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Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena
such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity.
Moreover, it is necessary in practical applications such as linear optical quantum computation and sim-
ulation, in particular for Boson Sampling devices. It is thus crucial to develop tools to certify genuine mul-
tiphoton interference between multiple sources. Our approach employs the total variation distance to
find those transformations that minimize the error probability in discriminating the behaviors of distin-
guishable and indistinguishable photons. In particular, we show that so-called Sylvester interferometers
are near-optimal for this task. By using Bayesian tests and inference, we numerically show that Sylvester
transformations largely outperform most Haar-random unitaries in terms of sample size required.
Furthermore, we experimentally demonstrate the efficacy of the transformation using an efficient 3D
integrated circuits in the single- and multiple-source cases. We then discuss the extension of this
approach to a larger number of photons and modes. These results open the way to the application of
Sylvester interferometers for optimal assessment of multiphoton interference experiments.
� 2018 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The observation that fundamental particles may be intrinsically
indistinguishable is a counter-intuitive feature of quantum
mechanics. As a consequence, their collective behaviour is gov-
erned by quantum statistics, and results in phenomena relevant
in different contexts. For instance, many-body bosonic interference
is at the very heart of quantum photonic computation [1–3]. In this
context, Boson Sampling devices harness multiphoton interference
effects to provide evidence of a superior quantum computational
power with current state-of-the-art technology [3–15]. The task
of certifying genuine many-boson interference is thus expected
to find numerous applications in photonic quantum information,
for validating the functioning of Boson Sampling experiments
[8–11,16–28] and, more generally, as a diagnostic tool for quantum
optical devices [29,30]. A well-known approach to experimentally
test the degree of indistinguishability between photons involves
the use of the Hong-Ou-Mandel effect [31], for which various
Elsevier B.V. and Science China Pr
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generalizations have been proposed to account for multiple photon
sources [32–38]. Given multiple photon sources, characterization
of indistinguishability between the generated photons by using
only pairwise Hong-Ou-Mandel experiments in a 50/50 beam-
splitter presents some relevant limitations. When more than two
photons are generated, pairwise mutual indistinguishability is
not sufficient to fully characterize the landscape of multiphoton
interference [37]. Furthermore, in the multiple-input scenario such
as in scattershot Boson Sampling experiments [12,39,40], when
several sources are connected in parallel and only a subset gener-
ates a single photon at each experimental run, separately measur-
ing all pairwise two-photon indistinguishabilities does not
represent an optimal solution. A natural problem that arises is then
to determine which interferometers allow for an optimal assess-
ment of the indistinguishability of multiphoton states, when only
a single device is employed for the full set of input states (see
Fig. 1).

In this work, we introduce a new approach for the task of
discriminating distinguishable and indistinguishable photon
behaviour in multimode photonic networks, and perform an exper-
imental demonstration with two-photon inputs in laser-written
integrated devices with an optimal interferometric design. Our
ess.
/licenses/by-nc-nd/4.0/).
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Fig. 1. (Color online) Searching for the optimal indistinguishability test. An unknown multiphoton state is injected into a multimode interferometer, designed to discriminate
between the two hypotheses: either all photons are indistinguishable (Q) or all photons are distinguishable (P). The internal parameters can then be tuned until the most
efficient test is found, for which the distributions corresponding to the two hypotheses P and Q are as different as possible, as measured by the total variation distance of the
output distributions.
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approach consists in identifying linear-optical interferometers for
which the experimental output is as different as possible for the
two distinguishability cases, according to a suitable figure of merit.
Such interferometers will be optimal for indistinguishability tests,
in the sense of requiring the least number of events for a given
level of confidence in the discrimination problem. To assess the
optimality of an interferometer we maximize the total variation
distance (TVD) between the output probability distributions
corresponding to indistinguishable and distinguishable photons,
showing that in certain cases the optimal solution is provided by
so-called Sylvester interferometers. More specifically, we prove
optimality for variable-input 2-photon experiments in 4-mode
interferometers, and provide numerical evidence of optimality for
variable-input 2-photon experiments in 8-mode interferometers.
We experimentally test our analysis by implementing two
Sylvester interferometers with 4 and 8 modes, by adopting a
3-dimensional architecture enabled by the femtosecond laser
micromachining technique. We then consider a setup in which
probabilistic single-photon sources are coupled to different sets
of input ports of an interferometer. Specifically, we perform a scat-
tershot Boson Sampling experiment in the 4-mode Sylvester device
by connecting all input modes with an heralded single-photon
source, and verify the capability of the approach to validate the col-
lected data by using a small number of events. Finally, we discuss
the extension of this approach to systems with a larger number of
photons and modes.
2. Optimal indistinguishability tests

