...,τk,I

( t
T/τ

)
Tτ ! s|T

∗
τ
l|

=
∑

τ1,...,τk,I

∏
ρi<ρ

( t
{•|Ti/τi}

)
·
∏
i∈I
( t
{•|Ti/τi}

)
·
∏
j 6∈I

( t
Tj/τj

)
|T ∗τ l| ·

∏k
i=1 Tiτi !

s|T
∗
τ
l|

=
∑

τ1,...,τk,I

∏
ρi<ρ

( t
{•|Ti/τi}

)
Tiτi !

·
∏
i∈I

( t
{•|Ti/τi}

)
Tiτi !

·
∏
j 6∈I

( t
Tj/τj

)
Tjτj !

· s
|T ∗τ l|

|T ∗τ l|

=
∑

τ1,...,τk,I

∏
ρi<ρ

( t
{•|Ti/τi}

)
Tiτi !

·
∏
i∈I

( t
{•|Ti/τi}

)
Tiτi !

·
∏

j 6∈I,ρj>ρ

( t
Tj/τj

)
Tjτj !

·
∫ s

0

∏
j 6∈I,ρj=ρ

( t
Tj/τj

)
Tjτj !

σ dσ

=
∏
ρi<ρ

q̂(Ti)(0, t)

·
∫ s

0

∑
I

∏
i∈I

q̂(Ti)(0, t) ·
∏

i 6∈I,ρi>ρ
q(Ti)(1, t) ·

∏
i 6∈I,ρi=ρ

q(Ti)(σ, t)

 dσ

=
∏
ρi<ρ

q̂(Ti)(0, t) ·
∫ s

0

∑
I

∏
i∈I

q̂(Ti)(0, t) ·
∏
i 6∈I

ξi =
∏
ρi<ρ

q̂(Ti)(0, t)

·
∫ s

0

∏
ρi≥ρ

(
t−1∑
τ=0

q(Ti)(1, τ) + ξi

)
,

where

ξi =
{
q(Ti)(1, t), ρi > ρ

q(Ti)(σ, t), ρi = ρ.

Therefore

q(T )(s, t) =
∏
ρi<ρ

q̂(Ti)(0, t) ·
∫ s

0

∏
ρi>ρ

q̂(Ti)(1, t) ·
∏
ρi=ρ

q̂(Ti)(σ, t)dσ

=
∫ s

0

∏
ρi<ρ

q̂(Ti)(0, t) ·
∏
ρi=ρ

q̂(Ti)(σ, t) ·
∏
ρi>ρ

q̂(Ti)(1, t)

 dσ.

Corollary 3.1.4. For any colored rooted tree T we have

q(T )(s, 0) = χ↑(T )
T ! s|T

l| .

Proof. By induction on T it must be q(T )(s, 0) = αT s
λT for some αT and λT

to be determined. Since q(T )(1, 0) = αT = χ↑(T )
T ! the only thing left to prove is
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λT = |T l|. This can be proved inductively. Assume T = {•ρ|T1, . . . , Tk} for some
colored rooted trees T1, . . . , Tk. The variable s appears only from the contribution
of
∫ s

0
∏
ρi=ρ q̂(Ti)(σ, t) dσ, therefore we can assume ρ = ρ1 = . . . = ρk. Assume

q(Ti)(s, 0) = αi s
λi . Then by substitution inside the integral we have λT = 1 +∑k

i=1 λi, which is satisfied by setting λi = |T li | and λ = |T l|.

Proposition 3.1.5. For any colored rooted tree T we have

q(T )(s, t) =
∑

∅6=X⊆T ↑

s|X
l|

X! q̂(T −X)(t) ,

q̂(T )(s, t) =
∑
Y⊆T ↑

s|Y
l|

Y ! q̂(T − Y )(t) =
∑
X⊆T l

B|X|(s)
X! q(T/X)(t) .

Proof. To prove the first identity, by definition we have

q(T )(s, t) =
∑

D(T )⊆τ⊆E(T )

( t
T/τ

)
Tτ ! s|T

∗
τ
l|

=
∑

∅6=X⊆T ↑

s|X
l|

X!
∑

D(T−X)⊆τ⊆E(T−X)

( t
{•|(T−X)τ}

)
(T −X)τ ! .

In the previous expression T−X is a forest, therefore we can write T−X = T1 . . . Tk,
τ = τ1 ∪ . . . ∪ τk for some D(Ti) ⊆ τi ⊆ E(Ti). Therefore we can finally write

q(T )(s, t) =
∑

∅6=X⊆T ↑

s|X
l|

X!
∑

τ1,...,τk

k∏
i=1

( t
{•|Ti/τi}

)
Tiτi !

=
∑

∅6=X⊆T ↑

s|X
l|

X!
∑

τ1,...,τk

k∏
i=1

t−1∑
λ=1

( λ
Ti/τi

)
Tiτi !

=
∑

∅6=X⊆T ↑

s|X
l|

X!

k∏
i=1

q̂(Ti)(t) =
∑

∅6=X⊆T ↑

s|X
l|

X! q̂(T −X)(t) ;

q̂(T )(s, t) = q(T )(s, t) + q̂(T )(t) =
∑
X⊆T ↑

s|X
l|

X! q̂(T −X)(t) .

Next, applying the first identity, observe that

∑
X⊆T l

B|X|(s)
X! q(T/X)(t) =

∑
X⊆T l

B|X|(s)
X!

∑
∅6=Y⊆(T/X)↑

q̂(T/X − Y )(t)
Y !

=
∑
X⊆T l

B|X|(s)
X!

∑
X(Y⊆T ↑

q̂(T − Y )(t)
Y/X!

=
∑
Y⊆T ↑

∑
X⊆Y l

B|X|(s)
X! · Y/X! q̂(T − Y )(t) .
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In order to conclude the proof we show that

∑
X⊆Y l

B|X|(s)
X! · Y/X! = s|Y

l |
Y ! .

Equivalently we can apply the operator eD−1
D and prove that

∑
X⊆Y l

s|X|

X! · Y/X! = eD − 1
D

s|Y
l|

Y ! =
∫ s+1

s

1
Y ! σ

|Y l| dσ .

We can make a further simplification by observing that it’s not restrictive to
prove the identity for monochromatic trees. We now want to prove for any rooted
tree Y that ∑

X⊆Y

Y ! s|X|

X! · Y/X! = (s+ 1)|Y |+1 − s|Y |+1

|Y |+ 1 .

This is an easy consequence of the Binomial Theorem for trees (Proposition
1.4.19), because

∑
X⊆Y

Y ! s|X|

X! · Y/X! =
∑
X⊆Y

Y ! s|X|

X! · (Y −X)!
1

|Y | − |X|+ 1

=
∑
X⊆Y

(
Y

X

)
s|X|

∫ 1

0
σ|Y |−|X| dσ

=
∫ 1

0

∑
X⊆Y

(
Y

X

)
s|X| σ|Y−X| dσ

=
∫ 1

0
(s+ σ)|Y | dσ = (s+ 1)|Y |+1 − s|Y |+1

|Y |+ 1 .

3.2 Deploying Lyndon Basis
Theorem 3.1.3 gives a recursive way to compute BCH as a series in terms of colored
rooted trees. Each colored rooted tree appearing in that series can be written in a
unique way as a nesting of braces operations in the pre-Lie algebra Tn. Since braces
operations rely on the pre-Lie structure on Tn the series we have at this point is not
suitable when we want to consider Tn only as a Lie algebra. However there is an
easy way to recover a Lie series for BCH from the expression we have at this point.
The method we show here is due to Murua [33] and is used in [10] as well. We point
out here that the Lie algebra structure we work on is slightly different from the
one used by the authors in [10]. Indeed Casas and Murua consider the Lie algebra
structure g defined on the vector space of maps α : {bicolored rooted trees} → R,
where the bracket is given, according to the notation we use in B, by

[α, β](T ) =
∑

e∈E(T )
α(T ∗e )β(T − T ∗e )− β(T ∗e )α(T − T ∗e ) .



70 3. The Baker-Campbell-Hausdorff Product

In this work we consider the Lie algebra structure on T2 induced by the pre-Lie
product x as defined in 1.4. More explicitely if we consider the two formal series
−→α =

∑
T α(T )T/σ(T ) and

−→
β =

∑
T β(T )T/σ(T ) in T2 the commutator associated

to x is given by
[−→α ,
−→
β ] =

−−−→
[α, β]

where the bracket [−,−] on the rhs is the one in g. For this reason the map g→ T2
which sends α to −→α is an isomorphism of Lie algebras, and this fact makes possible
to easily adapt the results from [10].

The notions we present here may be found in Sections 4.1, 4.2, 5.1 of [35] by
Reutenauer. Let A be an alphabet, we will denote by A∗ the free monoid on A and
by M(A) the free magma on A. M(A) may be identified with the set of binary,
complete, planar, rooted trees with leaves labelled by elements of A. Equivalently,
trees may be identified with well-formed expressions over A, which are recursively
defined by the following: each element of A is a well-formed expression; if t′, t′′
are well-formed expressions, then t = (t′, t′′) is a well-formed expression, which is
identified with the tree obtained by taking a new root, with immediate left subtree
t′ and immediate right subtree t′′. The binary operation of M(A) is the mapping
M(A)×M(A)→M(A) defined by sending (t′, t′′) 7→ t.

Definition 3.2.1. Let H be a set and < a fixed total order on H. We say that the
data (H,<) is a Hall set in M(A) (Hall set of trees) if

1. A ⊆ H;

2. If t = (t′, t′′) ∈ H \A then t′′ ∈ H and t < t′′;

3. If t = (t′, t′′) ∈M(A) \A then t ∈ H if and only if

(a) t′, t′′ ∈ H and t′ < t′′;
(b) either t′ ∈ A or t′ = (x, y) with t′′ ≤ y.

Definition 3.2.2. Consider the map f : M(A)→ A∗ given by setting

• f(a) = a for every a ∈ A,

• f(t) = f(t′) f(t′′) for every t = (t′, t′′) ∈M(A) \A.

We call foliage of t ∈M(A) the image f(t) ∈ A∗. Given a Hall set of trees H ⊆M(A)
we call Hall word the foliage of any Hall tree in H.

Proposition 3.2.3. Let H be a Hall set of trees in M(A). Then any Hall word
w is the foliage of a unique Hall tree t ∈ H. Moreover each w ∈ A∗ has a unique
factorization

w = f(t1) f(t2) . . . f(tn) ,

with ti ∈ H and t1 ≥ t2 ≥ . . . ≥ tn.

Definition 3.2.4. A Hall set in A∗ (Hall set of words) is the image under f of a Hall
set inM(A). If w is a Hall word consider the corresponding Hall tree t = (t′, t′′). The
standard factorization of w is the splitting w = u|v where u = f(t′) and v = f(t′′).
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Definition 3.2.5. Given a finite, ordered alphabet A a word w ∈ A∗ is a Lyndon
word if it’s smaller (according to the lexicographic order) than any of its non-trivial
proper right factors. We will denote the set of Lyndon words on {1 < 2 < . . . < n}
with the symbol Ln.

Theorem 3.2.6 (Reutenauer, Theorem 5.1 from [35]). Lyndon words define a Hall
set. The standard factorization of a word w ∈ A∗ of length |w| ≥ 2 is given by
w = u|v, where v is the non-trivial proper Lyndon subword of w of maximal length.
In such a splitting the subword u is a Lyndon word.
Remark 3.2.7. From this point on we will always be working with the ordered
alphabet A = {1 < 2 < . . . < n}. Therefore we will only consider Hall sets of words
on {1 < 2 < . . . < n}, as this is non restrictive for the general case and handy with
our notations.
Remark 3.2.8. For any fixed k the Lyndon words up to length k can be generated by
a fast algorithm by Duval ([15]), which runs in linear time and space. The algorithm
starts with the word w = 1 and at each iteration yields the next word using the
following three steps

1. Append on the right end of w the characters from w itself until a wordx of
length k is formed. For example consider the case of A = {1 < 2} and k = 8.
If we start with the word 112 we obtain

112 7→ x = 11211211 ;

2. Remove the rightmost character of x as long as it’s 2

x = 11211211 7→ x′ = 11211211 ;

3. Replace the rightmost character of x′ by its successor

x′ = 11211211 7→ x′′ = 11211212 .

