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Introduction

Hydrogen is the first element of the periodic table. As such, it is often regarded as the simplest one:
the non-relativistic hydrogen atom is a problem exactly solved in many textbooks; the hydrogen
molecular ion H; and the diatomic molecule H, are, correspondingly, the first systems to be
considered when more than one nucleus is involved. As a thermodynamic system, its phase diagram
at low pressures is quite standard: at room temperature and ambient pressure, hydrogen is a
molecular fluid; upon cooling, it becomes a molecular solid; its critical point is T=33 K and P=1.3
Pa [1].

Nevertheless, even such a simple system becomes really interesting when pressure is increased by
several orders of magnitude. Speculations about the existence of a metallic solid state at 25 GPa
and 0 K temperature started with Wigner and Huntington [2[; later calculations suggested that
this state could become a high-temperature superconductor [3]. When experiments achieved the
predicted transition temperature, they did not find a metallic state; on the other hand, they found
a rich phase diagram, where several different solid phases exist [4,5]. Nowadays, the quest for solid

metallic hydrogen at low temperature is still an on-going activity.

As temperature is increased above = 1000 K, the system enters the liquid phase: it is important
to obtain an accurate equation of state at high temperature and high pressure, in order to model
the properties of gas giants, such as Jupiter and Saturn, which are mostly made of hydrogen and
helium. Metallic hydrogen, which is yet to be seen in the solid state, was experimentally measured

in the liquid phase [6].

Performing experiments at such high pressures is complicated; the information obtained is partial.
At low temperatures, the boundaries among the different solid phases can be drawn, but most
of their structural properties are still an open problem; at high temperatures, characterizing the

insulator-metal transition is hard because of large uncertainties and conflicting results.

Ab Initio simulations can be a valuable tool to complement and interpret experimental data; they
can also guide experiments with their predictive power. For condensed matter, Density Functional
Theory (DFT) is the method of choice to perform Ab Initio simulations at reasonable computational
cost. However, their predictive power for high pressure hydrogen is questioned due to several levels
of approximation which will be discussed in our work: in particular, the fact that DFT is plagued
by an uncontrolled approximation (the exchange-correlation functional approximation) will be

elaborated.

iii



In this thesis, we will employ a different method to run Ab Initio simulations of high pressure
hydrogen at finite temperature: the Coupled Electron Ion Monte Carlo (CEIMC). We will discuss
how CEIMC, combining the Path Integral formalism to treat the nuclear degrees of freedom
and the Variational Monte Carlo (VMC) method to accurately compute electronic energies in a
Born-Oppenheimer framework, can perform finite temperature simulations without suffering from
the same kind of uncontrolled approximation which plagues DFT. We will then apply the method
to the low temperature, solid phase and to the high-temperature, liquid one. In the first case,
finite temperature simulations of different candidate structures for the various solid phases will
be performed, comparing CEIMC results with DFT ones. In the second case, the liquid-liquid
phase transition will be investigated, drawing attention to the relationship between molecular
dissociation and metallization; to do so, the system will be characterized across the transition with

the computation of relevant optical properties.

This work is organized as follows. In Chapter 1, a short review of the experimental phase diagram of
high pressure hydrogen is presented, discussing the strengths and the limitations of the experimental
techniques employed, which information can be extracted and which cannot. In Chapter 2, the
theoretical framework necessary to perform DFT and CEIMC simulations is discussed: Density
Functional Theory and Variational Monte Carlo are introduced to compute electronic energies. In
particular, the form of the trial wavefunction, the key ingredient of the VMC method, is discussed in
detail. To account for quantum nuclear effects, the Path Integral formalism is introduced together
with efficient ways of sampling the associated probability distribution: Path Integral Molecular
Dynamics (PIMD) and Path Integral Monte Carlo (PIMC). In Chapter 3, after a small review of
relevant previous theoretical calculations, we present our results about finite temperature simulations
of different candidate structures for solid hydrogen. In particular, we performed DFT-PIMD and
CEIMC simulations at T=200 K and T=414 K, analyzing the structural and electronic properties
of the system and comparing at the same time the results produced by the two methods. Finally,
in Chapter 4, we focus on the liquid-liquid phase transition. After reviewing previous literature,
the system is characterized through the computation of optical properties across the transition,
deducing its metallic or insulating state. The study of optical properties is also expanded in a larger

region of the phase diagram.
Papers associated to the thesis work
e Liquid-liquid phase transition in hydrogen by coupled electron-ion Monte Carlo simulations,

Pierleoni, Carlo, Morales, Miguel A., Rillo, Giovanni, Ho lzmann, Markus, Ceperley, David
M., PNAS, vol. 113 | no. 18 | 4953-4957 (2016).

e Optical properties of liquid hydrogen across the molecular dissociation, G. Rillo, M.A. Morales,
D.M. Ceperley and C. Pierleoni, in preparation

e Coupled Electron-Ion Monte Carlo simulation of the crystalline phases 11T and IV of molecular

hydrogen, G. Rillo, M.A. Morales, D.M. Ceperley and C. Pierleoni, in preparation
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Chapter 1

Hydrogen at high pressures

Interest in high pressure hydrogen was firstly drawn by Wigner and Huntington [2], who in 1935
speculated about a possible stable metallic phase of solid atomic hydrogen at pressures higher than
25 GPa. At the time, achieving such high pressures for hydrogen was experimentally unfeasible:
Hy was compressed at 2 GPa only in 1956 [7]. In the seventies, the development of diamond anvil
cells allowed to generate pressures of hundreds of GPa under static conditions [8] (more precisely,
up to 170 GPa at 25 °C). Solid hydrogen was thus obtained by Mao and Bell at a temperature of
25 °C and at a pressure of 50 GPa in 1979 [9]. The material was found to be transparent, a clear
indication that the metallic state was yet to be reached, in contrast with the early prediction by
Wigner. Since then, diamond anvil cells have been the standard tool to investigate high pressure
hydrogen at relatively low temperatures. Technical improvements in DAC experiments pushed
the highest reachable pressure further and further: nowadays, pressures above 300 GPa can be
obtained consistently. A rich phase diagram with different solid phases was discovered, even if a

full characterization of these phases is still missing.

High pressure hydrogen is also interesting at higher temperatures (thousands of kelvins), where
the system is in its liquid phase. Knowledge of hydrogen in this regime is relevant for modeling
the interiors of planets like Saturn and Jupiter, made up hydrogen (90 %) and helium (9%). This
region of the phase diagram can nowadays be probed using DAC [10,11], as in the solid case, using
special heating techniques. A more complete picture of the liquid state can be achieved using
dynamic shock compression, a technique that allows one to drive the system to pressures of ~ 500
GPa and temperatures of ~ 10000 K [12,13]. Using this method, liquid metallic hydrogen was
detected at 140 GPa and 3000 K [6]. However, large uncertainties usually affect measurements due
to the very dynamic nature of the process: while the existence of metallic hydrogen was proven,
the transition from an insulating to a metallic liquid is still poorly characterized, with different

experiments obtaining conflicting results [10, 14].

In the following sections, we will discuss the experimental phase diagram of high pressure hydrogen,
both in the solid and in the liquid region. The experimental evidence will be described, pointing

out at the same time missing relevant features that are still object of discussion.
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1.1 Experimental solid phase diagram

When looking for crystal structures of solid phases, the two techniques of choice are X-ray diffraction
and neutron scattering. In particular, X-ray diffraction probes the electronic density and, for molec-
ular systems, can identify the positions of the molecular centers; neutron scattering, being sensitive
to the positions of the individual nuclei, gives information about the single atoms. Unfortunately,
the hydrogen cross-section is extremely low in both cases: X-ray diffraction was performed up to 180

GPa [15], while neutron scattering up to 60 GPa [16]. At higher pressures, structural information is

extracted through Raman and infrared (IR) spectra.
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FiGuRrE 1.1: Experimental phase diagram of solid hydrogen. Black continuous lines indicate

the melting line as well as the transition lines between different experimentally detected [4, 5]

crystalline phases: I-IV. New phases and boundaries indicated by dashed black lines are still

speculative: the last portion of the melting line and the IV-IV’ line is proposed in [5]; phase V

and the associated transition line is proposed by [17]; phase VI is observed by [18] and [19], even
if with conflicting properties.
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1.1.1 Phasel

At relatively low pressures and temperatures, interactions are weak and the molecular angular
momentum J can be regarded as a good quantum number: we can then talk about para-hydrogen
p — Hy (even J) or ortho-hydrogen o — Hs (odd J) as we usually do when dealing with isolated
molecules. Since transitions between odd and even J states are prohibited for isolated molecules,
conversion from one species to another is very slow at low pressures and the two species can be

studied separately or in mixtures with constant concentrations.

At room temperature and atmospheric pressure, hydrogen is a diatomic gas; at first, solid hydrogen
was obtained at approximately zero pressure by cooling the system at helium temperatures. Early
X-ray diffraction studies showed that at these temperatures the molecular centers were arranged
according a hexagonal close packed structure (hep) regardless of the ortho-para ratio [20-22]. Using
diamond anvil cells, solid hydrogen was observed at room temperature [9] at 5.7 GPa; subsequent
X-ray diffraction studies were performed, reaching pressures of tens of GPas [23,24], finding the same
hep structure reported at zero pressure and helium temperatures. These results can be integrated
with observations coming from Raman and infrared spectra experiments, which are successfully used
to probe rotational and vibrational properties of molecular systems. For high pressure hydrogen,
these spectra can be consistently interpreted assuming the anisotropic part of the intermolecular
interaction to be negligible. In this case, in fact, only the molecular radial coordinates are coupled,
resulting in a collection of independent quantum rotors [22,25]. Para-hydrogen molecules, being in
a J = 0 ground state, have spherical symmetry; on the other hand, the J = 1 degenerate states of
ortho-hydrogen molecules are equally populated, producing a spherical symmetry also in this case.
The consistency of this approach is verified at low pressures and temperatures, obtaining sharp
rotovibrational Raman peaks [26,27]: this indicates that the mixing of different rotational levels is
small. At higher temperatures and pressures, a continuous broadening of the rotational peaks takes
place [28], corresponding to an increasing strength of the neglected anisotropic interaction, which
could drive the system towards a rotationally ordered system. This solid phase of free quantum

rotors is known as phase I.

1.1.2 The broken symmetry phases: phase II and III

Measurements of Raman and infrared spectra can be performed beyond the pressure and temperature
range imposed by X-ray diffraction, probing vibrational properties of the system in a larger portion of
the phase diagram. Vibrational properties are sensitive to changes in crystal structure or rotational
order: the region of stability of phase I can thus be naturally prolonged as long as the vibrational
spectra do not display significant changes; on the other hand, discontinuities in these quantities are

related to phase transitions.

This is the case, for example, for deuterium and hydrogen below 140 K in a pressure range of 40-150
GPa: the position of the Raman and IR peaks associated with the vibration of the molecular bond
(typically referred to as vibrons) shows a discontinuity of tens of cm™!; at the same time, a cusp
is observed in its temperature dependence and several changes take place in the low-frequency
spectrum [4,29-35]. In particular, the appearance of new peaks at low frequency is associated to

the presence of librons, phonons associated to a restricted orientational motion: for this reason
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F1cURE 1.2: Phase boundaries of low temperature solid phases for normal hydrogen and deuterium,
based on optical Raman and IR spectra. Picture from [29].

the transition to the new phase, called phase II, is supposed to involve orientational ordering,
even for spherical J = 0 species (para-hydrogen and ortho-deuterium). This is consistent with the
expectation that at high enough pressures the electric quadrupole-quadrupole interaction would

mix different rotational states, resulting in an ordered, anisotropic state.

The boundaries of phase II, based on optical spectra, are depicted in fig. 1.2 for normal Hs and
Dy with an equilibrium ortho-para concentration. While Raman and IR experiments signal the
transition, they can at best provide constraints for the symmetry of the structure. An early
candidate for phase II was the Pag structure, where the molecular centers are on the sites of a
face centered cubic crystal while the molecules are oriented according to a specific pattern; this is
the structure found for the orientational ordered phase of ortho-hydrogen and para-deuterium at
ambient pressure and T' < 3 — 4 K [30]. Unfortunately, a group theory analysis of the number of
Raman and IR peaks deemed this structure incompatible with experimental results [36]. Recent
X-ray diffraction and neutron scattering studies [15, 16] suggest that the hcp lattice is retained,

with molecules being locally oriented similarly to Pag.

Following the argument of increasing anisotropic interaction when increasing pressure, a break
of the rotational symmetry is expected even at higher temperature. This is indeed the case: a
transition to a new phase, phase III, is detected for hydrogen around 150 GPa. The transition,
however, takes place at high and low temperatures, starting from both phase I and II (see fig.
1.2): it seems to involve more than only rotational ordering. Similarly to the I-II transition, the
I-IIT and II-I1T transitions are characterized by a discontinuity in the vibron frequency (that can

be of hundreds of cm™!), a change in the slope of the vibron dependence on temperature and
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a change of the low frequency spectrum, even larger than in the I-II transition [29,30,34]. The
more pronounced features may correspond to a larger structural change. Moreover, a peculiarity of
transitions to phase III is the sudden increase in IR absorption (three orders of magnitude) for the
vibronic peak [4,18,33], which hints at a primitive cell with a large (compared to the other phases,
at least) dipole moment. An X-ray diffraction experiment [15] found that molecular centers in
phase III remain close to the hcp lattice sites, at least up to 183 GPa; no direct information about
molecular orientation could be extracted. A classical orientational ordering process is speculated
to take place [37]. Phase III is transparent [4,38] and insulating in the experimentally accessible
thermodynamic conditions. Phases I, II, and III coexist at a triple point at 125 K and 155 GPa for
H, (135 K and 165 GPa for Dj)

1.1.3 Mixed phases: phase IV and IV’

In 2011, Eremets et al. [39] reported the observation of a semiconducting phase of hydrogen at
T=295 K above 220 GPa, using photoconductivity and resistance measurements; a metallic state
was claimed to be produced above 260 GPa. At the same time, significant changes in the low
frequency Raman peaks take place at the transitions. Subsequent Raman and IR studies [5,40-42]
show that when the first transition occurs at 220 GPa, a new high-frequency peak appears at ~ 4150
em ™!, next to the vibron peak present in phase III, which displays a discontinuity of hundreds of
em ™! and softens very rapidly after the transition. The presence of two high frequency peaks is
interpreted as the existence of two different local atomic environments: in particular, theoretical
calculations [43] suggest the possible stability of layered mixed structures, where atoms belonging to
different layers are bonded in a different manner. This topic will be treated in more detail in chapter
3. More recent optical measurements [38,41| contradict the reported metallicity; semimetallic or
semiconducting behaviour is still not ruled out. This new phase is labelled as phase IV. At the same
time, the change in intensity and number of the low frequency phononic peaks at higher pressure
was confirmed [5,41] and the new phase resulting from the transition is labelled as IV’ or V. The

experimental boundaries of the distinct five solid phases are pictured in fig. 1.1.

1.1.4 Possible phases at higher pressures

With the improvement of DAC techniques, the experimental exploration of the solid region of
hydrogen phase diagram is still an on-going activity, reaching higher and higher pressures. Different
experiments display conflicting results. Eremets et al. [18] study hydrogen at pressures up to 380
GPa and T<200 K with Raman scattering. For P>360 GPa they find that the intensity of the
Raman spectra goes to zero when cooling the system below 200 K; at the same time, a strong
drop in resistance is observed in the same thermodynamic conditions (P>360 GPa and T<200 K).
They thus draw a vertical transition line in the P-T plane, introducing a new conducting phase
VI for pressures higher than P=360 GPa. Dalladay-Simpson et al. [17] investigate the system
at T > 300 K. They propose a new phase (V) for P>325 GPa, based on arguments similar for
phase transitions at lower pressures: change in the low frequency peaks, change in the slope of the
pressure dependence of the vibron, broadening and weakening of the vibrational peak itself. The

Raman intensity, in general, decreases: this, coupled to the weak vibronic signal, is interpreted as
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quasi-atomic state, precursor of a fully non molecular, metallic system. Dias et al. [19] probe the
system at low temperature (T<200 K), as in [18], using infrared radiation. Above 355 GPa, the IR
vibron disappears, and two new peaks close to 3000 em ™! appear; they come up with a vertical

transition line, similar to [18]. At variance with [18], though, no evidence of metallicity is found.

As we can see, the region of the phase diagram at low temperature (T = 200 K) and high pressure
(P>300 GPa) displays interesting phenomena, either the long-yearned-for metallic transition
or a “simple” structural transition; moreover, we must not forget that even the crystal lattice
corresponding to phase III, which is relatively well established in the solid phase diagram, is still an
object of debate. At higher temperatures, experiments point to the stability of mixed structures,
whose finite temperature properties may be difficult to predict. These will be the starting points of

our discussion in chapter 3.

1.2 Liquid-liquid phase transition

As anticipated in the first paragraph, metallic hydrogen was first produced in the liquid state [6]:
using multiple shock compression, liquid hydrogen was compressed to 140 GPa and heated to 3000

K; a sharp drop in resistivity (= 500uf2cm) was observed, a clear signal of the metallic state.

Nevertheless, a clear characterization of the insulator-metal (IM) transition is still missing and
many questions remain open. Traditionally, dynamic compression experiments are plagued by large
uncertainties: for example, temperature is usually estimated through equations of state and not
actually measured, introducing systematic source of errors. This is apparent in fig. 1.3 for the
yellow and maroon signs. The improvement in static compression using DAC allows to perform
such experiments in the liquid phase as well (green and purple signs for hydrogen in fig. 1.3). In
particular, laser heated experiments are performed: the sample is usually in contact with a metallic
absorber embedded in the diamond anvil cell; the absorber is heated through laser pulses, and the
sample is heated by direct contact. The natural effect is that the temperature of the sample rises;
Dzyabura et al. [47] found that the temperature does not increase indefinitely while heat is provided,
but a plateau is reached. This can be interpreted as latent heat, provided to make a first-order
phase transition happen. Rigorous evidence of metallization, however, required a systematic study
of optical properties, which could not be performed due to mechanical instabilities. Ohta et al. [11]
performed similar experiments at higher temperatures (T>2000 K, see fig. 1.3), finding the same
saturation of the maximum reachable temperature. In particular, they assume that the transition
under examination is the molecular dissociation of liquid hydrogen; while stating that this could
be related to the insulator-metallic transition, they do not provide any measurement of optical

quantities.

Zaghoo et al. [10] repeated the laser-heating experiments, integrating the temperature plateaus with
measurements of optical reflectivity. Reflectivity, which may provide indications about the metallic
state of the system, was measured using a second laser pulse to probe the system. In particular,
they start from a transparent sample and, while heating, they measure an increase in reflectivity,
that saturates to 0.5. As we can see from fig. 1.3, their results for the liquid-liquid phase transition
are compatible with Ohta’s; measuring the reflectivity, they provide evidence to link molecular

dissociation with metallization of hydrogen.
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F1GURE 1.3: Hydrogen phase diagram with experimental liquid-liquid transition lines and CEIMC
predictions. Blue circles and squares are CEIMC predictions for the liquid-liquid transition line
in hydrogen and in deuterium, respectively. DAC experimental results for hydrogen are indicated
by green circles [10] and purple circles [11], whereas red squares indicate shock wave experimental
data for deuterium [14]. We also report an earlier experimental point for the conductivity onset
in liquid hydrogen (yellow circle) [6] and two points for deuterium dissociation and metallization
(maroon squares) [44]. The error bars on the temperature for the latter two sets of data reported
here were inferred from theories [45]. In fact, all dynamical experiments (6,14, 44| used models to
determine T. The blue triangle at 3000 K indicates the CEIMC prediction for a metallization
cross-over above the critical point where the conductivity is 2 — 4 x 10®(Qem ™). Figure from [46]

Reflectivity measurements for deuterium by Knudson et al. [14] using dynamical compression find a
transition line which is 150 GPa apart from Zaghoo’s findings; an isotopic effect is not probable,
since previous dynamical compression experiments on deuterium by Fortov [44] found a transition

point closer to Zaghoo’s line.

A challenging problem with optical measurements is that the different parts of the experimental
apparatus must be considered when extracting the sample response from the raw data. Moreover,
hydrogen is assumed to have perfect transmittance and zero reflectivity at the wavelength of the
probe before the transition; an hypothesis that will be discussed in chapter 4, where we will show
our results for the liquid-liquid phase transition, obtained from Ab Initio simulations. We will also
provide optical properties, that may help in disentangling the actual contribution of the sample

from the rest of the apparatus.



Chapter 2

Simulation methods

Ab Initio computer simulations are a valuable tool to study condensed matter systems. They can
cooperate in synergy with experiments, helping in the interpretation of experimental data and
providing missing information. But they can also achieve predictive power when exploring new
territories, working as an input to design new experiments. Currently, the most popular Ab Initio
method is Density Functional Theory (DFT). While the theoretical foundations of the method were
laid in 1964 by Hohenberg and Kohn [48], its practical implementation proposed in 1965 by Kohn and
Sham [49], it was in the 1990s that DFT became extremely popular : DFT computations on small
molecular systems employing hybrid exchange-correlation functionals (such as B3LYP) outperformed
other more computationally expensive Ab Initio methods (Hartree-Fock, Self Consistent Field) when
compared against experiments [50,51]. However, even DFT has limitations which will be described
in the following sections. In this chapter we give an overview the computational challenges inherent

to high pressure hydrogen and introduce the techniques used to deal with them.
2.1 The electronic problem and the Born-Oppenheimer ap-
proximation

We consider a system of IV, spin unpolarized, electrons and N, protons in a fixed volume £ in

thermal equilibrium at temperature 7. In atomic units, the Hamiltonian of the system is

H = K,+H He=K.+V (2.1)
L 1 e
K, = — V2, Ke=-2Y V2 2.2
P 2M, ;V% 2 & Vi (2.2)
N, N, Np N:D
R 1 e 1 < 1 1 1
V = = a = (2 3)
2i |T2_T]| ;; L_RO(‘ 206"53 ‘Ra_RB|
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where 7; and ﬁa are positions for the i-th electron and the a-th proton respectively. This leads to
the following time-independent Schrodinger equation written in the electronic and nuclear position

basis set:

HR,r)P,(R, 1) = E,P,(R, 1) (2.4)

where R and r stand for the collection of all nuclear and electronic coordinates, respectively. Solving
eq. 2.4 even for small molecules is beyond current computational capabilities: at this point the
Born-Oppenheimer approximation [52-54] is introduced to make the problem tractable. We define

the wavefunctions ¥, (r;R) as

HeWn(r;R) = (Ke +V)Un(r;R) = EL(R) ¥, (r; R) (2.5)

i.e. they are eigenfunctions of the operator H.. Since #, contains the nuclear coordinates in the
potential term, both the eigenvalue ES(R) and the eigenfunction ¥, parametrically depend of
the nuclear coordinates. Expanding the total wavefunction ®4(R,r) as a linear combination of

wavefunctions ¥, (r; R)

Zan v, (r;R) (2.6)

and plugging eq. 2.6 in eq. 2.4 we obtain

YKy (i (R) V(15 R)) + D xin(R)ES, (R) Wi (1 R) = ) Ejxin(R) ¥ (13 R) (2.7)

The action of the nuclear kinetic operator on the total wavefunction produces the following terms:
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Multiplying eq. 2.7 by ¥,,(r; R), integrating the electronic coordinates and rearranging the terms,

we get
1 No,
¢ e _ . 2 .
(K + 25 (R) ~ Bpvin(R) = 5 }n:%: Yo (R) / dr0,, (;R)VE U, (r:R) +

N,
) o
+ﬁp zn: za: Vi, Xin(R) - / dr¥,,(r; R)Vg, U, (r; R) (2.9)

If we ignore the r.h.s. of eq. 2.9, we obtain an eigenvalue problem for the nuclear coordinates
corresponding to a “clamped nuclei” Hamiltonian Hen = lap + E¢,(R) with a potential given by the
electronic eigenvalue E¢, (R): this is the Born-Oppenheimer approximation. The terms on the r.h.s.
provide both adiabatic and non adiabatic corrections, coupling different electronic eigenstates. If
there are no magnetic fields, we can choose to work with real wavefunctions and it is easy to prove
by integration by parts that diagonal terms like [ dr¥,,(r; R)Vr, ¥, (r; R) are identically zero. It

can be shown that the other non diagonal terms are [54]

1

(Wi [KCp W) ox E. —E,

(U [—NRM’;%} 0,) (2.10)
The numerator depends only mildly on the nuclear coordinates: thus, if the electronic energy
surfaces are well separated, the non diagonal terms are negligible because of the denominator.
However, this is not valid for metals, which are an important class of systems: one of the motors
driving research on high pressure hydrogen is predicting when the system becomes metallic. In this
case, an argument can be made that the most relevant excitations are single-electron ones, which
are barely coupled to the nuclear motion [54] . Collective excitations, such as plasmons, are of high

energy (some eVs) and the previous line of reasoning stays true.

