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SUMMARY

DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. 

We systematically analyzed somatic alterations to provide a comprehensive view of DDR 

deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were 

observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations 

included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ~20% of 

samples. Homologous recombination deficiency (HRD) was present at varying frequency in many 

cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was 

associated with worse outcomes in several other cancers. Protein structure-based analyses allowed 

us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-

based classifier developed from gene expression data allowed us to identify alterations that 

phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human 

cancers have functional consequences that may determine cancer progression and guide therapy.

In Brief

Knijnenburg et al. present The Cancer Genome Atlas (TCGA) Pan-Cancer analysis of DNA 

damage repair (DDR) deficiency in cancer. They use integrative genomic and molecular analyses 

to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level 
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alterations with genome-wide measures of genome instability and impaired function, and 

demonstrate the prognostic utility of DDR deficiency scores.

INTRODUCTION

DNA damage repair (DDR) genes play key roles in maintaining human genomic stability. 

Loss of DDR function, conversely, is an important determinant of cancer risk, progression, 

and therapeutic response (Jeggo et al., 2016). DDR genes can be grouped into functional 

pathways defined by genetic, biochemical, and mechanistic criteria. Proteins in the same 

pathway often work in concert to repair specific types of DNA damage (Friedberg et al., 

2004). Base excision repair (BER), nucleotide excision repair (NER), and the direct damage 

reversal/repair (DR) pathways repair DNA base damage, while mismatch repair (MMR) 

corrects base mispairs and small loops often found in repetitive sequence DNA. Homology-

dependent recombination (HR), non-homologous end joining (NHEJ), the Fanconi anemia 

(FA) pathway, and translesion DNA synthesis (TLS) act alone or together to repair DNA 

strand breaks and complex events like interstrand crosslinks (Friedberg et al., 2004; Kass et 

al., 2016). All of the major DDR pathways, with the exception of the FA pathway, have been 

identified in virtually all organisms. This reflects the universal need to counter the chemical 

instability of DNA and repair additional damage (Aravind et al., 1999; Eisen and Hanawalt, 

1999; Friedberg et al., 2004).

The consequences of DDR deficiency are becoming better understood through analyses of 

DDR gene alterations in cancer (Alexandrov et al., 2013; Forbes et al., 2017; Garraway and 

Lander, 2013; Martincorena and Campbell, 2015). For example, frequent TP53 somatic 

mutations in many cancer types can disrupt the DNA damage response, apoptosis, or 

senescence pathways active in many early-stage cancers (Bartkova et al., 2005; Fischer, 

2017; Gorgoulis et al., 2005; Pfister and Prives, 2017). DDR deficiency may also lead to 

specific mutational “signatures,” e.g., the short tandem repeat instability linked to the 

inactivation or silencing of DNA MMR in colorectal, ovarian, or endometrial cancer 

(Alexandrov et al., 2013; Helleday et al., 2014; Kass et al., 2016)

The therapeutic implications of altered DDR function are becoming better known. Many 

anti-cancer agents act by generating DNA damage that, if unrepaired, may lead to cell death 

or senescence. DNA interstrand crosslinks (ICLs) and double strand breaks may be 

particularly difficult to repair, requiring coordination of the NER, BER, FA, and HR 

pathways (Duxin and Walter, 2015; Michl et al., 2016; Pearl et al., 2015). The loss of one or 

more DDR pathway, once recognized, can also be therapeutically targeted through synthetic 

lethality (Brown et al., 2017; Kaelin, 2005; Srivas et al., 2016). Examples include loss of 

expression of the DR pathway protein O6-methylguanine-DNA methyltransferase (MGMT), 

which sensitized cancer cells to alkylating chemotherapy agents (Soll et al., 2017; Weller et 

al., 2015); and BRCA mutant, HR-deficient breast and ovarian cancers, which are sensitive 

to inhibition of PARP1, a central protein in the BER pathway (Bryant et al., 2005; Farmer et 

al., 2005; Lord and Ashworth, 2017). Epigenetic silencing may phenocopy these DNA 

events.
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The Cancer Genome Atlas (TCGA) DNA Damage Repair Analysis Working Group (DDR-

AWG) used newly standardized Pan-Cancer Atlas (PanCanAtlas) data to systematically 

analyze potential causes of loss of DDR function and the resulting consequences across 33 

different human cancer types. The loss of specific DDR pathways in cancer, in contrast to 

other cellular “hallmarks” of cancer (Hanahan and Weinberg, 2011), often generates stable

—and thus more readily interpretable—”footprints” in cancer genomes, detected as an 

increased mutation burden, altered mutational signatures, or copy-number alterations 

including loss of heterozygosity (LOH). We provide below the most comprehensive analysis 

to date of DDR pathway gene alterations and their consequences in human cancer. Our 

results provide a useful resource to guide both mechanistic and therapeutic analyses of the 

role of DDR in cancer.