Definition 3.2.9. Every Lyndon word w of length |w| ≥ 2 can be split as

w = 1|w1| . . . |wk
by applying the split given by the standard factorization and iterating on the left
factor at each step. In this setting we have w1 ≥ . . . ≥ wk. We call such a split full
factorization.
Definition 3.2.10. A Lyndon word w is primitive if the full factorization of w is

w = 1|w1|w2| . . . |wk ,

for some k ≥ 2.

Theorem 3.2.11 (Casas, Murua [10], Theorem 2.1). Let −→α ∈ Tn be a Lie series,
and let H be a Hall set of words on an alphabet {1 < 2 < . . . < n}. We have

−→α =
∑
w∈H

α(Tw)
σ(Tw) Lw .

where for each w ∈ H the element Lw ∈ Lie(•1, . . . , •n) and the tree Tw ∈ Tn are
constructed in the following way:
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• if |w| = 1 then we define Lw = •w and Tw = •w;

• otherwise if w ∈ H such that |w| > 1 let w = u|v be the standard factorization
of w in H. We define Lw = [Lu, Lv] and Tw = Tu ◦ Tv, where ◦ denotes the
Butcher’s product (cf. 1.4.23).

When we consider, in the previous theorem, the Baker-Campbell-Hausdorff
product, we can immediately write the following result

Corollary 3.2.12. For any Hall set H of words on the alphabet {1 < 2 < . . . < n}
we have

BCH(•1, . . . , •n) =
∑
w∈H

〈
D

eD − 1

∣∣∣∣ q(Tw)(1, t)
〉

Lw
σ(Tw) ,

where for each w ∈ H the element Lw ∈ Lie(•1, . . . , •n) and the tree Tw ∈ Tn are
constructed in the following way:

• if |w| = 1 then we define Lw = •w and Tw = •w;

• otherwise if w ∈ H such that |w| > 1 let w = (u, v) be the standard factorization
of w in H. We define Lw = [Lu, Lv] and Tw = Tu ◦ Tv, where ◦ denotes the
Butcher’s product (cf. 1.4.23).

Example 3.2.13. For example we report here a table of Lw, Tw, σ(Tw), q(Tw) for the
first eight Lyndon words w ∈ L2 (ordered first by length and then lexicographically
inside each length class)

w Lw Tw σ(Tw) q(Tw)(t)
1 • • 1 1
2 ◦ ◦ 1 1

1|2 [•, ◦] ◦
• 1 t+ 1

1|12 [•, [•, ◦]]
◦
••
• 1 1

2 t
2 + t+ 1

2

12|2 [[•, ◦], ◦] ◦
•
◦
• 2 t2 + 2 t+ 1

1|112 [•, [•, [•, ◦]]]

◦
•◦
••
• 1 1

6 t
3 + 1

2 t
2 + 1

2 t+ 1
6

1|122 [•, [[•, ◦], ◦]]
◦
•
◦
••
• 2 1

3 t
3 + t2 + 7

6 t+ 1
2

122|2 [[[•, ◦], ◦], ◦] ◦
•
◦
•
◦
• 6 t3 + 3 t2 + 3 t+ 1

. . . . . . . . . . . . . . .

3.2.1 Improvements

In this subsection we refine the recursive solution using symmetric properties arising
from from the Baker-Campbell-Hausdorff product.
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Remark 3.2.14. First observe that ∅ is the unit element with respect to the circle
product }. Then we have (e•x)−1 = e−•x . This is a consequence of a combinatorial
identity. Indeed the element e•x is the series generated by f , where f(T ) = 1

T ! and
e−•x is generated by g where g(T ) = (−1)|T |

T ! . Therefore

e•x } e−•x = ∅+
−−→
f ∗ g .

The map f ∗ g is trivial, because for every rooted tree T we have

(f ∗ g)(T ) =
∑
X⊆T

1
X!

(−1)|T−X|

(T −X)!

= 1
T !

∑
X⊆T

(
T

X

)
(−1)|T−X| = 0 .

Now we observe that

eBCH(−◦,−•)
x = e−◦x } e−•x = (e•x } e◦x)−1 = e−BCH(•,◦)

x ,

which implies BCH(−◦,−•) = −BCH(•, ◦). More in general when we consider the
Lie algebra structure on Tn we have

BCH(−•n, . . . ,−•1) = −BCH(•1, . . . , •n) .

Definition 3.2.15. Let −Σ : Tn → Tn be the unique pre-Lie morphism which sends
each generator •i to •n−i+1. We call −Σ the color inversion morphism.

Proposition 3.2.16 (Color Inversion Formula). For any colored rooted tree T we
have

ζ(TΣ) = (−1)|T |−1 ζ(T ) ,
q̂(TΣ)(t) = (−1)|T | q̂(T )(−t) .

Proof. Let Ψ: Tn → Tn be the unique pre-Lie morphism which sends •i in −•n−i+1.
It’s easy to see that Ψ extends to trees as

Ψ(T ) = (−1)|T | TΣ .

Using this notation, and the fact that BCH commutes with pre-Lie morphisms, we
can write

−BCH(•1, . . . , •n) = BCH(−•n, . . . ,−•1)
= BCH(Ψ(•1), . . . ,Ψ(•n)) = Ψ(BCH(•1, . . . , •n)) .

Expanding this identity we obtain

−
∑
T

ζ(T ) T

σ(T ) =
∑
T

ζ(T ) (−1)|T | TΣ

σ(T ) =
∑
T

(−1)|T |ζ(TΣ) T

σ(T ) .

Therefore by comparing both sides we obtain ζ(TΣ) = (−1)|T |−1 ζ(T ). Now using
Theorem 3.0.6 we can claim
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q̂(TΣ)(t) =
∑

τ⊆E(TΣ)

ζ(TΣ
τ )

TΣ/τ ! t
|TΣ|

=
∑

τ⊆E(T )

(−1)|T |−|τ |−1 ζ(Tτ )
T/τ ! t|τ |+1

= (−1)|T |
∑

τ⊆E(T )

ζ(Tτ )
T/τ ! (−t)|τ |+1 = (−1)|T | q̂(T )(−t) .

We can now put together Theorem 3.1.3 and Corollary 3.2.12 and state the main
result of this chapter. This solution is obtained by applying the recursive solution
given in 3.1.3 to the Lyndon basis of Lie(•1, . . . , •n) ⊆ Tn.

Theorem 3.2.17. Let n ≥ 1 and let L− : Ln → Lie(•1, . . . , •n), h : Ln → K[s, t],
σ : Ln → K be the maps defined recursively in the following way:

• if |w| = 1 let Lw = •w. We set h(w)(s, t) = s and σ(w) = 1;

• otherwise if w ∈ Ln such that |w| > 1 let w = u|v be the standard factorization
of w in Ln. We set Lw = [Lu, Lv] and Tw = Tu ◦ Tv, where ◦ denotes the
Butcher’s product (cf. 1.4.23). Then if

w = a|w1| . . . |w1︸ ︷︷ ︸
j1

| . . . |wk| . . . |wk︸ ︷︷ ︸
jk

is the full factorization of w in Ln with w1 > . . . > wk let ρi be the leftmost
character of the subword wi. Then we set

h(w)(s, t) =
∏
ρi>a

(
t−1∑
τ=0

h(wi)(1, τ)
)ji
·
∫ s

0

∏
ρi=a

(
h(wi)(σ, t) +

t−1∑
τ=0

h(wi)(1, τ)
)ji

dσ ,

and
σ(w) = j1! . . . jk!σ(w1) . . . σ(wk) .

Then we have

BCH(•1, . . . , •n) =
∑
w∈Ln

(−1)|w|−1
〈

D

eD − 1

∣∣∣∣ h(w)(1, t)
〉

Lw
σ(w) .

Proof. Using Proposition 3.2.16 we have

BCH(•1, . . . , •n) =
∑
w∈Ln

(−1)|w|−1 ζ(TΣ
w )

σ(TΣ
w ) Lw ,

and since h(w) is defined as q(TΣ
w ) and σ(w) = σ(TΣ

w ) we can conclude.

It apperas convenient to rewrite the previous theorem in simpler terms when
n = 2.
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Corollary 3.2.18. Let L− : L2 → Lie(•, ◦), h : L2 → K[s, t], σ : L2 → K be the
maps defined recursively in the following way:

• if |w| = 1 let Lw = •w. We set h(w)(s, t) = s and σ(w) = 1;

• otherwise if w ∈ L2 such that |w| > 1 let w = u|v be the standard factorization
of w in L2. We set Lw = [Lu, Lv] and Tw = Tu ◦ Tv, where ◦ denotes the
Butcher’s product (cf. 1.4.23). Then if

w = 1| 2| . . . |2︸ ︷︷ ︸
j

|w1| . . . |w1︸ ︷︷ ︸
j1

| . . . |wk| . . . |wk︸ ︷︷ ︸
jk

is the full factorization of w in L2 with 2 > w1 > . . . > wk we set

h(w)(s, t) = tj
∫ s

0

k∏
i=1

(
h(wi)(σ, t) +

t−1∑
τ=0

h(wi)(1, τ)
)ji

dσ ,

and
σ(w) = j! j1! . . . jk!σ(w1) . . . σ(wk) .

Then we have

BCH(•, ◦) =
∑
w∈L2

(−1)|w|−1
〈

D

eD − 1

∣∣∣∣ h(w)(1, t)
〉

Lw
σ(w) .

As shown in the table below the polynomials h(Tw) have nicer properties and
are much simpler than those in table 3.2.13

w Lw Tw σ(Tw) h(Tw)(t)
1 • • 1 1
2 ◦ ◦ 1 1

1|2 [•, ◦] ◦
• 1 t

1|12 [•, [•, ◦]]
◦
••
• 1 1

2 t
2

12|2 [[•, ◦], ◦] ◦
•
◦
• 2 t2

1|112 [•, [•, [•, ◦]]]

◦
•◦
••
• 1 1

6 t
3

1|122 [•, [[•, ◦], ◦]]
◦
•
◦
••
• 2 1

3 t
3 + 1

6 t

122|2 [[[•, ◦], ◦], ◦] ◦
•
◦
•
◦
• 6 t3

. . . . . . . . . . . . . . .

Definition 3.2.19. Let L ⊆ Tn be the linear subspace defined by

L = {−→α ∈ Tn | α(T ◦ S) + α(S ◦ T ) = 0 ∀T, S 6= •1, . . . , •n} .

Proposition 3.2.20. The subspace L is a Lie subalgebra of Tn.
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Proof. Let −→α ,
−→
β ∈ L. Then we have [−→α ,

−→
β ] =

−−−→
[α, β] =

−−−−−−→
αβ − β α, where for any

two linear maps f, g : T n → K we denote with f g the linear map f, g : T n → K
defined for any colored rooted tree T by

(f g)(T ) =
∑

e∈E(T )
f(T ∗e ) g(T − T ∗e ) .

Therefore for any T, S 6= •1, . . . , •n we have

(f g)(T ◦ S) =
∑

e∈E(T )
f(T ∗e ◦ S) g(T − T ∗e ) +

∑
l∈E(S)

f(T ◦ S∗l ) g(S − S∗l ) + f(T ) g(S) ,

which implies via substitution

(f g)(T ◦ S) + (f g)(S ◦ T ) =
∑

e∈E(T )
(f(T ∗e ◦ S) + f(S ◦ T ∗e )) g(T − T ∗e )

+
∑

l∈E(T )
(f(T ◦ S∗l ) + f(S∗l ◦ T )) g(S − S∗l )

+ f(T ) g(S) + f(S) g(T ) .

Therefore we have the identity

(αβ)(T ◦ S) + (αβ)(S ◦ T ) = α(T )β(S) + α(S)β(T ) ,

which then implies
[α, β](T ◦ S) + [α, β](S ◦ T ) = 0 .

Corollary 3.2.21 (Sliding Formula). We have Lie(•1, . . . , •n) ⊆ L, therefore

ζ(T ◦ S) + ζ(S ◦ T ) = 0 ,

for any colored rooted tree S, T 6= •1, . . . , •n.

Proof. Using Proposition 3.2.20 and the fact that L contains the generators •1, . . . , •n
we can clain that Lie(•1, . . . , •n) ⊆ L. Therefore we have BCH(•1, . . . , •n) =

−→
ζ ∈ L,

which is equivalent to the identity

ζ(T ◦ S) + ζ(S ◦ T ) = 0 ,

for any colored rooted tree S, T 6= •1, . . . , •n.