In this section, we recall what the TVD is, and how it can be
applied to our problem of estimating photon indistinguishability.
Later on, in Sections 4 and 5, we provide numerical analyses
based on Bayesian tests and Bayesian inference that showcase
how a larger TVD results in more efficient distinguishability
tests. In general, a linear interferometer is a device that imple-
ments a linear map between input and output creation opera-
tors, namely: ay
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y
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. A m-mode interferometer is

then completely specified by its corresponding m�m unitary
matrix U, which can be decomposed into two-mode beam
splitters and single-mode phase shifters [41]. The evolution of
a n-photon state is ruled by the unitary transformation and by
the degree of indistinguishability of the input particles. Let
P ¼ pif g (Q ¼ qif g) denote the output probability distribution of
an interference experiment when the input photons, all injected
in different input modes and including collision events, are
perfectly distinguishable (indistinguishable) and the occupation
number is detected at each output port. The TVD for a fixed
input state is then defined as

T P;Qð Þ ¼ 1
2

X
i

jpi � qij; ð1Þ

while we define T P;Qð Þ as the average of T P;Qð Þ over all possible
sets of n single-photon input modes. The TVD corresponds to the
highest possible difference in probabilities that P and Q can assign
to the same event. It is also closely related to hypothesis testing,
since 1� T P;Qð Þ is a lower bound on the sum of probabilities of
false positive and false negative results [42]. More practically, a lar-
ger value of T P;Qð Þ means that a smaller set of experimental data is
sufficient to discriminate between the hypotheses that one is sam-
pling from P or Q up to a given level of confidence. Indeed, the TVD
actually determines the rate of convergence of the best possible sta-
tistical test that can be applied on the data sample, and hence does
not depend on the computational complexity of any specific
hypothesis test. The capability of ascertaining if the input photons
are indistinguishable by using the lowest possible amount of data
is relevant in practice, allowing for a verification of the sources with
minimal use of resources. Given a specific choice of U, we then pro-
pose to employ the TVD between the two distributions pif g and qif g
to quantify the interferometer’s effectiveness at discriminating pho-
ton distinguishability. By maximising the TVD, our approach aims at
finding, for each scenario n;mð Þ, the optimal unitary transformation
Uopt which discriminates between P and Q with the lowest possible
number of measurements.

We consider two scenarios depending on how the input photons
enter the interferometer: (i) the input ports are fixed (see Fig. 2a)
and (ii) the input combination is randomly chosen for each event
(see Fig. 2b). This second situation is typical of more sophisticated
experiments with multiple probabilistic sources, such as



Fig. 2. (Color online) Optimal tests for fixed-input and scattershot configurations. (a) Left figure: fixed input configuration in the n ¼ 2; m ¼ 8 case, where two fixed input
modes are injected with single photons. Right figure: estimate of the distribution p1 Tð Þ of the total variation distance T P;Qð Þ for uniformly random unitaries in this scenario,
obtained numerically by sampling over 105 unitaries. For specific choices of input modes, both Fourier (blue vertical bar) and Sylvester (orange vertical bar) interferometers
are optimal. (b) Left figure: scattershot configuration in the n ¼ 2;m ¼ 8 case, where different sets of two input modes are picked at random. Right figure: estimate of the
distribution p2 T

� �
of the average total variation distance T P;Qð Þ for Haar-random unitaries in this scenario, obtained numerically by sampling over 105 unitaries. In this

scattershot case the Sylvester transformation (red vertical bar) is optimal, while the Fourier is not.
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scattershot Boson Sampling experiments [12,39]. Note that in the
multiple-source scenario, measuring separately all pairwise
Hong-Ou-Mandel interference patterns in a 50/50 beam-splitter is
not optimal even in the case of two-photon inputs, since it requires
performing a large set of independent experiments. In the next sec-
tion we will search for a single interferometer able to characterize
simultaneously the full set of sources. In case (ii), the relevant quan-
tity to maximize is the average distance T P;Qð Þ over all sets of n
single-photon input states, as described previously.