RESULTS

We performed analyses with a curated list of 276 genes encompassing all major DNA repair 

pathways: 208 genes were annotated to one or more specific DDR pathway, with an 

additional 68 genes annotated to key DDR-related pathways such as nucleotide pool 

maintenance (e.g., RRM1/2, the regulatory and catalytic subunits of ribonucleotide 

reductase); critical DNA damage response kinases (e.g., ATM, ATR, CHEK1/2, and WEE1); 

and genes recurrently mutated in cancer that modulate DDR (e.g., TP53, IDH1, and PTEN). 

We defined a “core DDR” gene set of 71 DNA repair pathway-specific and 9 DNA damage 

response genes that were used to facilitate parsimonious pathway representations and 

analyses (Table S1; Figures S1A and S1B).

Prevalent DDR Alterations across Cancer Types

We first determined the prevalence of DDR alterations across PanCanAtlas cancer types by 

integrating data on somatic truncating and missense mutations (Figures S1C and S1D), deep 

copy-number deletions defined by GISTIC (Mermel et al., 2011), and epigenetic silencing 

events. Binary calls for each event class for the 276 DDR genes across 9,125 PanCanAtlas 

samples are available through Data and Software Availability. The frequency of these 

somatic DDR gene alterations is shown in Figures 1A–1C (core DDR genes) and Figures 

S1E–S1G (all 276 DDR genes). For a complete list of TCGA cancer type abbreviations, 

please see https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-

abbreviations. Cancer types with a higher global mutation burden (e.g., in UCEC [uterine 

corpus endometrial carcinoma], COAD [colon adenocarcinoma], and READ [rectum 

adenocarcinoma] cancers) also had a higher mutation frequency in DDR pathways. 

Similarly, cancer types with a large number of somatic copy-number alterations (SCNAs; 

e.g., OV [ovarian serous cystadenocarcinoma], SARC [sarcoma], ESCA [esophageal 

carcinoma], and STAD [stomach adenocarcinoma]) also had a larger number of SCNAs in 

DDR pathways.

Pathway enrichment analysis based on the core DDR gene list revealed several DDR 

pathways that were statistically enriched for alterations within a specific cancer type, e.g., 

HR pathway alterations in OV and BRCA (breast invasive carcinoma) cancers (Figure 1A). 

Nearly three-quarters (20/28, 71%) of associations among DDR pathways and cancer types 

Knijnenburg et al. Page 5

Cell Rep. Author manuscript; available in PMC 2018 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations


were also observed using our more inclusive DDR gene set (Figure S1E). Some DDR genes 

were affected predominantly by one type of alteration, e.g., ALKBH3 and MGMT by 

epigenetic silencing. Other genes were altered in two or more ways, e.g., mutations in TP53, 

PTEN, PER1, and BRCA1/2 were frequently accompanied by LOH (Figure 1D). Gene-level 

mutation frequencies varied widely by cancer type and subtype. For example, mutations in 

TP53, PTEN, ERCC5, and IDH1 were highly enriched, while other genes such as SOX4, 

SLX1A, and GTF2H2 were much less frequently mutated (Figure S1J).

We next investigated the association of DDR gene alterations with overall mutation burden. 

It is already well established that cancers with somatic POLE and POLD1 mutations in their 

exonuclease domains or with microsatellite instability (MSI) exhibit a substantially higher 

mutation burden (Barbari and Shcherbakova, 2017; Ionov et al., 1993; Shinbrot et al., 2014; 

Thibodeau et al., 1993). Here, we observed only two DDR genes (TP53 and POLE) that 

demonstrated a substantially different association between alterations and overall mutation 

burden when compared against a background of all other non-DDR genes (Figure S1K).

One intriguing question is whether DDR genes would be identified as cancer drivers using 

mutation frequency-based prediction methods. To address this question, we analyzed 276 

DDR genes in non-hypermutated cancer samples using five driver prediction tools: 20/20+ 

(Tokheim et al., 2016), Mut-Sig2CV (Lawrence et al., 2014), OncoDriveFML (Mularoni et 

al., 2016), MuSiC2 (Dees et al., 2012), and CompositeDriver (https://github.com/

khuranalab/CompositeDriver). Our analysis used data and best practices from the 

PanCanAtlas Drivers/Essentiality Working Group (Bailey et al., 2018) and identified 48 

DDR genes as potential drivers by at least one driver identification algorithm. Among these, 

8 putative DDR driver genes were unique to a cancer type, and 18 were identified only as 

part of a PanCanAtlas analysis. The remaining 23 putative drivers were identified in 

analyses of one or more individual cancer type as well as in PanCanAtlas analyses (Table 

S2). These identifications are intriguing, though tentative in light of the challenge of 

identifying drivers against a background of biological heterogeneity. For example, TCEB1, 

which forms a complex with VHL, was identified as a prominent driver gene in KIRC 

(kidney renal clear cell carcinoma) (Sato et al., 2013).