In this approximation, the original problem can be simplified and resolved in the following way:

e (i) given the configuration R, solve eq. 2.5 and find the electronic ground wave function
o(r;R)

e (ii) assuming that the electrons are in the ground state, use ¥y (r; R) to solve
(’Cp +E5(R) — Eo) xro(R) =0

and find the nuclear wavefunction xo(R)

The above procedure can be followed to obtain electronic and nuclear wavefunctions for pure states.
When different quantum states have finite probabilities of being occupied, density matrices are
employed [55]:

/3: Zps‘q)s> <(I>s| (211)
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where ps is the probability of finding the system in the state |®;). If we work in the canonical

ensemble, the density matrix is

po = Z e PEs
S

E,) (E,| = e #® (2.12)

where |E;) is the an eigenstate of the total Hamiltonian. The physical properties of the system are

obtained as statistical averages

Tr [@ﬁc}

0= O =JGT

(2.13)
over the measure given by the thermal density matrix p.. In the spirit of the Born-Oppenheimer

approximation we assume that electrons are in their ground state, while nuclei are at finite

temperature. This corresponds to writing the partition function Z of the system as
2 =Telp) ~ [ dR(RI(Wol e [to) [R) (2.14)

The matrix element (¥o|e™#* |¥y) can be written in a Taylor expansion:

(Wole™ ™ wo) = > “/f L (g (K +7.) o) (2.15)
l

The single term can be evaluated:

(wo (K + ﬁe)l o) = (Wo (K, + ﬁe)H (Kp + 7 ) wo) =
(ol (K + 7)o 100 (Wl (K, + 9. ) [W0) =
~ ol (Ky + ) Xy 10 (W) (K, + B5(R)) =

(W (lép + 7%6>H Wo) (/C,, n Eg(R)) (2.16)

We ignored the action of the nuclear kinetic operator Iap on the electronic wavefunction ¥y, which
is consistent with neglecting the terms in the r.h.s. of eq. 2.9. Iterating the process, one can easily

prove that the density matrix in the Hilbert space of the nuclear degrees of freedom reduces to
(Wole P [Wo) ~ ppo o e Ket EG(R) (2.17)

In this way the trace can be written as the sum over different nuclear configurations only, with
the potential energy surface E§(R) which plays the role of the effective interaction among nuclei.
Any ab-initio method based on the BO approximation needs to address the problem of calculating
E§(R) while keeping the nuclear coordinates fixed. Resolving the many-body electronic Schrodinger
equation for large extended systems still remains a computational challenge with the resources
currently available. As already remarked, nowadays the most widespread Ab Initio method is
Density Functional Theory (DFT), whose theoretical foundations were laid in 1964 by Hohenberg
and Kohn [56].
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2.2 Density Functional Theory

To solve eq. 2.5 for a system with IV, electrons, one must deal with the 3N, electronic coordinates.
Any finite element method based on a numerical discretization of the many-body wavefunction is
doomed to fail for extended systems with tens, hundreds of particles due to the exponential use of
memory necessary to store the variables. Density functional theory provides an alternative path:
instead of considering the electronic ground state wavefunction Wy(r; R), the main quantity in this

approach is the ground state single electron density

Ne

no(7) = 3 (Wold (7 — 7)|Wo) (2.18)

i=1

From a theoretical point of view, knowledge of ng(7) proves to be sufficient to derive any other
ground state property of the system as a functional of ng(7) itself (in particular, the ground state
energy E§ = E°[ng]). Computationally, this resolve the issue of dealing 3N, variables, reducing it
to a three dimensional problem. On the other hand, an explicit, exact functional form is missing,

forcing any actual implementation of DF'T to make use of uncontrolled approximations.

In the next section, a proof of the Hohenberg-Kohn theorem, which establishes the formal connection

between ng(7) and any other ground state quantity, will be given.

2.2.1 The Hohenberg-Kohn theorem

To give a more general scope to the theorem, the electronic Hamiltonian is rewritten as

He=Ke+V+W (2.19)
where
L e . N. 1
Ke=—-=Y V2 ) = 7, V= - 2.20
e==5 2 VE o V=2 ) W .Z.lﬁ—ﬂl (220)
i=1 i=1 1=1,7>1

K. is the usual kinetic energy. V is the external potential, which can be written as a sum of
one-particle terms. In particular, its average value over the ground state wavefunction |¥y) can be

written as
R N, N
(Vo[ PI0) = (Bol 3 o(73) ) = [ d (W] Y o8~ 7] o) =
=1 =1

N,
/ arol) (Wl 3 007~ 72)| o) = / G (2.21)

In the Born-Oppenheimer approximation, this is generally the potential generated by the nuclei but
it can also include any other external field. Finally, W is the coulombic repulsion among different

electrons. Note that, within the class of Hamiltonians defined in eq. 2.19, the only difference is
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the external potential V: thus, any observable A can be seen as A[v], a functional of v(7), since

everything else is fixed.

The theorem can be enunciated as follows [48,57,58]:

HK theorem:. (i) The ground state electronic density n(7) uniquely determines the external

potential v(r), to within an additive constant, i.e. v(r) is a unique functional of n(7)

(ii) The ground state energy Ey is the minimum of the functional E[n] for all v-representable

densities n(7)

Not any electronic density n(7) one can come up with can be thought as the ground state density of
some Hamiltonian that has the form defined in eq. 2.19. A “v-representable density n(#)” enforces

precisely this restriction.

The first statement can be proved in the following way, using reductio ad absurdum: we suppose
that two potentials V and V' corresponding to the same ng(7) exist and V # V' + const. We then
have two Hamiltonians H = I@e +V+Wand H' = /@e +V' +W and two ground state wavefunctions
|Wo) and |¥}) with energies ES and Ef , First of all, we show that the two Hamiltonians cannot

have a common ground state, i.e. W) # |¥(). If that were the case and |¥g) = |P(),

N
(H—=T)|Wo) = (V= V') [Wo) = 3~ (v(%) = o/ (7)) Vo (x) = (E§ — E§ ) Wo(r) (2.22)

i=1

ie. v(F) — v'(F) = const when the wavefunction does not vanish. It can be shown [58] that
for reasonable forms of v(7) this implies v(7) — v'(¥) = const everywhere, which contradicts the
hypothesis: the two ground states |¥o) and |¥() must be distinct. Notice that the ground states of
the two Hamiltonians can be degenerate, but that two sets of degenerate ground states cannot have

a common element.
We can write

E§ = (Wo[H|Wo) < (TH|H|TH) = (T|H'| W) + (Th|H — H'|Th) = E5 + (Th|V — V'|Tp)
BS = (W[ H'|Wp) < (Uo|H'[To) = (Wo|H|Wo) + (Vh|H' — H| W) = E§ + (¥o|V' — V|Ty) (2.23)

and the two inequalities holds strictly since we know that |¥o) and |¥() cannot simultaneously be
ground state for both Hamiltonians. Now, subtracting the two inequalities in eq. 2.23 and applying
eq. 2.21 , we obtain
Ej— By < B = Ej+ (W|V = VW) — (¥o|V' = V|¥y) =
= EBf - B+ [ o) - @) - [ a @) - o)n) =
= E —ES (2.24)

where we used the assumption that the two potentials correspond to the same ground state density

n(7), which leads to a contradiction.
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The main accomplishment of the first statement of the theorem is that every functional dependence
on v is shifted on n, thanks to the unique functional correspondence v[n]. This completely determines
the Hamiltonian, that is 7[v] = H[v[n]]. Similarly, once the Hamiltonian is fixed, the quantum
mechanical problem can in principle be solved and every property traced back to n (even excited
states). In particular, |¥y) is a “natural” functional of the potential v and, by composition, must

also be a functional of the ground state density. The ground state energy can be written as

Eglolnll = <‘1'o[v[n]]I?l[v[n]]l‘Po[v[n]]>=f[n]+/dfv[n](F)N(F) (2.25)

Bloln) - [ drola) ()

Fn]

where we isolated F[n], the Kohn-Sham functional. Some remarks:

e while v[n] is a unique functional, n[v] and |Uy[v[n]]) are unique only if the ground state is
non degenerate
e E§[v[n]] is unique, being the composition of two unique functionals.

e F[n] is unique and well defined as well (the arbitrary constant in v(7) cancels out)

e in the non degenerate case, the functional F[n| can be defined as
(To[n]| T+ W[¥o[n]) (2.26)

since all the mappings are unique. This corresponds to the definition given in eq. 2.25 which

is, however, more general.

We can show that the variational principle holds with respect to the functional dependence on the
ground state density. To prove it, the following functional, which linearly depends on the external

potential, is introduced:

E,[n] = Fln] + / 7o (F)n () (2.27)

where we treat v and n as two independent variables (i.e. the potential v is not necessarily v,, = v[n]).

Manipulating this functional, we obtain

Bn) = Flal+ [ dro(n() =
= P+ [ dronn) + [ Ao — en(@)n() = B, ] + [ dr(o(®) - a(A)n(r) =

= (Wo[vn][H[va]|To[vn]) + /dF(U(F) — v (M)n(F) =
= (Wo[vn][H[vn]|Wo[vn]) + (To[va]|(V — V)| Tolvn]) =
= (Wo[vn]|H[0][o[vn]) (2.28)

The true ground wavefunction for the Hamiltonian H[v] is ¥o[v] = ¥o[v[no]], where ng is the ground

state density obtained by solving the Schroedinger equation for 7—1[@] The standard variational
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principle states that
Ey[n] = (o[vn][H[v]|Po[va]) > (To[v[no]]|H[v]|To[v[no]]) = Eu[no] (2.29)

i.e. the variational principle holds using the ground state density as the main independent variable;

the equality is obtained if we plug into the expression exactly ng.

2.2.2 The Kohn-Sham equations

While the HK theorem establishes the ground state electronic density as the main variable, it does
not provide an explicit form for E[n]; in particular, the universal functional F[n], which is the
non-trivial part of E[n], is unknown. Moreover, F[n] is the same for any electronic system: a direct
guess for such a complicated object is very unlikely. To make use of Density Functional Theory,
practical implementations for these elements are needed: in the following paragraphs we will obtain

equivalent expressions for the two functionals, which can (mostly) be evaluated in a simple manner.

We start, [49,57,58] considering a non interacting system (i.e. W = 0) with Hamiltonian

=14, (2.30)

>

where V, = > ; vs(7i) is an external potential. If we assume non-degeneracy, the ground state

wave-function WO({7;}) is a Slater determinant made of orthonormal single particle orbitals 1y (7;)

1
Vv N!

and the individual orbitals can be obtained by resolving the following single-particle equations:

(r) = det [ty ()] (2.31)

(=572 +0:) ) = uu) (232

and then pick the N, orbitals with the lowest energies ¢;, to form ¥Y(r) The ground state density

and the kinetic energy are respectively

occ

ns(F) = > Ui (e
k

1= -3 Y [ i@ viom (2.33)

k occ

The demonstration in the previous section does not require any specific W (as long the Hamiltonian

is bounded from below). If we apply our results to the non interacting system, we obtain

En] = Ts[n] + /df’vS [n](F)n(7) (2.34)

When there is no interaction Fg[n| = Ts[n]. The KS variational principle holds, and E,,[n] will be

minimum when n;(7) coincides with the first line of eq. 2.33.
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The non interacting system just introduced will act as an effective system for the interacting problem
we are effectively interested in. For that, we know that E[n], given in eq. 2.27 will be a minimum
when evaluated at ng(7), the interacting ground state density. We now assume that, given ng(7),
we can build a non interacting system with an appropriate vg(7) such that ng(7) = ng(7). To do

this, we write F[n] as

Eln] = T[] + Enn] 4+ Eext[n] + Eoc[n] (2.35)
where
Enln] = % / dfdf"m (2.36)
Enln] = [ drveca(An(7) (2.37)
Eye[n] = Fln] — Ts[n] — Ex[n] (2.38)

Ep[n] is the Hartree term, accounting for the electron-electron interaction; Ee¢[n] is the energy
functional coming from the external potential; finally, the definition of E,.[n] is a tautology. The
first two functionals can be easily evaluated once the density is known. On the other hand, at this
stage, we did not gain anything: the explicit form of F,.[n], which includes all the complicated
many-body effects, is as unknown as the functional F[n]. The hope is that this term should be
small compared to the others for most systems, and that approximations could work reasonably

well in this regime.

We now use the variational principle, imposing:
E[ng + 0n] — E[ng] = O(6n?) (2.39)

Evaluating the single terms we have:

Eoulno + 6n] — Eoutng] = / 000t (F)ON(F) + O(5n2) (2.40)
Eulno +6n] — Eulno] = / / A 5n(F) |F_1 o) + O(6n?) (2.41)
Eyclno + on] — Eyelnog] = /dF(SCSE;(iB;] neny 0N (7) + O(6n?) (2.42)

Tlno+0n) = Tofol = =5 3 [ drswi(e) V() + S0n(IIV20(7) + OG0)243)
k occ

The last equation can be evaluated using eq. 2.32 and writing explicitly the variation dn:

on(F) = > SYE(PeR(F) + v (7o) + O(5¢7) (2.44)
k occ
Tlno + 0] = Tinal = 3 [ drlen = v GUialr) + S0n(i) + OG0?) =
k occ

_ / Aoy (Fon(F) + O(6n2) (2.45)



Chapter 2 Simulation methods 17

In the last step, we used the orthonormalization of the wavefunction to get rid of the ; term: in
fact

/ 07 (L (7w (7) + 6n (P (7)) = 6 / (@2 = 0 (2.46)

Putting all together and imposing eq. 2.39, we obtain

dEzcln]
ono(7)

/df{vm - [ )~ v -

o=

|MO} Sn(7) =0 (2.47)

i.e.

v(® = o)) + Vet (F) + vaelno(7) (2.48)
— 1 —

v [no)(7) = /dr |F_F7|no(7“) (2.49)

vl = ‘5520(%] e (2.50)

(—%v% ool +veat(7) + vac[ol (M) i (7) = exon(?) (2.51)

These are the Kohn-Sham equations [49]: they are non linear, since vg[ng] and v,.[no] depend on
the ground state density (and thus on the orbitals ¢ (7)) and are usually solved by an iterative
procedure starting from an initial guess for the orbitals. At this point we stress that as E,.[n]
is unknown, so is vg.[ng]. Approximations can be built from physical intuition, but there is no
systematic way to build and improve them: they are uncontrolled. There are different forms of
E,.[n] that can be more suitable for a particular system, but most of the times this cannot be
determined a priori: comparison with experiments or more rigorous theories (when available) is

necessary.

2.2.3 Practical implementation

Due to computational limitations, relatively small cells (= 100 atoms in our case) are employed
to simulate extended systems. Given a cell defined by three vectors (El, Eg,fg), it is common
practice to use periodic boundary conditions, periodically repeating the simulation cell. When
dealing with crystal structures, the simulation cell is a supercell, containing several primitive cells.
The translational symmetry of the system ensures that Bloch’s theorem [59] holds, i.e. that KS

orbitals can be written as

Ve(F) = e Tup(® , wp(F+ L) = ug() (2.52)
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being decomposed in a periodic function modulated by the wave kT, Introducing the reciprocal

lattice vectors éﬁ7 defined as

é,ﬁ = mlél + m2§2 + m3§3 s m = (ml,mQ,mg) S I\]‘3 (253)
_ Lyx L
Bl = QW%
L1 . (L2 X Lg)
_ Lsx L
By, = o2l M (2.54)
L2 . (Lg X Ll)
_ Ly x L
By = 2 1 X Lo

T = 5 _
L3 - (L1 X Lg)
the orbitals can be represented as

Y (7) = eik’Fulg(F) = eik'FZ C’EmeiGm'F (2.55)

where the summation over integers is possible thanks to the periodicity of uy (7). Moreover, it is easy
to verify that for any vector G Viia, (7) = ¥(): the vector k can be confined to the primitive
cell of the reciprocal lattice, conventionally the first Brillouin zone. This plane-wave expansion is
used in many codes written to deal with periodic systems [60-62] and it is particularly convenient
since Fourier transforms can be performed using efficient algorithms that scale as Npy, log(Npw)

where Ny, is the number of coefficients Cl,, considered. When recast in the plane wave basis set,

eq. 2.51 is

11 = |2 - . o - R . . o
> {2 ‘k + G| S + 018G — Ginr) + et (G — Gt ) + T2 (G — G )| Chr = €5C1(2.56)
with

f)l(é) = é Jo dFvl(F)eiE'é , 1= H,ext,xc (2.57)

In fact, for every k we have a different Schroedinger equation: each equation has its own solutions,

labelled by the ¢ index, corresponding to a wavefunction 1/1%(77)

Since computer memory is finite, an inevitable approximation is truncating the sum in 2.55: a

cutoff is usually defined as
1/ N2

The value of E.,; depends on the behaviour of the wavefunction in the proximity of one of the
nuclei. In the sections regarding Quantum Monte Carlo it will be shown that the divergence of the

Coulomb potential near the origin introduces a “cusp” in the wavefunction:

o

oy Ir=0 = =2’ (2.59)

where 190 represents the spherical average of the wavefunction around the nucleus and r is the radial
coordinate relative to its position. The cusp needs many terms in the planewave expansion to be

accurately represented and, thus, a high value of E.,;. To circumvent the problem, pseudopotentials
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are introduced [63]: a cut-off radius r. is introduced and, within the sphere delimited by 7., the full
electron-nucleus Coulomb interaction is replaced by a smooth potential, generated to reproduce
relevant properties of the “true” isolated atom. For heavier elements, another advantage of using
pseudopotentials consists in eliminating core electrons, that are not relevant for chemical binding.
Different strategies can be used: in our computations we either used a Coulomb potential when
producing single particle orbitals for the Monte Carlo trial wavefunction (see following sections for
details) or a PAW pseudopotential [64], which gives the most accurate results with a low value of
Eoyu.

With the introduction of the vector Ig, many quantities (such as densities, energies) can be expressed

as
oy = dkO: 2.60
< > - (271_)3 igc:c B2 E ( . )
O = (¥ilOlyL) (2.61)

where [ 5 Stands for an integral over the first Brillouin zone. Inevitably, integrals like this one

must be reduced to sums to be evaluated computationally:

() = L > o (2.62)

N, .
keBZ, i occ

with Nj being the number of k points sampled. A typical choice is to take a grid of vectors k
defined as

I E R
' Teg 22, 22 (2.63)

E =
N Na N3

where n;,N; are integers and —N;/2 < n; < N;/2, for a total of N7 x Ny x N3 points. This is the
so called Monkhorst-Pack mesh [65].

Finally, the crucial approximation: the choice of E,.. In our calculations two different E,. were
employed: PBE [66], that is based on a parametrization of the homogeneous electron gas, and
vdW-DF [67], that focuses on capturing the physics of systems where the van der Waals interaction

is relevant. These choices will be justified in the appropriate sections.

2.3 Quantum Monte Carlo

As explained in the previous section, the practical implementation of DFT is plagued by the
problem of approximating E,.[n]. Nevertheless, it reduces the complexity of the many body
quantum problem bypassing the evaluation of the electronic wavefunction. As mentioned at the
beginning of this chapter, a discretization on a grid of the many body wavefunction is unfeasible;
nevertheless, we will show how the wavefunction can be associated to a probability density that can
be sampled using stochastic Monte Carlo methods. In this way there is no need to actually store
the huge amount of information contained in the wavefunction and any physical observable can be
computed as an average over that probability density. We will start describing the basics of Monte
Carlo methods.
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2.3.1 Monte Carlo methods and the Metropolis algorithm

In many applications, an important problem is how to efficiently compute quantities that can be

written as
(O) = /de(x)p(x) (2.64)

where p(x) is a correctly normalized probability density (i.e. p(x) >0 Vx and [ dxp(x) = 1) and
x is a multidimensional array of continuous or discrete variables. When the number of dimensions
of the x-space grows, a discretization of the integral based on finite differences requires a mesh of
exponential size; on the other hand, if we can sample configurations x; according to p(x), a good

estimate of (O) is
O)~0=-—)Y Ox) (2.65)
A key feature of this approach is that the error associated to O is
o,

o = N (2.66)
1

z

c

oh, = N (O(x;) — 0)* (2.67)

—_

(2

020,]) depends on the observable O and on the probability distribution p(x) and it is a fixed feature of
the process we are studying. This means that the error o5 o \/% irrespective of the dimensionality
of x; this is a huge advantage when dealing with high dimensional arrays. To compute O one must

be able to efficiently sample x; according to p(x): this is accomplished using Markov chains [68].

A Markov chain is a stochastic process where configurations are generated in a sequence, and the

probability of having a state x; at step t; depends only on the configuration at step t;_1
Po(xi, tilxi—1,tic15 X0, ti—o; ..., X1, t1) = Po(Xg, ti|xi—1,ti1) (2.68)

where Pc(x;,t;]x;,t;) is the conditional probability of having x; at step t; given x; at step t;.

Given a target probability density Pqrget(X;i), the purpose of the Metropolis algorithm [69] is to

build a Markov chain where configurations are asymptotically generated according to P(x;), i.e.

lim P(xiati) = Ptav"get(xi) (269)

t; —00

We can think of each step of the Markov chain at time ¢; as an operator 7 acting on the probability
Pti = P(x;,t;) [70]:

POFY = pt)g (2.70)
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We want a stationary state where PU+1 = P(®): for i — 0o, we get

Ptarget = Ptargetﬂ— (271)

i.e Piarger must be an eigenvector of m with eigenvalue equal to 1. It can be proved [70] that
all other eigenvectors have eigenvalues less than unity: thus, if the projection of the probability
distribution at the first step P on Pigyger is not zero, P 7t will exponentially converge to the
target distribution for large ¢;. To determine 7 starting from Piq.ge¢, it is easier to work with
conditional probabilities, since we effectively generate one configuration starting from the previous

one. In the Metropolis algorithm, they are written as
Pc(XA,ti|XB,tj) :T(XA|XB)A(XA|XB) (272)

This corresponds to a two-step process:
e given the state x;, a new configuration x’ is proposed according to an a priori transition
probability T'(x’|x;)
e a test is performed with probability of success A(x;|x;). If passed, x; = x'; otherwise the

move is rejected and the old configuration counted one more time.