3.2.2 Further Improvements

Proposition 3.2.22. Let T be a colored rooted tree in T2 with leaves colored as •,
then

• if ρT = • we have

q(TΣ)(s, t) = q(T )(s, t) ,
q̂(T )(−t) = (−1)|T | q̂(T )(t) ;
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• otherwise if ρT = ◦ we have

q(TΣ)(s, t) = q(T )(s, t+ 1) ,
q(T )(−t) = (−1)|T |−1 q(T )(t) .

Proof. We give a proof by induction on |T |. If T = • then immediately q̂(•)(s, t) =
s = q̂(◦)(s, t). For any colored rooted tree T with |T | > 1 we have q̂(T )(0, t+ 1) =
q̂(T )(1, t), and we can say that

• if ρT = • then

q(TΣ)(s, t) =
∫ s

0

∏
ρi=1

q̂(TΣ
i )(0, t)

∏
ρj=0

q̂(TΣ
j )(σ, t) dσ

=
∫ s

0

∏
ρi=1

q̂(Ti)(0, t+ 1)
∏
ρj=1

q̂(Tj)(σ, t) dσ

=
∫ s

0

∏
ρi=1

q̂(Ti)(1, t)
∏
ρj=1

q̂(Tj)(σ, t) dσ = q(T )(s, t) ;

moreover from Proposition 3.2.16 we have q̂(TΣ)(t) = (−1)|T | q̂(T )(−t), there-
fore

q̂(T )(−t) = (−1)|T | q̂(TΣ)(t) = (−1)|T | q̂(T )(t) .

• if ρT = ◦ then

q(TΣ)(s, t) =
∫ s

0

∏
ρi=1

q̂(TΣ
i )(σ, t)

∏
ρj=0

q̂(TΣ
j )(1, t) dσ

=
∫ s

0

∏
ρi=1

q̂(Ti)(σ, t+ 1)
∏
ρj=0

q̂(Tj)(0, t+ 1) dσ = q(T )(s, t+ 1) .

From the definition of q̂(T )(t), using Proposition 3.2.16 we have

q(T )(t) = q̂(T )(t+ 1)− q̂(T )(t)
= q̂(TΣ)− q̂(T )(t) = (−1)|T | q̂(T )(−t)− q̂(T )(t) .

Then q(T )(−t) = (−1)|T | q̂(T )(t)− q̂(T )(−t) = (−1)|T |−1 q(T )(t).

Corollary 3.2.23. Let T be a bicolored rooted tree of even order, with ρT = ◦ and
leaves colored as •. Then we have

ζ(T ) = q(T )′(0)B1 = −1
2 q(T )′(0) .

Morover

1. if TΣ corresponds to a primitive Lyndon word then ζ(T ) = 0,



78 3. The Baker-Campbell-Hausdorff Product

2. if TΣ corresponds to a non-primitive Lyndon word there exists a unique j > 0
and a unique primitive T ′ with root ◦ and leaves • such that

T = {◦|{◦| . . . {◦︸ ︷︷ ︸
j

|T ′} . . .}} .

In this case we have

ζ(T ) = −1
2

j∑
k=1

ζ({
j−k︷ ︸︸ ︷
◦{. . . {◦ |T ′} . . .})

k! .

Proof. We have q(T )(t) =
∑n
k=0 qk t

k for some n ≥ 0. Therefore

q̂(T )(t) =
n∑
k=0

qk
Bk+1(t)−Bk+1(0)

k + 1 .

Since ζ(T ) is the coefficient of degree 1 in q̂ we are only interested in those k = 0, . . . , n
which give a contribution to degree 1. Using Proposition 3.2.22 when |T | is even the
polynomial q(T )(t) is odd, therefore we can restrict the sum to odd values of k. The
only odd k such that Bk+1(t)− Bk+1(0) has a term of degree 1 is k = 1, and this
implies

ζ(T ) = −1
2 q1 = −1

2 q(T )′(0) .

If we take a colored rooted tree S ∈ T2 such that SΣ corresponds to a primitive
Lyndon word we can write S = {◦|S1, . . . , Sk} ∈ T2 for some k ≥ 2 and some
S1, . . . , Sk ∈ T2. Therefore, using Theorem 3.1.3, we can write

q(S)(t) = q({◦|S1, . . . , Sk}) =
∫ 1

0

k∏
i=1

q̂i(σ, t) dσ ,

where for each i we have q̂i(s, t) ∈ {q̂(Si)(0, t), q̂(Si)(s, t), q̂(Si)(1, t)}. For any
possible choice we can write

q(S)′(0) =
∫ 1

0

∑
i

∂tq̂i(σ, 0)
∏
j 6=i

q̂j(σ, 0) .

Using Corollary 3.1.4, since χ↑(Si) = 0 for every i, we have q̂j(Si)(s, 0) = 0 for every
s, and this implies q̂j(σ, 0) = 0 for every j 6= i. Since k ≥ 2 the set {j|j 6= i} is
non-empty for every choice of i, therefore q(S)′(0) = 0. Moreover, using Corollary
3.1.4, since χ↑(S) = 0, we have q(S)(t) ∈ O(t2).

Therefore let T ∈ T2 with |T | even, non-increasing, with root ◦ and leaves •. We
can claim that

1. if TΣ corresponds to a primitive Lyndon word then ζ(T ) = −1
2 q(T )′(0) = 0;

2. if TΣ corresponds to a non-primitive Lyndon word w the full factorization
of w has the form w = 1|w1. If w1 is primitive we stop, otherwise the full
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factorization of w1 has the form w1 = 1|w2, and this implies w = 1|1|w2.
Repeating the procedure we obtain a full factorization

w = 1|1| . . . |1︸ ︷︷ ︸
j

|w′ ,

where w′ is primitive. The full factorization of w corresponds to write T as a
nesting

T = {◦|{◦| . . . {◦︸ ︷︷ ︸
j

|T ′} . . .}} = ◦

◦

T ′

◦ ,

for a unique j > 0 and a unique primitive T ′ such that T ′Σ corresponds to the
Lyndon word w′. Using 3.1.5 we can write

q(T )(t) =
∑

∅6=X⊆T ↑

q̂(T −X)(t)
X! ,

which implies
q(T )′(0) =

∑
∅6=X⊆T ↑

ζ(T −X)
X! .

If J is the colored rooted subtree of T defined by taking the first j vertices

J = {◦| . . . {◦|◦︸ ︷︷ ︸
j

} . . .} ,

then any colored rooted subtree X ⊆ T ↑ such that J ( X can be split uniquely
as X = J ∪X ′ where X ′ is colored rooted subtree ∅ 6= X ′ ⊆ (T ′)↑. Then in
the previous summation the term q̂(T −X)(t) for such an X coincides with
q̂(T ′ −X ′)(t). Since ∅ 6= X ′ the root of T ′ is contained in X ′, which implies
that T ′ −X ′ is a forest of k ≥ 2 connected components. Therefore q̂(T ′ −X ′)
is the product of k ≥ 2 polynomials in O(t). Therefore for any such X we have

q̂(T −X)(t) = q̂(T ′ −X ′) ∈ O(t2) .

When we compute ζ(T ) we just look at the degree 1 term of q̂(T ), therefore in
the previous summation we can skip all those X such that J ( X, therefore

ζ(T ) = −1
2 q(T )′(0) = −1

2

j∑
k=1

ζ({
j−k︷ ︸︸ ︷
◦| . . . {◦ |T ′} . . .})

k! .

3.2.3 A Sketched Out Algorithm

Finally we sketch out the algorithm we impemented. To compute the coefficients of
BCH(•, ◦)
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1. Generate all the Lyndon words of lenght up to n and store them in a table. We
use the Duval algorithm and then sort first by length and then lexicographically
inside each length class;

2. Run through each Lyndon word and compute the full factorization

w = 1|
j︷ ︸︸ ︷

2| . . . |2 |
j1︷ ︸︸ ︷

w1| . . . |w1 | . . . |
jk︷ ︸︸ ︷

wk| . . . |wk

and store it;

3. Run through each Lyndon word w, compute the symmetry factor σ(w) and

then store it. If w = 1|
j︷ ︸︸ ︷

2| . . . |2 |
j1︷ ︸︸ ︷

w1| . . . |w1 | . . . |
jk︷ ︸︸ ︷

wk| . . . |wk we have

σ(w) = j! j1! . . . jk!σ(w1)j1 . . . σ(wk)jk ;

4. Run through each Lyndon word w of length up to the biggest odd integer ≤ n
and compute recursively the polynomial h(w)

h(w)(s, t) = tj
∫ s

0

k∏
i=1

(
(h(wi)(σ, t) +

t−1∑
τ=0

h(wi)(1, τ)
)ji

dσ .

using the previously computed values for h(wi)’s;

5. Run through each Lyndon word w of length up to the biggest odd integer ≤ n,
and compute ζ(w) applying the functional 〈 D

eD−1 |−〉

ζ(w) =
〈

D

eD − 1

∣∣∣∣ h(w)(1, t)
〉

;

6. When n is even we run through each Lyndon word of length n and compute
the coefficient ζ(w) using Corollary 3.2.23 there exists a unique j ≥ 0 and a
unique primitive Lyndon word w′ such that

w = 1| . . . |1︸ ︷︷ ︸
j

|w′ .

Therefore, using Corollary 3.2.23 and Proposition 3.2.16 we can write

ζ(w) = (−1)|w|−1 ζ(wΣ)

= (−1)|w| 12

j∑
k=1

ζ(
j−k︷ ︸︸ ︷

2 . . . 2w′Σ)
k!

= 1
2

j∑
k=1

(−1)k+1 ζ(
j−k︷ ︸︸ ︷

1 . . . 1w′)
k!

= 1
2

j∑
k=1

(−1)k+1 ζ(
k︷ ︸︸ ︷

1 . . . 1w′)
k! .
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Appendix A

Formality - A Few Worked Out
Examples

A.1 Morse Lemma as Intrinsic Formality
Given a smooth manifold X, p ∈ X, and a smooth germ f in p we say that p is
a critical point for f is dpf = 0. We say that p is non-degenerate is the Hessian
D2
pf defines a non-degenerate scalar product on TpX. A well-known theorem in

differential geometry, which goes by the name of Morse Lemma ([32]) states that
in a sufficiently small neighbourhood of p we can opportunely change coordinates
and write f as a purely quadratic map in the new coordinates. The statement of
the Morse Lemma suggests some kind of formality result. Let H be the differential
graded Lie algebra

H : . . .→ 0→ H1 → H2 → 0→ . . .

where

• dimK(H1) = n <∞, dimK(H2) = 1 ;

• [−,−] : H1 ×H1 → H2 is non-degenerate as a symmetric bilinear form.

Definition A.1.1. A graded Lie algebra H is intrinsically formal if every differential
graded Lie algebra L such that H ∼= H∗(L) is formal.

A well-known criterion to prove the intrinsical formality can be found in [22, 24,
29].

Theorem A.1.2 (Manetti, [29], Theorem 3.4). Let L be a differential graded algebra
such that E(L,L)p,2−p2 = 0 for every p ≥ 3. Then L is intrinsically formal.

Morse Lemma suggest an interpretation in terms of intrinsic formality by the
following interpretation: we can think a germ in p as an L∞-algebra and a change
of charts as an L∞-isomorphism. The map f , having trivial order-1 term, may be
interpreted as a minimal L∞-algebra. The Morse lemma states that any germ trivial
in p can be rewritten as a purely quadratic map, which under this interpretation
may be seen as formal L∞-algebra. This way to think the Morse Lemma suggests
that the differential graded algebra H, defined by

H1 = TpX , H2 = K , [−,−] = D2
pf ,
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is intrinsically formal.

Proposition A.1.3. The differential graded algebra H is intrinsically formal.