3. Optimal distinguishability tests in Sylvester and Fourier
interferometers

To search for the optimal platform, in particular in the multiple-
source scenario, a natural symmetry we can impose on the inter-
ferometer is that the output probability for single photons should
be uniform for all input ports. Mathematically, this corresponds
to a unitary matrix U with complex entries of modulus 1=d, known
as a Hadamard matrix. A specific subcase is provided by Sylvester
transformations [43], described by m ¼ 2p-dimensional unitary
matrices defined by the recursive rule:

S 2p� � ¼
S 2p�1
� �

S 2p�1
� �

S 2p�1
� �

�S 2p�1
� �

0
B@

1
CA; ð2Þ

with S 20
� �

¼ S 1ð Þ ¼ 1ð Þ and p any positive integer. Another notable

example of Hadamard matrix is the Fourier one:

UF
m

� �
l;q

¼ 1ffiffiffiffiffi
m

p ei
2plq
m ; ð3Þ

which will be a second subject of our analysis. For two-photon
experiments, we can apply 1 to check that the Sylvester transforma-
tion results, in the case of interferometers with m ¼ 4 modes, in a
TS ¼ 0:5 independently of which pair of input modes is used, and
thus on average (over different pairs of inputs) TS ¼ 0:5. As we show
later, the Sylvester interferometer is optimal for all possible choices
of two-photon input configurations. The Fourier interferometer
results instead in a lower average TF ¼ 0:333, reaching the highest
value TF ¼ 0:5 only for cyclic inputs, i.e. n-photon Fock states in
interferometers with np modes, where the occupied modes jsr are
given by jsr ¼ sþ r � 1ð Þnp�1, with r ¼ 1; . . . ;n and s ¼ 1; . . . ; np�1.
For two-photon experiments in interferometers with m ¼ 8 modes,
among all known Hadamard matrices the Sylvester transformation
is again the one with the largest average TVD TS ¼ 0:5 (TS ¼ 0:5, and
thus optimal, for all pairs of inputs). The Fourier interferometer
reaches TF ¼ 0:5 for cyclic inputs, while on average we obtain only
TF ¼ 0:3153 due to inputs with lower TVD. The intuitive reason why
Sylvester interferometers outperform Fourier ones is rooted in the
higher symmetries of the former transformation, as apparent
already in their definition in Eqs. (2) and (3). Specifically, the fact
that the elements of Sylvester matrices are only �1 (real), while
those of Fourier matrices can take 2p different (complex) values,
naturally makes the interference more fragile in the latter case with
respect to the former. Here, with fragile we mean that fewer
input-output combinations can fully enhance the effect of quantum
interference, while changing just one input-output mode (l; q) can
largely influence the dynamics. This feature is manifest both in
the fixed-input scenario (where we only change the indexes associ-
ated to the output modes) as well as in the multiple-input scenario
(where to evaluate the average TVD we also need to change the
input combinations). Indeed, the two transformations become
equivalent in the m ¼ 2 case (and, hence, n ¼ 2), leading to the
well-known Hong-Ou-Mandel effect (HOM) in a beam splitter
[31]. Intuitively, since the HOM is optimal to enhance the separa-
tion in TVD, the very structure of Sylvester matrices (which recur-
sively copies the elements of a beam splitter with a symmetric
pattern) explains why Sylvester matrices appear to be optimal for
experiments with n ¼ 2.

For variable input, two-photon experiments in the 4-mode Syl-
vester interferometer, optimality can be established with respect
to any arbitrary transformation by using Reck et al.’s decomposi-
tion of general 4-mode unitaries [41] (see Section 1 of Supplemen-
tary Material for details). For two-photon experiments in m ¼ 8
modes, a random sampling of 105 matrices uniformly drawn from
the full set of transformations failed to find interferometers with
higher TVD than the Sylvester. In Section 7 in the following and
Section 1 of Supplementary Material we report the interferometers
with highest TVD we found numerically for scenarios with larger
number of photons and modes.
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4. Experimental optimal distinguishability tests in Sylvester
interferometers