Since T'(x;|x) must be a normalized probability, >, T'(x;|x) = 1. We can rewrite eq. 2.70 using eq.
2.72:

PH(xa) = ) [T(xalxp)A(xalxp)P'(x5)
+ T(xplxa)(1 — A(xplxa)) P'(x4)] (2.73)

i.e. the probability of being in x4 at step i + 1 is the sum of the probabilities of accepting incoming
moves from other configurations (first term) and of rejecting moves leaving the configuration (second

term). For the target probability we have that

Ptarget (XA) == Z [T(XA|XB)A(XA|XB)Pt(LTget(XB)
+ T(XB|XA)(1 - A(XB‘XA))Ptarget(xA)] (274)

A sufficient (but not necessary) condition to satisfy eq. 2.74 is

PC(XB|XA)PtaTget(XA) - PC(XA|XB)PtaTget(XB) (275)

also known as the detailed balance condition, or microscopic reversibility. For a system of N

particles, a simple implementation of the Metropolis algorithm is the following;:

e select at random one particle
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e generate a random displacement vector A whose components are uniformly distributed

between —A 02 and A ae
e propose a new state where the position of the selected particle is moved by A
In this way, the a priori transition probability is symmetric: T'(x4|xp) = T(xp|x4). Eq. 2.75
becomes

A(xB|XA) _ Ptarget(XB)
A(xalxB)  Prarget(xa)

(2.76)

A simple form of the acceptance probability A(xp|x4) that satisfies eq. 2.76 is A(xp|x4) =

1 Pta.rget(xB)]

min
’ Pt,arget (XA)

2.3.2 Variational Monte Carlo

We now show how Born-Oppenheimer electronic energies can be written in a form satisfying eq.
2.64, using a method known as Variational Monte Carlo (VMC) [71-73]. Given a many body
wavefunction ¥r(r1,...,rn.; {Ra}) = ¥7(r;R) with [ dr|¥7(r; R)|? = 1, the electronic energy in

the Born-Oppenheimer approximation can be computed as
Er(R) = (¥r(r; R)|H|¥r(r; R)) (2.77)

In the position basis, eq. 2.77 can be rewritten as

Er(R) — / e (1 R)H(r, R)Ur (13 R) = / dr|Up(r R)PEL(R)  (278)
EL(r;R) = H(r’;;)(fﬁ?m (2.79)

|[U7(r;R)|? > 0 in eq. 2.78 can be thought as a probability density and the integral as an average
of the quantity Er(r;R). Notice that if U (r;R) is an eigenfunction of #, EL(r; R) = Ep(R) is

constant over all the electronic configurational space. An interesting observable is
o2(R) = / dR|Ur(r; R)P (EL(r:R) — Er(R)?) = / AR Uy (r; R)2EL (r: R)? — Er(R)? (2.80)

that quantifies the fluctuations of the integrand around the average value. Again, if U7 (r;R) is an

eigenfuction of A, 02 = 0.

In our search for the ground state, we recall the variational principle:
Ey(R) < Er(R) for any U7 (r;R) (2.81)

and the equality holds if ¥r(r;R) is the ground state wavefunction. ¥r(r; R) must satisfy some

conditions:

e Ur(r;R) and VU (r; R) must be continuous when the potential is finite

o [dr|¥r(r;R)[? and Er(R) = (U7 (r; R)|[H| U7 (r; R)) must be finite
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e [dR|¥7(r;R)[?EL(r; R)? must be finite as well, if we want a well defined o7

The practical problem is now evaluating E7(R) . This is achieved by employing the Monte Carlo
methods described in the previous section: Ep(R) can be evaluated averaging Ep(r; R) over a
3N, dimensional space. We must sample NV, configurations r; according to the probability density
|Ur(r; R)|? and then evaluate

N.
1 o

Er(R)~ 1~ Y Ei(riR) (2.82)
€ =1

The configurations r; are generated through the Metropolis Monte Carlo algorithm by building the

corresponding Markov chain.

2.3.3 Our trial wavefunction

The key ingredient of the VMC calculation is the choice of the many-body trial wave function. The
simplest antisymmetric wavefunction for a fermionic system with NT spin-up and N+ spin-down

electrons is a product of two Slater determinants of single electron orbitals:

Ur(FR) = ST[0x(7i[R)]S* [0k (7 R)] (2.83)
where
01 (71 IR) 01 (F2|R) -+ 01(Fn:|R)
o | b(MIR) o Gy [R)
S [Hk(ri|R)}:mdet : : . : s =11 (2.84)
Ons(F1|R) Ons(72|R) -+ Ons(Pn:|R)

For non-magnetic systems, NT = N*+. The wavefunction in eq. 2.83 can account for exchange effects,
which keep like-spin electrons away from each other. Nevertheless, it can be an eigenfunction of a
system of non interacting electrons only, where Coulomb repulsion is neglected. Moreover, there are
some analytical constraints that a many-body wavefunction must satisfy that are not reproduced

by single Slater determinants.

2.3.3.1 The Kato cusp conditions

One of such constraints is the so called Kato cusp condition [73-75]. This condition arises from
the divergence in the Coulomb potential when the distance between two electrons becomes very
small. If we explicitly consider electrons 7; and 7; and rewrite the Hamiltonian using the variables

F=17; — 7 and ey = %(7"Z + ), we obtain:

N 1 1 1
H:_v$+;—1vgm—§ > VI AV(A, .., y) - = (2.85)
k#i,j
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where the first two terms are potentially divergent when 7 — 0 and the last term cancels the
divergence present in the many body potential. If we fix the remaining electronic coordinates and

expand the wavefunction in spherical harmonics, we obtain

l
() = P(FF o Toms - TN) =D D 7 fim (1) Yim (6, 6) (2.86)
l

m=—I

where r,0 and ¢ are the spherical polar coordinates of 7, Y}, the spherical harmonics and f;,,(r)
the coefficients of the expansion. The spin dependence is buried in these coefficients: if the two
spins are parallel, the spatial part of the wavefunction must be odd in 7 and ounly fi,,,(r) coefficients
with odd [ survive; if the spins are antiparallel, the opposite is true and we only have non zero
fim (1) coeflicients when [ is even. The contribution to the local energy coming from the first two

terms in eq. 2.85 for antiparallel and parallel spins for small 7 is

o _ V(@A) 1 VPfoo(r) o, L Vfoo(r) oy, L
BL= =9@m YR ety PO T T ey O S
_ 2 0Ofoo 1
= @ szo +0(r%) + - (2.87)
. _v2\11(,’:‘) 1 B _VQ |:’I" Z'}n:—l flm(T)Y1M(07¢)i| 0 1 B
TG IS s N s T R
|:Z71n:71 3{)1;71 |7‘:0Y'1m(97¢>:| 1
= 4 oY) + = 2.88
r Z:n:—l flm(o)ylm(ev (b) * (T ) " r ( )

where only divergent terms of the expansions are retained, while the regular behaving terms are
absorbed in the O(r?) term. If the wavefunction is an Hamiltonian eigenfunction, the local energy
is a constant everywhere and the divergent terms in eq. 2.87 and 2.88 must cancel each other for

every value of 6 and ¢, i.e.

9 foo ~ foo(0)

o e (2.89)
9 fim ~ fim(0)

or | _ =7 (2.90)

Since there is no explicit correlation, Slater determinants of single particle orbitals cannot depend

on interelectronic coordinates, and cannot enforce the conditions described in eq. 2.89 and 2.90.

An analogous cusp condition must be satisfied when electrons are in the proximity of a nucleus.

With similar arguments, one can prove that an electron-nucleus cusp condition exists:

6‘1’00
67"2‘

=—ZV¥qy (2.91)
7’71:0
where r; is the distance of the i-th electron from a nucleus with charge Z and ¥ is the spherical
average of the wavefunction around the nucleus. This condition can either be satisfied by the Slater
determinant (if and only if each individual orbital satisfies the cusp condition) or implemented by

modifying the wavefunction.
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A popular form for the trial wavefunction is
Uz (r[R) = e’ S0, (75| R)]S* [0k (75| R)] (2.92)

where J(r|R) is the so called Jastrow factor [76]. Since the antisymmetric character of the
wavefunction is built into the Slater determinant, the Jastrow factor must be symmetric under

particle permutation. For the Jastrow-Slater wavefunction, eq. 2.89, 2.90 and 2.91 become

oJ 1

> L = 3 antiparallel spins (2.93)
1

% L = 1 parallel spins (2.94)

o7 = —Z nuclei (2.95)

or|,_o

The last equality is valid if we assume that the Slater determinant is smooth with respect to electronic
coordinates relative to nuclei (this is the case if, for example, a non divergent pseudopotential is
used to compute the single orbitals). If, on the other hand, every electronic orbital satisfies the
nuclear cusp condition, the determinant satisfies the same condition as well and the Jastrow factor

must be cuspless (i.e. Z =0). In our case, the Jastrow factor is written as

N, N, Np
e 1 e . .
JOR) = =7 |5 tteelrig) = 3 wep(7 — Ral) (2.96)
i=1 G#i a=1

where r;; = |7; — 7, satisfying the symmetric constraint required by the global fermionic wave-
function. An important indication on the form of the u.. and u., comes from the Random Phase
Approximation [77]. In this approximation the Hamiltonian of the system is reduced to a sum of a
short-range interactions among electrons and a long range part described by collective oscillations
(plasmons). Since RPA becomes formally exact when the electron density goes to infinity, results
obtained in this approximation can be useful for our high-density regime. In particular, it can be

proved [77,78] that minimizing the energy in RPA leads to

1
ulPA(k) = ) +V1+ay
RPA ay

k) = ——— 2.97
uep ( ) m ( )
where u.. (k) and ue,(k) are the Fourier transforms of ue.(r) and uey(r), and aj = 12r;/k*, with
rs = (Z’—;)(l/ 3). The RPA forms satisfy the cusp conditions, providing the expected analytic limits
both for r — 0 and r — oo: still, the RPA does not provide the exact solution for intermediate

values of r. Following ref. [79], we use:

Ue (1) = ufPA(r) + A% e~ (r/wsy)” a = (ee, ep) (2.98)

RPA

adding a remaining empirical part to u;

(r), which is a simple Gaussian preserving both short

and long range behavior from RPA and introducing the free variational parameters A, and wg;.
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2.3.3.2 Backflow transformation

The inclusion of the Jastrow factor provides a fraction of the electronic correlation missing in
a simple Slater determinant. However, the form of the wavefunction can still be improved. A
formal expression of the exact ground state wavefunction in terms of a trial wavefunction is the
Feynman-Kac formula [55]:

wo(elR) = e 8 e (— [ ar (Butr) - Bl g (2.99)

where ¥(r|R) is the exact many-body wavefunction; ¥r(r|R) is the (real, non negative) trial
wavefunction; Ey is the exact ground energy; (. .. >‘I’2T stands for an average over different trajectories

all starting from r and evolving for a time ¢ according to

ar

"L = () = VIngr(r| B) (2.100)

n(t) is a Weiner process [68], i.e. the electrons perform a Brownian motion, being at the same time
under the effect of the drift —V Inr(r¢|R). The above expression can be approximated [80]: if the
trial wavefunction is good enough, the exponent will be small and the cumulant approximation can

be invoked, i.e.

Wo(x[R) o Wr(r[R) exp / " (B () — Fo(R)))has ~

~ Up(r|R)exp (—(E — Eo(R))yz + ;<5E2>‘1’2T> (2.101)

where £ = fooo dtEr(ry). If the expansion is truncated at the first term and some simplifying
ansatzs are assumed, one finds that the electronic coordinates in the Slater determinant part of the

wavefunction are replaced by the backflow coordinates x;,

N,
B =7+ Z [GEPA(rig)] (7 — ) Z [*RPA ~ R & - R (2.102)
J#i a=1

where the analytical form of g and e, can be found in ref. [80]. Empirical variational parameters
can be added on top of these analytical expressions to make the trial wavefunction more flexible.
Gaussians were first introduced by Kwon et al. [81] for the homogeneous electron gas; they were

later used for high-pressure hydrogen [82], improving both the variational energy and the associated

variance. The §#F4 and yRP 4 are replaced by
Ya = nyA (Ta) + Nep(ra)
T (7”) _ )\g e—((r—rf,’“)/Uu?)2 o= (66, ep) (2.103)

with free variational parameters Ay, ry and wy'.
The final explicit form of the trial wave function is
Ne

Ne p
Vo (cIR) = SRS 0GR exp [~ 3 [ 2 S i) = 3 17— Fu | | (22100
i=1 | % i =
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2.3.4 Twist averaged boundary conditions

As for Density Functional theory, the evaluation of the Ab Initio electronic energy is rather
demanding: the computational time needed for the evaluation of a trial wavefunction with embedded
backflow terms scales as N3~% [83]: this limits the size of the studied systems (up to 96 electrons,
in our case). Periodic boundary conditions are enforced: given a supercell defined by three cell
vectors El, Eg, Eg, the original set of particles is replicated periodically along the three cell vectors.

In this way, the potential energy displays the following symmetry:
V(.. .sTi+ Ly .o, PN) = V(1,0 Thy ooy TNL) (2.105)

for any particle ¢ (m = 1,2, 3). From this property, one can derive a many-body generalization of
the Bloch’s theorem [84]: a many-body eigenfunction ¥(7,...,7y,) of an Hamiltonian retaining

the translational symmetry of eq. 2.105 satisfies the condition
f(PL e i Do TN, = WPy Tay e P, et o (2.106)

and the momentum & can be used to classify the wavefunction W , which “gains” a twist 6 = k- Lo
when a particle is translated out of the simulation box. It can be showed [85,86] that physical
observables are periodic in 6 (i.e. A(f) = A(6 + 2), limiting the relevant interval to —7 < 6 < 7, in
a manner equivalent to limiting k to the Brillouin zone. One can set k = 0, choosing a wavefunction
that is fully periodic across the replica of the supercell. However, this procedure leads to an
enhancement of finite size errors, which is well exemplified by the non-interacting homogeneous
electron gas in a cubic box of side L [86]. This is a standard textbook example solved with fully
periodic boundary conditions: in this case, the eigenfunctions are plane waves with momentum
p= 22—7‘ (7 being a 3 dimensional vector of integers ). If the number of electrons N, is of the
order of the Avogadro’s number, the region covered by the filled quantum p states is an excellent
approximation of the Fermi sphere, which is the expected result in the thermodynamic limit. On
the other hand, if we only have tens or hundreds of electrons, the occupied volume is a poor
approximation of expected result. This is a serious issue, especially for metals, where discontinuous
jumps in the occupation number near the Fermi surface can drastically alter the properties of the
system. A way to solve this problem is to choose to work with twist-averaged boundary conditions
(TABC) [86] and compute

(O)rapc = (22)3/32 dk (V|0 ;) (2.107)

where (...) is the standard scalar product in the 3N, dimensional space of the electronic coordinates.
This is an average over the different twists: in our simple example we get different momenta
Py = ? + k that can form a much finer grid, resulting in a better approximation of the Fermi
sphere. A better convergence to the thermodynamic limit using TABC rather that PBC was

demonstrated in ref. [87] for the electron gas with different trial wavefunctions.
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2.4 Path integrals

In the previous two sections the Ab Initio computation of the Born-Oppenheimer electronic energy
was addressed. However, we want to compute thermodynamic averages at finite temperature,
including nuclear quantum effects. As stated at the beginning of this chapter, under the assumption
of the Born-Oppenheimer approximation, macroscopic quantities of a system in the canonical

ensemble can be computed as

©) = 5 [ dRIR (R O[R) p(R, R )
Z = / dRp(R, R; ) (2.108)
pRR:) = (Rl REIIRY)

where E§(R) may be computed using VMC or any other Ab Initio method. In the path integral
approach [55,88] the propagator e~ B(Ko+ES) is broken into P parts:

o~ BKp+E§) _ (e=mKotE)T 7 =8/P (2.109)
p(R,R;8)= [dR;..dRp_1p(R,Ry;7T)..0o(Rp_1,R’;7) (2.110)

In the above expression we have assumed that the identity operator could be written as I =
J dR|R) (R, ignoring the quantum effects of the Fermi-Dirac distribution on the protons, which
are treated as distinguishable particles. For bosonic/fermionic systems the basis is the subset |R) .,
with

R). = = > (& PIR) 2.11)
P

and P being a permutation of the particle indices of R. In the present treatment, we assume that

the only relevant permutation is the identity. By introducing the action
SR,R;7) = —In(p(R,R’; 7)) (2.112)

the mean value of O can be expressed as

1 A -1 .
()= / dRy ...dRp (Ro| O |Rp) e Zr=0 SE®pRprim) (2.113)
Z = /dRQ - dRP_lei 211;_01 S(RP’RHI;T), Rp =Ry (2.114)

IfO= O(f{), this average can be evaluated with a Monte Carlo procedure by sampling the positive
function II(Rog,...,Rp_1) = %6_ om0 SRpRpiiim) g 5 3N, P dimensional configuration space
with the condition Ry = Rp. The above expression is exact, no matter what the value of P is; in
practical applications, however, S(R,R’; 7) must be approximated and the choice of P depends on

the goodness of this approximation. Following ref. [88], we now define two (arbitrary) parts of the
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action, the kinetic action Ax and the interpotential action Ay:

3N,
AgR,R ;1) = —EIn(2nr7/M,)+

AU (Ra Rla T)

__ R’\2
MAR27R> (2.115)
T

2
S(R,R;7) — A (R, R/, 7) (2.116)

Why it is convenient to split the action in this way and why these names are used for these two

quantities will be explained in the next section, when the primitive approximation is introduced.

2.4.1 The primitive approximation

A simple choice to compute the action is the so called primitive approximation [88]:

pR.R:T) = (Rle#Ee e 550 [R)) 1+ O(r%) =
= e PRI R]e T R e B 4 0(r) (2.117)

The matrix element involving the kinetic energy KC, in eq. 2.117 can be evaluated with a resolution
of the identity !

R[e ™% R = / 0P (R|¢~"%n [P) (P|RY) =

/dPe—ﬁPQeiP(RLR) _ (%)ﬁe*%(R*R')Q (2.118)

(2m)3N» 2T

It is now clear that in the primitive approximation S(R,R/,7) = Ag (R, R/, 7)+Z(E§(R)+E5(R’)):
the kinetic action is indeed the contribution of the kinetic operator and the interpotential action
Ay = Z(V(R) + V(R/)) stems entirely from the potential energy. While it is appealing to rigidly
separate the two contributions, this is valid only within the primitive approximation: the exact Ay

contains kinetic terms of higher order in 7.

The density matrix can thus be approximated as

p(Ro,Rp; B) = /dRo ...dRp_1e” S0 (Ax (Rp Rp1157)+Au (Rp Rp137)) oy
3PN,
~ <é‘4p> : /dRO o dRp,le_ 25;01 (%(RP—RPJA)Z—TES(RP)) (2119)
T

At this point, the partition function in the primitive approximation Z,, can be written as

Zpu = / dRop(Ro, Ro; f) ~

M, \2* Poi(Mp

Np _ _ —rE®
~ (27;0) p) /dRo ...dRp_qe p=0 ( 52 (Rp—Rp11)? EO(R;D))’ Rp = R0(2.120)
T

Eq. 2.120 can be interpreted as the partition function of a system made of P x IV, “beads", organized
in NV, closed polymers: every bead interacts with the two neighbours (in imaginary time) of the

same polymer through an harmonic term (R, — R,1)?. Moreover, it interacts with beads of other

1This expression is rigorously valid for an infinite system but becomes very accurate when L >> \/T/Mp, L being
the length of the box
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polymers that have the same index (same imaginary time) through the Born-Oppenheimer energy
surface EG(Rp). This expression establishes an isomorphism between a quantum system with N,
particles and a classical system of IV}, polymers with harmonic beads. Operators that are diagonal
in the position representation (such as the potential energy E§(R)) can be evaluated as

1 _ P—1(Mp _ _rE°€
V) = Z/dRo...dRpEg(Ro)éRg,Rpe po (3 (Ry—Ryps1)*—7EG(Ry))

-] dR dR 1P71E6R - fol( 2(Rp—Rpi1)?—7Ef (Rp))
= 7 0...dRp_1 sz:% c(Rp) | e

- <<}3 > E3<Rp>>>pm (2121)

1 — P—1 i _ 2_ e
Ppoly — Ee Z;u:O (27 (Rp—Rpt1) TEO(R;D))’ RP — RO (2122)
i.e. as an average over the classical system of closed polymers. In eq. 2.121 the permutation symmetry
of Ppory with respect to R, was used. If an observable is not diagonal in the position representation,
the evaluation is not so straightforward: the condition Ry = Rp does not hold, leading to open
polymers. One fundamental observable that is not diagonal in the position representation is the

total energy. However, in this case, the following thermodynamic equality can be exploited:

(E) = —%%g (2.123)
Using the primitive form of the partition function, we get
(E) ~ (32]\T[ 3 é\gg Ry —Rpy1)* + ]13132: EG(Rp)) Py, (2.124)
As a consequence, the kinetic energy is easily computed as
w) = () - vy = (Y ;‘2 (R, ~ Ry}, (2125)

The development of the primitive approximation is relatively straightforward and is the foundation
of the quantum-classical isomorphism. Moreover, formally exact expressions can be obtained from
eq. 2.119 when M — co,7 — 0. In this regime,

3PN

(Me)"=" [qRy...dRp_, — D[R]
R(0)=R,R(8)=R’

M dR (7
Yoo To(Ry —Rpp1)? / di) (2.126)

S TES(R,) —>/ drES(R(T
0
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where fR(O):R R(8)=R/ D[R] stands for a functional integral over al possible trajectories R(7) with
the assigned endpoints. Eq. 2.119 thus becomes

li /8 M
(R, R'; 8) = DRexp |~ [ dr=r
R(0)=R,R(8)=R’ 0

While being exact, eq. 2.127 is of little practical use: the implementation of path integrals goes

2

dR(7)
dr

+ ES(R(T))] (2.127)

through eq. 2.120. Nevertheless, one can use it as the basis to develop better approaches that
give results comparable to the primitive approximation with a smaller number of beads. An

approximation relevant for our work is the pair product action

2.4.2 The pair product action

Eq. 2.127 can be rewritten as

ity PRJex | [ ar'%e | B[+ piR(r)|
p(R,R:B) = po(R,R';f) SRR (2.128)
R(8)=R’ B 2
wR RS — [ DRjex [— |t | 5E ] (2.120)
R(0)=R 0 2

where po(R,R’; 8) is the density matrix associated to free particles. On the other hand, given our
definitions of kinetic and interpotential action and their limits when M — oo, the original density

matrix can be written as
pRRB) = po(R,R; B)eAv(RR D) (2.130)
Putting together eq. 2.128 and 2.130, we obtain

SR DIRJpo(R, R By exp [~ [ dr B (R(7)]
pO(R’ R/;/B)

B
= (exp [—/0 dTES(R(T))})RW (2.131)

e~ Au(RR/58)

with (---)grw stands for an averaging process over Gaussian randow walks from R to R/.

If instead of the Born-Oppenheimer energy surface E§(R) we have a pair potential V4 (R)

Vpair(R) = Z U(Ra7 RB) (2.132)

a<f
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eq. 2.131 can be written as

, B
e Ao R o | [ ar S (R Ra) [ = (] 2a)
0 a<fp a<f

B
Ta = €Xp [—/O dTv(Ra,Rg)] (2.133)

It is reasonable to assume that the main correlation effect among different particles is given by
two-body terms, which exhibit a wild divergent behaviour when two particles approach; higher order
terms, instead, are relatively smooth. If one assumes that the x,3 variables are almost independent,

one obtains

e—AU—pair(R,R’;B) ~ H <xa5> — H e—u2(RaB,R;ﬁ) — e P a<s uz(Rag,Riz) (2134)
a<f a<fB
ie.
/ /
Ay —pair (R, R 8) = >~ us(Rag, Riyp) (2.135)
a<f

where uz(Rag, R, 5) is the interpotential action for a single pair of particles. Given the form of the
pair potential, this action can be computed numerically in an iterative way using the matrix-squaring
method [88,89].

2.5 Path Integral Molecular Dynamics

As explained in the previous section, relevant nuclear operators can be computed as

1 ~ .