Proof. Proving E(H,H)p,2−p2 = 0 for every p ≥ 3 is equivalent to say that

ker(δ : Ep,2−p1 → Ep+1,2−p
1 ) = Im(δ : Ep−1,2−p

1 ) , p ≥ 3 ,

and since δ = 0 we have Ep,q1 = Ep,q0 = Homq
K(H∧p, H). Observe that if we take any

φ ∈ Ep,2−p1 we have

(δφ)(x1, . . . , xp+1) =
∑
i

±[φ(x1, . . . , x̂i, . . . , xp+1), xi]

+
∑
i<j

±φ(x1, . . . , x̂i, . . . , x̂j , . . . , xp+1, [xi, xj ]) ,

therefore, since x1 ∧ . . . ∧ xp+1 ≥ p + 1, we have (δφ)(x1, . . . , xp+1) ≥ 3 and this
implies δφ = 0. For this reason we want to show that δ : Hom2−p

K (H∧p, H) →
Hom2−p

K (H∧p, H) is surjective. Moreover we can obsere by comparing degrees that
if φ ∈ Hom2−p

K (H∧p, H) and x1 � . . .� xp > p then φ(x1 � . . . � xp) = 0. For
this reason we have Hom2−p

K (H∧p, H) = Hom2−p
K ((H1)∧p, H2). Since the symmetric

bilinear product [−,−] is non-degenerate, for any linear map α : H1 → H2 ∼= K
there exists some α̂ ∈ H1 such that α = [α̂,−]. Let φ ∈ Hom2−p

K (H∧p, H) =
Hom2−p

K ((H1)∧p, H2), we define φ̂ : ∧p−1 H1 → HomK(H1, H2) ∼= H1 by setting
φ̂(v1, . . . , vp−1)(vp) = φ(v1, . . . , vp). Under the identification HomK(H1, H2) ∼= H1

we have
[φ̂(v1, . . . , vp−1), vp] = φ(v1, . . . , vp)

for every v1, . . . , vp ∈ H1. Moreover we have

(δφ̂)(v1, . . . , vp) =
p∑
i=1

[φ̂(v1, . . . , v̂i, . . . , vp), vi]

=
p∑
i=1

φ(v1, . . . , v̂i, . . . , vp, vi)

= p φ(v1, . . . , vp) ,

for every homogeneous v1, . . . , vp ∈ H1. Then we have δφ̂ = p φ and therefore δ is
surjective.

A.2 An Example of Formality of Higher Degrees
This section is addressed to provide an example of a formal differential graded Lie
algebra of multiplicity n + 1 for every integer n ≥ 2. For every integer n ≥ 2 let
Ln = (Ln, d, [−,−]) the differential graded Lie algebra defined in the following way.

• The graded vector space Ln is concentrated in degrees 1 and 2 as

L1
n = 〈u1, . . . , un〉 , L2

n = 〈h1, . . . , hn〉 ;
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• the differential d is defined by imposing the identities

du1 = 0 , dui = hi−1 i > 1 ;

• the bracket [−,−] is defined by the identities

hi = [u1, ui] , [ui, uj ] = 0 i, j > 1 .

We will prove that Ln is a formal differential graded Lie algebra of degree n + 1
using the criterion provided by Theorem 2.2.30, i.e. by finding a representative of
the Euler class of degree n+ 1 of Ln and showing explicitely that the differential of
the spectral sequence E(Ln, Ln) degenerates on en+1 ∈ E(Ln, Ln)1,0

n+1.

Proposition A.2.1. For every integer n ≥ 2 the DGLA Ln is formal of degree
n+ 1.

Remark A.2.2. The element hn ∈ L is related to the n-th Lie-Massey product defined
by Retakh in [36, 37]. For instance, it’s easy to see that when n = 2 the class of h2

in H2(L)
[u1,H1(L)] is exactly the triple Lie-Massey product [u1, u1, u1]. Triple Lie-Massey

products provide an obstruction to formality which is well known in literature.
Moreover the DGLA L3 gives an example of non-formal DGLA where all triple

Lie-Massey product vanish. Indeed, according to the main result of this section, L3
is formal of degree 4, hence non formal. The cohomology of L3 is concentrated in
degrees 1 and 2, generated by u1 and h3, and the triple Lie-Massey products in L3
are given by

• [u1, u1, u1] = 0. We have [u1, u1] = h1 = du2, therefore a representative for
[u1, u1, u1] is given by the cohomology class of [u1, u2] = h2, but since h2 = du3
this element is trivial in cohomology;

• [u1, u1, h3] = 0, [u1, h3, h3] = 0, [h3, h3, h3] = 0. This is because in each of these
three cases a representative in cohomology must have degree ≥ 3, and H i = 0
for every i ≥ 3.

Remark A.2.3. We can easily show that for any A ∈ Art the Maurer-Cartan equation
in Ln ⊗mA is homogeneous of degree n+ 1. Accordingly to Proposition 2.2.4 this
condition is expected when a DGLA is formal of degree n+ 1. Let A ∈ Art and let
ξ =

∑n
i=1 xi ui be a degree-1 element in L⊗mA. We can write

dξ =
n−1∑
i=1

xi+1 hi , [ξ, ξ] = x2
1 h1 + 2

n∑
i=2

x1 xi hi .

Therefore the Maurer-Cartan equation for ξ becomes
1
2 x

2
1 + x2 = 0 ,

xi + x1 xi−1 = 0 , for i = 3, . . . , n ,
x1 xn = 0 .

Therefore, by setting x = x1 we can write the set of Maurer-Cartan elements as

MCL(A) =
{
ξ = xu1 + 1

2

n∑
i=2

(−1)i+1xi ui ∈ L1 ⊗mA

∣∣∣∣ xn+1 = 0
}
.
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Remark A.2.4. When f : L→M is a morphism of DG-Lie algebras we can give a
more explicit expression for the Chevalley-Eilenberg differential CE(L,M ; f) [29] as
d = [déc δ + déc δ,−]NR where the differential δ : CE(L,M)p,q → CE(L,M)p,q+1 is
defined by

(δφ)(x1, . . . , xp) = d(φ(x1, . . . , xp))−
p∑
i=1

(−1)φ+x1+···+xi−1 φ(x1, . . . , dxi, . . . , xp) ,

where we identify every element of CE(L,M)p,∗ with a p-linear graded skewsymmet-
ric map L⊗p →M (and as usual L∧0 = K, CE(L,M)0,∗ = M), and the differential
δ is defined as:

1. for every m ∈M we have (δm)(x) = (−1)m [m,x];

2. for every φ ∈ Hom∗K(L,M) we have

(δφ)(x, y) = (−1)φ+1
(
[φ(x), y]− (−1)x y [φ(y), x]− φ([x, y])

)
;

3. for p ≥ 2 and φ ∈ Hom∗K(L∧p−1,M) we have:

(δφ)(x1, . . . , xp) = (−1)φ+p−1

 ∑
σ∈S(p−1,1)

χ(σ)[φ(xσ(1), . . . , xσ(p−1)), xσ(p)]

−
∑

ρ∈S(p−2,2)
χ(ρ)φ(xρ(1), . . . , xρ(p−2), [xρ(p−1), xρ(p)])

 .

The total differential d on F pCE(L,M)∗ ∼=
∏
k≥p Hom∗K(L∧k,M) is given by

dφ = (
p︷ ︸︸ ︷

0, . . . , 0, δφp, δφp+1 + δφp, δφp+2 + δφp+1, . . .)

for any φ = (
p︷ ︸︸ ︷

0, . . . , 0, φp, φp+1, . . .) ∈ F pCE(L,M)∗. Therefore, in order to evaluate
dk on any element x ∈ E(L,M)pk, we just need to take some representative φ =
(0, φ1, φ2, . . .) ∈ Z(L,M)pk ⊆

∏
k≥p Hom∗K(L∧k,M) of the class x ∈ E(L,M)pk and

compute the class in E(L,M)p+kk of the element

dφ = (
p︷ ︸︸ ︷

0, . . . , 0, δφp, δφp+1 + δφp, δφp+2 + δφp+1, . . .).

If we want to study the Euler class en ∈ E(L,L)1,0
n we just need to take any

cocycle φ representing en, i.e. any element

φ = (0, φ1, φ2, . . . , φn, . . .) ∈
∏
k≥0

Hom1−k
K (L∧k, L)

such that the “cocycle condition” for dn−1{
δφ1 = 0
δφk + δφk+1 = 0 , k < n

is satisfied, and that induces the Euler derivation x 7→
(
x+ 2−k

k−1

)
x on H∗(L). Note

that the cocycle condition is the requirement for φ to be an element of Z(L,M)1
n.
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Lemma A.2.5. For every integer n ≥ 2 and every m let φm = (0, φm1 , φm2 , . . .) ∈∏
k≥0 Hom1−k

K (L∧kn , Ln) the element defined by setting

φm1 (x) =


1

m−1u1 x = u1
m
m−1hn x = hn

0 otherwise ,

and for 1 < k ≤ n by

φmk (x) =



k!
m−1uk x = u1 ∧ . . . ∧ u1
(k−1)!
m−1 ui+k−1 x = u1 ∧ . . . ∧ u1 ∧ ui, 1 < i < n− k + 2

(m− k + 1) (k−1)!
m−1 hn x = u1 ∧ . . . ∧ u1 ∧ hn−k+1

0 otherwise ,

and φmk = 0 for every k > n. Then we have δφm1 = 0 and δφmk+1 + δφmk = 0 for every
1 ≤ k < n. Moreover we have

(δφmn )(x) =
{
m−n−1

2
(n+1)!
m−1 hn x = u1 ∧ . . . ∧ u1

0 otherwise .

Proof. It’s immediate to see that δφm1 = 0 and that φm1 works as the Euler class of
degreem on the cohomology of L, therefore we just need to prove that φm ∈ Z(L,L)1

n,
i.e.

δφk+1 + δφk = 0
for every 1 ≤ k < n. The proof is tedious but straightforward. First we assume for
1 < k

φmk (x) =


akuk x = u1 ∧ . . . ∧ u1

bkui+k−1 x = u1 ∧ . . . ∧ u1 ∧ ui, 1 < i < n− k + 2
ckhn x = u1 ∧ . . . ∧ u1 ∧ hn−k+1

0 otherwise

for some coefficients ak, bk, ck to be determined. We require the initial conditions

a1 = 1
m− 1 , b1 = 0, c1 = m

m− 1
which make possible to extend the definition for k = 1. In order to find a solution
we impose the identity

δφmk+1 + δφmk = 0
for every 1 ≤ k < n. Therefore we obtain the equations

• (δφmk+1 + δφmk )(u1, . . . , u1) = 0, which becomes

0 = dφk+1(u1, . . . , u1) + (δφk)(u1, . . . , u1)

= ak+1 hk −
(

(k + 1) [φk(u1, . . . , u1), u1]− k (k + 1)
2 φk(u1, . . . , u1, h1)

)
= ak+1 hk − (k + 1) ak hk ,

therefore ak+1 = (k + 1)ak;
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• (δφmk+1 + δφmk )(u1, . . . , u1, ui) = 0 for 1 < i < n − k + 2. We consider two
different cases:

1. if 1 < i < n − k + 1 the equation (δφmk+1 + δφmk )(u1, . . . , u1, ui) = 0
becomes

0 = dφk+1(u1, . . . , u1, ui) + (δφk)(u1, . . . , u1, ui)
= bk+1 hi+k−1 − ([φk(u1, . . . , u1), ui] + k [φk(u1, . . . , u1, ui), u1])
= bk+1 hi+k−1 − ak [uk, ui]− k bk [ui+k−1, u1] ,

which gives bk+1 = kbk for k > 1, and b2 = a1 + b1 = 1
m−1 ;

2. If i = n − k + 1 the equation (δφmk+1 + δφmk )(u1, . . . , u1, un−k+1) = 0
becomes

0 = −φk+1(u1, . . . , u1, hn−(k+1)+1)
− k φk(u1, . . . , u1, hn−k+1)
+ k [φk(u1, . . . , u1, un−k+1), u1]

= −k ck hn + k bk hn ,

which gives ck+1 = −k(bk − ck) for k > 1, and c2 = c1 − b1 − a1;

• It’s easy to see that the equation (δφmk+1 + δφmk )(x1, . . . , xk+1) = 0 is trivial
for different choices of x = x1 ∧ . . .∧ xk with xi ∈ {u1, . . . , un, h1, . . . , hn}. We
restrict to study the following cases

1. x = u1 ∧ . . . ∧ u1 ∧ ui for i = n− k + 2, . . . , n;
2. x = u1 ∧ . . . ∧ u1 ∧ hi for i 6= n− k;
3. x = x1 ∧ . . . ∧ xk−2 ∧ ui ∧ uj for some i, j > 1;
4. x = x1 ∧ . . . ∧ xk−2 ∧ hi ∧ hj .

It’s completely straightforward to see that in all these cases we have both
(δφmk+1)(x) = 0 and (δφmk )(x) = 0.