In order to assess potential genomic consequences of DDR gene alterations, we performed a 

mutation signature correlation analysis focusing on loss-of-function alterations in the 48 

genes we identified as putative cancer drivers (Table S2). This analysis used 21 mutational 

signatures derived by the PanCancer Signature group (Covington et al., 2014). Significant 

associations are displayed in Figure S2A. We confirmed that mutational signature #19 

(POLE signature, corresponding to COSMIC [Catalog of Somatic Mutations in Cancer] 

signature #10) is increased by over 4-fold in POLE-altered cancers (p = 1.0e–6) at the 

PanCanAtlas level, and in UCEC with greater significance (fold change = 10.1 and p = 4.8e–

7, Figure S2B). We also confirmed the association of signature #15 (temozolomide 

signature, corresponding to COSMIC signature #11) with MGMT alterations (Figure S2C).

Frequent Epigenetic Silencing of DDR Genes and Pathways

Epigenetic silencing was identified as an alternative prominent mechanism leading to 

recurrent gene deficiency. Stringent calling criteria (detailed in STAR Methods) led to the 
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identification of 12 DDR genes exhibiting strong and consistent methylation-driven 

transcriptional silencing (Figures 2A and 2B). The most frequently silenced DDR genes 

were core DR (direct repair) pathway genes MGMT (11% of all the samples) and ALKBH3 
(8%), followed by the core MMR genes MLH3 (5%) and MLH1 (4%) (Figure 2C). 

Epigenetic silencing was less often observed for genes in the HR and FA pathways, e.g., 

BRCA1, RAD51C, NSMCE3, and FANCF. Methylation silencing was the dominant 

alteration in MGMT (92.4% of all alterations) and was significantly associated with 

signature #15 through mutation signature analysis (Figure S2C).

The high frequency of EXO5 silencing (94.5% of all EXO5 alterations) was both 

unexpected and intriguing. Loss of function of this single strand-specific DNA exonuclease 

sensitizes cells to DNA base adduct and crosslink damage and UV, but not ionizing 

radiation, and leads to chromosomal instability (Sparks et al., 2012). EXO5 silencing was 

frequent in GBM (glioblastoma multiforme) (~46%) though not in LGG (brain lower grade 

glioma) (~4.5%) (Figure 2D). When broken down by cancer subtype, EXO5 silencing was 

exclusively observed in IDH wild-type GBM and LGG (50% and ~27%, respectively) and in 

a small fraction of HNSC (head and neck squamous cell carcinoma) human papillomavirus 

(HPV)-negative cancers (~4%). Other cancer subtypes with a high frequency of EXO5 
silencing included STAD (HM-indel, i.e., MSI, ~57% and Epstein–Barr virus [EBV]-

positive ~57%), HM-indel, i.e., MSI, COAD (44%), CIN (chromosomal instability) ESCA 

(~29%), and MSI UCEC (~28%) (Figure 2E). Of note, both EBV-positive (Cancer Genome 

Atlas Research Network, 2014) and MSI (Cancer Genome Atlas Network, 2012; Kandoth et 

al., 2013) cancer subtypes have been tightly linked to an extensive CpG island methylator 

(CIMP) phenotype (Hinoue et al., 2012; Toyota et al., 1999), whereas IDH wild-type, CIN, 

and HPV-negative cancer subtypes were not CIMP associated. Furthermore, EXO5 
deficiency was significantly linked to signature #1 (Figure S2E). The consistent observation 

of EXO5 silencing in IDH wild-type brain cancers suggests EXO5 may play a role in the 

pathogenesis of subsets of these cancers.

Frequencies of epigenetic silencing also varied at the pathway level, as defined by silencing 

of at least one gene in a pathway. Frequent silencing of core DR, HR, and MMR pathway 

genes was observed in gastrointestinal cancers (ESCA, COAD, STAD, and READ), HNSC, 

and GBM (Figure 2D). We also observed frequent DR pathway silencing in DLBCL 

(lymphoid neoplasm diffuse large B cell lymphoma) and in UCEC (with MGMT + 

ALKBH3 silencing in >60% or >40%, respectively). SKCM (skin cutaneous melanoma), 

ACC (adrenocortical carcinoma), LGG, and UCEC were characterized by a high frequency 

of MMR pathway silencing, whereas OV, UCS (uterine carcinosarcoma), CESC (cervical 

squamous cell carcinoma and endocervical adenocarcinoma), and TGCT (testicular germ 

cell cancers) all showed high-frequency DR and HR pathway silencing that was reflected in 

altered gene expression data (Figures S3A and S3B) and in limited reverse-phase protein 

array (RPPA) data on 23 DDR genes (Figures S3C–S3E).