0) = [RORRR'H)  p(R.Rif) = Rl "B B0IR) (2.136)
where G(R) is an estimator that can be more or less straightforward to obtain. As we saw, the
primitive approximation gives a practical way of computing Z and the associated probability density,
establishing an isomorphism between the quantum system and a classical polymer system through

eq. 2.120: the isomorphism can be carried on [90] introducing P x N, momenta P and writing

1\ 3PN>
Zpa = (2> / dPdRe~ "1 (P:R) (2.137)
T
P-1 2 P-1
P2 M .
H,(P,R) = Y 2]\2 + 2—T§(Rp ~Rp11)*+ > E§(Ry) (2.138)
p=0 p=0

The (fictitious) dynamics of such a system can be simulated implementing Hamilton’s equations

dP _ 0H, dR _ OH,
dt~ OR ~ dt  OP

(2.139)
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in a molecular dynamics scheme. A convenient theoretical tool to discuss the time evolution is the

Liouville operator L:

(2.140)

e Rl dﬁ(x,’rn (9 + dﬁa,m 8
dt 9R,,, dt 0P,,,

R! o (R
= gLt (2.141)
P!, P,

and a good approximation of the operator e*“* can lead to devise an efficient molecular dynamics

algorithm. In our case, we can write the Hamiltonian H,(P,R) as

P-1
p=0
P-1 2 P-1
P M
H)(P,R) = T+ ) o5 (R, —Ryp)? (2.143)
2M,, T2
p=0 p=0

where H?(P,R) is the Hamiltonian of non-interacting harmonic ring polymers. The internal modes
of the ring polymers present different time scales: in principle, the timestep At should be chosen
small enough to properly integrate the fastest mode: however, H? can be exactly solved. This

suggests to approximate the time evolution operator as [91]

Pl A Ly A2 L oAt LiLy At/2 (2.144)
Np P-1

) 5 dE§ 0
L = — = = 2.145
' 2 mZ::O (dRa,m aPa,m> (2.145)

Np P—-1 =
Pom 0 OH,o O

iL = : = - — - 2.146
e a=1 mZ:O < Mp 6Ra,m 8Ra,m aPa,m) ( )

P-1 P-1
ga,k = Z Ckm]:?:oz,p P Qoz,k‘ = Z Ck:pPa,p (2147)
m=0 p=0

with

(2.148)

[t
. |
T3

=

he]
Il

i)

~—

[\
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and H? is
Np P—-1 2 P-1
Qc . M, -
H)Q.8) = D > oo+ Y SruwklSasl (2.149)
a=1 k=0 P m=0
2
wr = —sin(kx/P) (2.150)
T

The single molecular dynamics step is then performed in the following way:

e propagation using e*fvAt/2;

. L At OE¢
Py, = Pop———=2

= 2.151
* "2 oR, (2.151)

=L
L
kSj

R, = (2.152)

e change of basis from ﬁ}l,p and R‘}x’p to Q}Xk and gék using eq. 2.147 and eq. 2.148 and then

20\ [ cos(wrAt)  —Mywgsin (wpAb)) (S, (2.153)
2i)  \admsinat  coswan ) \G |

s a,k

propagated as

that is the exact propagation for independent harmonic oscillators.

e change of basis back to Cartesian coordinates ]3&271, and ﬁi’p and final propagation using again
6i£v At/2:

. _ At OEE
Popt+At) = P2 ——-—=0
2 ORZ

Rop(t+At) = R, (2.155)

(2.154)

While At should be small enough to accurately integrate the whole trajectory, it can be larger
than the corresponding timestep used for a standard Verlet algorithm, since the internal degrees of

freedom of the polymers are propagated according to the exact harmonic Hamiltonian.

The above scheme produces an energy-conserving trajectory, sampling the microcanonical ensemble,

which is not what is required by the isomorphism.

2.5.1 Path Integral and Langevin Equations

The canonical ensemble can be sampled through the Langevin dynamics [68,91]

— _ OH B 2Mp'y_.
dPap(t) = 55 VP () + . £a(t) (2.156)
dQap(t) = %mdt (2.157)
P

(Itoh convention) where 7 is a friction coefficient, £4(t) is a Gaussian random noise with zero average
and such that (€, (£)€x(t')) = 6(t—t'). Qup and P, , represent the degrees of freedom of the system
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and their canonical conjugated momenta in any representation (Cartesian coordinates or normal
modes, for example). It can be proved [91,92] that such a stochastic process can be efficiently

sampled if the system goes through a time evolution governed by the following Liouvillian:

dP,, 0 AdQo, O

i L = = = L 2.158

tLFp it 9B, + 7 . + 1Ly ( )
0 = M, 0?2

thry 7<3Pa,p ap T i BPO%Z,) ( )

The time evolution can be approximated as
QILPPAL o Ly AL/2 il AL Ly AL/2

iL’YAt/QeiL:VAt/QeiLHTO Atei[,‘/At/Qei[,.YAt/Q (2.160)

~ e

This scheme reproduces the microcanonical step (eq. 2.146) introducing friction and noise at

the beginning and at the end of the step with the action of the operator e?£v2%/2 that can be

~ ~ M,
Qor = Cl7kQa,k+m (2.161)

cp = e A2 (2.162)

Cok = 4/ 1— C%,k (2163)

As we mentioned above, friction can operate on Cartesian coordinates or normal modes equally:

represented as

choosing the latter, we can specify for each normal mode the optimal friction parameter ~;. It turns

out that, for free harmonic ring polymers, the ~; that gives the smallest autocorrelation time is

1/7’0 5 k=0
= 2.164
T { 2w, , k>0 ( )

where 79 is the damping coeflicient of the autocorrelation function of the centroid (k = 0) and
can be tuned depending on the system. While the optimal choices for interacting polymers may
differ, at least the high frequency internal modes should be similar, being mostly decoupled by the
low frequency, physical modes. This framework is called PILE (Path Integral Langevin Equation).
PILE can be used at higher temperatures, where the primitive approximation does not require a big
number of slices to converge to the infinite limit. At lower temperatures, this may be an issue: in
this case the PILE method can be modified, using generalized Langevin equations (PI+GLE, Path
Integral Generalized Langevin Equation). The methodology is rather involved and it is discussed in
several papers [93-96]. The idea behind the method is that the generalized Langevin equations can
be tuned to sample a target distribution which provides exact structural properties of quantum
harmonic systems for any arbitrary number of beads employed. The procedure must then only
account for anharmonic and higher order effects, leading to a significant decrease of the number of

beads needed to obtain fully converged results [94]
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2.6 Coupled electron-ion Monte Carlo

As we have stated several times, accurate electronic energies and nuclear quantum effects must taken
into account to capture the real physics of the systems we intend to investigate. The Variational
Monte Carlo method was introduced to evaluate the electronic Born-Oppenheimer energy while
the path integral formalism was developed to deal with quantum nuclei, introducing different
approximations for the density matrix. Unfortunately, at the present time the evaluation of forces
through VMC is still plagued by big relative errors, making molecular dynamics difficult to perform.
The Path Integral formalism, however, can still work if used with a Monte Carlo procedure, that

deals with finite energy differences.

The Coupled Electron-Ton Monte Carlo (CEIMC) method [78,97] takes all these elements and build

p(R R;B)
p(R,R;B) "

step is to write the density matrix at an inverse temperature (3 as a chain of P density matrices at

an algorithm whose purpose is to sample the probability density = As we saw, the first
7 = /P and then properly approximate these density matrices. While the primitive approximation
is the most basic solution to this problem, in the CEIMC algorithm the expression is manipulated

in the following way:

p(R,R/;7) = <R|677(1Cp+ES(R))|R/> = <R|677(1Cp+Vpair(R)+E8(R)prair(R))‘R/> (2.165)

introducing an effective potential V4 (R) that has the form shown in eq. 2.132. A good effective
potential, should be close to the Born Oppenheimer electronic energy ES(R) , allowing us to use

the primitive approximation for the terms involving the difference E§ — Vjpqir:

p(R,R/;7) ~ (Rle™™RrtVoein NIRY) o7 5 (BRI = Voair (OB R Voarrn (1) (2.166)

The first matrix element on the RHS can be approximated using the pair potential approximation
developed in the previous section. In this way, the probability density P = %p(R, R, ) to be

sampled becomes

P
1 M (R ~R/ - e v
P = Z Hexp _ p+1 Zu2 RZ?yR +1) e Zp:l(EO(R’p) Vpair(Rp)) —
p=1
— P iT(Rp) _sz 1(E§(Rp)—Vpair(Rp)) (2167)
P
»(Rp — R/
Pouir(R,) = H exp{ — 1) 2“2 R} R (2.168)

where us (R, > R; ) is the interpotential action for a single pair of particles. The introduction of the

potential Vg4 served two purposes:

e providing a better approximation for P, allowing us to use a smaller number of beads to

converge to the infinite limit
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e P is written as a product of two rather different terms: one, P,y (R ), involving U/Q(R;j, R i)

that is cheap; the other one, where the computationally expensive electronic Born Oppenheimer

energy must be computed.
The second point suggest to use a multilevel Metropolis algorithm to sample the distribution [78]:

e a move in the P x 3N,, configurational space from point {R,} to {R},} is proposed according

to some a priori transition probability T({R,}, {R},})

e the move is accepted with probability

i 11 TURS Y ARSY) Poair {Rp})
A= [L THR,Y, {R,}) Poair({Ry}) (2.169)

e if the move is accepted, a second test is performed and passed with acceptance

A, = min [Le—A({Rp},{RP}verZ,i;(vpair({Rp}’)—vpam{RP})) (2.170)
P

AR LR = 7> (E§(R)) - E§(R,)) (2.171)
p=1

The advantage of splitting the acceptance test into two phases is that the first step (also called
the pre-rejection step) is not computationally demanding, not involving the computation of E¢(R):
it prevents the expensive evaluation of the electronic energy for moves that are not likely to be
accepted. Of course, an important role is played by the effective potential Vjqir: the more it
resembles the true energy landscape, the more efficient this process becomes. In defining the scheme
of the algorithm, we passed over a relevant issue: in fact, in the CEIMC method, VMC is used to
compute the electronic energy difference A. This means that A itself is a statistical average and, as
such, it has an associated statistical error that can bias the outcome of the acceptance test. The
simplest solution would be to make this error negligible with respect to A and ignore this fact; but
this would require sampling a lot of configurations and would be highly inefficient. Instead, we used

a different approach: the penalty method.

2.6.1 The Penalty method

Given A({R,},{R}}), let A and 03 be its average value and variance respectively, computed over
the noise probability distribution Ppoise(A(Rm,Ry,)). Since A({R,}, {R},}) is a random variable,

then the acceptance a(A) is a random variable as well, whose average value is
A{Rn}, {R},}) = / dA  a(A)Pooise(A{Rm}, {Rm}) (2.172)
On average, we want to satisfy the detailed balance condition:

AR}, (Ry)) = e 2 AR, Y, {Rmm (2.173)
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While P oise(A{R,}, {Rp}) is unknown, we can make the simple hypothesis that

Pnoise(AHRp}» {Rp}/) = Pnoise(A) = e 2”; (2174)

that can be justified by invoking the central limit theorem if the energy difference A is averaged

over many samples and has a finite variance. One can verify that if one chooses

AT TURYLRY (a)]
&) {1’ T((R,}. (R, }
= min [17e(_A_g;)e_F({R”}/’{RP})] (2.175)

PR} {R,Y) = —ln (m) (2.176)

the average acceptance A has the form

AR} AR,Y) = Serte { 5[5 + AR, L {R,}) + TUR, L (R, b (2177)

2 < A ’ ’
+ierfc {ﬁ [% ~A(R,}{R,}) —T({R,}, {Rp}/)} } e~ AR, )R, ) -T({R, LR, ))

which solves the averaged detailed balance condition, since A({R,},{R,}) = —“A({R,},{R,})
and T'({R,},{R,}) = -T({R,}, {R,}) . The effect of the statistical noise is thus to enhance the
rejection by a factor e‘§ when compared to a first naive approach, as we can see from eq. 2.175.
However, one more issue is that the variance ¢ is not known a priori, but it must be estimated

during the run to compute the energy as well. Given n independent samples y;, one has

A

X° = ;) Z(yi — A)? (2.179)

n(n—1

=1

which provide unbiased estimators for A and ¢2. In this case, the average acceptance defined in eq.
2.172 becomes

ARy} {R,}) = /_Oo dA /OOO dx® (A, X?) Proise (A, X*[{Rp}, {Rp}) (2.180)

One can prove then that the new acceptance formula is

X’ X! x°
Y Ty T it ) 3t )t (2.182)

where u; is the penalty term obtained using an asymptotic expansion that converges as long as
x%/n < 1/4. This procedure is known as the penalty method [98]. For large n the first term is
dominating, since x? is a good enough estimator of ¢2. On the other hand the purpose of the
penalty method is to get consistent results even when n is not too large: in this case the additional

terms in eq. 2.182 provides an extra rejection factor motivated by our ignorance of o.
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2.6.2 Technical details

The previous section was dedicated to provide a picture of the method without indulging too much

in some technical aspects, which will be addressed here.

2.6.2.1 Trial wavefunction: the orbitals

To build the trial wavefunction showed in eq. 2.104, we must supply some single particle orbitals
0;(7) for the Slater determinant; moreover, the wavefunction should satisfy eq. 2.106 if we want to
use the TABC. One can choose a wide variety of functions: in our case, we chose 6;(7) produced
by DFT calculations. If we want to average over Ny different twists, a DFT calculation using a
k-point grid made of Ny points is performed; then, for every single k point, the solution involves the
computation of N, /2 filled orbitals 0}%(7”), 1 =1, N./2 (the system is assumed to be not magnetic)
that satisfy Bloch’s theorem and thus have the form

0L(7) = e Tul(7) (2.183)

where u%(F) is a function periodic in the simulation cell. As such, it can be written as

ub(®) = Cape'®T (2.184)
G
If we compose a Slater determinant Si(71, ..., 7n,/2) with these orbitals, it’s straightforward to see
that
Sk(Fiy ooy T Doy oy T j2) = €FEm S (71, L T P, ) (2.185)

Given the (imposed) periodicity of the system, the terms 7% — 7 or 7 — R, of the Jastrow factor are
unaffected by the displacement of an electron by a cell vector, making the whole trial wavefunction
satisfy eq. 2.106. In plane-wave DFT calculation a pseudopotential is used to remove the electron-
proton cusp condition. In fact, this makes the orbital smoother near the origin, leading to a fast
decay of the coefficients C 51 in eq. 2.184: only the G vectors satisfying the condition in eq. 2.58
are considered in the computation. In our case, a bare Coulomb interaction is used, requiring in

principle a high value of E.,;. Instead, we implement a cusp removal method [82] by considering

i O3r(7)
Ok (7) = T EPAG—) (2.186)

a “ep

where uf;)P 4 is the RPA e-p Jastrow function introduced earlier. By dividing the orbitals by the
analytical Jastrow factor, we remove the singularity associated to the cusp, allowing a much better
convergence with respect to the orbital plane-wave basis cutoff E.,;. The plane waves coefficients
are then Fourier transformed to real space and mapped on a local spline basis-set, which guarantees
a better scaling the computation with the size of the system. Different functionals were tested:
the best results in terms of minimization of the ground state energy were achieved by the PBE

exchange-correlation functional [83,99].
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2.6.2.2 Trial wavefunction: the optimization of the coefficients

Our trial wavefunction has a set of 10 parameters {«} to optimize: 4 from the Jastrow factor (see eq.
2.98) and 6 from the backflow transformation (see eq. 2.103). The variational principle, as defined in
VMU, consists in minimizing the energy E§ as function of the parameters {a}: E§(R) = E§(R, {a}).
However, for an exact eigenfunction, the associated variance o? is zero: not only do we know that
there is a minimum for the variance, but we know its value as well. In practice, mismatches between
minimization procedures based only on energy or variance can be found, since the wavefunction is

not an exact eigenfunction: it is common practice [78] to minimize a function

f({o}) = E§(R, {o}) +70* (R, {a}) (2.187)

v is a positive coefficient, introduced to tune the relative weight of the two key quantities. A simple

scheme is the following:

e given an initial set of parameters {ag}, N, electronic configurations are generated. Then, the

electronic energy and variance are estimated as

c

Y EBr(ri] {ao)) (2.188)

E({ao})

|
=zl
M=

o
Il

S B2 (1] {oo}) - E({an))? (2.189)

Zl-
™

op({ao}) =

K3

e the function fo = f({ao} is evaluated and a new set of parameters {«;} is chosen according

to a Newtonian algorithm

e iterative until some convergence criterion is satisfied (e.g. |fnr1 — fn] <€)

The problem with this scheme is that when we are in proximity of a local minima, f,, and f, 41 will
be quite similar: since they are statistical averages, their noise can hinder the evaluation of the
difference of two similar quantities. Moreover, for every step, N, electronic configurations must
be sampled. A way to make the procedure more efficient is using a correlated sampling method,
known as reweighting [72]. Given two different probability distributions p; and pj, one can exploit

the following identity

) P02 ppiOi (08,
p/: = = 7

; (2.190)
2P D %pi <%>p

i.e. an average over a probability distribution p) can be computed performing averages over a
different distribution p;. In our case we start from the initial set of parameters {ag} and sample N,
electronic configurations, evaluating energy and variance Then, when a new set of parameters {a/}

is chosen according to the minimization scheme, the averages for the new distribution are evaluated
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as

NcwI‘" o ri;R,, o
EiR (o)) = (“;;f(ri.}}fﬁ,}f{ o (2.191)
S w(r R 0D (Br(rs R, , {o'}) - E§(R, {'})’
Ziw(ri;R?{a/})
|7 (ri; R, {o' )]
[r(rss R, {ao})|”

ob(R, {a'}) (2.192)

w(r; R, {a'})

(2.193)

Since the same set of electronic configurations is used, these quantities are statistically correlated to
the original ones: if their covariance is positive, they fluctuates in the same directions and the noise
affecting the difference ~ \/0'125({&,}) + 0%({%}) —2cov(E({’'}), E({ap})) can be greatly reduced.

When using eq. 2.190, there is one caveat: if the overlap between p; and p} is small, the ratios %
can vary a lot (p; may be zero when p; is finite or vice versa), leading to averages affected by big
error bars and defeating the original purpose of reducing the noise; on the other hand, if the two
distributions are similar, as we expect near the minimum, all the weights should be close to one.

We can check which case we are in by monitoring the observable

2
N, = <§jvzz> (2.194)

2
If all the weights are 1, N,, = N,; if they oscillate, N, starts decreasing, since (vac wz) <
N, va" w?. If N, is reduced to a fraction of N., a new set of N, configurations is generated,

i

replacing the old ones.

2.6.2.3 Path integrals: proposing the protonic move

To sample the distribution in eq. 2.168 and build the appropriate Markov chain, a new protonic
configuration must be proposed at every step. The efficiency of the sampling critically depends on
how the new configuration is generated, i.e. on the form of the transition matrix T({R,}, {R,}’).

In our algorithm, we use the Smart Monte Carlo approach [100], where the new configuration is
Ry} ={R,} + \F + G (2.195)

with F being a 3P x IN,-dimensional generalized force, obtained as

0

Y= 0R,)

In (Ppair({Rp})) (2.196)

while G is 3P x N, array of independent random numbers G; that are distributed according to

e~ C2/(4N)

W(G;) = 7(47”\)3/2

(2.197)

Finally, X is a parameter akin to a “time step” that can be tuned to optimize the portion of visited

configurational space against spent computational time. From this, it follows that the transition
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matrix can be written as

TR, (R,Y) = € [dGW(GI(R,) ~ Ry} - AF - G) =

— e (IRpY ~{Ry}-XF)*/1x (2.198)

where C and C” are normalization factors, not relevant to the present discussion; this expression then
can be used in eq. 2.169 to evaluate the acceptance of the first step. In the SMC method we drive
the system towards configurations which are the most relevant to the probability distribution, thanks
to the knowledge of the distribution itself: the time spent equilibrating the system (i.e. disregarding
configurations where the Markov chain has yet to reach the target probability distribution) is greatly

reduced and the efficiency of the sampling is improved at fixed computational effort.

However, when dealing with path integrals, there is still room for improvement: harmonic ring
polymers have internal modes that may move at very different frequencies. Treating their motion
using one single timestep (= \) has consequences on the efficiency of the sampling: a small timestep
should be used to capture the fastest vibrations, but then many steps are needed to properly sample
slower modes. This issue is essentially the same we tackled when dealing with Langevin equations
in PIMD. Here X is akin to v may : the problem be addressed by replacing the scalar A defined
in eq. 2.195 with a tensor, providing different drifts for different degrees of freedom. As in that
case, we switch from Cartesian coordinates R}, of a single polymer to the corresponding normal
modes (§k, k=1,...,P), obtained through the unitary transformation in eq. 2.148. In this basis

the harmonic action can be written as

1 S? 5 T
AK:i,;)UT% = L (D) (2.199)
For free particles, eq 2.195 becomes
{SiY = Qi — A{i’;} +G (2.200)
k
It’s easy to see that if we choose A\, = 5\027 then
ef(A’KfAK)T({Qk}a{Qk}I) _ (2.201)

T{Qx},{Qxr)}

and the move is always accepted. While this is not true for interacting system, using this kind of g
greatly enhances the acceptance. The reason is the same as in PIMD: high frequency terms should
be uncoupled from the low frequency, physical modes and thus be sampled exactly. As in PIMD,
the centroid (k=0 mode) does not move in this scheme since \y—¢ = 0; a different, tunable g is

used, depending on the system and on the thermodynamic conditions.

2.6.2.4 Evaluating the electronic energy differences

When computing electronic energy differences E§(R’) — E§(R), we want an estimator with an
associated error as small as possible, since it is used to evaluate the acceptance in the penalty

method. To obtain this, a sampling procedure based on reweighting is employed, similar in spirit
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to what happens during the optimization procedure [78]. In this case, we sample N, electronic

configurations according to the probability distribution
P(r[R,R’) « | ¥ (r|R)|* + |¥r(r|R)|? (2.202)

and the two energies E§(R’) and E§(R) are obtained as

SN Er(rR)p; | (r|R)|*
Ee(R) — 1= R pl = - (2203)
0 Zf\; Di P(r;|R,R/)
N, 2
1 Er(r;|[R)p, |Wr(r;|R)|
FER) = 2im i p o PR )L 2.204
O( ) Z[f\él p; ) pz P(I‘l‘R, R/) ( )
N, p/ Di
AE; = S Ep(rR)—y— — BL(ri|R) —— (2.205)
; ZZ‘:C1 ; Zz:cl bi

As a result of the correlation induced by using the same set of electronic configurations, the variance
of AE§ from eq. 2.205 is smaller than the variance of the two statistically independent energy
averages. Moreover, with P(r|R,R’) the sampling of the electronic phase space is not limited to
configurations that are relevant only for R’ or only for R. If, for instance, we sample according to
| U7 (r;|R)|?, electronic configurations near the nodal surfaces of U (r;|R) are rarely selected; the
same configurations, however, may be relevant for R/, since the nodal structure of the wavefunction
depends on the nuclear positions. In this case, the reweighting procedure would break since the
weights [U7(rs|R)|? / |¥r(r;|R)|* would be wildly oscillating, as discussed for the optimization.
The problem is avoided with P(r|R,R’).
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High pressure solid hydrogen

In this chapter we will present the results obtained by DFT-PIMD and CEIMC simulations for
high pressure solid hydrogen at low temperatures. In particular, the succession of phase transitions
at T=200 K with the recent proposal of yet another solid phase which may be semi-metallic [18]
makes this region of the phase diagram a natural choice for our computations at finite temperature.
Another interesting region involves the boundaries of phase IV at higher temperatures (= 400 K),

close to the melting line.

In order to assess the stability of one crystal structure with respect to another at finite temperature,
one should compute the respective free energies and compare them. Unfortunately, at the moment,
the accuracy required to perform a meaningful calculation of the free energies for several candidate
structures at finite temperature is beyond our computational resources. However, we will use
DFT-PIMD and CEIMC simulations to characterize at a dynamical level relevant crystal structures.
Our main aim is to properly include nuclear quantum effects in our simulations, so that we can
directly compare DFT and VMC energetics at finite temperature. In fact, CEIMC simulations will

act as a benchmark for the goodness of the exchange-correlation functional employed.

When simulating solids at constant volume, it is crucial to start with the “right” crystal symmetry,
since the constraints imposed by the geometry of the cell may not be compatible with the true
stable structure: a metastable structure could become de facto stable. Moreover, even if this is not
the case, high energy barriers may prevent the transition to the stable phase to occur within the
time limit imposed by the simulation. Unfortunately, as explained in chapter 1, experiments cannot

provide rigid constraints for the crystal structures.

We will proceed as follows: we will introduce the crystal lattices relevant in the aforementioned
regions of the phase diagram, which will be selected as starting configurations in our simulations.
The selection of these lattices will be motivated through a brief overview of past theoretical works
performed in similar thermodynamics conditions, with different degrees of approximations. Then,
the simulation protocol adopted for both DFT-PIMD and CEIMC simulations will be stated and,

finally, our results will be presented and discussed.