Finally we end up with the system of recursive equations
ak+1 = (k + 1) ak
bk+1 = k bk

ck+1 = −k (bk − ck)

for k > 1, with initial conditions given by

a2 = 2
m− 1 , b2 = 1

m− 1 , c2 = 1 .

The solution we obtain is 
ak = k!

m−1
bk = (k−1)!

m−1
ck = (m− k + 1) (k−1)!

m−1 .

for every k > 1, and this concludes the proof.
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Corollary A.2.6. For every n ≥ 2 we have dken+1 = 0 for every k > 1, therefore
Ln is formal of degree n+ 1.

Proof. The Euler class of degree n + 1 of Ln is an element en+1 ∈ E(Ln, Ln)1,0
n+1

which is represented by the element φn+1 ∈ Z(Ln, Ln)1,0
n+1 as defined in Lemma A.2.5.

Moreover we have

• δφn+1
k+1 + δφn+1

k = 0 for every 1 ≤ k < n;

• By substituting m = n + 1 in Lemma A.2.5 we obtain δφn+1
n = 0, therefore

δφn+1
n+1 + δφn+1

n = 0;

• For every k > n we have φn+1
k = 0, therefore δφn+1

k+1 + δφn+1
k = 0 for every

k > n.
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Appendix B

Umbral Calculus in Pre-Lie
Algebras

In this section we borrow a very general method from [5] to find the inverse of
δ-power series in any complete right pre-Lie algebra (L,C). Consider a fixed formal
power series

f(t) =
∑
k≥0

ck
k! t

k ∈ K[[t]]

such that c0 = 0, c1 6= 0 (this is called a δ-power series). Since c1 is invertible, the
power series f(t)/t has an inverse given by

g(t) = t

f(t) =
∑
k≥0

ak
k! t

k .

Consider now any complete right pre-Lie algebra (L,C). Using f , for any x ∈ L we
can define the series fC(x) ∈ (L,C) as

fC(x) =
∑
k≥0

ck
k! x

Ck =
∑
k≥0

ck
k! (. . . (xC x) . . .) C x︸ ︷︷ ︸

k

.

The general problem we want to address in this section is the following: for any
y ∈ L find some x ∈ L such that fC(x) = y.
Remark B.0.1. Although operationally impractical it’s useful to show that such a
solution can always be found directly. We can rewrite the equation fC(x) = y as

y = fC(x) =
∑
k≥1

ck
k! x

Ck

=
∑
k≥0

ck+1
(k + 1)! x

Ck+1

=
∑
k≥0

ck+1
(k + 1)! (−C x)k(x) = f(−C x)

−C x
(x) ,

thus the equation we want solve becomes

x = g(−C x)(y) =
∑
k≥0

ak
k! (−C x)k(y) . (B.1)
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Now we can find an iterative solution of B.1 by starting with x = a0 y + o(2) and
replacing at each order the expression obtained at the previous step

x = a0y + o(2) = a0y + a1a0(y C y) + o(3)

= a0y + a1a0(y C y) + a2
1a0(y C (y C y)) + a2

2 a
2
0((y C y) C y) + o(4) = . . . .

(B.2)

B.1 The Universal Case

By the universality of T there exists a unique morphism of complete right pre-
Lie algebras Ψ: T → L such that Ψ(•) = y. Therefore each of the right pre-Lie
monomial of order k appearing in B.2 is the image under Ψ of a linear combination
of trees in T (k). Therefore, without loss of generality, the equation fC(x) = y can
be solved in the free complete right pre-Lie algebra T , where it becomes fx(x) = •.

Definition B.1.1. The complete right pre-Lie algebra of polynomial rooted trees is
the vector space T [t] = T ⊗K[t] together with the pre-Lie product x obtained as
the scalar extension of the pre-Lie product on T .

The iterative method always works but it’s practically infeasible, so the idea
from [5] is to look at the equation

z =
∑
k≥0

ak
k! (−x z)k(•) ∈ T

and require that the scalar (−x z)k(•) is the coefficient of degree k of a polynomial
P ∈ T [t]. Under this assumption the recursive equation B.1 becomes

z = 〈g(D)|P 〉,

where D : T [t] → T is the derivation operator obtained extending differentiation
in K[t] to T [t], and g(D) is the operator obtained as a formal power series in D.
The notation 〈g(D)|P 〉 denotes the scalar obtained by applying g(D) to P and then
evaluating at t = 0. In order to come up with the umbral equation z = 〈g(D)|P 〉,
under our assumptions, we can write P (k)(0) = (− x z)k(•). Then by Taylor
expansion we obtain

P =
∑
k≥0

(−x z)k(•)
k! tk

P ′ =
∑
k≥1

(−x z)k(•)
(k − 1)! tk−1 =

∑
k≥1

(−x z)k(•)
k! tk x z = P x z .

Equivalently, in a more compact form, P is the solution of the Cauchy problem{
P ′ = P x 〈g(D)|P 〉
P (0) = • .

(B.3)
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Proposition B.1.2. Let P = −→p be a solution of the Cauchy problem B.3. Then
for any rooted tree T we have

p(T )(k)(t) =
∑

τ⊆E(T ),|τ |=k
Ord(T/τ) ζ(Tτ − T ∗τ ) p(T ∗τ )(t) , k ≥ 1 .

Moreover we have

p(T )(t) =
∑

τ⊆E(T )

|τ |+ 1
T/τ ! ζ(Tτ − T ∗τ )χ•(T ∗τ ) t|τ | ,

ζ(T ) =
∑

τ⊆E(T )

|τ |+ 1
T/τ ! ζ(Tτ − T ∗τ )χ•(T ∗τ ) a|τ | .

Proof. Using the equation from the Cauchy problem B.3 We have
−→
p′ = −→p x ζ,

therefore
−−→
p(k) = (− x

−→
ζ )k(−→p ). Using corollary 1.4.38 we can prove the identity

for p(T )(k). Then using the Taylor expansion for p(T ) we obtain the identity for
p(T ).

The solution we obtain for the Cauchy problem B.3 can be described recursively
in different terms

Proposition B.1.3 (Bandiera, Schaetz [5], Theorem 2.13). Let P = −→p be a solution
of the Cauchy problem B.3. Then p can be defined recursively by

p(•) = 1 ;
p({•|T1, . . . , Tk}) = p({•|T1}) . . . p({•|Tk}) ;

p({•|T})(t) =
∫ t

0
g(D) p(T ) ds .

Proof. This is Theorem 2.13 in [5], which is proved using the coproduct on T defined
as the transpose of x. Alternatively using lemma 1.4.36 for x we can come up with
a more direct proof. By B.1.2 we have

p(T )′(t) =
∑

e∈E(T )
ζ(T − T ∗e ) p(T ∗e ) ,

therefore, by induction on the size of the argument, we can write

p({•|T})′(t) = ζ(T ) p(•) +
∑

e∈E(T )
ζ(T − T ∗e ) p({•|T ∗e })

= ζ(T ) +
∑

e∈E(T )
ζ(T − T ∗e )

(∫ t

0
g(D) p(T ∗e ) ds

)

= ζ(T ) +
∫ t

0
g(D)

 ∑
e∈E(T )

ζ(T − T ∗e ) p(T ∗e )

 ds
= ζ(T ) +

∫ t

0
(g(D) ·D)p(T ) ds .
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Then we have D2 p({•|T}) = g(D)Dp(T ) = Dg(D) p(T ). By the Cauchy problem
B.3 we have p({•|T})′(0) = ζ(T ) and p({•|T})(0) = 0 for every rooted tree T .
Therefore integrating twice we obtain

p({•|T})(t) =
∫ t

0
g(D) p(T ) ds .

Let T = {•|T1, . . . , Tk}. Using Proposition B.1.2 we observe that every τ ⊆ E(T )
which gives a non trivial contribution to p(T ) contains every edge departing from
the root of T . Therefore every such τ is determined by a unique choice of τ1, . . . , τk
where τi ⊆ E(Ti), and we can write

p({•|T1, . . . , Tk}) =

=
∑

τ1,...,τk

|τ1|+ . . .+ |τk|+ k + 1
{•|T1/τ1, . . . , Tk/τk}!

(∏
i

ζ(Tiτi − Ti
∗
τi)
)
t|τ1|+...+|τk|+k

=
∑

τ1,...,τk

1
T1/τ1! . . . Tk/τk!

(∏
i

ζ(Tiτi − Ti
∗
τi)
)
t|τ1|+...+|τk|+k = p(T1) . . . p(Tk) ,

and the claim is proved.

B.1.1 The Pre-Lie Logarithm

Definition B.1.4. Let (L,C) be a complete right pre-Lie algebra. The pre-Lie
exponential in L is the map

e−C − 1: L→ L

defined by the formal series

exC − 1 =
∑
n≥1

1
n! x

Cn =
∑
n≥1

1
n! (. . . (xC x) C . . .) C x︸ ︷︷ ︸

n

.

Remark B.1.5. The pre-Lie exponential defines a bijection, as it is defined via a
δ-series.

Definition B.1.6. Let (L,C) be a complete right pre-Lie algebra. The pre-Lie
logarithm in L is the formal inverse of the pre-Lie exponential in L, i.e. the map

logC(1 +−) : L→ L

defined recursively by setting

y = logC(1 + x) = (−C y)
e(−Cy) − 1

(x) =
∑
n≥0

Bn
n! (−C y)n(x) .

Remark B.1.7. Let (L,C) be a complete right pre-Lie algebra. If we consider a
ficticious unit element 1 in L (i.e. 1 C x = x = x C 1 for every x ∈ L) we define
exC = 1 + (exC − 1) and logC(x) = logC(1 + (x− 1)) for every x ∈ L.
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Applying the previous technique to the series f(t) = et−1 we can find an explicit
formula for the pre-Lie logarithm in T by finding a solution P for the Cauchy
problem P

′ = P x
〈

D
eD−1

∣∣∣∣P〉
P (0) = • .

(B.4)

Following Proposition B.1.3 the authors of [5] define the generalized binomial coeffi-
cients p(T ) =

( t
T

)
as the generating function of the solution of the Cauchy problem

B.4. Obsering that
∫ t

0
D

eD−1 f(τ) dτ =
∑t−1
τ=0 f(τ) we can give the following definition

Definition B.1.8. Given a rooted tree T the generalized binomial coefficient
( t
T

)
∈

K[t] is the polynomial defined recursively by:(
t

•

)
= 1 ,(
t

{•|T}

)
=

t−1∑
τ=0

(
τ

T

)
,(

t

{•|T1, . . . , Tk}

)
=
(

t

{•|T1}

)
. . .

(
t

{•|Tk}

)
.

The Bernoulli coefficient of T is the scalar BT = 〈 D
eD−1 |

( t
T

)
〉.

Proposition B.1.9 (Bandiera, Schaetz [5] Section 2.3). The pre-Lie logarithm of
∅+ • in T is given by

logx (∅+ •) = z =
∑
T

BT
T

σ(T ) .

B.2 The Colored Case
Fix now some element

−→
f ∈ T and consider the substitution map Ψf : T [t]→ Tn[t]

as the unique morphism of complete right pre-Lie algebras T [t]→ Tn[t] such that
Ψf (•) =

−→
f . If P is the solution of the Cauchy problem B.3 we can claim that

Q = Ψf (P ) ∈ Tn[t] is the solution of the Cauchy problem{
Q′ = Qx 〈g(D)|Q〉
Q(0) =

−→
f .

(B.5)

We give here two different ways to write a solution. The first one is obtained
from the solution of the universal Cauchy problem B.3, deploying Lemma 1.4.34.

Proposition B.2.1. Let Q = −→q be a solution of the Cauchy problem B.5. Then
for any rooted tree T we have

q(T ) =
∑

τ⊆E(T )
f(Tτ ) p(T/τ) ,

ζ(T ) =
∑

τ⊆E(T )
f(Tτ ) ζ(T/τ) .



94 B. Umbral Calculus in Pre-Lie Algebras

Corollary B.2.2. For any −→f ∈ Tn[t] the pre-Lie logarithm of ∅+
−→
f is given by

logx (∅+
−→
f ) =

∑
T

∑
τ⊆E(T )

f(Tτ )BT/τ
T

σ(T ) .

A second solution can be recovered by the differential equation in B.5, and the
proof is similar to Proposition B.1.2.

Proposition B.2.3. Let Q = −→q be a solution of the Cauchy problem B.5. Then
for any colored rooted tree T we have

q(T )(k)(t) =
∑

τ⊆E(T ),|τ |=k
Ord(T/τ) ζ(Tτ − T ∗τ ) q(T ∗τ ) , k ≥ 1 .