Genomic Instability Linked to HR Deficiency and Prognosis

We observed positive correlations among six different SCNA scores that were used to 

characterize the extent of aneuploidy, LOH, and homologous recombination deficiency in 
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PanCancer Atlas samples (Figure 3A). We also found moderate, statistically significant 

positive correlations between mutation burden and SCNA scores, contrary to a previously 

reported inverse correlation between SCNA and mutation frequency in 12 cancer types 

(Ciriello et al., 2013). A likely explanation for this discrepancy is our use of a much larger 

and more inclusive set of samples across more cancer types and including all mutation and 

SCNA data, as opposed to the restricted subset of ~500 selected functional events as in the 

previous study. SCNA burden (determined from the frequency of SCNA segments) and 

mutation burden (measured as non-silent mutations per Mb) were positively correlated 

across all PanCanAtlas samples (ρ = 0.36, p < 1e–16, Figure S4A), while hypermutated 

samples and hypersegmented samples were largely mutually exclusive.

Genomic scarring with large-scale genome instability has been attributed to homologous 

recombination deficiency (HRD) (Watkins et al., 2014). We calculated a HRD score, 

combined from HRD-LOH (Abkevich et al., 2012), LST (large-scale state transitions) 

(Popova et al., 2012), and NtAI (number of telomeric allelic imbalances) scores (Birkbak et 

al., 2012), for all PanCanAtlas samples using SCNA calls generated from ABSOLUTE 

(Figure S4B). This analysis also substantially extends earlier analyses using 15 cancer types 

(Marquard et al., 2015). HRD scores varied widely across cancer types, with the highest 

scores in ovarian cancer (OV) and the lowest in KICH (kidney chromophobe), KIRP (kidney 

renal papillary cell carcinoma), LAML (acute myeloid leukemia), and THCA (thyroid 

carcinoma). Many cancer types also had small subsets of samples with high HRD scores.

HRD scores were significantly associated with progression-free interval (PFI) in eight 

cancer types (Figures 3B and 3C). Higher HRD scores were often associated with shorter 

PFI (Figure 3C). Notable exceptions were higher HRD scores associated with better clinical 

outcomes in GBM and OV (Figure 3C), and with overall survival in OV (Figures S7B and 

S7C). This may reflect the use of potent, DNA-damaging platinum-based compounds as 

standard-of-care therapy for OV (Figure S7) (Mills et al., 2016). The association of a higher 

HRD score with better outcomes in GBM may be linked to IDH mutations. These have been 

associated to higher HRD (data not shown; Sulkowski et al., 2017) and better outcomes 

(Brat et al., 2015) than IDH wild-type GBM cancers. We identified additional contributions 

of DDR gene alterations to HRD scores by using a Bayesian ridge regression to model HRD 

scoring as a function of DDR gene alterations while controlling for cancer type as a 

covariate (Table S3). This analysis, performed in 8,464 samples, excluded potentially 

confounding POLE mutants and MSI-high cancers (Figures 3B–3D).

HR pathway genes with significant positive HRD associations included BRCA1, BRCA2, 

RAD51B, and RAD51C. BRCA1 alterations had the largest positive weight for predicting 

higher HRD scores. Alterations in either BRCA1 or RAD51B increased HRD score in most 

cancer types including the top two cancer types with the greatest number of alterations in 

either gene (Figure 3E). TP53 alterations were also associated with higher HRD scores, 

consistent with previous observations of a higher SCNA burden in TP53-mutated cancers 

(Ciriello et al., 2013). Other alterations in several MMR and NER genes had significant 

negative associations with HRD score, e.g., MLH1, TCEB3, and MSH2, suggesting a 

potential mutually exclusive relationship between HR and MMR or NER deficiencies.
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Gene fusions with the potential to disrupt DDR function were identified using ChimerDB 

3.0 (Lee et al., 2017) and TCGA Fusion Gene Data Portal (Yoshihara et al., 2015) then 

manually checked for read alignments to identify 188 high-confidence fusion events that 

involved 108 DDR genes in 205 cancer samples (Figure S4C). The most frequently affected 

DDR genes were SMARCA4, PTEN, RAD51B, and SMARCA1 (Figure S4D). A majority 

of the fusions, including 18 in HR and 5 in MMR genes, had breakpoints in DDR functional 

domains that were predicted to disrupt function with readily predictable therapeutic 

consequences, e.g., for the HR gene fusions involving RAD51B and BRCA1 (Figure S4E). 

Fusions also often had multiple partners, as well as breakpoints: e.g., RAD51B had three 

recurrent breakpoints with five different fusion partner genes (CEP170, ENOX1, NPC2, 

ZFYVE26, and PCNX) (Figure S4F).

Protein Structure Modeling of Recurrent DDR Mutations

We further examined potential functional consequences of relatively rare, recurrent 

mutations in 22 DDR genes by protein structural analyses and modeling. These included 

MGMT, PARP1, TOP3A, BLM, ERCC2, HFM1, POLE, POLD1, and POLQ, which 

collectively harbored 1,380 unique rare, recurrent non-synonymous mutations. Many of 

these mutations were found at domain interfaces or along solvent-accessible surfaces, and a 

substantial fraction (n = 370 or 26.8%) were predicted to be strongly destabilizing (ΔΔGfold 

≥ 3 kBT) (Figures 4A and 4B; Figure S5). An additional small number (n = 26 or 1.9%) 

were predicted to be strongly stabilizing (ΔΔGfold ≤ −3kBT) and thus might affect function 

by restricting protein conformational changes (Figure 4C).