To test our method, we experimentally demonstrate optimal
distinguishability tests in the cases n ¼ 2 and m ¼ 4;8ð Þ using
two custom-designed integrated photonic circuits fabricated on a
glass substrate via the femtosecond laser writing technology
[44–46]. A possible approach to the implementation of Fourier
and Sylvester matrices on photonic platforms could exploit the
decompositions of Refs. [41,47], which allow to implement arbi-
trary unitary operations through an in-plane cascade of beam-
splitters and phase shifters but are sensitive against losses inside
the device [48]. A more effective approach for the implementation
of this class of interferometers is found by adopting an efficient,
scalable and reliable three-dimensional interferometer design
enabled by the interaction between non-first neighbor modes
arranged in a suitable lattice [49] (Fig. 3). This architecture pre-
sents several advantages with respect to the above-mentioned
conventional decomposition in beam splitters and phase shifters
[41,47]. Indeed, this approach is efficient since it allows to signifi-
cantly reduce the number of optical elements from O m2

� �
to

O m log mð Þ. There is also strong evidence that such architecture
implements Fourier and Sylvester interferometer with the
minimum number of optical elements. Furthermore, as shown in
Section 2 of Supplementary Material, it is scalable to a larger num-
ber of modes. Finally, it is also reliable since the depth of the circuit
is small O log mð Þ½ � and the layout is symmetric with respect to the
input modes, thus being intrinsically more robust against internal
losses than the decomposition of Ref. [41]. These features permit to
achieve higher fidelities in the implemented devices [48].

To probe the device for the reconstruction of its internal opera-
tion, we injected the interferometers with one- and two-photon
states produced via a spontaneous parametric downconversion
process [50]. The tomographic reconstruction of the processes
exploits a priori knowledge of the internal structure, minimizing
a suitable v2 function with respect to the unknown internal phases
and transmissivities [19]. In Section 2 of Supplementary Material
we provide more details about the design and the tomographic
reconstruction. All tests have been carried out also on Fourier
interferometers of equivalent dimensions (m ¼ 4;8), to provide a
(b)
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Fourier matrix, 8-mode

(a) (c)
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Fig. 3. (Color online) Scheme of the experimental approach for the optimal test. (a) A pho
be injected in any possible input combination of a unitary transformation, with photod
Fourier interferometers. (c) Internal structures for the 4-mode and 8-mode implemented
reconstructed matrices: disk color indicates the modulus of each matrix element, with
matrix). In the circuital structures of panels (b) and (c), colored boxes correspond to phas
boxes: / ¼ p=4.
comparison between the two performances and highlight the
advantages of the new approach. For more details on the imple-
mentation of the Fourier transforms refer to Ref. [19].

The TVD between distributions obtained from distinguishable
and indistinguishable photons has been estimated experimentally
for two-photon experiments in 4-mode and 8-mode Sylvester and
Fourier interferometers. The two conditions are reached by prop-
erly introducing a relative temporal difference between the two
photons using delay lines (see Section 3 of Supplementary Mate-
rial). As previously discussed, a distinctive feature of Sylvester
interferometers is that the TVD has the same value for two-
photon experiments using any pair of input ports. This value is
never outperformed by Fourier interferometers, being matched
only for cyclic inputs.

In the case of the 4-mode Sylvester and Fourier interferometers,
all 4!