Moreover we have

q(T )(t) =
∑

τ⊆E(T )

|τ |+ 1
T/τ ! ζ(Tτ − T ∗τ ) f(T ∗τ ) t|τ | ,

ζ(T ) =
∑

τ⊆E(T )

|τ |+ 1
T/τ ! ζ(Tτ − T ∗τ ) f(T ∗τ ) a|τ | .

Corollary B.2.4. For any −→f ∈ Tn[t] the pre-Lie logarithm of ∅+
−→
f is given by

logx (∅+
−→
f ) =

∑
T

∑
τ⊆E(T )

|τ |+ 1
T/τ ! ζ(Tτ − T ∗τ ) f(T ∗τ )B|τ |

T

σ(T ) .

It turns out that many times instead of working directly with the generating
function q of Q it’s easier to work with an integral modification of q, which we denote
with q̂ by the following definition: for any

−→
f ∈ Tn[t] let

−→̂
f ∈ Tn[t] be defined by

f̂(T )(t) =
∫ t

0
g(D) f(T ) ds .

With this in mind the coefficient ζ(T ) is exactly the coefficient of degree 1 of q̂(T )

ζ(T ) =
〈
g(D)

∣∣∣∣ q(T )(t)
〉

=
〈
D
g(D)
D

∣∣∣∣ q(T )(t)
〉

=
〈
D

∣∣∣∣ ∫ t

0
g(D)q(T )(t)

〉
= q̂(T )′(0) .

Proposition B.2.5. Let Q = −→q be a solution of the Cauchy problem B.5. Then
for any colored rooted tree T we have

q̂(T )(t) =
∑

τ⊆E(T )

ζ(Tτ )
T/τ ! t

|T/τ | .
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Proof. Using Proposition B.2.3 observe that for every k ≥ 2 we have

q̂(T )(k)(0)
k! =

〈
Dk

k!

∣∣∣∣q̂(T )
〉

=
〈
g(D)

∣∣∣∣Dk−1

k! q(T )
〉

= 1
k!

∑
τ⊆E(T ),|τ |=k−1

|T/τ |!
T/τ ! ζ(T ∗τ ) ζ(Tτ − T ∗τ )

=
∑

τ⊆E(T ),|τ |=k−1

ζ(Tτ )
T/τ ! .

The claim follows applying Taylor expansion.

Example B.2.6 (Corollas). As a further application we can compute the poly-
nomials q associated to some important families of trees. Consider the trees
Rn ∈ T2, Tn ∈ T defined by

Rn =

n︷︸︸︷
◦
•

. . . ◦
•

, Tn =

n︷︸︸︷
•
•

. . . •
•

.

Using Proposition B.2.1 and Proposition B.1.3 we can write

q(Rn) =
∑

I⊆{1,...,n}
f(RI) p(R/I) =

∑
I⊆{1,...,n}

f(◦)|I| f(Rn−|I|) p(T|I|)

=
n∑
k=0

(
n

k

)
f(◦)k f(Rn−k) p(Tk) ;

p(Tk) = p({•| •, . . . , •︸ ︷︷ ︸
k

}) = p({•|•})k =
(∫ t

0
g(D) p(•) dτ

)k
=
(∫ t

0
g(D) 1 dτ

)k
.

Therefore we can write

q(Rn) =
n∑
k=0

(
n

k

)
f(◦)k f(Rn−k)

(∫ t

0
g(D) 1 dτ

)k
.

When g(D) = D
eD−1 and f(−) = χ↑(−)

(−)! we obtain q(Rn) = (t + 1)n. The same
formula holds if we replace the coloring of Rn with any (strictly) increasing coloring.





97

Appendix C

An L∞-Structure on Cochains
on the Interval

A slight modification in the definition of the gauge action for L∞-algebras (originally
defined by Getzler in [17]) allows us to compute explicitely, given an L∞-algebra L,
the curvature on the L∞-algebra of (non-degenerate) cochains on the interval I (the
1-simplex) with values in L.

In the category of L∞-algebras gauge equivalence is replaced by the wider
notion of homotopy equivalence, which coincides with gauge equivalence when we
restrict to differential graded Lie algebras. In the context of differential graded Lie
algebras working with the gauge action is actually more convenient than dealing
with homotopy equivalence, since we have an explicit description of the action and
because the composition law is a well known expression which goes by the name
of Baker-Campbell-Hausdorff formula. In this section we follow the construction
made by Getzler to define a gauge action on L∞-algebras but we give an explicit
description in terms of a different family of trees.

Definition C.0.1. Let L = (L, δ, {−,−}, . . .) be an L∞[1]-algebra. The curvature
of an element x ∈ L0 is

R(x) =
∑
n≥0

1
n! {x, . . . , x︸ ︷︷ ︸

n

} .

The Maurer-Cartan equation is R(x) = 0. A Maurer-Cartan element of L is any
x ∈ L0 such that R(x) = 0. The set of Maurer-Cartan elements of L is denoted with
MC(L).

Definition C.0.2. Given an L∞[1]-algebra L = (L, δ, {−,−}, {−,−,−}, . . .) and a
Maurer-Cartan element x ∈ MC(L) the twisting of L along x is the L∞[1]-algebra
given by Lx = (L, δx, {−,−}x, {−,−,−}x, . . .) where

{x1, . . . , xk}x =
∑
n≥0

1
n! {x, . . . , x︸ ︷︷ ︸

n

, x1, . . . , xk} .

Definition C.0.3. The (commutative) DG-algebra of polynomial differential forms
on I is the DG-algebra

K[t, dt] = · · · // 0 // K[t] d // K[t]dt // 0 // · · ·
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concentrated in degrees 0 and 1, with differential given by df = f ′dt.

Definition C.0.4. Given an L∞[1]-algebra L = (L, δ, {−,−}, {−,−,−}, . . .) on K
the L∞[1]-algebra of the differential forms on the affine line with values in L is
the space Ω(I;L) = L[t, dt] = K[t, dt] ⊗ L whith the structure induced by scalar
extension.

Definition C.0.5. The DG-vector space C(I;L) of (non-degenerate) cochains on I
with coefficients in L is defined on degree n by C(I;L)n as the vector space generated
by elements x

a−→y with x, y ∈ Ln, a ∈ Ln−1. The differential on C(I;L) is given by

d(x
a−→y) =δ(x)

y−x−δa−−−−−→δ(y) .

We provide C(I;L) with an L∞[1] structure by applying the homotopy transfer
on a well known contraction, the Dupont’s contraction.

Definition C.0.6. The Dupont’s contraction is the following contraction of DG-
vector spaces

(Ω(I, L), d)
∫
//

K

��
(C(I;L), d)

ı
oo

where the maps are given by∫
(x+ dt a) =x(0)

∫ 1
0 a(s) ds
−−−−−−→x(1) (C.1)

K(x+ dt a) = −
∫ t

0
a(s) dt+ t

∫ 1

0
a(s) ds (C.2)

ı(x
a−→y) = x (1− t) + y t+ dt a . (C.3)

Remark C.0.7. A good reference for C(I;L) is [16]. The L∞[1]-algebra C(I;L)
appears in [17, 4] for the definition of Deligne ∞-groupoid. When L is a differential
graded Lie algebra an explicit expression for the structure of C(I;L) appears in [30].
Remark C.0.8. By Formal Kuranishi Theorem we can say that Maurer-Cartan
elements in C(I;L) are in one-to-one correspondence with Maurer-Cartan elements
in Ω(I;L) inside ker(K) via

MC(C(I;L)) ı∞−−→ MC(Ω(I;L)) ∩ ker(K)

which sends an element α =x
a−→y to its pusforward along ı, i.e.

ı∞(α) =
∑
n>0

1
n! ın(α�n) .

Proposition C.0.9. Given an L∞[1]-algebra L = (L, δ, {−,−}, {−,−,−}, . . .) the
Maurer-Cartan equation on Ω(I;L) on an element ω = x(t) + dt a(t) ∈ Ω(I;L)0

reads as {
x(t) ∈ MC(L)
x′(t) = δx(t)a(t)

for every t ∈ I.
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C.1 Gauge Action for L∞-Algebras
If L = (L, d, [−,−]) is a differential graded Lie algebra the standard notion of gauge
action can be recovered by looking at the Maurer-Cartan elements in Ω(I;L). The
gauge action of a ∈ L0 on x ∈ MC(L) can be obtained by evaluating at t = 1 the
Maurer-Cartan form ω = et a ∗ x ∈ MC(Ω(I;L)). We proceed in similar fashion
on L∞[1]-algebras. The Maurer-Cartan equation in Ω(I;L) can be expanded after
observing that

d(x+ dt a) = dt x′ + δx− dt a ,
{x+ dt a, . . . , x+ dt a︸ ︷︷ ︸} = {x, . . . , x︸ ︷︷ ︸

n

} − ndt {x, . . . , x︸ ︷︷ ︸
n−1

, a} .

Therefore we can claim that the MC form corresponding to x
a−→y is an element

ω = x(t) + dt a ∈ Ω(I;L)0 such that x(t) ∈ MC(L) for every t ∈ I and such that
x(t) is the solution of the Cauchy problem{

x′(t) = δx(t)(a)
x(0) = x .

We can use Cayley’s method to obtain a formal solution to the above Cauchy
problem. More precisely, given functions

x(−) : I → L0

a1(−), . . . , an(−) : I → L

a straightforward computation shows

d

dt

(
{a1(t), . . . , an(t)}x(t)

)
= {a′1(t), . . . , an(t)}x(t) + . . .

+ {a1(t), · · · , a′n(t)}x(t) + {x′(t), a1(t), . . . , an(t)}x(t).

Applying this to the solution x(t) of the above Cauchy problem we find that

x′(t) = δx(t)(a),
x′′(t) = {x′(t), a}x(t) = {δx(t)(a), a}x(t),

x′′′(t) = {x′(t), x′(t), a}x(t) + {x′′(t), a}x(t)

= {δx(t)(a), δx(t)(a), a}x(t) + {{δx(t)(a), a}x(t), a}x(t)

thus

x′(0) = δx(a),
x′′(0) = {δx(a), a}x,
x′′′(0) = {δx(a), δx(a), a}x + {{δx(a), a}x, a}x.
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Expanding x(t) in Taylor series up to order four, we found that

x(t) = x+ tδx(a) + t2

2 {δx(a), a}x (C.4)

+ t3

6 ({δx(a), δx(a), a}x + {{δx(a), a}x, a}x) + . . .

Finally, evaluating x(t) at t = 1, we find that x
a−→y is MC if and only if such is

x and furthermore

y = x+ δx(a) + 1
2{δx(a), a}x

+ 1
6 ({δx(a), δx(a), a}x + {{δx(a), a}x, a}x) + . . .

We can make the previous formulas more explicit in terms of trees. We consider
(non-planar) rooted trees such that some of the leaves are marked: we depict such
trees by coloring the marked leaves in white, and all the remaining vertices in black.
We denote by Tr,m both the set of isomorphism classes of trees as above (where the
isomorphisms are required to preserve the colors of the leaves) and the vector space
generated by it. Given a tree T ∈ Tr,m and a vertex v ∈ V (T ), its hook lenght hl(v) is
the number of black descendants of v, including possibly v itself (if v is a white leaf,
we put by convention hl(v) = 1): we denote by T ! the product T ! :=

∏
v∈V (T ) hl(v),

and call it the tree factorial of T .
Moreover, we denote by σ(T ) the number of automorphisms of T preserving the

colors of the leaves, and we call it the symmetry factor of T , and by |T | the number
of black vertices of T . Finally, given a tree T as above and a ∈ L−1, we define a
function

Ta(#,#): L0 × L0 −→ L0

as follows. Given x, y ∈ L0, we label the white leaves of T by x and the
black leaves by y: if v is a vertex and v1, . . . , vk are its children, and if we have
already labeled v1, . . . , vk by elements z1, . . . , zk ∈ L0, we label v by the element
{z1, . . . , zk, a} ∈ L0. Finally, we define Ta(x, y) ∈ L to be the label of the root. More
precisely:

1. •a(x, y) = y, ◦
a(x, y) = x;

2.
(
T1

•��
. . .Tk

•��
)
a

(x, y) = {(T1)a, . . . , (Tk)a, a}

With the above notations, we can write the Taylor series C.4 for x(t) in the
following closed form

x(t) =
∑

T∈Tr,m

t|T |

T ! · σ(T )Ta(x, δa),

and in particular x
a−→y is MC if and only if such is x, and furthermore
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y =
∑

T∈Tr,m

Ta(x, δa)
T ! · σ(T ) (C.5)

Definition C.1.1. Let L = (L, δ, {−,−}, . . .) be an L∞[1]-algebra. The gauge
action of L−1 on MC(L) is defined by the map G : L−1×MC(L)→ MC(L) given by

a G x =
∑

T∈Tr,m

Ta(x, δa)
T !σ(T ) .