POLE exonuclease domain mutations are positively associated with a higher mutation 

burden (p = 0.02) and negatively associated with SCNA burden (p = 0.006). Structure-based 

modeling predicted an additional subset of POLE mutations that may destabilize POLE 

structure and reduce catalytic efficiency. In similar fashion, most MGMT somatic mutations 

are likely to affect MGMT activity by destabilizing protein structure. Molecular dynamics 

simulations of a subset of mutations (n = 86) in six proteins (POLE, POLD1, POLQ, 

ERCC2, HFM1, and BLM) revealed many additional mutations that were not predicted to be 

destabilizing but did alter protein dynamics (Figure S5). Thus, molecular modeling and 

protein dynamics in concert may reveal mechanisms by which somatic mutations alter DDR 

protein function.

In order to link other destabilizing DDR mutations to genomic instability, we compared both 

mutation and SCNA burden scores for genes with predicted strongly destabilizing versus 

non-destabilizing mutations (Figure 4D). The majority of predicted destabilizing mutations 

showed a positive association with either higher mutation and SCNA or mutation burden 

scores. Many genes displayed an inverse relationship between these two burden scores, with, 

e.g., destabilizing mutations in POLB associated with higher mutation and lower SCNA 

burden, whereas destabilizing PARP1 mutations were associated with lower mutation and 

higher SCNA burden (Figures 4D–4F). Thus, predicted destabilizing mutations may be 

directly influencing downstream burden scores by altering or abolishing DDR function.
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Machine-Learning-Derived Expression Signature Predicts TP53 Inactivation

The loss of TP53 function across many cancer types has significant functional consequences 

as measured by genomic instability in association with a higher SCNA burden and increased 

HRD scores (Figures 1D and 3D). Cancer-associated TP53 mutations may promote these 

consequences through simple loss of function, as well as by altering transcription or through 

dominant-negative, gain-of-function mechanisms (Bouaoun et al., 2016; Kastenhuber and 

Lowe, 2017; Olivier et al., 2010; Pfister and Prives, 2017; Stracquadanio et al., 2016). A 

subset of these consequences can also be phenocopied by other genomic alterations. In order 

to better predict the consequences of TP53 inactivation and identify potential phenocopies of 

TP53 loss, we constructed a TP53 classifier that predicts inactivation status from RNA 

sequencing expression data, adjusted for cancer type and mutation burden (details in STAR 

Methods), then used this to analyze cancer types with comparable numbers of TP53 
alterations. The resulting classifier was highly sensitive and specific (Figure 5A), and when 

trained using PanCanAtlas data, it outperformed individual cancer models in 14 out of 19 

cases (Figures S6A and S6B).

Individual weights of the TP53 classifier identified 10 top negative-weighted genes, of 

which 9 are confirmed TP53 target genes (Kastenhuber and Lowe, 2017) (Figure 5B). The 

remaining gene, MPDU1, may have been identified by virtue of being located ~80 kb 

downstream of TP53 and thus sensitive to TP53 copy loss. Of note, our classifier was able to 

predict TP53 deficiency independent of cancer type with a high AUROC (area under the 

receiver operating characteristic curve; 0.94), and in samples initially removed from training. 

These included cancer types with few TP53 events (THCA and UVM [uveal melanoma] 

cancers), as well as those dominated by TP53 events (OV and UCS cancers) (Figures S6C–

S6F). The classifier was also able to distinguish TP53 mutant from wild-type BRCA and 

UCEC, with nearly all basal-subtype BRCA cancers predicted to be TP53 deficient (Figures 

S6G and S6H). An analogous approach has been used to predict RAS pathway activation in 

PanCanAtlas cancers (Way et al., 2018).

The classifier enabled the identification of phenocopying mutations both in TP53 and in 

other functionally related genes. Consistent with previous pan-cancer analyses (Zack et al., 

2013), we observed that predicted TP53 loss-of-function samples, including cancers with 

synonymous TP53 c.375G>T mutation, had an increased SCNA burden when compared 

with wild-type samples (Figure 5C). This synonymous mutation may act by altering a splice 

donor to produce alternatively spliced transcripts that compromise TP53 function (Collado-

Torres et al., 2017). Samples with c.375G>T or c.375G>A mutations were also enriched for 

a 200 base pair truncation in exon 4 when compared with wild-type TP53 samples (OR 

[odds ratio] = 61.9, p < 2.2e–16). This mutation/truncation pairing was previously observed 

in a pancreatic cancer cell line and as a SNP (rs55863639) likely pathogenic for Li-

Fraumeni syndrome (Leroy et al., 2014).