44
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3.1 Crystal structures

Crystal structures are classified according to their space group, i.e. to the set of symmetry operations
which leave the crystal lattice unchanged. In three dimensions, 230 space groups exist and they
will be referred using the Hermann-Mauguin notation [101]. As will be explained in the following
section, the candidate structures for the different solid phases of hydrogen are based on Pickard
and Needs’s works [43,102]. Several different competitive lattices were found in this search for
stable structures for high pressure solid hydrogen: most of them are formed by bidimensional layers

stacked in various ways.

S PSS 2 p

Fi1cureg 3.1: The C2c structure, based on the lattice proposed at P=300 GPa in the supplementary

material of ref. [102]. Right panel: a 3D view, depicting the four layers stacked in an ABCD

fashion. The layers are made of molecules nearly parallel to the respective planes. Left panel: a

top view of one layer. The molecular centers form a distorted hexagonal lattice. The primitive
cell contains 24 atoms.

For example, a strong candidate for phase III is the C2c structure, depicted in fig. 3.1: four layers,
alternating in an ABCDA fashion. The arrangement of the molecules within the layers (see fig. 3.1)
creates a non vanishing electric dipole moment, leading to a relatively strong infrared signal [102],
compatible at least qualitatively with experimental results [41]. A structure that is competitive at
higher pressures (P>250 GPa) is the Cmcal2 lattice (fig. 3.2). In this case the molecular layers are

arranged in an ABAB fashion: the molecules are completely parallel to the planes.

FiGure 3.2: The Cmcal2 structure, based on the lattice proposed at P=300 GPa in the

supplementary material of ref. [102]. Right panel: a 3D view, depicting the two layers stacked in

an AB fashion. The layers are made of molecules that lie parallel to the respective planes. Left

panel: a top view of one layer. The arrangement of the molecular centers is similar to the C2c

layers, but in this case the distortion from the hexagonal symmetry is larger. The primitive cell
contains 12 atoms.
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Another competitive structure is Cmcad (fig. 3.3): the symmetry group is the same as Cmcal2,
but in this case the primitive cell contains 4 atoms. It would be more appropriate to talk about
this structure in terms of orthorombic symmetry, since distances among in-plane and out-of-plane

molecules are comparable; nevertheless, it is still useful when comparing with the other structures.

S
P P P P
S
P P P
S
P P P P
S TS

FiGURE 3.3: The Cmcad structure, based on the lattice proposed at P=300 GPa in the supple-

mentary material of ref. [102]. Right panel: a 3D view, depicting the layers stacked in an ABAB

fashion.Left panel: a top view of one layer. Given the geometry of the cell, talking about layers is
quite arbitrary. The primitive cell contains 4 atoms.

3.1.1 Mixed structures

C2c, Cmcal2 and Cmcad are all molecular layered structures. In the search for the most stable
lattices, a different class of structures emerged: they still have layers, but the hydrogen atoms
within the planes can be arranged in different ways, not necessarily forming molecules. An example
is the Ibam structure, pictured in fig. 3.4. There are layers stacked in an ABAB fashion but, while
the A layers are still formed by molecules, the hydrogen atoms in the B layers form a hexagonal
network: in this sense, they are referred as mixed structures. Similar structures are Pben (fig. 3.5)
and Pc48 (fig. 3.6). They are conceptually similar to the Ibam structure, mostly differing because
the networks in the B layers depart from the perfect hexagonal symmetry present in the Ibam
structure. For Pben, the distortion is relatively small, as we can see from the left panel of fig. 3.5;
instead, for Pc48, the distortion is so big that one can reintroduce weakly bonded molecules even in
the B layers (left panel of fig. 3.6).

3.2 Previous works

The lattices described in the previous section were obtained by Pickard et al. [43,102] using Ab Initio
Random Structure Searching (AIRSS) to find candidate structures without hardly any experimental
input. They employed DFT with the PBE functional to compute static energies and then account
for quantum nuclei and temperature effects within the harmonic approximation. Their results, with
the consequent phase diagram, are represented in figs. 3.7 and 3.8, where C2c is the candidate for
phase III, transitioning to another phase, represented by Cmca4. The transition pressure (around
220 GPa) is almost temperature-independent in a large portion of the phase diagram; moreover,
from DOS calculations Cmcad results to be a weak metal already at P=250 GPa [105]. These two

claims do not seem to be supported by recent experimental data [5].
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F1GuRrE 3.4: The Ibam structure, based on the lattice proposed at P=300 GPa in the supple-
mentary material of ref. [102]. Right panel: a 3D view, depicting the four layers stacked in an
ABAB fashion. The A layers are made of molecules, while the B layers are formed by an atomic
hexagonal network. Left panel: a top view of the whole structure on the right (four layers). The
dashed lines connect the atoms in the B layers. The primitive cell contains 8 atoms.

Ficurg 3.5: The Pbcn structure, based on the lattice proposed at P=300 GPa in the supplemen-
tary material of ref. [102]. Right panel: a 3D view, depicting the four layers stacked in an ABAB
fashion. The A layers are made of molecules, while the B layers are formed by a nearly hexagonal
network of atoms. Left panel: a top view of the whole structure on the right (four layers). The
dashed lines connect the atoms in the B layers. The primitive cell contains 48 atoms.

Such results are affected by the approximations used for the calculation of the electronic energy
and for neglecting anharmonic terms at finite temperatures. Fig. 3.7, in particular, shows how tiny
are the free energy differences among different structures (= meV /atom): the approximations used

could easily introduce errors of the same order of magnitude. This consideration motivated different

kinds of works:

e dynamical simulations (MD and PIMD) at finite temperature performed with DFT (either

employing PBE or other exchange correlation functionals). These calculations could investigate
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F1GURE 3.6: The Pc48 structure, based on the lattice proposed at P=250 GPa in the supple-
mentary material of ref. [43]. Right panel: a 3D view, depicting the four layers stacked in an
ABAB fashion. The A layers are made of molecules, while the B layers are formed by a distorted
hexagonal network of atoms. The top two layers have a different color from the bottom ones to
distinguish them in the left panel. Left panel: a top view of the whole structure on the right
(four layers). The distortion of the hexagonal lattice introduces different distances among first
neighbours: solid cylinders and dashed lines account for that. The primitive cell contains 48

atoms.
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FIGURE 3.7: Free energies for different candidate structures. a) Static lattices b) Static lattices +
harmonic zero point motion ¢) Harmonic approximation at T=300 K. Figure from ref. [103]

both the influence of the choice of the exchange-correlation functional and classical and

quantum nuclear effects on the stability of the different structures.

e static calculations performed using Quantum Monte Carlo methods to obtain better electronic
energies. However, the treatment of finite temperature effects, still relies on harmonic/anhar-
monic approximations. These approximations are still based on DFT calculations. which may

be affected by the very same problem.
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FiGure 3.8: Phase diagram obtained from PBE-DFT static calculations within the harmonic
approximation, from the supplementary material of ref. [104]. The transition pressure from C2c
to Cmca4 at 0 K is compatible with the pressure found in ref. [103]

3.2.1 Dynamical simulations
3.2.1.1 Classical protons with the PBE functional

Simulations at constant temperature and pressure (NPT) with classical protons and PBE-DFT
were performed by Goncharov et al. [106] , starting from the Pben structure around 300 K. They
find that, at P=250 GPa and T=250 K, the average position of the nuclei in the atomic layers
form the hexagonal pattern, peculiar of the Ibam structure; on the other hand, the molecules in the
other layers have an intense rotational activity. Increasing pressure and temperature, all the layers
become equivalent, and at T=300 K and P=370 GPa there is a transition to a Cmca4 structure.
GW calculations were performed on static structures to compute the band gap, finding that it

vanishes around the transition pressure.

NPT simulations with classical protons and PBE DFT were also performed by Liu et al. [107],
starting from the C2c structure in the pressure range 250-350 GPa at temperatures of 300-500 K.
At P=250 GPa between 240 and 270 K, a transition to a mixed structure takes place, which has the
same features pointed out by Goncharov: rotating molecules in the molecular layers and hexagonal
symmetry in the atomic layers. Moreover, protons in the hexagonal layers are found to occasionally
“hop” from one site of the lattice to another: in the long run, an atom can diffuse through the layer

by multiples hops.

Magdau et al. [108] performed NPT simulations starting from C2c¢ or Pc48. The most interesting
results are obtained from the simulations starting from Pc48, which seems to evolve to a structure
with different inequivalent layers: a layer of free rotating molecules (B); a layer where molecules
form static hexagonal trimers (G’); and a layer of rotating hexagonal trimers (G”). They are
stacked in a BG'BG” fashion (see fig. 3.9 ).

Since only rotating layers are observed, they reject the diffusion phenomenon proposed by Liu et al.,

dismissing it as a finite size effect. However, another work by Liu [109] claims to observe diffusion
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FI1GURE 3.9: The different layers found by Magdau et al. [108]: B layers, made of rotating
molecules; G’ layers, made of static hexagonal trimers; G” layers, made of rotating hexagons.

in bigger systems and that the different kinds of hexagonal layers reported by Magdau were an
artefact caused by the lack of ergodicity due to relatively short runs (1-3 ps) as opposed to the 7-90

ps simulations in Liu’s works.

3.2.1.2 Introducing nuclear quantum effects and comparing PBE with other func-

tionals

While displaying an interesting (and conflicting) phenomenology, the works mentioned in the previous
paragraphs do not include nuclear quantum effects nor question the choice of the PBE functional.
The use of different exchange correlation functionals in conjunction with nuclear quantum effects
for hydrogen was first considered by Morales et al. [110] in the liquid phase and then extended to
solid hydrogen in ref. [111], where path integral molecular dynamics was employed along with the
vdW-DF2 E,. to study structural properties of different crystal structures (C2¢, Cmcal2, Pben) at
T=200 K. Evident nuclear quantum effects were detected in structural properties, such as the pair
distribution functions: the quantum delocalization of the protons cause a broadening of the peaks
and a general smoothing. The rotational activity of the molecules is also affected and found to
increase when quantum nuclear effects are included. The choice of the E,. functional has its effects
as well: using vdW-DF2 instead of PBE results in more pronounced molecular features, opposing
in some way the delocalization of the quantum nuclei. The combination of nuclear quantum effects
and different functionals results in pronounced differences in the magnitude of the band gap: PIMD
+ PBE leads to band gap closures at P=200 GPa, in open contrast with experiments; on the other
hand, PIMD+ vdW-DF2 gets better results. Another deficiency of PBE used in conjunction with
nuclear quantum effects is the position of the melting line: PIMD + PBE simulations produce

dynamical melting at 500 K and 150 < P < 200 GPa, a region where hydrogen is solid according to
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experiments [5]. The work also estimated the error on the enthalpy differences among structures

introduced by the harmonic approximation as being of about 10 meV per proton.

A similar study was performed by Chen et al. [112], who studied Pc and Cc structures at T=300 K,
using both MD and PIMD, PBE and opt88-vdW functionals. They found the same layered structure
of rotating molecules and hexagonal, graphene-like layers already mentioned before. The main effect
of the quantum nuclear effects is to suppress the molecular character of the graphene layers, making
them more atomic, hence re-establishing a less distorted structure. A comparison of energetics
with Diffusion Monte Carlo calculations reveals that energy differences between configurations
with molecular layers and configurations with atomic layers are severely underestimated by PBE
(~ 20 meV), making dissociation easier. On the other hand, this effect is partly mitigated by the
opt88-vdW functional. They suggest the same compensation mechanism proposed by Morales
between the lack of nuclear quantum effects and the use of PBE leading to results in qualitatively

agreement with experiments.

3.2.2 Static simulations

Dynamical simulations need an Ab Initio computation at each step: expensive state of the art
techniques cannot be used to evaluate the electronic energies at finite temperature or during a
random search for the minimum. However, they can be used to evaluate the energies of an handful

of candidates, such as the ones found through DFT.

To determine stability ranges of different candidate structures at T=0 K, Azadi et al. [113] computed
static energies and pressures using Diffusion Monte Carlo. Quantum zero point energy must then
be accounted for: the harmonic approximation was implemented using phonon frequencies obtained
by DFT calculations. An estimate of the anharmonic corrections for enthalpies gave results in the
range of 8-20 meV per proton [113], depending on the structure. Given the quantitative limitations
imposed by the approximations, they expect the following stability ranges: C2c (220-360 GPa);
Cmcal2 (360-430 GPa); Cmca4 (P>430 GPa). This approach was then refined in a subsequent
paper [114], introducing ahnarmonic corrections with a self-consistent method [115]: this has the
effect to greatly reduce the stability range of Cmca4 to the point of making this structure unstable
when compared to Cmcal2 (stable up to 374 GPa) and to a candidate lattice for a purely atomic
phase, T4y /amd.

McMinis et al. [116] performed a similar calculation employing Diffusion Monte Carlo for static
energies and vdW-DF DFT for harmonic zero point energies, finding the same chain of transitions
(C2¢->Cmecal2->141 /amd) but with very different transition pressures (the first transition occurs at
424 GPa and the second one at 447 GPa); given the small range of stability of Cmcal2 (= 20 GPa)
and the errors involved in the calculations, even the existence of a stable Cmcal2 is questioned. They
suggested that the different results obtained by Azadi could possibly depend on using structures
optimized with PBE and on the procedure to correct finite size errors; on the other hand no
anharmonic corrections were explicitly take into account. This study also shows how the phase
diagram at zero temperature quantitatively depends on the functional employed for the calculation
of the total enthalpy(fig. 3.10): the sequence of transitions is the same, but the transition pressures

and the stability ranges wildly vary (even hundred of GPas).
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Ficure 3.10: DFT Enthalpy (with harmonic zero point energy) computed for several structures
using different functionals. In this case CslV is equivalent to I4:/amd in the text. Picture from
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F1GURE 3.11: Phase diagram obtained in ref. [104]. Shaded regions within dotted lines show
where the free energy difference between two phases is zero within one error bar.

Drummond et al. [104] extended this type of studies to finite temperature: again, Diffusion Monte
Carlo is the basis for the energies and DFT is used to compute anharmonic corrections (BLYP
and PBE functionals are considered). Anharmonic corrections to relative enthalpy differences
are found to be of about 10 meV, which is the same order of magnitude of the harmonic ones;
this implies that a correct determination of the phase diagram must take anharmonic effects into
account. The results are that harmonic corrections stabilize Cmcal2,Cmcad and Pc48 with respect
to C2c; on the other hand, anharmonic corrections have the opposite effect, destabilizing them.
The resulting phase diagram is reported in fig. 3.11: Cmcal2 and Cmcad are nowhere to be found

within the pressure ranges considered and Pc48 emerges as the natural candidate for phase IV at
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higher temperatures. Almost ironically, this was first suggested by Pickard [43] using PBE-DFT;

the calculations, however, were affected by an error that overestimated the Cmca4 enthalpy [103].

3.3 Setup of the simulations

As stated at the beginning of this chapter we will focus on the T=200 K isotherm and P>200 GPa.
An interesting question is the number of transitions occurring. We saw that PBE-DFT simulations
predict a stable C2c phase at relatively lower pressures: then, static calculations predict a stable
Cmcad, while different kinds of finite temperature simulations predict an intermediate mixed phase.
On the other hand, similar static calculations employing Quantum Monte Carlo methods “replace”
Cmcad with Cmcal2 within a stability range that varies considerably between the different studies
before entering in an atomic stable phase. At higher temperatures, close to the melting line, a
mixed phase (Pc48) remain. We performed both DFT-PIMD and CEIMC simulations. DFT-PIMD
simulations were performed using the vdW-DF exchange-correlation functional [67], which provides
the best energetics for high pressure hydrogen among different affordable functionals when compared
against Quantum Monte Carlo results [117]; the data obtained complete the work by Morales et
al. [111], where different exchange-correlation functionals are used in conjunction with PIMD for
different crystal structures at T=200 K. CEIMC simulations are used as a benchmark of DFT
results: the two Ab Initio methods can be directly compared since nuclear quantum effects are fully

accounted for at finite temperature using path integrals.

Because of the computational cost of the CEIMC method, we investigated a limited number of
thermodynamic points and structures: however, we do not want to assess the stability ranges of the
different structures but, as already mentioned, provide a benchmark for DFT and use CEIMC as

an exploratory tool.

At T=200 K, in a pressure range of 250-500 GPa, we considered: C2c, Cmcal2 and Cmca4 for
DFT-PIMD, since they are structures found at zero temperature using different exchange correlation
functionals; C2c and Cmcal2 for CEIMC, given that the presence of a stable Cmcad4 is only seen
using DFT. At T=414 K we considered only Pc48 in a range of 250-350 GPa, since both DFT and
QMC find stable mixed structures at higher temperatures. The supercells used in the simulations

contain 96 hydrogen atoms: this size guarantees four layers for the structures mentioned above.

Both DFT-PIMD and CEIMC were used to perform simulations at constant temperature T and

volume 2: consequently, each thermodynamic point is conveniently identified by the temperature

43,3 _ Q1
and the parameter rs, defined as smriag = .

mentioned above were optimized at constant pressure using vdW-DF DFT with the algorithms for

For each considered pressure, the structures

geometry optimization implemented in Quantum Espresso [62]; the resulting supercells were then
used as a starting point for the simulations. In principle, different structures optimized at the same
pressure would have a different equilibrium volume and, therefore, a different rg; these structures,
however, are so similar that at the same pressure the respective r, values differ by less than 1%.
A convenient one-to-one correspondence between 75 and optimization pressure can be established,

regardless of the structure (see tab. 3.1)

Lag is the atomic unit of length. Using this definition, 75 is a dimensionless parameter.



Chapter 3 High pressure solid hydrogen 54

TABLE 3.1: Table summarizing the correspondence between optimization pressure P and the
parameter 7y

Pressure (GPa) 7

200 1.42
250 1.38
300 1.34
350 1.31
400 1.29
450 1.27
500 1.25
550 1.23

3.3.1 DFT-PIMD

PIMD simulations were performed using a modified version of VASP [60], which incorporated the
PI+GLE method to generate the suitable NVT ensemble: 16 beads were used at T=200 K, with
a Trotter time step 7 = 0.0003125 K !, the same value that was used in ref. [111]; 8 beads at
T=414 K, with 7 ~ 0.0003019 K~!. As already mentioned, we used the vdW-DF functional [67],
which gives the most consistent results with Quantum Monte Carlo calculations [117]. A PAW
pseudopotential [64] was employed, with an energy cutoff of 350 eV and a 2x2x2 Monkhorst-Pack

grid of k points; a time-step of 0.2 fs was used.

3.3.2 CEIMC
3.3.2.1 Variational Monte Carlo setup

TABC were enforced, using a grid of 4x4x4 twists. The single particle orbitals were obtained
through a PBE-DFT self consistent calculation, with F.,; = 540 eV with the same 4x4x4 grid of k
points. In principle, the electronic wavefunction should be optimized at every CEIMC step. This is
quite expensive, even with the reweighting procedure described in the previous chapter. In this
case, we optimized the wavefunction on the initial protonic configuration (i.e. the perfect crystal).
While TABC and twist averaging are used during the actual run, the minimization is performed
only on one twist: previous calculations showed that no appreciable difference is present [99]. The
function f({a}) introduced in eq. 2.187 is evaluated on ~ 2000 electronic configurations; we set
v = 0.25.2 An example is reported in fig. 3.12: as expected, the minimum of the energy and of
the variance is not the same, since the wavefunction is not an exact eigenstate. Nevertheless, the

energy oscillations are of about 2 - 10~5Ha/proton ~ 0.5 meV.

Without phase transitions, atoms oscillate around the equilibrium positions: assuming a smooth
continuity of the parameters, the introduced bias should be minimum. We check that this is indeed
the case monitoring the variance 0% during the whole trajectory (fig. 3.13): a stationary value of
the variance with small fluctuations means that the quality of the wavefunction remains the same

for the sampled protonic configurations.

2In this way the electronic energy weights more than the variance in the optimization procedure. Generally
speaking, the variance is zero for every eigenfunction, not only for the ground state one.
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FiGure 3.12: Example of optimization of a trial wavefunction for the C2c¢ structure at P=250
GPa. Top panel: function F' = E +~0? vs number of optimization steps. Middle panel: electronic
energy E. Bottom panel: variance 0%. All quantities are intensive (per proton)

3.3.2.2 Path Integrals setup

We used 32 beads at T=200 K, with a Trotter timestep 7 = 0.00015625 K ~!; at T—414 K, we
chose 14 beads, with 7 = 0.00017253 K~!. As mentioned in section 2.6, we employ an effective pair
potential in order to optimize the number of nuclear beads used in the calculation; the contribution
of this effective potential is implemented through the pair action approximation, while the primitive
approximation is used for the many-body Born-Oppenheimer potential. The effective pair potential
needed during the sampling was obtained by fitting the pair distribution function of liquid high
pressure hydrogen through an iterative procedure called Boltzmann inversion [118]. The most
relevant part of the pair potential is the divergent hardcore part, which should be quite independent
of external thermodynamic conditions. We stress that this does not introduce any additional bias;
in the worst scenario, the required imaginary timestep would possibly be smaller than in the optimal

case.

To enhance the sampling, the algorithm presented in the previous chapter was slightly modified.
While the DFT energy is not accurate enough, the DFT forces can still be used in the Smart Monte
Carlo procedure as good guesses to propose the move with a higher final acceptance than the forces
coming from the pair action. However, the first prerejection step could hinder the global acceptance,
since the first-step acceptance is only linked to the pair action itself and does not “know” about the

full many body Born-Oppenheimer energy. To bypass the situation, the probability density P in eq.
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FI1GURE 3.13: Evolution of the variance U% vs the number of steps Ny, during a CEIMC run at
finite temperature. The maximum amplitude of the fluctuations is of about 2-10™* Ha?/proton

2.168 is rewritten as

P = P(Ry)e " Zr=1(F(Re)=Eprr(Ry) (3.1)
P 2
MP(RP B R;)Jrl) —Upair =7 P (B pr (Rp)—Vipair (Rp))
Ppre(Rp) = gexp {_ 5 e Upairg p=1Fprr(Bp)=Vp D (32)
P
Upair = DD ua(RY, RY) (33)
p=1 1ij

The total probability 7P is still the same; if 7 is small enough 37, u2(R}}, Rf;‘l) ~ TVpair (Rp)
and the prerejection probability is basically the primitive approximation for the DFT energy but
including already a reasonably correct quantum behaviour of the action when two particle approach,
suitable for the DFT forces. One drawback is that in this way the DFT calculation must be
performed at every step, even if later the step will be rejected because of the QMC BO energy
difference or because of the noise; however, the computational time required for the DFT calculation
is roughly 10% of the total time needed. On the other hand this procedure samples the phase space

more efficiently and this leads to smaller autocorrelation times when averaging over the trajectory.

3.4 Results

Dealing with molecular crystals, we are interested in studying the stability of the structure and the
orientational order of the molecules. Following [111], we introduce the orientational order parameter

(0OP):
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0= [% > Pl éiﬂ ’ (3.4)

where P; is the Legendre polynomial of second order, ), is the orientation of molecule i during the
simulation while ¢é; is its initial orientation in the static lattice (N is the number of molecules). The
OOP is 1 if the molecules stay aligned to their initial orientation while goes to 0 if they re-orient or

freely rotate. Another observable of interest is the molecular Lindemann ratio (MLR):

%

1
L=-—"-A NZ: —rig)” (3.5)

where d is the nearest neighbour distance in the static lattice, r; is the position of the center of mass

of molecule ¢ during the simulation and r;y the position of its center of mass in the static lattice.

Moreover, since we are interested in mixed structures, these observables can be computed for every
single layer to better characterize the structures. In the same way, we can define a layer-by-layer
pair correlation function gp,(r), when only atoms belonging to the same layer are taken into account,
as done in [112]. These layer-by layer g,,(r), being normalized as in the bulk case, do not go to 1
for large r; however, they are significant for distance shorter than the interlayer distance, roughly
2-3 a.u..