Remark C.1.2. We can show that the notion of gauge action for L∞-algebras extends
the usual notion for differential graded Lie algebras. Indeed let L = (L, d, [−,−]) be
a differential graded Lie algebra. The gauge action of L0 on MC(L) is given by

(a, x)→ ea ∗ x := ead a − 1
ad a ([a, x]− da) .

Consider now x ∈ MC(L) and define the element ω = et a ∗ x in MC(Ω(I;L)). Then
ω = x(t) + dt a where {

x′(t) = [a, x(t)]− da
x(0) = x .

which is exactly equivalent to C.0.9 under décalage. By observing that the gauge
action ea ∗ x is obtained by evaluating ω in t = 1 we can conclude. Indeed we have

x(t) =
∑
n≥0

1
n! (ad t a)n(x)−

∑
n≥1

1
n! (ad t a)n−1(dt a)

= x+
∑
n≥1

tn
1
n! (ad a)n(x)− t da−

∑
n≥2

1
n! t

n (ad a)n−1(da) ,

x′(t) =
∑
n≥1

n tn−1 1
n! (ad a)n(x)− da−

∑
n≥2

n tn−1 1
n! (ad a)n−1(da)

= [a, x]− da+
∑
n≥2

1
(n− 1)! t

n−1 (ad a)n(x)−
∑
n≥2

1
(n− 1)! (ad t a)n−1(da)

= −da+ (ad a)

∑
n≥0

(ad t a)n

n! (x)

− (ad a)

∑
n≥1

(ad t a)n−1

n! (dt a)


= [a, x(t)]− da .

Homotopy Equivalence

Definition C.1.3. Let L = (L; δ, {−,−}, {−,−,−}, . . .) be an L∞[1]-algebra. Two
Maurer-Cartan elements x, y ∈ MC(L) are “homotopy equivalent” if there exists a
“homotopy equivalence” between them, i.e. there exists some ξ ∈ MC(Ω(I;L)) such
that

ev0(ξ) = x , ev1(ξ) = y .

Proposition C.1.4. Homotopy equivalence is an equivalence relation.
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Proof. Consider three Maurer-Cartan elements x, y, z ∈ MC(L) and two homotopy
equivalences ξ ∈ MC(Ω(I;L)), η ∈ MC(Ω(I;L)) such that ev0(ξ) = x, ev1(ξ) = y =
ev0(η), ev1(η) = z. We want to find some ε ∈ MC(Ω(I;L)) such that ev0(ε) =
x, ev1(ε) = z. To make the proof simpler it’s not restrictive to assume instead that
ev1(ξ) = x, ev0(ξ) = y = ev0(η), ev1(η) = z.

Consider the commutative diagram of DG-algebras

K[t, s, dt, ds] //

��

K[t, dt]

��
K[s, ds] // K

By the universal property of fiber products there exists a surjective quasi-isomorphism
p : K[s, t, ds, dt]→ K[s, ds]×K K[t, dt], which induces a strict weak equivalence

p : K[s, t, ds, dt]⊗ L→ (K[s, ds]×K K[t, dt])⊗ L

Therefore there exists an L∞-morphism

g∞ : (K[s, ds]×K K[t, dt])⊗ L→ K[s, t, ds, dt]⊗ L

such that pg∞ = 1. The couple (ξ, η) is a Maurer-Cartan element in MC(L ⊗
(K[t, dt]×KK[s, ds])), therefore ε̃ = g∞((ξ, η)) ∈ MC(L⊗K[t, s, dt, s]) and, since p is a
strict morphism, the element ε̃ lifts (ξ, η), i.e. ε̃(s, t) = α(s, t)+β(s, t) ds+γ(s, t) dt+
λ(s, t) ds dt such that α(s, 0) + β(s, 0) ds = η(s) and α(0, t) + γ(0, t) dt = ξ(t).
Consider now the element ε(t) = ε̃(1− t, t), obtained as the image on ε̃ under the
strict morphism

ψ : L[s, t, ds, dt]→ L[t, dt], ψ(ω)(t) = ω(1− t, t) .

This is strict L∞-morphism, therefore ε ∈ MC(L[t, dt]). Moreover we have ev0(ε) =
α(1, 0) = η(1) = z and ev1(ε) = α(0, 1) = ξ(1) = x, and this concludes the proof.

Proposition C.1.5. Let L be an L∞[1]-algebra and ω = x(t)+dt a(t) ∈ MC(Ω(I;L)).
There exists a unique A ∈ L−1[t] such that{

A(0) = 0
A(t) G x(0) = ω , in Ω(I;L) .

Proof. The equation A(t) G x(0) = ω can be written as

∑
T∈Tr,m

TA(x(0), dtA′ + δA)
T !σ(T ) = x(t) + dt a(a) ,

and can be split into 2 parts: one for the 0-form, the other one for the 1-form. We
first solve the second one. Since we are solving the part of the equation involving
the 1-form we can drop in the summation every tree which doesn’t have black leaves,
since they don’t contribute in dt. Moreover we drop every tree having more than
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one black leaf, since dt dt = 0. Let T ′r,m be the subset of Tr,m of all trees with exactly
one black leaf. We can then solve a simpler equation

a(t) =
∑

T∈T ′r,m

TA(t)(x(0), A′(t))
T !σ(T ) .

Let A(t) =
∑
n≥0

A(n)(0)
n! tn be the Tayloe expansion of A in t = 0. By substituting

t = 0 in the previous equation we obtain A′(0) = a(0). We can compute the higher
derivatives of A in t = 0 by differtiating both sides:

a(n)(0) =
∑

T∈T ′r,m

dn

dtn |t=0TA(t)(x(0), A′(t))
T !σ(T ) .

If we consider the part of degree n of this equation we obtain a way to compute
A(n+1)(0). First observe that A(n+1)(0) appears only once in degree n due to the
contribution of the tree •A(t)(x(0), A′(t)). Moreover, since A(t) ∈ O(t), when T 6= •
the expression TA(T )(x(0), A′(t)) gives a non scalar contribution, and this implies
that TA(T )(x(0), A′(t)) gives a contribution in terms of A′(0), A(2)(0), . . . , A(n)(0)
only. Therefore the previous equation has the form

a(n)(0) = A(n+1)(0) +
∑

nested brackets in A1, . . . , An ,

which can be solved in A(n)(0) for every n iteratively, and gives a solution for A.
Finally we take our solution for A obtained in this way and define y = A(t);G x(0).
By construction y is a Maurer-Cartan element in Ω(I;L) and has the same 1-form
component of ω. Moreover their evaluations at 0 coincide with x(0). Therefore,
since they solve the same Cauchy problem they must coincide.

Corollary C.1.6. Let L = (L, δ, {−,−}, . . .) be an L∞[1]-algebra. Two Maurer-
Cartan elements x, y ∈ MC(L) are homotopy equivalent if and only if are gauge
equivalent.

Proof. If x, y ∈ MC(Ω(I;L)) and y = a G x for some a ∈ L−1 consider the element
ω = (t a) G x ∈ MC(Ω(I;L)). We have ev0(ω) = x and ev1(ω) = y. Conversely if
ω = x(t)+dt a(t) ∈ MC(Ω(I;L)) such that ev0(ω) = x and ev1(ω) = y by Proposition
C.1.5 there exists some A(t) ∈ L−1[t] such that A(0) = 0 and A(t) G x = ω in
Ω(I;L). Therefore we have y = ev1(ω) = A(1) G x, and this concludes the proof.

Remark C.1.7. Gauge equivalence is an equivalence relation.

C.2 The Curvature in C(I; L)
We can use the previous analysis to establish explicit formulas for the L∞[1]-algebra
structure on C∗(I;L). First of all, it follows by tree summation formulas for the
homotopy transfer that the curvature of an element x

a−→y∈ C0(I;L) admits the
following expansion

R(x
a−→y) =R(x)

ξ−→R(y)
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Here ξ ∈ L0 is

ξ = y − x− δa+
∑

T∈T ≥2
r,m

ξ(T )
σ(T )Ta(x, y), (C.6)

and the ξ(T ) ∈ Q are certain rational coefficients to be determined. A first way
to determine these coefficients is to impose that when we solve ξ = 0 with respect to
y we recover (C.5).

Example C.2.1. For instance, we denote by T1, T2 the trees T1 = •
◦ and T2 = •

•, and
by ξ1, ξ2 the respective coefficients. Thus ξ = y− x− δa+ ξ1{x, a}+ ξ2{y, a}+ o(3):
putting ξ = 0 we find y = x + δa + o(2) = x + δa − ξ1{x, a} − ξ2{x + δa, a} +
o(3) = x+ δa− (ξ1 + ξ2){x, a} − ξ2{δa, a}+ o(3), but according to (C.5) we have
y = x+ δa+ {x, a}+ 1

2{δa, a}+ o(3), hence ξ1 = ξ2 = −1
2 .

Definition C.2.2. Let q : Tr,m → K[t] and ξ : Tr,m → Q be defined recursively as

1. q(◦) = 1− t, q(•) = t;

2. q
(
T1

•��
. . .Tk

•��
)

= −K
(∏k

i=1 q(Ti)dt
)
;

3. ξ
(
T1

•��
. . .Tk

•��
)

= −
∫ (∏k

i=1 q(Ti)dt
)
.

Given a tree T ∈ Tr,m, we denote by Ṽ (T ) the disjoint union of the set of internal
vertices of T different from the root and the set of white leaves of T . Given a susbet
J ⊆ Ṽ (T ), we denote by TJ the rooted forest obtained first by blackening the white
leaves in J , and then by cutting T at the remaining internal vertices in J . We also
denote by T ∗J the tree in the forest TJ containing the root of T .

Lemma C.2.3. Given a class T ∈ Tr,m we have

1. q(◦) = 1− t, q(•) = t;

2. For any T ∈ T ≥2
r,m

q(T ) =
∑

J⊆Ṽ (T )

(−1)|J |

TJ ! (t|T ∗J | − t), ξ(T ) =
∑

J⊆Ṽ (T )

(−1)|J |+1

TJ ! .

Proof. We give a proof by induction on the number of vertices of T ∈ Tr,m. Any
T ∈ T ≥2

r,m can be written (up to isomorphism) as

T =
T1

•##

. . .Tk

•��

◦

•��

. . . ◦

•



•

•��

. . . •

•{{

with w white leaves λ1, . . . , λw adjacent to the root, b black leaves adjacent to
the root, and k classes T1, . . . , Tk ∈ T ≥2

r,m.
Then if J ⊆ Ṽ (T ) we call
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Ji = J ∩ Ṽ (Ti), 1 ≤ i ≤ k
R = J ∩ {root(T1), . . . , root(Tk)}
L = J ∩ {λ1, . . . , λw}.

We can easily claim that

|T ∗J | =
∑

root(Ti)6∈R
|(Ti)∗Ji |+ |R|+ |L|+ b+ 1 (C.7)

TJ ! =

 ∑
root(Ti)6∈R

|(Ti)∗Ji |+ |R|+ |L|+ b+ 1

 k∏
i=1

(Ti)Ji ! (C.8)

because T ∗J is made up by the root of T , all the roots contained in R, all the
leaves coming from L, all the black leaves adjacent to the root in T , and for every
root(Ti) 6∈ R we attach the subtree (Ti)∗Ji to the root of T . Likewise the forest TJ
is made up by T ∗J and for every root(Ti) ∈ R all the trees of (Ti)Ji different from
(Ti)∗Ji .

By induction we have

q(T ) = −K
((

k∏
i=1

q(Ti)
)

(1− t)wtbdt
)

= −K

 ∑
Ji⊆Ṽ (Ti),1≤i≤k

(−1)
∑k

i=1 |Ji|∏k
i=1(Ti)Ji !