Significantly increased classifier scores were also noted for cancers with MDM2 copy-

number amplification and CDK2NA copy-number deletion in an analysis including only 

non-hypermutated cancers without deleterious TP53 mutation (Figure 5D). We had observed 

a copy-number dosage effect for CDK2NA copy-number deletions, where loss of the 

CDKN2A-encoded P14ARF protein can phenocopy TP53 alterations (Sherr, 2001). Among 
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eight other tested genes, MDM4 and PPM1D copy-number amplification and ATM and 

CREBBP gene mutations were associated with increased TP53 classifier scores, while ATR, 

CHEK1/2, or RP6SKA3 mutations were not (Figure 5E). These results suggest the general 

utility of this approach, even in circumstances where a diversity of molecular events and 

potential downstream consequences might occur.

DDR Alterations Are Associated with Clinical Outcomes

We computed multiple DDR footprint scores based on quantitative estimates of DNA 

damage and investigated their association with clinical outcomes. These aggregated 43 DDR 

footprint scores such as mutation burden and copy-number burden and extended other 

published scores, e.g., repair proficiency scoring (RPS) (see Data and Software Availability 

for per-sample estimates). We tested DDR footprint score associations with overall survival 

(OS) and progression-free interval (PFI) across 28 cancer types by fitting Cox proportional 

hazards models, using survival outcome data generated by Liu et al. (2018).

SCNA-based scores were more strongly associated with survival outcomes, compared with 

mutation- and expression-based DDR footprint scores (Figure S7A). LOH burden (number 

of genomic segments with LOH), combined HRD score, and HRD component scores (HRD-

LOH [Abkevich et al., 2012], LST [Popova et al., 2012], and NtAI [Birkbak et al., 2012]) 

were significantly associated with OS and PFI for six to ten cancer types (ACC, BRCA, 

ESCA, GBM, KIRP, MESO [mesothelioma], PRAD [prostate adenocarcinoma], OV, UCEC, 

and UVM) (Figure S7B). In all but two cancer types (GBM and OV; Figures 3B and 3C), 

higher HRD or LOH burden scores were associated with poorer prognosis (Figure S7B). 

These associations remained statistically significant in multivariate Cox proportional hazard 

models after accounting for known covariates such as patient age, cancer type, and stage 

(Figure S7C).

Fewer mutation-based associations with clinical outcomes were identified: e.g., a high 

mutation burden was associated with better prognosis in UCEC and STAD cancers, but 

worse prognosis in LGG and ACC cancers (Figure S7C). Of note, expression-derived DDR 

footprint scores (e.g., expression Cumulative Density Function trAnsform of Rank 

Distribution or eCARD scores [Zimmermann et al., 2016]) derived for a single cancer type 

(OV) had significant prognostic associations in 7 cancer types for OS and for 6 cancer types 

for PFI (Figure S7A) that were the opposite of associations observed in OV and STAD 

(Figure S7B). Low repair proficiency scores were associated with a worse OS as previously 

reported (Pitroda et al., 2014), though for PFI in only a subset of cancer types (Figure S7B). 

These associations between DNA damage consequences and survival across 28 human 

cancer types confirm previously reported survival associations and provide a rationale for 

extending these analyses to additional cancer types.

DISCUSSION

We used TCGA PanCanAtlas data to systematically analyze the prevalence, nature, and 

consequences of DDR gene and pathway alterations across 9,125 samples representing 33 

different cancer types. DDR gene alterations were ubiquitous: approximately 1/3 of TCGA 

PanCanAtlas cancer types showed significant enrichment of somatic mutations in DDR 
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genes, often accompanied by SCNA/LOH events. The functional consequences of these 

alterations could often be readily inferred. For example, the HR pathway was altered in 

nearly 40% of cancers, e.g., in BRCA1/2-mutated ovarian and triple-negative breast cancers, 

where HR is a key determinant of platinum chemotherapy as well as PARP inhibitor 

response.

DNA methylation-dependent epigenetic silencing was also surprisingly frequent—though 

more variable—than mutation or deletion calls and encompassed one-third of TCGA cancer 

types. Nearly three-quarters (20 of the 28, or 71%) of statistically significant associations 

observed using our comprehensive annotation of DDR pathways (Figure S1E) were driven 

by silencing of genes in the MMR, HR, and DR pathways. Some of the recurrently silenced 

genes we identified have been previously identified, e.g., MGMT (Esteller et al., 1999), 

MLH1 (Cancer Genome Atlas Research Network, 2014; Kuismanen et al., 2000; Simpkins 

et al., 1999), MLH3 (Lhotska et al., 2015), BRCA1 (Esteller et al., 2000), and HLTF 
(SMARCA3) (Moinova et al., 2002). Epigenetic silencing of DR pathway genes in 

gastrointestinal, central nervous, and lymphoid cancers were all associated with a high 

mutation burden.