2!2! ¼ 6 possible pairs of different input ports have been injected,
thus considering all input states where photons enter from differ-
ent ports. We measured for each pair all the collision-free output
distributions (that is, events with at most one photon per output
port), showing good agreement with the expected distribution.
Additionally, we included in the distribution an extra bin account-
ing for the overall probability of collision events (see Fig. 4a). The
adoption of this extra bin prevents the appearance of pathological
unitaries in our numerical search, with high values of TVD for the
collision-free subspace but unacceptably small probability of
collision-free events, which strongly reduce the amount of
detected signal (see Section 1 of Supplementary Material for more
details). We then define the collision probability qcoll (pcoll) as the
total probability of all events with more than one photon in one
(or more) output ports. For distinguishable photons, this collision
probability pcoll can be calculated using the measured probabilities
for single-photon experiments. For indistinguishable photons, the
additional information provided by the measured two-photon
Hong-Ou-Mandel visibilities, together with the single-photon data,
allows for an estimate of the collision probability qcoll. Adjusting
the distinguishability of the input photons we could then estimate
the TVD according to Eq. (1). The experimental results are reported
in Fig. 4b. In the fixed input case, the Sylvester interferometer (for
all inputs) and the Fourier one (only for cyclic inputs) reaches sim-
ilar values within the range 0:435 6 T 4ð Þ 6 0:461. When averaging
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etection at the output. (b) Internal structure for the 4- and 8-mode laser-written
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Fig. 4. (Color online) Experimental data from Sylvester interferometers and comparison with Fourier ones. Two-photon experimental data from 4-mode and 8-mode
Sylvester interferometer. (a), (c) Output probability distributions measured as a function of output mode combinations i; jð Þ for (a) input (1,2) of the 4-mode Sylvester
interferometer and (c) input (1,5) of the 8-mode interferometer. Each plot compares the distributions obtained from indistinguishable (yellow) and distinguishable (green)
input photons. The additional bar coll. in (a) is the collision probability qcoll (pcoll) for indistinguishable (distinguishable) particles, taking into account all collision events.
Colored bars show the ideal probability distribution, while error bars in the distributions are due to the Poissonian statistics of the measured photon counts. (b), (d) Total
variation distances between the measured output distributions for indistinguishable and distinguishable photons in the 4-mode (b) and 8-mode (d) interferometers, plotted
for each fixed input (left) and for the multiple input configuration (right). On each plot, the distributions of T P;Qð Þ and T P;Qð Þ for Haar-random transformations (obtained by
sampling 105 unitaries) are shown. Legend - Rectangles: 1r regions for the experimental data, obtained from the Poissonian statistics of the measured photon count. Dashed
lines: theoretical predictions for ideal interferometers. For m ¼ 4, the expected values are obtained by using the extra collision bin. Red: Sylvester matrix, multiple input.
Green: Fourier matrix, multiple input. Orange: Sylvester, fixed input. Blue: Fourier, fixed cyclic inputs. Purple, Cyan: Fourier, fixed non-cyclic inputs.

1474 N. Viggianiello et al. / Science Bulletin 63 (2018) 1470–1478
over all inputs, the 4-mode Sylvester interferometer results in

T 4ð Þ
S ¼ 0:4465� 0:0006, thus clearly outperforming the Fourier

interferometer that yields T 4ð Þ
F ¼ 0:4003� 0:0016. As previously

discussed, higher values of the TVD correspond to lower number
of measurements necessary to discriminate between the two
hypotheses (see also Section 5 below). In the case of the 8-mode
interferometers, all two-photon output events were measured,
including those with collisions (see Fig. 4c), showing good agree-
ment with the expected distribution. We probed the interferome-
ters with three different pairs of input ports, corresponding to
the three classes of input pairs that, for the Fourier interferometer,
result in different TVDs. Given the quality of the reconstructed
transformations, we expect that all other input combinations will
lead to similar values of the TVDs. Again, the TVD for the Fourier
interferometer reaches the same value of the Sylvester only for
cyclic input pairs. The measured average values were

T 8ð Þ
F ¼ 0:314� 0:007 and T 8ð Þ

S ¼ 0:370� 0:007, where the average

T 8ð Þ
F was estimated by weighting the three representative input

states by the multiplicity of the corresponding classes with differ-
ent TVDs (Fig. 4d). Deviation of the experimentally measured val-
ues from the expected ones depend on manufacturing errors and
partial photon indistinguishability. For Sylvester interferometers,
both such experimental errors tend to reduce the values of the

TVD. Curiously, for Fourier interferometers the measured T 4ð Þ
F and

T 8ð Þ
F are higher than what was expected theoretically. Indeed, as

we show in Section 4 of Supplementary Material, a particular fea-
ture of the Fourier interferometric design is that manufacturing
errors can result in interferometers which are closer to the Sylve-
ster one, thus increasing the TVD. This feature is obtained when
fabrication errors induce a value of the internal phases closer to
the one of a Sylvester interferometer. We performed the same
analysis with 105 unitaries, randomly sampled according to the
Haar measure, showing that the mean values of their TVDs are
lower than both Fourier and Hadamard (see Fig. 4b,d). Our results
are compatible with the theoretical prediction that the adoption of
Sylvester interferometers maximizes the difference between the
behavior of distinguishable and indistinguishable photons in all
scenarios (fixed and multiple input), outperforming, in particular,
Fourier interferometers in the multiple input configuration.