3.4.1 C2c, T=200 K

We start our analysis considering the DFT-PIMD simulations starting from the C2c structure, which
is the main candidate for phase III. We can qualitatively detect different structural rearrangements
in the considered pressure range using the layer-by-layer pair correlation functions reported in fig.
3.14. We recall that each simulation cell has four layers. At the lowest pressure considered, they all
exhibit the same radial distribution function; with increasing pressure, a structure with alternating,

non-equivalent layers emerge. At the highest pressure, the layers become equivalent again.

A qualitative understanding of what it is going on can be achieved by looking at the nuclear
configurations sampled at equilibrium (insets in fig. 3.14). At r5 = 1.38, we have four equivalent
layers of well defined molecules: they librate around their initial orientation, displaying C2c
symmetry. At r; = 1.34 we observe a mixed structure: in blue layers, molecules rotate in-plane,
resulting in circular “clouds”; in red layers, molecules form closed rings. Computing the average
atomic positions show a slight departure from the hexagonal symmetry, similarly to Pbcn. At
rs = 1.31 this mixed structure changes: rotating molecules (blue layer) and a graphenelike, atomic
layer (red layer), pointing to an Ibam symmetry. Finally, at rs = 1.27, the system displays a Cmca4

symmetry.

An interesting phenomenon takes place at ry = 1.38 and ry = 1.42, where the system keeps its
original symmetry: the orientational order parameter (OOP), which is used to detect changes in
the alignment of the molecules with respect to their initial orientation, displays sudden ‘jumps”

along the trajectory. This is reported in the top left panel of fig. 3.15), where the OOP of a single
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FI1GURE 3.14: C2c, DFT-PIMD simulations: Layer by layer pair correlation functions for the four

different values of rs reported in the figure. Each simulation cell contains four different layers:

their radial distribution functions are reported with different symbols (open and closed squares

and circles). Layers behaving in the same way have the same colour. Insets: several nuclear
positions sampled at equilibrium in two consecutive layers

layer at rs = 1.38 is pictured. At the beginning of the trajectory, all the molecules are aligned
and the OOP is 1; in =~ 1000 time steps, the orientational parameter goes to zero, revealing a
rearrangement of the molecular axes; after 3000 steps, there is a sudden increase of the parameter,
which remains stationary for 4000 steps; finally, the OOP goes back to 0 with another sudden
jump. We can separate the trajectory into two parts, according to the values assumed by the OOP,
and take the average atomic positions for each distinct segment. The “jumps” of the parameter
correspond to a collective rotation of the molecules; in particular, we can identify rings of three
molecules (trimers) rotated by the same angle (top right panel of fig. 3.15). These events can be
classified as rare, at least on the time scale of our simulations, occurring once or twice per run. It is

interesting to notice that these collective rotations can occur independently for the different layers,
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as reported in the bottom panel of fig. 3.15: the orientational parameters of layer 1 and 3 follow the
same trend, decaying to zero after 5000 time steps; layer 4 goes to zero after the first 1000 steps;
layer 2 was described above. Layers with significantly different OOP can cohexist at the same time,
showing that the system as a whole can go through configurations where the C2c symmetry may
not be preserved. Notice that the layer by layer pair correlation functions are invariant under these

rotations, since they preserve the distance among atoms in the same layer.
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FIcUurE 3.15: Top left panel: orientational order parameter (OOP) along the whole PIMD-DFT
trajectory for a single layer of the system starting from C2c symmetry at rs = 1.38 and T=200
K. Segments of the trajectory which display a similar value of the OOP are coloured in red
(OOP = 0) or blue (OOP = 0.5). Top right panel: average positions of the atoms in the layer,
obtained considering separated segments of the trajectory with different colours in the left panel.
Blue (red) atoms are the results of averaging over the corresponding blue (red) portion of the
trajectory. Sticks are pictured for the sake of clarity. Bottom panel: orientational order parameter
(OOP) along the whole PIMD-DFT trajectory for all the layers of the system starting from C2c
symmetry at rs = 1.38 and T=200 K.

When density is increased, hexagonal layers appear: a natural question is whether atoms in these
layers bond into molecules or not. To discuss the molecular nature of the hexagonal layers at
rs = 1.31, we computed the electronic charge density, assuming that the existence of a molecular
bond is deeply connected to a local maximum of the charge density between two protons. As we
can see in fig. 3.16, the charge density for one protonic configuration suggests the existence of both
molecules and isolated atoms: during the simulation, the atomic motion results in a fast bonding
and rebonding activity among different atoms. This leads to the averaged charge density in the
right panel, which display the hexagonal symmetry already seen when considering several snapshots

of the protonic positions.
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Ficure 3.16: Electronic charge densities for an hexagonal layer at rs = 1.31. Left panel: charge
density of a single nuclear configuration. Right panel: charge density averaged over 16 different
nuclear configurations

Since DFT calculations are relatively affordable, we could run other simulations starting from the
Pbcn and the Cmcad structure at different pressures; the results are summarized in table 3.2. The
stability ranges of the different phases depend on the initial structure: this was to be expected,
since our simulations are performed at constant volume and the system is constrained by the initial
geometry of the supercell. Nevertheless, we can find a common chain of transitions while the volume
decreases: C2¢ — Pben — Ibam — Cmcad.

TABLE 3.2: Table summarizing the final structures reached depending on the initial conditions
(initial structures and 7).

Ts
Starting 1.42 1.38 1.34 1.31 1.29 1.27 1.25
Structure
C2c C2¢ C2¢ Pben Ibam  Ibam  Cmca4d Cmcad
Cmcad C2¢ Pben Ibam Ibam Cmca4d Cmcad
Pbcn C2¢ Pben Pben Ibam  Ibam Ibam

We performed CEIMC runs starting from the C2c¢ structure at r4 = 1.38,1.31,1.27,1.23 (200 <
P < 550 GPa); the results of the same analysis performed for DFT-PIMD are reported in fig. 3.17.

We see again different behaviours for different layers at rs = 1.31 and r4 = 1.23. In the first case we
can distinguish stronger and softer molecular layers, according to the depth of minimum between
the molecular peak and the rest of the radial distribution function. At ry = 1.23, instead, some
layers have a single broad peak around 1.6 a.u. while the others retain two different peaks. A visual
inspection of the average charge density shows that every layer is molecular; a direct inspection at
the atomic configurations does not show a clear hexagonal pattern, but a better understanding of

the symmetries is difficult to achieve, at variance with the DFT case.

Nevertheless, we can extract some useful information even from the insets of fig. 3.17: clouds
associated to individual atoms can be spotted. This means that, when molecules exists, they
have a reduced rotational activity, similar to what happens in the DFT simulations at low density
(rs = 1.38 and rg = 1.42). During the CEIMC simulations, we do not observe the abrupt jumps in
the orientational order parameter, which were present in the DFT case. In fact, the OOP in the
CEIMC simulations reach stationary values consistent with the high OOP values found during the
PIMD DFT trajectories (compare the CEIMC OOP reported in the top right panel of fig. 3.18 with
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F1Gure 3.17: C2¢,CEIMC simulations: Layer by layer pair correlation functions, for four different
values of 7, reported in the figure. Insets: selected nuclear positions sampled at equilibrium in
two consecutive layers

the OOPs in fig. 3.15). The absence of these rotations is also reflected in the different MLR: the
DFT MLR at ry = 1.38 and r5 = 1.42 is bigger than the CEIMC one, since the molecular centers
move when the trimers rotate. On the other hand, the two pair distribution functions match each
other rather well (fig. 3.19). A direct comparison at higher pressures is biased by the structural
transitions: for example, the bond length is very sensitive to the changes of phase (see fig. 3.18). In
fact, we can see a first discontinuity between rs = 1.38 and 75 = 1.34, when the the first transition
happens: molecules in the mixed phases have a smaller bond length. Than, a second jump happens

between r; = 1.29 and r; = 1.27, where Cmca4 becomes the stable phase with a considerably larger
bond length.

The CEIMC results seem to confirm the evolution of the structure towards phases with non-

equivalent layers at high pressures, even if we cannot discern proper structural transitions and
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FiGuRrE 3.18: Several structural, molecule-related observables for simulations starting from

the C2c and the Cmcal2 structures. Top left panel: molecular Lindemann ratio (MLR). Top

right panel: orientational order parameter (OOP). Bottom panel: length of the molecular bond

(bond length). Since for C2c there are transitions to mixed structures with atomic planes, these
quantities are computed only in the molecular layers.

all the layers have a molecular nature. Since we are working at constant volume and the CEIMC
simulations are computationally demanding, we cannot rule out the possibility that the phases
considered are metastable; even so, the difference between the pair distribution functions of the

layers at s = 1.31 and r, = 1.23 is itself an indication of departing from the C2c symmetry.

The differences in the OOP and in the MLR between the DFT-PIMD and the CEIMC simulations at
low densities can be attributed to the rare events involving the rotation of trimers; at higher densities,
mixed structures with rotating molecules make their appearance in DFT-PIMD while CEIMC

simulations do not display rotations at all. These considerations suggest that the actual energy
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barriers preventing molecular rotations and movements of the molecular center is underestimated

by PIMD-DFT for C2c.
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F1GURrE 3.19: Comparison of the CEIMC and DFT pair correlation functions for systems starting
from the C2c¢ structure at rs = 1.38

3.4.2 Cmcal2 at T=200 K

Systems starting from the Cmcal2 structure do not display transitions to structures with different
layers; in this case we can readily compare the PIMD and CEIMC results (fig. 3.20). While
rs = 1.38 and r; = 1.27 are in good agreement, at r; = 1.31 the two pair distribution functions
show a noticeable difference in the first minimum and the second maximum. This discrepancy is
the result of a structural rearrangement in the DFT system, not observed with QMC, as can be
appreciated by looking at the MLR and the OOP parameters (see figs. 3.18), respectively higher
and lower than the values at the other pressures. The transition happens after a long period of
metastability of the Cmcal2: it is possible that such a transition would happen also at higher
pressures, but we did not see it due to the limited length of the PIMD simulations. Conversely,
CEIMC runs do not show any sign of structural rearrangement. Whether this is a true stability
condition or just the result of a too short sampling remains to be proved. As a matter of fact, the
observation of such dynamical stability indicates that the energy barriers separating Cmcal2 from
other structures are rather large. Curiously, in this phase, layers remain equivalent but in the same

layer we have both molecules forming rings and molecules rotating in the plane (see fig. 3.21).

Focusing on the remaining r, (1.38 and 1.27), where the Cmcal2 symmetry persists, we see that the
MLR, OOP and bond length (figs. 3.18) are comparable both for PIMD and CEIMC; in particular,
the OOP is fairly high, indicating a reduced rotational activity. The exception is, as reported
above, ry = 1.31 where some of the molecules rotates in the plane. These considerations may
suggest that DFT (at least, using the vdW-DF functional) reproduces well the properties of the
Cmcal2 symmetry while it lowers the rotational barriers of the molecules in the C2¢ phase, making

transitions to mixed structures more likely.
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Ficure 3.20: PIMD and CEIMC radial distribution functions for systems starting from the
Cmcal2 structure at four different values of 7,

3.4.3 Electronic properties

One longstanding issue is whether solid molecular hydrogen undergoes metallization when pressure
is increased or whether metallization requires a transition to an atomic phase. We can see how
C2c¢ and Cmcal2 behave in this regard by studying their conductivity. For PIMD, conductivities
can be computed within DFT through the Kubo-Greenwood formula reported in eq. A.62: in our
case we select 16 protonic configurations sampled during the simulation and compute an average
conductivity using the HSE functional, which generally provides better band gaps. A detailed
discussion on how to extrapolate the dc value w = 0 of the conductivity is presented in section 4.4.1,
where optical properties are treated in greater detail. Rigorous calculations of the conductivity
involve excited states: there is no affordable and easy scheme to compute conductivities using
Quantum Monte Carlo methods. Therefore, for CEIMC, we use the sampled protonic configurations
and perform the same DFT-conductivity computation on top of them. For layered crystals, we
report both longitudinal and transverse components of the conductivity tensor, with respect to the
lattice layers. An example of longitudinal conductivity for a single nuclear configuration sampled
during the CEIMC runs starting from the C2c¢ structure is showed in fig. 3.22 (right panel), with
the corresponding electronic density of states obtained through DFT. At r;, = 1.31 the band gap
is closed and the system is formally metallic; however, a “depression” remains at the Fermi level,
corresponding to a small value of the dc conductivity. Increasing the density, the Fermi level is filled,
and the dc conductivity increases. Qualitatively, the behaviour of the system is similar both for
PIMD and CEIMC, C2c and Cmcal2: the systems become metallic for r; < 1.31, corresponding to
a pressure P=337 GPa (see fig. 3.23). The relatively small values of the conductivity suggests that
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Ficure 3.21: PIMD sampled atomic configuration for systems starting from the Cmcal2 structure
at the same values of rs reported in fig.3.20
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F1cURE 3.22: Left panel: electronic density of states averaged over 16 different nuclear configura-
tion sampled during CEIMC simulations starting from the C2c structure. The zero of the x-axis
corresponds to the Fermi energy. Right panel: the corresponding longitudinal conductivity o(w)

these structures are semimetallic in this range of densities. For CEIMC simulations the conductivity

of the Cmcal2 structure seems systematically higher than the C2c one; at the same time, the
CEIMC conductivity of C2c is lower than the corresponding PIMD values. It should be noticed

that a recent work by Eremets [18] claims to observe experimentally the onset of metallic behaviour

around 350 GPa, close to the value of the pressure obtained by the simulations at r, = 1.31 (337

GPa).
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Ficure 3.23: Electrical conductivities for C2c and Cmcal2 structures obtained from PIMD (left

panel) and CEIMC (right panel) simulations. For crystals, we resolved the conductivities into

a longitudinal part, parallel to the layers (full symbols), and a transverse one (empty symbols).

The symbols corresponding to the longitudinal conductivities are connected by a solid line to
guide the eye.

3.4.4 Pc48 at T=414 K

We ran some PIMD and CEIMC simulations of the most accredited candidate for phase IV, Pc48,
at T=414 K and r, = 1.38,1.34,1.31 (250 < P < 350 GPa).

Pc48 is yet another mixed structure: layer by layer pair correlation functions can be used to resolve
differences among layers, as in the C2c case. In fig. 3.24 we directly compare the PIMD and CEIMC
pair correlation functions: they show a good agreement, even if some of the CEIMC data are
evidently affected by noise. In both cases, the presence of a well defined molecular peak determines
the strong molecular character of the layer; in weak molecular layers, on the hand, the molecular
peak appears broad and cannot be easily isolated from the rest of the radial distribution function.
While the strong molecular layers do not qualitatively change when increasing density, the molecular
peak in the other layers gradually moves to higher distances. The blue insets of the DFT simulations
show a strong rotational activity of the molecules in the strongly bonded layers; this is not so
evident in the blue CEIMC insets, which seem to display a significant rotational activity only at
higher densities. In both cases, the orientational order parameter is small (see fig. 3.6). However,
this is only an indication of the alignment of the molecules with respect to their initial orientation;
their axes could also rearrange themselves in a different static configuration. This seems unlikely: it
is hard to discern any clear pattern. Moreover, molecules located at the same lattice site change
orientation when the density changes: this should rule out a possible common oriented phase in the

density range considered. This discrepancy may be caused by a limited sampling of the rotational
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FI1GURE 3.24: Pc48, Layer by layer pair correlation functions for DFT-PIMD and CEIMC

simulations at the reported values of r, (corresponding to the range of pressures 250 < P < 350

GPa). The four different layers are represented by full and open symbols; layers with strongly

bonded molecules are associated to the blue curves while weakly bonded molecular layers are red.
Insets: nuclear positions sampled at equilibrium in two consecutive layers

phase space of the molecules and be an indication that longer runs are required to improve the
statistics.

Weakly bonded layers show a tendency to rearrange in a hexagonal pattern when density is increased,
reducing the distortion imposed by the initial configuration: this is true for both CEIMC and
DFT-PIMD simulations. In general, the DFT-PIMD simulations display a higher degree of order:
for example, well separated rings can be detected at ry = 1.34. A closer inspection of the DFT
trajectories reveals processes when atoms belonging to the same ring perform a collective rotation:
evidence of this process is reported in fig. 3.26. These rotations are rare: we could observe 1-2
events in ~ 2 ps, the length of an entire DFT-PIMD simulation. No rotations were detected in

the CEIMC simulations: this was expected due to the computational cost of the method, which
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FicURrE 3.25: Pc48: structural properties obtained from CEIMC and DFT-PIMD simulations:

molecular Lindemann ratio (MLR), orientational order parameter (OOP) and molecular bond

length for strongly and weakly bonded molecular layers (“strong” and “weak”, respectively). Only
CEIMC weakly bonded molecular layers are reported, as explained in the text.

inevitably lowers the sampling efficiency and makes the detection of such rare events a task beyond

our current scope.

To get a better picture of what happens in these layers for CEIMC simulations, we computed the
electronic charge density for 16 representative CEIMC sampled along the trajectory and we averaged
over them, obtaining the results in fig. 3.27. We see that the rings made up of three molecules get
closer as the density is increased, resulting in an increased overlap of charge among atoms in the
same rings. Eventually, it is difficult to distinguish atom belonging to a specific molecule: the right
panel of fig. 3.27 shows well isolated molecules, but atoms without any clear molecular partner are
present as well. This is an effect of the nuclear motion during the trajectory, which is amplified in
DFT simulations; for these reasons, structural features of molecules are reported only for CEIMC

weak layers at r; = 1.38 and rs = 1.34 in fig. 3.6.

Finally, we consider the electrical conductivity. The qualitative picture is the same as for the other
structures considered: the band gap shrinks and, at some critical value of rs, becomes zero; the
electronic density of states has a depression around the Fermi energy that is filled when density is
increased. The results are the conductivities reported in fig. 3.28: using DFT-PIMD, the system
becomes metallic at ry = 1.34 while with CEIMC the metallic state is found only at r¢ = 1.31.
Moreover, the conductivity is larger in the DFT case, probably because the higher nuclear mobility
in the weakly bonded molecular layers favours the metallic state. In both cases, however, the

conductivity is poor when compared with standard metals.
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F1GURE 3.26: Picture illustrating a rotation of one ring of six atoms. The blue spheres represent
the initial positions of the atoms within the weakly-bounded layer at rs = 1.31. Several nuclear
configurations visited along the trajectory by the nuclei belonging to the bottom left ring are
pictured; each atom is associated to a different colour. It is apparent that each atom hopped
between two lattice sites during the simulation; an investigation of the trajectory shows that the
hoppings of the single atoms take place at the same time, generating a rotation of the whole ring.

FIGURE 3.27: Pc48, electronic density of charge for the weakly bonded layers for CEIMC
simulations. Left panel: rs = 1.38. Right panel: rs = 1.31. Average over 16 different protonic
configurations

3.4.5 Discussion

From a theoretical standpoint, we can compare our findings both with previous dynamical DFT
simulations and static QMC calculations mentioned at the beginning. Most of the dynamical
simulations were performed at higher temperatures (except for ref. [111]), showing qualitative
features similar to our PIMD results: a stable C2c¢ at lower densities; a first transition to the Ibam
structure when increasing pressure; a new transition to Cmca-4 at higher pressures [106-109]. These
articles mainly focused on the properties of the mixed structures, especially on their hexagonal
layers, finding contradicting results. However, as pointed out in [111] and [112], the energy landscape
of high pressure hydrogen is not well represented by semilocal DFT functionals and nuclear quantum
effects enhance the difference, while MD with classical protons could give rise to a cancellation of

errors. In our case, we found that results from vdW-DF DFT depend on the initial symmetry of
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Ficure 3.28: Longitudinal and transverse static conductivity for the Pc48 structure obtained
from CEIMC and DFT-PIMD simulations

the crystal at least for the quantities considered in this work. For Cmcal2, vdW-PIMD simulations
give a picture consistent with CEIMC. For C2c, instead, the molecular dissociation in the hexagonal
layers seems heavily overestimated. Ref. [112] suggests how energy barriers leading to molecular
dissociation are probably underestimated by DFT; our runs confirm that even if non-equivalent
layers appear, molecules do not dissociate at T=200 K. We see first signs of dissociation only when
considering Pc48 at T=414 K. In DFT-PIMD simulations, protons in the weakly bonded layers
tend to form rings, which become similar to a hexagonal network at the highest density considered;
with CEIMC, at least some of the molecules in the weakly bonded layer are dissociated ry = 1.31,
as indicated by the right panel of fig.3.27. As discussed above, our simulations were =~ 2 ps long,
too short to see any diffusion event linked to the rotations of the rings, as pointed out by Liu [109].
It is possible that protonic diffusion results as a product of several rotations of different rings: this
process is favoured by high density, when rings “merge” in a hexagonal network, as we observed at

rs = 1.31. We did not see different kinds of hexagonal layers, as proposed by Magdau [108].

In DFT simulations, we observed rare events also in the pure molecular phase at lower densities:
this leads to sensible differences for the OOP and the MLR between CEIMC and DFT. While the
same considerations about the length of the CEIMC simulations can be made, this may be another
indication that energy barriers (in this case, involving rotations) are underestimated by DFT. In
ref. [111] the same quantity is computed for C2c¢ in similar thermodynamic conditions, employing
both PIMD and MD with PBE. Both PIMD and MD give a low value of the OOP, showing that in
this case nuclear quantum effects are of secondary importance and the main discrepancy probably

comes from the DFT energetics.

Some discrepancies between DFT-PIMD and CEIMC are found at higher temperature as well: the
rotational character of the strongly bonded molecules is different; the protonic motion in the weakly
bonded layer is enhanced in the DFT simulations. We are still investigating if these differences
could be attributed to a non exhaustive sampling in some of the CEIMC simulations or if the

disagreement is at a more fundamental level.
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3.5 Conclusions

Carefully studying solid hydrogen at high pressure requires the inclusion of nuclear quantum effects
and the computation of accurate electronic energies. While nuclear quantum effects can be taken
into account at finite temperature with Path Integrals Molecular Dynamics, DFT is usually used
to obtain electronic energies. Unfortunately, the uncontrolled approximation introduced by the
exchange-correlation functional can make DFT energies not accurate enough for solid hydrogen.
To address both problems, we employed the CEIMC method, which is a combination of the Path
Integral formalism (to account for quantum nuclei) and of Variational Monte Carlo (to obtain
accurate electronic energies). While being computationally more expensive than DFT used in
conjunction with Path Integrals, simulations performed with the CEIMC method can be used as a
benchmark for DFT-PIMD; in particular, we performed DFT-PIMD and CEIMC simulations of
selected structures of interest for solid hydrogen at high pressure (P>200 GPa) and temperature
T=200 and 414 K, characterizing their structural and electronic properties. The comparison
between DFT-PIMD and CEIMC at finite temperature shows how the stability of C2c is severely
underestimated by DFT, in qualitative agreement with the results reported in [116] [104]. This
could be linked to the vibrational and rotational activity of the molecules, which seems to be
particularly enhanced in the C2c case: energy barriers may be lowered by DFT (as is suggested in
ref. [112]), activating molecular rotations and increasing the configurational phase space visited by
the protons, favouring structural rearrangements. A remarkable finding is the complete difference
from this point of view between C2c and Cmcal2 at the DFT level, with Cmcal2 molecules frozen
in their orientations during the whole trajectory. Both structures exhibit a semimetallic behaviour
starting from 350 GPa.

The rotational activity can be observed in CEIMC simulations at higher temperature for Pc48: it
is reasonable to think that the overall agreement between DFT-PIMD and CEIMC hints at the
possibility that vdW-DF (or, generally, DFT) becomes a better and better approximation of the
physical system when temperature increases and the nuclear quantum effects become less and less

relevant.