We also identified new, epigenetically silenced genes including DDB2 and EXO5. DDB2 is 

a NER pathway gene necessary for UV damage repair, whereas EXO5 (DEM1) is a little-

studied single-stranded exonuclease that has been linked to genetic instability and DNA 

damage hypersensitivity especially to DNA crosslinking agents (Sparks et al., 2012). These 

findings highlight the role of epigenetics in shaping the DDR deficiency landscape in cancer 

and may provide useful biomarkers for enhanced response to, e.g., alkylating agent therapy. 

Three additional significant pathway enrichments were also identified when we excluded 

epigenetic silencing: the DR pathway in LGG cancers, the NER pathway in BLCA (bladder 

urothelial carcinoma) cancers, and the BER pathway in LIHC (liver hepatocellular 

carcinoma) cancers (Data and Software Availability).

Analyses of loss-of-function alterations within DDR pathways identified co-occurring 

alterations (largely consisting of mutations and epigenetic silencing) in the MMR pathway in 

UCEC and STAD cancers, though no pathway by cancer-type-specific, mutually exclusive 

combinations. We found little evidence for somatic mutation co-occurrence between MMR 

and NER pathways (Figure S1H), or MMR and HR pathways (Figure S1I). MMR and NER 

can repair DNA base pair mismatches, bulky DNA base damage, and small DNA loops. 

Thus, the loss of both MMR and NER might markedly sensitize cancer cells to alkylating 

agent therapy and provide a starting point to identify effective treatment combinations 

(Srivas et al., 2016). Of note, 1/5 (22%) of DDR genes participate in more than a single 

DDR pathway (Table S1; Figures S1A and S1B). Thus, alteration of these “pathway-

promiscuous” DDR proteins may have a disproportionately large effect on genomic 

instability.

The detailed understanding of DDR genes and pathways provides immediately plausible 

mechanisms by which many DDR gene alterations might increase specific mutation types, 

as well as overall mutational burden. Mutational signature analyses provide a second way to 

identify potential mutation sources and mechanisms (Alexandrov et al., 2013; Rogozin et al., 
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2017). For example, we found a previously undefined signature 8 was strongly associated 

with BRCA deficiency, especially BRCA1 (Figure S2D). EXO5 deficiency, identified here 

as an often epigenetically silenced DDR gene, was associated with signature 1 across 

multiple cancer types (Figure S2E) and has been associated with poor clinical outcomes 

(Gingras et al., 2016; Totoki et al., 2014). Co-occurrence plots of mutations and SCNA/LOH 

for the top 50 mutated DDR genes in TCGA samples (Figure 1D) and genome-wide DNA 

damage scores that further encompass LOH and aneuploidy (Figure 3A) suggest the 

potential for additional complex interactions among DDR gene alterations.

We extended the insights gained from analyzing the type and distribution of DDR gene 

alterations in cancer by using additional approaches. For example, a combination of protein 

structural modeling and molecular dynamics simulations were used to predict the functional 

consequences of rare, recurrent nonsynonymous mutations in 22 DDR genes. We found that 

POLD1 mutations, despite being less common than the POLE or POLQ mutations that 

contribute to hereditary colorectal cancer risk (Bellido et al., 2016) and the hypermutated 

phenotype (Briggs and Tomlinson, 2013; Church et al., 2013), were as strongly associated 

with genomic instability. Molecular dynamics simulations further identified a subset of DDR 

gene mutations with the potential to alter protein conformational changes independent of 

effects on protein stability (Figure S5), raising the provocative question of whether 

destabilizing mutations alone contribute to genomic instability in cancer.

A second extension of PanCanAtlas genomic data was to use machine learning to predict 

TP53 inactivation status from gene expression data. This approach identified both TP53 
mutant and TP53 mutant phenocopies, as well as potential TP53 tissue-specific roles in, e.g., 

ESCA and CESC cancers. This approach was developed using TP53 but is general and thus 

could be applied to other DDR genes. These and additional approaches may have their 

greatest value in annotating rare mutations where there may be few or no clinical or 

experimental data from which to predict mutation functional consequences.

In light of the central role played by DDR pathways in ensuring cell survival after DNA 

damage, we reasoned that DDR deficiency scores might be broadly predictive of both 

therapeutic response and clinical outcomes. When tested against PanCanAtlas survival data 

encompassing 28 cancer types (Liu et al., 2018), we identified associations among most 

DDR footprint scores and clinical outcomes after controlling for covariates such as age, 

cancer grade, and stage (Figure S7). These associations were consistent in linking a high 

mutation burden or genomic instability with worse clinical outcomes across almost all 

cancer types. We also identified HRD-high cancers including subsets of ovarian, uterine, 

lung squamous, esophageal, sarcoma, bladder, lung adenocarcinoma, head and neck, and 

gastric carcinomas. Virtually all of these subsets of cancers may have enhanced 

responsiveness to platinum-based compounds that are given as standard-of-care therapies. 

This extends the recognition of a bimodal distribution of HRD scores in breast and ovarian 

cancers and the enrichment of BRCA1/2 mutant or methylated cancers among HRD-high 

cancers that are more likely to respond to platinum-containing therapy (Telli et al., 2016). 