5. Bayesian hypothesis test

At the core of our approach lies the idea that a larger TVD allows
us to discriminate more readily the two hypotheses (distinguish-
able or indistinguishable photons). To illustrate this feature, in
Fig. 5a�d we show the results of a Bayesian analysis with data
samples numerically generated from the measured distributions,
compared with those expected from ideal transformations (see
Ref. [17], Sections 5, 6 of Supplementary Material for more details
on the Bayesian validation test). For a given sample size, we use a
likelihood ratio test [17] to update a prior which initially assigns
equal probabilities to the two hypotheses P and Q, thus assuming
no a priori knowledge. To verify the optimality of Sylvester inter-
ferometers in terms of minimum sample size, the results obtained
are compared with a sample of 104 Haar-random unitaries. The fig-
ure of merit is the confidence probability Pconf that a data sample is
assigned to the corresponding correct hypothesis. While experi-
mental imperfections might lead to a subset of Haar random uni-
taries with higher Pconf than experimental data (for Nev > 10), we
show in Fig. 5e�f that ideal Sylvester interferometers always out-
perform Haar random transformation. Notwithstanding, the gain
obtained by using Sylvester interferometers is observed for low
values of the number of collected events, for both experimental
data and the ideal case.

Note that the dispersion of Pconf for Haar-random unitaries in
the fixed-input case is larger than in the multiple-input configura-
tion. To verify how strict the validation test is, we need to consider
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the effect of partial photon indistinguishability. This can be done
by considering that the output distribution hi xð Þf g in the general
two-photon case can be written as a convex combination
hi xð Þ ¼ xqi þ 1� xð Þpi, where x 2 0;1½ � is a real parameter quantify-
ing the amount of photon indistinguishability. Numerical simula-
tions performed on the Bayesian test show that, by including this
effect, photons pass the test if x > 0:788 for the 4-mode interfer-
ometer and x > 0:685 for the 8-mode case (see Section 7 of Supple-
mentary Material). In the two-photon case, other sources of noise
such as multiple pair emission in parametric down-conversion
sources or spectral correlations [51] can be operationally included
in the parameter x resulting in a lower effective indistinguishabil-
ity between the photons. All measurements reported up to here
were performed with a single two-photon source, for which the
value of x was x0 ¼ 0:95, characterized by performing Hong-Ou-
Mandel experiments in a 50/50 beam-splitter. This will change in
the next section, where we consider an experiment with multiple
sources.

6. Experimental scattershot Boson Sampling

Scattershot Boson Sampling has been shown [12] to enable
scalable Boson Sampling experiments using probabilistic single-
photon sources, at the cost of using a larger number of single-
photon sources at the input. To show that our approach works well
for this multiple-input configuration, we have performed a
scattershot Boson Sampling experiment by connecting each input
mode of our 4-mode Sylvester interferometer to an independent
heralded parametric down-conversion source (see Fig. 6a). This
single setup simultaneously samples all 6 different two-photon
input states. We have collected data both for the indistinguishable
and distinguishable photon cases, obtained by appropriately
adjusting the relative time delay between the input paths. We will
nowmove a step forward with respect to the previous binary Baye-
sian test (that is, evaluating which is the most likely hypothesis
between Q and P). Specifically, we consider a different scenario
where the aim is to assess the output data by estimating the value
of the mutual indistinguishability of the PDC sources in the scatter-
shot experiment. As we discussed, the output distribution in the
general two-photon case is described by hi xð Þf g with x 2 0;1½ �,
and the set of hypotheses to be tested is now provided by a convex
combination of indistinguishable Q (distinguishable P) photons
H xð Þ ¼ xQ þ 1� xð ÞP. We have then applied Bayesian inference
[52,53] to the measured experimental data to estimate the value
of x, starting from a uniform prior P xð Þ and subsequently updating
the distribution according to the Bayes rule after the observation of
a given data sample (see Section 8 of Supplementary Material for
more details on this approach).

Fig. 6b,c show the results of the Bayesian inference performed
by using the measured � experimental scattershot data samples
(in this case, no extra bin for collision events has been included).
The final estimated value ~xest of the indistinguishability parameter
x, obtained by using the complete set of experimental data, is ~xest.
Here, we assumed that all (identical) photon sources present the
same value of x, and thus this estimated value corresponds to an
average value. Such value is compatible with the one obtained
from a characterization with Hong-Ou-Mandel interference in a
50/50 beam-splitter xHOM ¼ 0:79� 0:06, and with the estimated
interval obtained with an alternative method based on binary
likelihood ratio tests xLR 2 0:734;0:742½ � (see Section 8 of Supple-
mentary Material). Note that this value is different from the one
corresponding to the single source measurements discussed in
previous sections, where x2 ¼ 0:95. Indeed, in this case all two-
photon combinations are obtained with photons generated from
different sources, which results in lower values of
indistinguishability.