Chapter 4
Liquid liquid phase transition

In this chapter we will apply the CEIMC method to study liquid hydrogen. In particular, an
interesting open problem is the metallization of liquid hydrogen and the associated phase transition.
As we saw in the previous chapter, solid metallic hydrogen still remains an open problem, despite
some claims of the detection of metallic behaviour. Nevertheless, metallic hydrogen was unequivocally
detected by Weir et al. [6] in the liquid phase at pressures of hundreds of GPa and temperatures of
thousands of Kelvins using shock wave compression experiments. While metallic state itself was
observed, that region of the phase diagram is not completely characterized yet. More importantly,
the nature of the insulator-metal transition itself is object of debate: first-order or continuous?
Which role does molecular dissociation play? In the region of interest, liquid hydrogen displays a
rich optical activity. Performing experiments at such extreme conditions proves to be challenging,
though: in chapter 1 we showed how experimental data are generally plagued by large error bars

and how their interpretation is not straightforward.

We will start discussing previous works on the subject, presenting the current state of this field;
then, we will describe how the CEIMC method and DFT-PIMD are employed to study dense liquid
hydrogen, inserting them in the current context of the research. In particular, we will focus on
characterizing the system under investigation through optical properties, which will constitute the

our main results. Some of the results presented in this chapter were published in ref. [46]

4.1 Previous works

High pressure liquid hydrogen has been an active research field for at least twenty years: this
section is by no means a complete review of the numerous publications concerning this system.
Before the advent of feasible Ab Initio simulations, dense hydrogen at high temperatures has been
studied by modeling the free energy of the system (chemical models). Typically, this procedure
was based on writing the free energy as the sum of relevant terms, which could be evaluated in
different ways: analytical approximations, equations of state obtained from effective interparticle
potentials [120] [121]. These first studies considered the possibility of a first-order phase transition

between two different states of the fluid, persisting at over 10000 K: however, this transition was
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F1GURE 4.1: Comparison of CEIMC results for the liquid-liquid transition line with previous
theoretical predictions. Blue circles and squares are CEIMC transition pressures for systems with
quantum and classical protons, respectively. Continuous lines are predictions from Ab Initio MD
or PIMD with different exchange-correlation functionals: vdW-DF2 (black lines), vdW-DF (red
lines), PBE (green lines), HSE (orange dashed line). For each functional, except HSE, the line at
lower pressure corresponds to quantum protons whereas the line at higher pressure corresponds to
classical protons. For HSE only the classical protons line is shown. Triangles are predictions for
metallization (violet) and molecular dissociation (brown) from MD-QMC . Earlier CEIMC data
for classical protons are also reported as cyan squares [119]. Transition lines for the crystalline
phases are shown by dashed lines. Figure from ref. [46]

found to be an intrinsic feature of the employed plasma models [122], making this prediction

questionable.

An Ab Initio study was performed by Magro et al. [123], who used the Path Integral formalism in a
range of temperatures from 5000 K to 10° K and described the state of the system as a mixture of
interacting electrons and protons, without invoking the Born-Oppenheimer approximation. A first

order phase transition is found between a molecular fluid and a partially ionized atomic fluid.

Scandolo [124] and Bonev [125] used the Car-Parrinello method [126] to run PBE-DFT simulations
of classical protons: the former study was conducted by carrying out NPT simulations along an
isotherm (T=1500 K), the latter used constant volume simulations to follow experimental Hugoniot
curves. In both cases, a sharp transition between a molecular liquid and an atomic fluid is found.

Moreover, in Scandolo’s work, the molecular phase was found to be insulating, while the non
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molecular one had a density of states that did not vanish at the Fermi level, hinting at metallic

behaviour.

These simulations focused on the analysis of structural properties of the system (pair distribution
functions, discontinuities in the volume vs pressure curve) while the metallic behaviour was
inferred considering the electronic density of state by Scandolo. A first attempt to compute the
electrical properties of the system (conductivity and reflectivity), which could be directly related
to experiments, was performed by Holst et al. [127]: they ran PBE-DFT simulations at finite
temperature and used the Kubo-Greenwood formula (eq. A.41) to obtain the conductivity and, thus,
the reflectivity as averages over different sampled nuclear configurations. In this case, they obtain a
smooth transition from a insulating molecular state to a metallic atomic fluid at any temperature
considered, at variance with previous simulations. Subsequent similar calculations [128,129] found a
first order transitions for T<1500 K, which is assumed to be the critical temperature; the discrepancy
is mostly due to finite size effects [45], which become very relevant when the system approaches the

transition.

Morales et al. [119] employed the CEIMC method for the first time on liquid hydrogen, even if the
trial wavefunction used was not as sophisticated as the one used in this work and the protons were
treated as classical particles. As in previous calculations, the pair correlation functions are used to
estimate the molecular character of the system; the conductivity is computed as in [127]. CEIMC
results are then compared to standard PBE-DFT simulations: a first-order phase transition from
molecular insulating liquid to an atomic conducting fluid is observed in both cases. However, the
agreement is only qualitative: the location of the transition line can change by tens of GPa. The
transition line is represented with cyan squares in fig. 4.1. Unfortunately, the CEIMC calculations

were later found to be biased due to unconverged orbitals [83]

Ref. [110] presents a study which includes nuclear quantum effects at finite temperature (via Path
Integrals) and non local exchange correlation functionals: PBE is compared to the vdW-DF2
functional. First of all, conductivities along a Hugoniot line obtained by PBE PIMD simulations
are much higher than the vdW-DF2 PIMD ones, which in turn are consistent with experimental
results: the quality of the results seems to depend on sampled nuclear configurations, while the
functional used to compute the conductivities leads to minor differences. While both PBE and
vdW-dF2 PIMD simulations exhibit a first order phase transition, there is a huge quantitative
difference between the transition pressures: for example, at T=1000 K, they differ by more than
150 GPa. These results were complemented by Knudson et al. [14]: while their primary focus was
reporting shock-wave experiments, they performed PIMD simulations with a variety of exchange
correlation functionals. The transition lines are showed in fig. 4.1: there is huge variability of order
200 GPa in the transition pressures predicted using different functionals, with or without quantum

effects.

Finally, Mazzola et al. [130,131] employ a different kind of Quantum Monte Carlo method at
finite temperature [132]: forces acting on the nuclei are obtained through Quantum Monte Carlo,
resolving the infinite variance problem by an appropriate reweighting. The canonical ensemble is
then sampled through a Langevin dynamics, where the noise given by the statistical evaluation of
the forces is taken into account in order not to bias the procedure. Using this scheme, they find
that the insulator-metallic phase transition and molecular dissociation are two distinct phenomena:

the first transition leads to a mixed molecular metallic fluid, where molecules are short-lived; then
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molecular dissociation takes place, resulting in an atomic, metallic fluid. These claims are based on
considerations about the structure of the pair distribution functions and on the computation of
the off-diagonal one-body density matrix: these two points will be addressed in more detail when
discussing our results. We notice, however, that even the highest experimental insulator-metal

transition pressures [14] are well below any of the computed pressures.

4.2 CEIMC simulations

We mentioned that CEIMC simulations were already used to study the liquid-liquid phase transition
[119]; we also mentioned that the orbitals were not well converged and that, in the mean time, the
method has evolved. It is therefore worthwhile repeating the earlier CEIMC simulations. Different

kinds of contributions were made:

e inclusion of the nuclear quantum effects with the path integral formalism. While these effects
were included in [110], the Ab Initio method chosen was vdW-DF2 DFT.

e characterization of an already existing set of CEIMC simulations with the computation of the

conductivity of the system and of its one body density matrix

e runs of other CEIMC and PIMD simulations in the liquid state, studying thermo-optical

properties in the portion of the phase diagram investigated

While conductivity is an obvious choice to characterize the system as insulating or metallic, we also
introduce the one-body density matrix and point out how it can be used to help discriminate an

insulating state from a metallic one.

4.2.1 One body density matrix

Generally speaking, insulators and metals are defined by the presence or absence of a band gap,
having in mind an independent (quasi)particle picture of the system: this definition inevitably
requires the knowledge of the excited states. However, this is not strictly necessary: one can define
insulators and metals in terms of properties of the ground state only [56]. The one body density

matrix of a system of N, electrons in a many-body ground state U(7, ..., 7y, ) is defined as [133]
AP 7)) = /ng e dPN V(P PN )PP T (4.1)

assuming that the wavefunction is correctly normalized to unity. It has been shown [134-137] that,
for insulating systems described by single-particle orbitals in periodic potentials A(7, 7) o e_'”’?_m,
based on the localized nature of the Wannier functions. For metals at zero temperature!, on
the other hand, the one body density matrix decays much slower, following a power-law [136]
|A(7,7)| o | — #|~". These features, which assume a single particle band structure, can be

extended to interacting systems [138].

ISince in our calculations the Born-Oppenheimer approximation is assumed, the electrons are always in their
ground state, effectively being at zero temperature
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The introduction of Ar = 7 — 7 and elementary manipulations of eq. 4.1 lead to

—

§ U(F+ A, T
A(ﬁﬂm):/d@...dm (P AT TN g )

\I/(’I“,...,’FNG) (42)

which is now written as the average of an observable over the ground state probability distribution of
the electrons (the square modulus of the ground state trial function, in VMC) and can be computed
during a QMC calculation for fixed nuclear positions. In the liquid phase we assume translational
invariance and isotropy. The first condition is equivalent to requiring that A(7,7+ Ar) = A(Ar):
however, this is not true for the single nuclear configuration, where the positions of the nuclei break

the translational invariance. Nevertheless, we can still define

U(r + A_'r, coTNL)

IGR 4.3
\IJ(T_i,...,FNe) | (Ta 7TN5)| ( )

A(AT) :/%A(ﬁﬂ Ar) = %/dﬁ...dﬁve

as a simple, useful quantity to characterize the electronic state of the system. The expression in eq.

4.3 is proportional to an average in the electronic configurational space and can be evaluated during
W(TH+ET,...,FNE)
W(71,..,TN, )

vectors Ar collecting statistics for each Ar at each sampled electronic configuration 77, ...,7n,

a Variational Monte Carlo calculation. In principle, can be evaluated on a grid of

through the Monte Carlo process. The computation of the electronic wavefunction is, however, quite

POALAT TN for g A uniformly sampled in the simulation
‘I’(’I”l,‘“,’l"]\]e)

box at each electronic step . Exploiting isotropy, we can average over the different directions of Ar

expensive. In our case we compute

and obtain A(Ar) = A(JAr]), ensuring enough statistics for each point.

If we were to use a wavefunction with periodic boundary conditions, this would imply a periodic

A(Kr). In fact, a displacement along a lattice vector L; produces

However, if we use twist average boundary condition, we get

— = 1 N \IIE(T_i + &7‘ + El, ,TTNg) 5 N 2
NS a L) = g [ ey el =
1 (i + Ar,... 7y,) )
_ d d 0z "k e (7 - _
Q/ ™ TN ek V0T | w7 TN,)
= €Az (AY) (4.5)

so that the final value of A(Kr + I_;l), averaged over the different twists, is:

= - 1 . -
ATABC(AT + Li) e ﬁ Z EZQEAE(AT) (46)
k —
k

and the density matrix has no longer period equal to L;. In particular, if a Monkhorst-Pack grid
Nyp1 X Nia X N3 is used, the periodicity is Ny L. A(Ar) for a fixed classical nuclear configuration
at T=600 K and P = 203.0 £ 5 GPa is reported in fig. 4.2 as an example of the qualitative
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FIGURE 4.2: A(Ar) at a fixed nuclear configuration at T=600 K, P = 203.0 £ 5 GPa vs Ar/L,
where L is the length of one side the cubic simulation box. In the inset, its absolute value |A| on
a semilog scale.

form found in our calculations: the functions decay while showing regular oscillations, that can be
better appreciated in the inset. We are interested in the decay factor modulating these oscillations:
following Mazzola [131], we compute the integral of the absolute value of the one body density

matrix, that in this specific case can be written in spherical coordinates as
Te
Ty = 471'/ dAT|A(AT)|Ar? (4.7)
0

where r. is a cutoff distance which will be discussed later. In this way we should be able to
discriminate the two different asymptotic behaviours: for insulators, the exponential decay translates
to a smaller value of the integral in eq. 4.7; on the other hand, the value of the integral for metals
critically depends on the exponent 1 and may be also divergent for r. — oo (n < 3). In any case, we
should be able to detect a radically distinct behaviour: for this reason, we call it electron localization

parameter.

4.3 Methods

A set of pre-existing CEIMC simulations of liquid hydrogen was used to compute conductivities and
the electron localization parameter I'y at T=600 K for classical protons over a range of different
densities (1.24 < ry < 1.50 a.u., where %m’f = % ). Cubic cells were employed for 54 protons;

simulations of 128 protons were run at selected points to check for finite size effects.

Calculations of optical properties were performed for CEIMC-generated nuclear configurations
within DFT, using a plane-wave energy cutoff of 1360 eV, an 8 x 8 x 8 Monkhorst—Pack grid of k
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points, a smearing of 0.086 €V in the self- consistent cycle. It is common practice to replace the
delta function in eq. A.41 with Gaussian functions that smooth the appearance of the resulting
conductivity, taking care of the finite spacing among different energy levels caused by an inevitable
discrete sampling of the k-points. We use a smearing (i.e., the width of the Gaussian) of 0.3 €V to
regularize the frequency- dependent conductivity. Both the PBE and vdW-DF1 exchange-correlation
functionals were employed to check for their influence on the results. The dc conductivity has been
estimated by extrapolating the isotropic dynamical conductivity to w = 0. The number of bands

was set to 64 and 120 for systems of 54 and 128 electrons, respectively.

To study thermoelectrical properties, such as optical and thermal conductivities, absorption coeffi-
cients and reflectivities in a bigger region of the liquid phase diagram, additional CEIMC simulations
were performed at different densities corresponding to the 50-250 GPa pressure range along the
T=900,1200,1500 K isotherms. Systems of 54 atoms were considered. A different number of
path integral beads Np was used depending on temperature (Np = 6 for T=900 K, Np = 4 for
T=1200,1500 K) Twisted boundary conditions were enforced on the trial wavefunction using a
4x4x4 k-point grid. The parameters of the trial wavefunction were optimized on random snapshots
of a first, relatively short run for every density. DFT-PIMD simulations were performed using a
customized version of VASP. The simulation cells were composed of 128 atoms; the I' point was
used, employing the vdW-DF1 exchange correlation functional. We considered the T=3000, 5000,
6000, 8000 K isotherms; Np = 4 for T=3000 and 5000 K, Np = 2 for T=6000 and 8000 K. For
every trajectory, 16 snapshots of the nuclear configurations were extracted. Linear response theory
within the DFT framework, described in the previous chapter, was then employed on these static
configurations to compute and average the selected optical properties. We employed the HSE
functional which, while being computationally expensive, is known to reproduce experimental band
gaps for many semiconductors [139] and was already successfully used in [110]. Static values of these
observables are generally plagued by finite size effects: in this work they were carefully extrapolated
from the entire curve at finite frequencies. Additional PIMD simulations were performed at T=1500
and 2400 K around 141 GPa to compare with existing experiments. Both 54 and 128 atoms cells
were used (3x3x3 k-grid and T" point sampling, respectively); the number of beads Np was 6 for
T=1500 K and 4 for T=2400 K.

4.4 Results

4.4.1 Conductivity and one body density matrix

The parameters declared in the previous section were carefully tested. An example of a convergence
study of the conductivity for a metallic configuration is reported in fig. 4.3: in this case, increasing
the number of k-points smooths the oscillations of the function caused by the limited sampling of the
Brillouin zone. A similar effect can be created at much lower computational cost by increasing the
smoothing parameter. From fig. 4.3 we can also see that the conductivity sharply decreases when
approaching w = 0 irrespective of the k point mesh. This is most likely due to the discrete energy
differences among bands at the same k-point (vertical transitions are the only ones considered in eq.
A.62), stemming from finite size effects. This is corroborated by fig. 4.4, where conductivities for

five different protonic configurations with N=54 and five with N=128 are showed in the proximity
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F1GUuRE 4.3: Effects of k-point sampling for conductivity of a classical protonic configuration
sampled at T=1200 K, rs = 1.34 a.u. The PBE functional was employed for the calculations

of w = 0: the configurations with the lower number of protons reach a systematically lower value of
the conductivity. We assume that a better value of the dc conductivity can be obtained by fitting

the function excluding a neighbourhood of the origin (approximately 0.6 €V for the case pictured).
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FIGURE 4.4: Finite size effects for different classical protonic configurations at T=1200 K,
rs = 1.34 a.u. The vdW-DF functional was employed for the calculations

At this point, another important parameter is the number of bands used to compute the optical
properties: higher values of w require a higher number of bands to get a converged conductivity, as

shown in fig. 4.5.

We studied finite size effects for I'y as well. In fig. 4.6 the associated integral I(Ar) =
4 fOAT dAr'|A(Ar')|Ar'? is plotted against its upper bound for two different system sizes (N = 54
and N = 128); for each size, ten different nuclear configurations were considered, resulting in the
curves displayed in figure. They start nearly identical, becoming more and more different with
increasing Ar: this suggests that the integral does not strongly depend on the specific nuclear
configuration. At higher Ar one must also take into account that the radial integration magnifies

the noise which affects A(Ar) when Ar is large. The comparison between the two sizes shows that



Chapter 4 Liquid liquid phase transition 80

20000 T T

T

36 bands ——
18000 ¥ 48 bands —<— |
54 bands

16000
14000
12000

10000 |

o (1/Qcm)

8000
6000 |
4000

2000

w (eV)

Ficurk 4.5: Convergence of the conductivity with respect to number of bands employed for
a single classical protonic configuration at T=1200 K, rs = 1.34 a.u. The PBE functional was
employed for the calculations

the differences are smaller than the differences between two different nuclear configurations at the

same size. We can now show the results obtained along an isotherm T=600 K for a system of
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FIGURE 4.6: Integral of the absolute value of the one-body density matrix vs upper bound of

integration: Ip = 47 fOAT dAr |A(Ar")|Ar™. We considered two systems with number of protons

N =54 and N = 128 at r; = 1.34 and T=1200 K without nuclear quantum effects (classical

protons). The vertical lines labelled Ls4 and Li2g indicate the box length of the two simulation

cells ( N =54 and N = 128, respectively). For each system size, ten curves corresponding to ten
different nuclear configurations sampled along the trajectory are shown.

classical protons across the molecular dissociation transition. In fig. 4.7 we present four different
quantities. Two are related to the structure of the system: the equation of state, pressure vs r,
(top left panel) and the amplitude of the first maximum of the pair radial distribution function,
corresponding to the bond length 7,,, (bottom left panel). The other two quantities are the ones
discussed above, namely conductivity and electronic localization parameter I". The discontinuity of

the equation of state signals a first order phase transition; the simultaneous disappearance of the
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first maximum in gp,(r) is evidence for molecular dissociation. At the same time, the conductivity
shows a sharp increase at the dissociation pressure, smoothly increasing afterwards. We point out
that while the conductivities obtained using the PBE and vdW-dF exchange correlation functionals
are quantitatively slightly different, their qualitative behaviour is essentially the same. This strongly
suggests that exchange-correlation functional used in the optical calculation has minor effects on
the computation, while the proper statistical sampling of the nuclear configurations is much more

important. This point was already raised by Morales [110].

The same discontinuity is evident for the localization parameter I': while the values of the integrals
are not converged with respect to the finite size of the radial grid, it is still possible to identify
two distinct behaviours across the transition if the upper bound of the integration r.,; is large
enough. In this way, we can legitimately establish a connection between molecular dissociation and

metallization, in contrast with the results obtained in [131].

Pressure (GPa) Pressure (GPa)
100 200 300 400 100 200 300 400 50%
T
. _
1.45 . [ g
o
14 e
Y
R, 1.35 {1 8
x
1.3 —1 ’c|>T
2
1.25 © 5
1.2 —+—o
® ® i
2 110
\b I r
2?2 1
()]
—19
1 i
(d)
—8
-

0
100 200 300 400 100 200 300 400 500
Pressure (GPa) Pressure (GPa)

FIGURE 4.7: Results for the system with classical protons along the T = 600 K isotherm. (a,
upper Left) Equation of state, showing the pressure dependence of the coupling parameter 7.
Raw data (black diamonds) and size-corrected results (red circles) are reported, together with
linear fits for the two branches near the discontinuity. Note that below ~ 200 GPa the equation
of state is for the metastable fluid because the thermodynamically stable state should be the
phase I crystal. (b, lower Left) Amplitude of the molecular peak observed in the proton—proton
radial distribution functions gpp(Tmoi), where rmo = 1.4 a.u. Beyond the vertical blue lines,
gpp(r) does not exhibit a maximum but only a shoulder at the molecular distance. (c, upper
Right) dc electrical conductivity as obtained by optical calculation within DFT with two X-C
approximations (black squares, PBE; red circles, vdW-DF). The points are averages over 10
statistically independent nuclear configurations sampled during the CEIMC run at each density.
(d, lower Right) Integral of the absolute value of the single-electron off-diagonal density matrix
from variational Monte Carlo, as a measure of the electron localization, obtained by averaging
over 10 independent nuclear configurations. In all panels the blue vertical dashed lines represent
the transition pressure with its uncertainty. Picture from [46].
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4.4.2 Optical properties around the liquid-liquid phase transition

As explained in the methods section, we performed additional CEIMC simulations at T=900,1200,1500
K to extend the pressure range under examination; at higher temperatures (7" = 3000, 5000, 6000, 8000
K) we performed more affordable DFT-PIMD using vdW-DF exchange-correlation functional, which
gives transition pressures consistent with the CEIMC ones at T=1200 and 1500 K (see fig. 4.1). The
computation of the optical properties follows the procedure described above for the conductivity,

with the same issues around w = 0. In particular, we computed

e the static conductivity g, which is a direct indication of the metallicity of the system

e the reflectivity, which can be measured experimentally and is used, like o, to characterize

the metallic state of the system

e the absorption coefficient and the electronic thermal conductivity, which relate to the power

absorbed by the system and to its heat conduction.
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F1cURE 4.8: Top left panel: Static electrical conductivity oo along different isotherms. Top right

panel: reflectivity obtained at w = 2.3 €V, corresponding to a wavelength A = 539 nm, assuming

vacuum as the adjacent medium. Bottom left panel: absorption coefficient at w = 2.3 eV. Bottom
right panel: thermal conductivity.

Our main results are reported in fig. 4.8: The electrical and thermal conductivities are static values
(w = 0); the reflectivity and the absorption coefficient are computed at w = 2.3 €V, corresponding
to a wavelength A = 539 nm of electromagnetic radiation (visible light), close to the one used
for example in [140] to probe the system. The top left panel clearly shows a discontinuity for
the conductivity at lower temperatures, indicating a first-order phase transition. The curves then
become smoother at higher temperatures, implying termination of the first order transition line

at a critical temperature between 1500K and 3000K. Above the critical temperature molecular
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dissociation and metallization become continuous processes. Incidentally, the highest computed

conductivity would put liquid hydrogen on par with steel, that is a poor metal.

Other useful qualitative indications for experiments can be extracted from fig. 4.8. For example, the
increase of the absorption coefficient in the visible spectrum can be directly related to the darkening
of the sample by visual inspection. While dropping abruptly, the reflectivity does not vanish at the
transition. This is an important point when evaluating experimental reflectivities: usually, only a
part of the sample is assumed to undergo the metallization transition and become reflective, while
the other part of the sample is assumed to remain insulating with vanishing reflectivity. From
our data we can see that the reflectivity of hydrogen differs from zero even in the insulating state
near the transition (see, for example, [10]). This can introduce systematic errors when trying to

disentangle the contribution to the reflectivity coming from the metallic part of the system.

Some experimental works [10,47] study the temperature of the sample while increasing the laser
power: they find that the maximum observed temperature does not increase indefinitely with the
laser power, but it reaches a plateau. Temperature not increasing while providing more power is
interpreted as the signature of the transition (latent heat). We show that the absorption coefficient
is discontinuous at the transition. Notice, however, that there seems to be a region both at T=900
and 1500 K before the transition pressure where the absorption coefficient smoothly increases from
zero: depending on the supposed thickness of the heated part of the sample, this could implicate
the observation of higher absorption and smaller transmittivity before the transition pressure where
the discontinuity takes place. On the other hand, the thermal conductivity behaves as the optical

one, showing a sharp increase at the transition.