(
k∏
i=1

(t|(Ti)
∗
Ji
| − t)

)
(1− t)wtbdt



=
∑

Ji⊆Ṽ (Ti)
1≤i≤k

(−1)
∑k

i=1 |Ji|+|R|+|L|+1∏k
i=1(Ti)Ji !

K

 ∑
R⊆{1,...,k}
L⊆{1,...,w}

t
∑

i 6∈R |(Ti)
∗
Ji
|+|R|+|L|+b

dt


=

∑
Ji⊆Ṽ (Ti),1≤i≤k

R⊆{1,...,k},L⊆{1,...,w}

(−1)
∑k

i=1 |Ji|+|R|+|L|+1∏k
i=1(Ti)Ji !

K

(
t
∑

i 6∈R |(Ti)
∗
Ji
|+|R|+|L|+b

dt

)

=
∑

Ji⊆Ṽ (Ti),1≤i≤k
R⊆{1,...,k},L⊆{1,...,w}

(−1)
∑k

i=1 |Ji|+|L|+|R|
(
t
∑

i6∈R |(Ti)
∗
Ji
|+|R|+|L|+b+1 − t

)
(∑

i 6∈R |(Ti)∗Ji |+ |R|+ |L|+ b+ 1
)∏k

i=1(Ti)Ji !

=
∑

J⊆Ṽ (J)

(−1)|J |

TJ ! (t|T ∗J | − t).

The conjectural formula for ξ can now be easily proved
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ξ(T ) = −
∫ (( k∏

i=1
q(Ti)

)
(1− t)wtbdt

)

=
∑

Ji⊆Ṽ (Ti),1≤i≤k
R⊆{1,...,k},L⊆{1,...,w}

(−1)
∑k

i=1 |Ji|+|R|+|L|+1∏k
i=1(Ti)Ji !

∫ (
t
∑

i 6∈R |(Ti)
∗
Ji
|+|R|+|L|+b

dt

)

=
∑

Ji⊆Ṽ (Ti),1≤i≤k
R⊆{1,...,k},L⊆{1,...,w}

(−1)
∑k

i=1 |Ji|+|R|+|L|+1(∑
i 6∈R |(Ti)∗Ji |+ |R|+ |L|+ b+ 1

)∏k
i=1(Ti)Ji !

=
∑

J⊆Ṽ (T )

(−1)|J |+1

TJ ! .

C.2.1 Curvature and Pushforward

Lemma C.2.4. Let L = (L, δ, {−,−}, . . .) be a complete L∞[1]-algebra, and consider
the L∞[1]-structure on C(I;L) given by Dupont’s contraction. We then have

ı∞(x
a−→y) = x(1− t) + yt+ dta+

∑
T∈Tr,m

q(T )
σ(T )Ta(x, y).

Proof. Using tree summation formulas for homotopy transfer we have

ı∞(x
a−→y) =

∑
n>0

1
n!

∑
Ω∈F (n,1)

1
|Aut(Ω)|(Kq)ΩN ◦ ı�n(x

a−→y, . . . ,x
a−→y)

=
∑
n>0

1
n!

∑
Ω∈F (n,1)

1
|Aut(Ω)|(Kq)ΩN((x(1− t) + yt+ adt)�n)

=
∑
n>0

1
n!

∑
Ω∈F (n,1)

1
|Aut(Ω)|(Kq)Ω(n!(x(1− t) + yt+ adt)⊗n)

=
∑
n>0

∑
Ω∈F (n,1)

1
|Aut(Ω)|(Kq)Ω((x(1− t) + yt+ adt)⊗n).

Consider now a tree Ω ∈ F (n, 1) whith an internal vertex v with the property
that every incoming edge comes from another internal vertex. This tree gives a null
contribution in the sum above, because the vertex v gets labelled with an expression
of type

Kqm(K∗, . . . ,K∗)

which is null because K has image in polynomials, and vanishes on them. For
this reason we define a proper subset of F (n, 1)
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F ∗(n, 1) = {Ω ∈ F (n, 1)| every internal vertex of Ω has an incoming adjacent leaf}.

Then we can write

ı∞(x
a−→y) =

∑
n>0

∑
Ω∈F ∗(n,1)

1
|Aut(Ω)|(Kq)Ω((x(1− t) + yt+ adt)⊗n).

For every fixed Ω ∈ F ∗(n, 1) in the above expression we get a sum over all
possible choices of n terms among (1− t)x, ty, dta. Every such choice corresponds
to a 3-coloring of the leaves of Ω, where white corresponds to (1 − t)x, black to
ty, and ∗ to dta. Since K vanishes on polynomials and dtdt = 0 we can restrict
the sum to just the colorings where every internal node has exactly one adjacent
leaf colored with ∗. We denote such colorings with CΩ

∗ . Given Γ ∈ CΩ
∗ we denote

with Γ∗ the class in Tr,m obtained by dropping the leaves marked with ∗, and with
T Ω
r,m = {Γ∗|Γ ∈ CΩ

∗ }. To make notations simpler we set ∅a(x, y) = dta. For any
Γ ∈ CΩ

∗ we denote with pΓ(x, y, z) the element in Ω(I;L)×n obtained by the choice
of terms corresponding to Γ.

(Kq)Ω((x(1− t) + yt+ adt)�n) =
∑

Γ∈CΩ
∗

(Kq)Ω(((1− t)x+ ty + dta)⊗n)

=
∑

Γ∈CΩ
∗

(−Kq|K[t,dt])ΩpΓ(1− t, t, dt) · (Γ∗)a(x, y)

=
∑

Γ∈CΩ
∗

q(Γ∗) · (Γ∗)a(x, y)

=
∑

T∈T Ω
r,m

∑
Γ∈CΩ

∗ ,Γ∗=T

q(T ) · Ta(x, y)

=
∑

T∈T Ω
r,m

∣∣∣{Γ ∈ CΩ
∗ ,Γ∗ = T}

∣∣∣ q(T ) · Ta(x, y)

The group Aut(Ω) acts transitively on the set {Γ ∈ CΩ
∗ ,Γ∗ = T}, therefore by

the orbit-stabilizer theorem we have

∣∣∣{Γ ∈ CΩ
∗ ,Γ∗ = T}

∣∣∣ = |Aut(Ω)|
σ(T )

therefore
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ı∞(x
a−→y) =

∑
n>0

∑
Ω∈F ∗(n,1)

1
|Aut(Ω)|(Kq)Ω((x(1− t) + yt+ adt)⊗n)

=
∑
n>0

∑
Ω∈F (n,1)

∑
T∈T Ω

r,m

q(T )
σ(T ) · Ta(x, y)

=
∑

Ω∈Tr,m

q(T )
σ(T ) · Ta(x, y)

= x(1− t) + yt+ dta+
∑

Ω∈T ≥2
r,m

q(T )
σ(T ) · Ta(x, y).

Lemma C.2.5. Let L = (L, δ, {−,−}, . . .) be a complete L∞[1]-algebra, and consider
the L∞[1]-structure on C(I;L) given by Dupont’s contraction. Then in the expression
C.6 we have

ξ(T ) =
∑

J⊆Ṽ (T )

(−1)|J |+1

TJ !

Proof. For every Ω ∈ F (n, 1) let Ω′ denote the forest obtained by removing the root
of Ω and all its incoming edges, then we have

R(x
a−→y) =

∑
n>0

1
n!

∑
Ω∈F (n,1)

1
|Aut(Ω)|

(∫
q

)
(Kq)Ω′N ◦ ı�n

(
x
a−→y, . . . ,x

a−→y

)
=
∑
n>0

1
n!

∑
Ω∈F (n,1)

1
|Aut(Ω)|

(∫
q

)
(Kq)Ω′n! (x(1− t) + yt+ adt)⊗n

=
∑
n>0

∑
Ω∈F (n,1)

1
|Aut(Ω)|

(∫
q

)
(Kq)Ω′ (x(1− t) + yt+ adt)⊗n

=β
α−→γ

with α, β, γ to be determined. We then have

α =
∑
n>0

∑
Ω∈F (n,1)

1
|Aut(Ω)|

(∫ 1

0
q

)
(Kq)Ω′ (x(1− t) + yt+ adt)⊗n

=
∑
n>0

∑
Ω∈F ∗(n,1)

1
|Aut(Ω)|

(∫ 1

0
q

)
(Kq)Ω′ (x(1− t) + yt+ adt)⊗n .

For any fixed Ω ∈ F ∗(n, 1) we call Ω = Ω1 · · ·Ωm−1•, then we have

(Kq)Ωi (x(1− t) + yt+ adt)⊗n =
∑

Ti∈T
Ωi
r,m

|Aut(Ωi)|
σ(Ti)

q(Ti)(Ti)a(x, y),

then
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1
|Aut(Ω)|

(∫ 1

0
q

)
(Kq)Ω′ (x(1− t) + yt+ adt)⊗n

= 1
|Aut(Ω)|

∑
Ti∈T

Ωi
r,m,1≤i<m

 ∏
1≤i<m

|Aut(Ωi)|
σ(Ti)

(− ∫ 1

0
q(T1) . . . , q(Tm−1)dt

)
Ta(x, y)

= 1
|Aut(Ω)|

∑
Ti∈T

Ωi
r,m,1≤i<m

 ∏
1≤i<m

|Aut(Ωi)|
σ(Ti)

 ξ(T )Ta(x, y).

Once again by the orbit-stabilizer theorem we can say that |Aut(Ωi)|
σ(Ti) is the

cadinality of all possible colorings in CΩi∗ . Since we have
∣∣∣CΩ
∗

∣∣∣ =
∣∣∣CΩ1
∗

∣∣∣ · . . . · ∣∣∣CΩm
∗

∣∣∣ we
have

1
|Aut(Ω)|

(∫ 1

0
q

)
(Kq)Ω′ (x(1− t) + yt+ adt)⊗n =

∑
T∈T Ω

r,m

ξ(T )
σ(T )Ta(x, y),

and we can write at last

R(x
a−→y) = x− y − δa+

∑
T∈T ≥2

r,m

ξ(T )
σ(T )Ta(x, y).

Moreover

β = ev0

∑
n>0

∑
Ω∈F (n,1)

1
|Aut(Ω)|q(Kq)Ω′ (x(1− t) + yt+ adt)⊗n


=
∑
n>0

∑
Ω∈F (n,1)

1
|Aut(Ω)|q(Kq)Ω′

(
x⊗n

)
=
∑
n>0

1
|Aut(Tn)|qn

(
x⊗n

)
=
∑
n>0

1
n!qn(x, . . . , x) = R(x).

In similar fashion

γ = ev1

∑
n>0

∑
Ω∈F (n,1)

1
|Aut(Ω)|q(Kq)Ω′ (x(1− t) + yt+ adt)⊗n


= R(y)

and the claim is proved.
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Remark C.2.6. There is a standard way to recover the L∞-structure from the
curvature. Using the expression for the curvature observe that for any element x

a−→y

of degree 0 we have

1
n! {x

a−→y, . . . ,x
a−→y} = 1

n! {x,...,x}

∑
T∈T nr,m

ξ(T )
σ(T ) Ta(x,y)

−−−−−−−−−−−−−−→ 1
n! {y,...,y}

.

Then observe that for any x1, . . . , xn of degree 0 we have the polarization identity

rn(x1, . . . , xn) = 1
n!

∑
∅⊆I⊆{1,...,n}

(−1)n−|I|
{∑
i∈I

xi, . . . ,
∑
i∈I

xi

}
.

This is a consequence of the inclusion-exclusion principle: if g(A) =
∑
S⊆A f(S)

then f(A) =
∑
S⊆A(−1)|A|−|S| g(S). Just use

g(I) =
{∑
i∈I

xi, . . . ,
∑
i∈I

xi

}
=
∑
J⊆I
|J |!

∑
(a1,...,a|J|)

aj>0,
∑

aj=n

∏
j∈J

x
aj
j

f(J) = |J |!
∑

(a1,...,a|J|)
aj>0,

∑
aj=n

∏
j∈J

x
aj
j .

Then, since the curvature is defined on degree-0 elements, we use a sign trick.
Take n elements αi =xi

ai−→yi of degrees αi = mi. Then introduce variables t1, . . . , tn
of degrees ti = −mi. Usin the previous polarization technique we can compute

{t1 ⊗ α1, . . . , tn ⊗ αn} = ±(t1 . . . tn)⊗ {α1, . . . , αn} ,

where the sign is given by the Koszule rule of signs and is (−1)−mn(mn−1+...+m1)−...−m2m1 .
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