Fig. 6. (Color online) Bayesian inference on experimental scattershot Boson Sampling. Inference of the photon indistinguishability x as a function of sample size (number of
events) from two-photon scattershot Boson Sampling experimental data in a 4-mode Sylvester chip. (a) Experimental scheme of the scattershot apparatus. We use four
different PDC sources to probabilistically inject all input states, where each source is connected to exactly one trigger detector and one input mode. The two-photon output
states are retrieved from heralded 4-fold coincidences (two trigger detectors and two output detectors). (b) Evolution of the estimated value xest as a function of the number of
events and (c) error rest inferred on the estimated value xest from the Bayesian posterior distribution with the 4-mode interferometer (experimental data) as a function of the
number of events Nev, compared with Haar-random matrices (numerical simulations). Red solid line: estimation process using a single data sequence for the Sylvester
interferometer. Red shaded region: interval spanned byM ¼ 100 different data sequences generated by random permutations of the experimentally measured data. Blue solid
line: average value obtained by numerically sampled M ¼ 100 Haar-random unitaries. Blue shaded region: interval obtained by numerically sampling M ¼ 100 Haar-random
unitaries. The value of x adopted for the Haar-random numerical simulations (blue shaded region) is equal to the final value ~xest estimated from the full set of experimental
data.
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The performance obtained with the experimental data on Sylve-
ster interferometer are then compared with the one achievable
with Haar random transformations, showing its capability to
acquire information on photon input at a faster rate than any other
interferometer. Indeed, the value of the estimation error rest is
lower with respect to the Haar ensemble (for the same number
of measured events Nev). This confirms that Sylvester interferome-
ters represent a promising platform for the assessment of photon
indistinguishability of multiple sources. Moreover, Bayesian infer-
ence is shown to be an effective tool in estimating the degree of
distinguishability between different sources, which can turn par-
ticularly useful where separate Hong-Ou-Mandel tests are unfeasi-
ble or not applicable.
7. Optimal interferometers for larger number of photons

Our approach uses the TVD to identify optimal interferometers
for the task of discriminating photon distinguishability. In Section 3
we showed Sylvester interferometers are optimal for variable-
input, 2-photon experiments in 4-mode interferometers, and pro-
vided numerical evidence that they are optimal also for 2-photon
experiments in 8-mode interferometers. We will now show, how-
ever, that for larger number of photons and modes the TVD-
maximizing interferometers may even be non-Hadamard. In this
section we report some of our numerical findings in the search
for TVD-maximizing interferometers for scenarios with more than
two input photons. We also report on simulations of parameter
estimation in the multi-photon regime.

In the multiple-input case, we have seen that Sylvester interfer-
ometers seem to be optimal for the case of two-photon experi-
ments. For a larger number of photons, however, other
interferometers may result in higher TVD than the Sylvester and
Fourier transformations. The key here is to search among non-
Hadamard interferometers as well. For Nev, the best design we
found corresponds to the unitary matrix
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with average TU4 ¼ 0:53125, beating for example the Fourier and
Sylvester interferometers, which result in T ¼ 0:3125.
Even in the fixed-input scenario, there exist non-Hadamard
interferometers resulting in higher TVD than the Fourier transform.
For example, for n ¼ 4 consider the following 6-mode
interferometer:

U8 ¼ 1ffiffiffi
6

p

1
ffiffiffi
3

p
1 0 1 0

1 �
ffiffiffi
3

p
1 0 1 0

1 0 e2ip
3

ffiffiffi
3

p
e�2ip

3 0
1 0 e2ip

3 �
ffiffiffi
3

p
e�2ip

3 0
1 0 e�2ip

3 0 e2ip
3

ffiffiffi
3

p

1 0 e�2ip
3 0 e2ip

3 �
ffiffiffi
3

p

0
BBBBBBBBB@

1
CCCCCCCCCA

: ð5Þ

With 4 photons in input ports 1;2;3, and 5, the TVD (including col-
lisions) is TU8 ¼ 19=24 � 0:792, as compared to largest fixed-input
TVD values 0:750;0:344;0:639 for the Fourier transforms of 4, 5,
and 6 modes, respectively. This shows that when n > 2 the
TVD-maximizing interferometers may be non-Hadamard
interferometers with more modes than input photons. In Section 1
of Supplementary Material we report the best interferometers we
have found numerically for a number of different scenarios. An
interesting remaining open problem consists in finding better inter-
ferometers for each scenario, if possible proving their optimality.