As mentioned above, the experimental values can be affected by very large error bars. That is
the case in fig. 4.9, where reflectivities compatible with T=6000 K (blue points) were taken from
ref. [141]. We can compare these data with the reflectivity values we obtained along the T=6000 K
isotherm: while one could say the two sets are compatible, smaller uncertainties would be needed

to make a stronger statement.
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FIGURE 4.9: Comparison with experimental reflectivity
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Fig. 4.10 shows experimental measurements for dynamical conductivity at T=2400 K [140], which
points to an insulating state when extrapolated to w = 0. Two distinct groups of curves from our
calculations are displayed, as well: metallic (yellow curves) and insulating states (blue curves). We
also performed simulations with both CEIMC and DFT-PIMD at T=2400 K, with 54 and 128
protons, to check if different Ab Initio methods or finite size corrections showed any discrepancies.
Since we are working at constant volume, the volume of the cell was guessed to provide a pressure
close to the experimental one (141 GPa) by extrapolating the results at other pressures. Small
size effects are observed for PIMD (0-2 GPa); on the other hand, CEIMC and PIMD pressures
at similar volumes differ by about 15 GPa. The conductivities are obtained by averaging the
dynamical conductivities over 16 different sampled protonic configurations, point by point. Our
data at T=2400 K shows a clear metallic behaviour, at variance with the reported experimental
measurements, which point at an insulating character of the system at the same thermodynamic
point (yellow curves); a similar insulating behaviour can be found in our simulations at T=1500 K
(blue curves). This indicates that a transition line compatible with the data from [140] should be
shifted either towards higher temperatures or higher pressures than ours. Notice, however, that
ref. [140] proposes a smooth transition, with a large portion of the phase diagram occupied by a
semimetallic fluid. This is completely in contradiction with our results and with other experiments,

which found a sharp first order transition.
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Fi1GURE 4.10: Comparison with experimental conductivity for different simulations. The volume
cell for each simulation was chosen in order to give a pressure close to the experimental one (141
GPa). Different cell sizes and Ab Initio methods were used to check for any discrepancy.

We can compare our findings with previous theoretical works. As is apparent from the location of
the transition line in fig. 4.1, results produced by DFT simulations highly depend on the exchange
correlation functional used; nevertheless they provide sharp transitions, as indicated by the presence
of lines. It is interesting to see if optical properties across the transition are also affected by the
choice of the functional. Refs. [127] and [128] studied the transition in dense liquid hydrogen using
PBE-DFT molecular dynamics with classical protons. They both computed the equation of state
for liquid hydrogen and characterized the transition by computing optical properties: In particular,

they obtained static conductivities at T=1500 K, which can be directly compared with our results
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(see the blue and yellow curves in fig. 4.11). The blue curve [127] displays a smooth transition, very
different from our red curve: the conductivity evolves continuously, showing a smooth transition
from an insulating to a metallic state. It was later understood that this was caused by small
simulation cells and insufficient k-point sampling [45]: Lorenzen et al., after carefully studying
the finite-size effects, produced the yellow curve, which displays a sharp increase at the transition.
This shows how the nature of the transition can be sensitive to the computational parameters
employed in the simulations (more specifically, to finite size effects). On the other hand, even if
qualitatively similar to our red curve, the yellow curve displays a transition quantitatively shifted by
about 40 GPa. As discussed above, when analyzing the conductivity and the electronic localization
parameter, optical properties depend primarily on the sampled nuclear configurations: it is no
surprise to detect a very different insulator-metal transition pressure for PBE and vdW-DF, since
the transition pressures are essentially linked to the change in the structural properties of the system

(discontinuity in the equation of state).
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F1GURE 4.11: Comparison among conductivities at T=1500 K with previous theoretical calcula-
tions from [127,128]

4.5 Conclusions

In this chapter, we showed how liquid hydrogen can successfully be characterized through the
computation of several optical properties: we performed simulations of high pressure hydrogen
using state of the art techniques, CEIMC and vdFW-PIMD, required to account for the different
effects that are relevant for this system (nuclear quantum effects, dispersion interactions) and are
usually neglected. We first focused on the region close to the molecular dissociation transition line,
discussing how to compute conductivities and introducing an electronic localization parameter T.
We then used these two quantities to show that, according to our simulations, molecular dissociation

and the insulator-metal transition take place at the same time.

Furthermore, we extended the explored region of the phase diagram to have a better picture of the

liquid over a wider range of pressures. From the study of thermooptical properties, we confirmed
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a first-order insulator-metal phase transition with a critical temperature lying between 1500 and
3000 K. A direct comparison with experiments is not easy, because experimental data collected in
dynamical experiments naturally have large error uncertainties and their interpretation must usually
be supported by semiempirical models. The disagreement among different experiments (for example,
concerning the location of the transition line in fig. 1.3) is a clear sign of the difficulties faced
when performing these experiments. Given all these caveats, a meaningful quantitative agreement
with experiments is difficult to pursue at the moment; however, our qualitative considerations
about optical properties may, we hope, help experimentalists in processing their data, especially for

measurements of reflectivity or absorption coeflicients.

Finally, we discussed what level of accuracy is needed from a computational point of view to
correctly describe the transition and its properties. The locations of the transition lines obtained
from DFT simulations vary a lot depending on the functional used (see fig. 4.1). The very nature

of CEIMC guarantees more reliable predictions due to the accurate electronic energies computed.



Conclusions

In this work, we performed Ab Initio simulations of high pressure hydrogen at finite temperature
in the solid and liquid phases. We described in Chapter 1 how performing experiments at such
high pressures is complicated and the information obtained is partial. For this reason, Ab Initio
simulations are a valuable tool to complement and interpret experimental data and can also guide
experiments with their predictive power. In Chapter 2 we introduced the foundations of Density
Functional Theory (DFT), which is the method of choice to perform Ab Initio simulations for
condensed matter at reasonable computational cost. We stressed how its predictive power for
high pressure hydrogen is hindered by the exchange-correlation functional approximation, which
is uncontrolled. In particular, we showed in Chapter 3 how enthalpy differences among candidate
crystal structures for the molecular solid phases were so small (= 10 meV /proton) that changing the
exchange-correlation functional has a deep impact on the resulting phase diagram in the pressure
range considered (P > 200 GPa). At the same time, estimating nuclear quantum effects using the
harmonic approximation leads to errors of the same order of magnitude, making questionable the
picture obtained by DFT.

For these reasons, our efforts were devoted to employing the Coupled Electron Ion Monte Carlo
(CEIMC) method to run finite temperature simulations of high pressure hydrogen. The electronic
energies are evaluated using Variational Monte Carlo (VMC), a method which critically relies on the
goodness of the trial wavefunction employed. However, thanks to the variational principle, we can
tell if one wavefunction produces better or worse results than another one: we have a meaningful
criterion to compare different wavefunctions. Path integrals take care of nuclear quantum effects
exactly. We applied CEIMC both to the low temperature, solid phase and to the high-temperature,
liquid phase.

In the first case, in particular, we performed DFT-PIMD and CEIMC simulations at T=200 K and
T=414 K of selected structures of interest: C2c¢ and Cmcal2 at T=200 K, where Eremets et al. [18]
claim to find metallic hydrogen at P ~ 350 GPa, and the mixed structure Pc48 at T=414 K, close
to the melting line. A comparison between the results produced by the two methods shows different
behaviours, depending on the initial structure considered and on the thermodynamic conditions.
Using DFT, C2c is not stable across the interval of pressures investigated: while a rigorous study of
the stability needs free energy calculations, a series of transitions to already known structures can
be reasonably inferred, in qualitative agreement with the results reported in refs. [116] and [104].
This is in open contrast with our CEIMC results, which represent the benchmark to validate DFT:
in particular, DFT seems to enhance rotational activity of the molecules, which may lead to an

artificial lowering of energy barriers (suggested in ref. [112]), due to out of plane rotations. At
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variance with C2c, the Cmcal2 structure behaves in the same manner for both methods: molecules
do not rotate and maintain their orientations during the whole trajectory. Even if their structural
behaviour is clearly different, both structures exhibit a semimetallic behaviour at r; = 1.31 (= 350
GPa), which increases with density, regardless of the Ab Initio method employed. This could be
consistent with Eremets’s findings, but the fact that the semimetallic behaviour is qualitatively the
same does not enable us to discriminate among the different structures. At higher temperature, we
find some discrepancies between DFT-PIMD and CEIMC, this time for Pc48: subtle differences in
the protonic motion in the weakly bonded layers can condition significantly the electronic character

of the system, as we reported.

In Chapter 4 we used CEIMC data to characterize the liquid-liquid phase transition, analyzing
optical properties across the transition. The computation of conductivities and the introduction of
the electronic localization parameter I" showed that molecular dissociation and the insulator-metal
transition take place at the same time; moreover, these processes can be classified as a first-order
phase transition, because of the reported abrupt discontinuity in the equation of state and in the
optical properties, The liquid can be better characterized by exploring a larger region of the phase
diagram far from the transition: this can be relevant for experimentalists, who must often process
their data in convoluted ways and with many assumptions, as in the case of reflectivity or absorption
coefficients. Finally, we stressed how DFT-based simulations report highly variable results for
the location of the liquid-liquid transition line and how CEIMC is inherently more accurate and
reliable thanks to the VMC electronic energies: as such, it should be used as a benchmark for these

calculations.

In conclusion, we showed how it is possible to successfully employ the CEIMC method to perform
finite temperature simulations, given the proper amount of computational resources. In the solid
phase, we were able to make qualitative statements that, nevertheless, highlight the inadequacy of
DFT for the C2c structure at low temperatures; in the liquid phase, the CEIMC method, integrated
with DFT, can be used to make strong predictions about the liquid-liquid phase transition and

characterize to a large extent the fluid.



Appendix A

Transport and thermoelectrical

kinetic coeflicients

In this appendix, the linear theory of the transport and thermoelectrical kinetic coefficients is
discussed. General expressions are obtained and then employed in the context of the Density

Functional Theory framework.

In a linear regime, we can write the response of the electrical and heat current densities .J, and J_:]

to an external electric field E and to a temperature gradient V7' as [142]

I

o(E — SVT)
STJ, — AVT (A1)

L g
Il

Q

where o is the electrical conductivity, S is the Seebeck coefficient and A the thermal conductivity.
These two equations sum up Ohm’s law (o) of electrical conduction, Fourier’s law of thermal
conduction (A) and the Seebeck and Peltier effects (.S), that couple the two phenomena. Thermo-
electricity is an example of a wider class of irreversible processes that can be better understood

from a theoretical point of view by considering the time evolution of the entropy of the system.

A.1 TIrreversible thermodynamics and kinetic coefficients

When electrical and heat currents flow under the influence of an electric potential V' or a temperature

difference, the variation of the local entropy ds and the relative flux j; can be written as [143]

1 f
I A2
ds Tde Tdn (A.2)
. 1 j-
s — mJe T mdn A.
L= Lok (A3)
fi = ptqV (A.4)

where ¢ is the charge of the carriers, de the variation of energy and dn the variation of the number

particle density. During non equilibrium, irreversible processes there is a net generation of entropy,
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i.e.

ds ds - ds

— = —4+V-J , —>0 A5

dt ot + t (A:5)
On the other hand, energy and number of particles are conserved, implying the validity of the

following continuity equations:

Oe -
p— —_— . e A-
0 e +V-J (A.6)
on -
p— —_— . n A-
0 T +V-J (A7)

Using eqs. A.2 and A.3, the two terms in eq. A.5 can be computed as

0s 190e fion
o ~ To Tor (4.8)
P Ny v(B s ile. g By g
V-Jg = V(T> Je V(T) Jn+TV Je T In (A.9)
Putting all together, eq. A.5 becomes
ds 1 (0e - w (on - 1 - AN
= = T(at+v.Je>T<m+V~Jn>+v(T>~JeV(T).Jn
_ 1 - 1 -
_ V<T>-J6—V<T)-Jn (A.10)

Eq. A.10 is an example that shows how the irreversible variation of the entropy can be generally

written as

ds = o =
S A A A (A1)
k

where X}, are the so called “affinities”, generalized forces steming from non homogeneous intesive
parameters V Fy. This expression will be convenient when we will introduce Kubo linear response
theory. The set of affinities and fluxes is not unequivocally determined. When dealing with

thermoelectrics, it is more convenient to use the heat flux:

Jo="TJ.=J, — iy, (A.12)
turning eq. A.10 in
ds 1 > > AN 1 - Vu =
= = V(T)~(JQ+an)—V<T)-Jn—V(T> Jo— T (A.13)

Currents flow when affinities are present: in a linear regime, it is natural to write

Ji =Y LaXk (A.14)
k
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In the thermoelectrical case, this leads to

- 1 1
—Jp = Li1=Vji+ LisV—= Al
J, 11TVM+ 12VT (A.15)
- 1 1
Jo = Loyy=Vi+ L — A.16
Q ngVu+ QQVT ( )

The coeflicients L;; are called kinetic coefficients:they can be easily related to the usual set of
transport coefficients in eq. A.1. In fact, if the proper chemical potential i is constant, i = gV and

a comparison of eq. A.1 and A.16 yields

L
2411
= i A7
o U (A.17)
1 L11L22—L§2
P —12 A.18
T2 Ly ( )
L2
= — A.19
qT L1 ( )

The kinetic coefficients can be computed within the linear response theory framework which will be

discussed next.

A.2 Quantum linear response theory

We consider a system with Hamiltonian Ho which is affected by a small external perturbation
[144-146] so that

H(t) Ho + H'(t) (A.20)
H(t) = etA (A.21)

where A does not explicitly depend on time and the exponential prefactor assures that limg_, H (t) =
0 (adiabatic switching). A density matrix pg can be associated to the unperturbed system, whose
form depends on the suitable statistical ensemble: however, since the system is at equilibrium, the
density matrix is stationary and we require that [7:[0, ﬁo} = (0. Assuming that the density matrix is

normalized, the average value of any observable B is
(B) = Tt (p})B) (A.22)

If the time-independent part of the perturbation is small enough, the perturbed density matrix

p'(t) can be written as
§(0) % o+ e Ap(H) (A.23)

where Aj(t) is linear in A. j(t) satisfies the following time evolution equation:

P90 = [+ A0, 0] (A.24)
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with the initial condition p'(t = —o0) = pg. The linearized version of eq. A.24 is:
isAp = [ﬁmAﬁ] n [A, ﬁo} (A.25)

At this point, it is convenient to switch to the interaction picture, introducing:

Apr(t) = em(’tA,ée*mOt (A.26)

Thus, we have:
%(es%m(t)) - (SM I(tHaAgIt(t))): (A.27)
= e (s8pr (1) + 1 [Ho, Apr(1)] ) = e [0, A (1)] (A.28)

where in the last step we used eq.A.25. Integrating, we obtain

t

A (E) = i / dt'est [po,/ll(t’)} (A.29)
ie.
t , . oo .
Aﬁ = Z/ dtles(t -t |:p(), A[(t/ — t)} = Z/ dte_St |:p0, A[(—t):| (A30)
—0o0 0
If the ensemble is canonical (pg = 6_?0 ), eq. A.30 can be manipulated through the following
identity:

N I L I ‘
zpo/o dkaAI(—tfz)\):pO/O d/\aAI(ft—z)\):

= polAr(=t = i8) = Ai(=8)) = po(e™M Ay (=t)e™ M0 — A1(=)) = — [po, Ar(—1)] (A.3D)

The average value of B under the influence of the perturbation H' is

(BY = Tr(§(®)B) ~ (B)o+Tr (ApB) = (B)o +i /0 " dte T ([eo As(-)] B)
- <B>O—/OOO dte=*! /Oﬁd)\Tr (ﬁoiﬁ,(—t—mé) = (A.32)
- <B>o—/ooo dte=*! /05 dM%/lz(—t—iA)E (A.33)

where (..) stands for the thermal average over pg.

A.2.1 Conductivity

A first, relevant example is the calculation of the static conductivity [146]. In this case we assume a

perturbation induced by a static electric field E= Eoeii'F, slowly varying in space (¢ — 0): the
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corresponding perturbation H’ is
M = lim / AP B = —Ve() (A.34)
s—

We are interested in the electric current .J generated by the perturbation. To apply eq. A.33 we

need the time derivative of the perturbation, i.e.

9
ot

l>

A(—t—i)) = / dw(ﬁ%ﬁ(a i) = — / ()Y - J(F, =t — iN) =

(7, —t —i)) (A.35)
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where we performed the integration by parts assuming periodic boundary conditions. The result for

the expectation value of the electric current J¢ is
— B jaN A -
TR = (o) = lim " dte /d il / T (7 —t—iNJMVE] (A36)
0

where we dropped the index I for the time evolution of the operators. We are not interested in the
local details of the current: they can be eliminated by considering the spatial Fourier transform for

operators and average values:

Je = / e~ 07 jo(7) (A.37)

. & B 2
Jg = /dFe_’q'TJO‘(F) = lim dte_St/ dN(J ] 4(—t —iX) (‘13‘>Eg (A.38)

s—=0 /g 0

and then considering in the limit for ¢ — 0:

o 5. L
Je —hmJ —limé dtes! / AN (—t — i) J*)VEY (A.39)
0

g—0 s—0 0

{O

where (2 is the volume of the system. Since the electrical conductivity tensor is defined as
JY=0"E] (A.40)
by comparison, we obtain

o0 ) B 2, A
097 = Lim [ dtemste-iot / AN(TY (—t — iN)J®) (A.41)
O s—0 0 0

When dealing with isotropic systems (liquids, for instance), there is little point in considering the

full conductiviy tensor. The isotropic conductivity is

1
=3 Tr o7 (A.42)

A.2.2 Kinetic coefficients

We can apply the Kubo formula (eq. A.33) to the kinetic coefficients if we identify the perturbation
H’ as the energy change induced by the heat transfer [146]. In this case, the time derivative %fl 1(t)
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can be written as
0 - Js > Lo
5 AW =T5 = Ty X / A7 Ty (7) (A.43)

We recall that for thermoelectric problems, we consider two currents: J, = fl, the particle-density
current, and fQ = fg, the heat current. The operators fk(F’) are the local operators correspoding

to macroscopic average values Jg.
Using the same manipulations as in the conductivity case, the result is

0o B R R
Je zfgnm dte*st/ AN (T (—t =N X) (A.44)
0 0 Ty

s—0

Consequently, the expressions for the kinetic coefficients (tensorial and isotropic forms) are the

following:
T o o .
Ly = ——=lim dte—sf/ dN(J] (=t — i) JF) (A.45)
o s—0 0 0
1
Ly, = gTrLg‘,] (A.46)

A.3 DFT implementation

A rigorous but computationally affordable method to evaluate eqs. A.41 and A.45 for extended
interacting systems is not available at the moment. Still, at least qualitative indications can come
from DFT. We will describe which form these equations take in an inflependqnt particle picture. To
compute the kinetic coeflicients, we must provide expressions for jn and fQ. It is convenient to

introduce them in a second quantization formalism [146]:

7:[ = ZEsalas
ji = Z(ji)s,s’ailas

(ji)s,s’ = <5 .}z|5l> (A47)
jl = jn = p
jo = 5 [Fo+ ]
52 = 3@ = .}E - ,ujn
Glt+ i) = (alils!) O EE)

where a! and a, are, respectively, fermionic creation and annihilation operators of the eigenstates s

of the single electron Hamiltonian.
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A.3.1 Static kinetic coefficients

Plugging the definitions of the currents into the isotropic expression of the kinetic coefficients in

eq.A.46, we obtain

T 5 Y
L = —3—lemTr (,00/ d/\/ e “tdtJ;(0 J(t—l—i/\)) =

T et
= fS—Q!HnTr £0 Z / d)\/ dte™ jl ss/ []J(t+z/\)} ,aias/aiarl = (A.48)

SS ’I‘T

= g m T g Xj/“ﬁ/“ﬁ HNE =B o=t () (5, alawalarn

S, s’/ 3Ty r!
Applying Wick’s theorem [147], the evaluation of the trace results in

Tr (poalas’aiar’) = fs(ss,s’fr(sr,r’ + fs(ss,r/ (]- - fr)(sr,s’ (A49)

1
fo = eB(Bs—p) — 1 (4.50)

The first term is connected to the diagonal matrix element of the currents: they are assumed to be

null, otherwise they would produce divergent contributions when performing the time integral [148].
Eq. A.49 becomes

o= _ i(t+iN) (Br—Ey) g—ct %
Li mgzﬂlﬂ/w/ﬁ Ger - Gi)rs

The evaluation of the two integrals yields:

B 1— —B(Er—Es)
A d)\e_)\(ET_ES) = g’fE (A51)
> . 1
. it(Es—E,—et) — _ .
gg% ; dte wd0(E, — Es) +1iP <E'r — Es> (A.52)

Putting all together, we obtain

T fr - fs‘ :.' :.’
aa = —_— - -~ y e * a " e T - A.
L;; 30 2. B E, (Ji)sr - (Jj)rsm6(Es — Ep — w) (A.53)

where the imaginary part vanishes because it is antisymmetric in r and s. At this point, we can

discuss the form of the matrix elements: they can easily be computed as

> >

(jQ)ST = §(ES + Er)(j’l)sr - M(jl)sr (A54)

Since ] = Jn, J2 Ej their matrix elements can be written in a compact way as

S

(ji)sr = (;(Es + Er) - ,U/> i (jl)sr (A55)
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For periodic systems, we work with Bloch waves and the quantum number s becomes s = E, b

Computing the matrix element of the current,

(it —i%/df’e_ s (F‘)V( w(;)) _
= Orw <E‘SW/ - é / druz, (MV (%,Aﬁ)) (A.56)

we see that it is non null only if the same k is considered. In the end, eq. A.53 becomes

Ly = 39 Efr ]J;“ (Bs — )" "M Er — )" (G1)sr - (G1)rs (76(Es — E,)) = (A57)
= Q ]:J;T g (By — ) By — 1) () er - (1)rs (m6(Es — B,)) = (A.58)
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X <Ig’ V|(.;z)|]¥7 M> ) <E>N|(jl)|]g, I/> 6(EE:N — EE,U) (A59)

The expression in eq. A.59 cannot be used computationally, since it contains the indeterminate

fs

form T when E; = E,. We can tweak the expression by manually adding an w dependence:

.fr fé

Li@) = g7 3 I B = ) B = 0 ) (G0 — By — ) =

S#T

T'/T i— -
= 55 2 (Er,—H) B, — T (e, — i)
Ep,v
x <E, u|<ji)u%‘, w) (&, pl (o) |k, v) (B, — B, — w) (A.60)

The static kinetic coefficients are then obtained through a limit process (w — 0). Notice that L;;(w)
are, in general, not the correct kinetic coefficients for time dependent perturbations, but only a
“trick” to resolve the indeterminate form and get the static limit. The real L;;(w) have a slightly
different form, but it was showed [129] that the static limit of the thermal conductivity A, which is

the transport coefficient we are interested in, is unaffected.

A.3.2 Dynamical conductivity and optical properties

An exception is the dynamical conductivity o®7(w), which is proportional to Lq1(eq. A.19). In fact,

adding the ad hoc w term, the resulting expression for the conductivity is

Re(0°" () = = 32 (fg,, = Fi,0) (b 1 G) ) G, 7)) 6(B, — B, — ) (A62)

Ep,v

Eq. A.62 is the Kubo-Greenwood formula, which can be rigorously proved using a time dependent

electrical field as external perturbation [146,149]. The imaginary part, that we disregarded, can be
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conveniently evaluated using the Kramers-Kronig relations [150]:

1 e Re(c® (W'
(0™ (w)) = — L P / d BT () (A.63)
T J_ w—w
Once the conductivity is computed, other interesting optical properties (the dielectric constant e(w),
the complex refractive index n(w), the reflectivity R(w), the absorption coefficient a(w)) can be

derived through well known equalities [151]:

fw) = T+— (A.64)

nw) = nw)+ikw) =e(w) (A.65)
(1 =nw)? +kw)?

B = Ara@y ke (4.66)

ow) = kW) (A.67)
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