The Bayesian hypothesis test discussed in Section 5 can be
directly applied in the multiphoton regime to discriminate
between the two hypotheses Q (indistinguishable photons) and P
(distinguishable ones). In Fig. 7a we show the results of a numeri-
cal simulation for the case (n ¼ 3; m ¼ 8, fixed input), using the
best transformation we found, the matrix U11, which consists of a
3-mode Fourier transform, with identity in the remaining modes.
In Fig. 7b we simulate the case (U11, multiple input), using an 8-
mode Sylvester interferometer. In both cases, we observe that
the adoption of a transformation with high TVD allows us to
achieve a high confidence probability Pconf for a very limited num-
ber of measured events Pconf , clearly outperforming the success
rate achieved with Haar-random matrices.

An interesting feature of the multiphoton scenario is that pair-
wise two-photon indistinguishability is not sufficient to fully char-
acterize the landscape of multiparticle interference. Indeed, some
additional parameters that cannot be detected by performing
two-photon Hong-Ou-Mandel contribute to the output pattern
[37]. For instance, in the three-photon case an additional phase
u has to be added to the three mutual indistinguishabilities u.
Instead, such parameters can be effectively characterized with



Fig. 7. (Color online) Numerical simulations of Bayesian hypothesis testing and Bayesian inference in the multiphoton scenario. (a), (b) Confidence probability of correctly
identifying the type of data sample (distinguishable or indistinguishable photons) in a Bayesian test, as a function of sample size (number of events). (a) 3 photons in a 8-
mode interferometer, fixed input configuration. (b) 4 photons in a 8-mode interferometer, multiple input configuration. Curves: optimal interferometer for the problem size
((a) matrix U11, orange; (b) Sylvester interferometer, red). Blue regions: contour plots obtained from a numerical simulation over 104 Haar-randommatrices. (c), (d) Inference
of the three-photon phase u in a n ¼ 3; m ¼ 8 fixed input scenario for mutual indistinguishabilities x12 ¼ x13 ¼ x23 ¼ 1=2. Solid lines: average values obtained by numerically
sampling M ¼ 100 Haar-random unitaries (blue) and by numerically simulating 104 estimation processes with the optimal matrix U11 (orange). Shaded regions: intervals
obtained by numerically sampling M ¼ 100 Haar-random unitaries (blue) and by numerically simulating 104 estimation processes with the optimal matrix U11 (orange).
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our method, by applying a continuous hypothesis testing similar to
the one discussed in Section 5 for the scattershot experiment. In
Fig. 7c,d we report a numerical simulation of an estimation of u
using 3-photon experiments in interferometer U11, as well as in
an ensemble of Haar-random interferometers (for comparison).

8. Discussion and conclusion

In summary, in this work we propose a method to search for
optimal interferometer designs to ascertain photon indistinguisha-
bility in multiparticle interference experiments, showing that in
certain scenarios Sylvester transformations offer an optimal solu-
tion for all input configurations in terms of the required sampled
size. We then experimentally implement these interferometers
by exploiting a recently introduced 3D-architecture enabled by
femtosecond laser-writing technology. We verify the superior per-
formance of Sylvester interferometers with a Bayesian hypothesis
test which correctly identifies whether photons are distinguishable
or not using very small data sets. Furthermore, we perform a com-
plete scattershot Boson Sampling experiment with the imple-
mented Sylvester device, showing the capability of identifying
the collected data in this more complex multiple input configura-
tion. Several perspectives can be envisaged starting from these
results.

On the experimental side, Sylvester and other optimal interfer-
ometers suggest an immediate application in the assessment of
scattershot Boson Sampling, that enables scalable experiments
even with probabilistic single-photon sources. Furthermore, this
class of transformations can represent a promising platform for
near-future investigations on deterministic single photon sources
[54–57], in order to fully characterize multiphoton interference
[13–15,37], and as a diagnostic tool in reconfigurable photonic
devices [11,58].

On the theoretical side, an outstanding open problem concerns
the identification of optimal interferometer designs for scenarios
comprising different interferometer sizes, number of photons,
and for fixed or multiple inputs. Surprisingly, even for fixed
inputs there exist non-trivial interferometers surpassing the per-
formance of Fourier interferometers, as our example u in Section 7
shows.
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