These results indicate the potential of HRD scoring to predict both platinum response and 

PARP inhibitor sensitivity.
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The high frequency of DDR gene and pathway alterations in TCGA PanCanAtlas cancer 

samples identifies opportunities to improve cancer therapy. For example, HR defects are 

common in many cancer types and may compromise successful DNA replication and 

genome stability (Macheret and Halazonetis, 2015; Zeman and Cimprich, 2014). Thus, 

combination therapies that induce or potentiate replication stress or impair replication fork 

protection may be particularly effective in killing HR-deficient cancers (Ray Chaudhuri et 

al., 2016; Rondinelli et al., 2017; Taglialatela et al., 2017).

The many different cancer types that show epigenetic silencing of DR pathway genes such 

as MGMT and ALKBH3 may be especially vulnerable to types of DNA damage normally 

repaired by these proteins (Soll et al., 2017; Wang et al., 2015). DDR pathway deficiencies 

are also mechanistically linked to mutation burden and mutational diversity. Thus, DDR 

pathway deficiencies in cancer may potentiate immune-based therapies by driving 

neoantigen production to enhance immune recognition and targeting (Balachandran et al., 

2017; Germano et al., 2017; Le et al., 2017) and thus may identify subsets of patients with a 

higher likelihood of responding to immune-based therapies.

Our analysis of DDR pathways across the 9,125 cancers of 33 types included in 

PanCanAtlas data identified associations among genomic data types; confirmed and 

extended several previously reported findings; and provided insight into the mechanistic 

origins and consequences of DDR deficiency in cancer. These results collectively reinforce 

the importance of DDR gene function in shaping cancer risk, progression, and therapeutic 

response.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

● KEY RESOURCES TABLE

● CONTACT FOR REAGENT AND RESOURCE SHARING

● EXPERIMENTAL MODEL AND SUBJECT DETAILS

● METHOD DETAILS

○ DNA Damage Repair Pathway Curation

○ Alteration summary for DDR pathways across cancer types

○ Filtering and functional annotation of somatic mutations in DDR genes

○ DDR gene epigenetic silencing events

○ Determination of deep deletions of DDR genes and SCNA-based DDR 

scores

○ Computation of homologous recombination deficiency (HRD) scores

○ Ridge Regression Analysis

○ Survival Analysis
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○ Curation and Examination of DDR Fusion Events

○ Generating Protein Structural Models at Atomic Resolution

○ Molecular Dynamics Simulations

○ In-silico expression-based predictor of TP53 inactivation

● DATA AND SOFTWARE AVAILABILITY

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for additional analysis details should be directed to and 

will be fulfilled by the Lead Contact: Chen Wang (wang.chen@mayo.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used TCGA PanCanAtlas cancer samples defined by the whitelist commonly agreed 

upon by TCGA Analysis Working Groups (AWGs) (Data and Software Availability) for all 

analyses. These 9,125 samples encompassed 33 different histopathologic cancer types 

representing most major classes of human adult cancer. Some analyses were performed for 

32 cancer types, with a 33rd type, AML (LAML) excluded in selected analyses as indicated. 

While a complete analysis of this cohort’s overall demographics are beyond the scope of this 

paper, relevant demographic factors such as biologic gender, patient age and disease 

characteristics were accounted for and are noted when reporting the results of specific 

analyses.

METHOD DETAILS

DNA Damage Repair Pathway Curation—DNA damage repair (DDR) gene list 

including 276 genes was assembled from relevant gene lists including MSigDB v5.0 (see 

Key Resources Table) an online catalog of DDR genes from recently published resources 

(Pearl et al., 2015; Key Resources Table), and knowledge-based curation of information on 

specific DNA repair pathways or subpathways (see, e.g., (Bell and Kowalczykowski, 2016; 

Kowalczykowski, 2015) on HR and HR-associated subpathways). Three-quarters (n = 211, 

76%) of these 276 genes encompassed nine major DDR pathways: base excision repair 

(BER), nucleotide excision repair (NER), mismatch repair (MMR), the Fanconi anemia (FA) 

pathway, homology-dependent recombination (HR), non-homologous DNA end joining 

(NHEJ), direct damage reversal/ repair (DR), translesion DNA synthesis (TLS), and 

nucleotide pool maintenance (NP)(Brown et al., 2017; Friedberg et al., 2004; Jeggo et al., 

2016; Pearl et al., 2015; Tubbs and Nussenzweig, 2017). The remaining 65 genes have been 

linked to more than one DDR pathway, or coordinate cellular and molecular responses to 

DNA damage, and thus may represent an important focus for DDR pathway-associated 

therapeutic development (Brown et al., 2017; Pearl et al., 2015). The complete gene list is 

contained in Table S1.

Alteration summary for DDR pathways across cancer types—In order to provide 

a comprehensive overview of alterations in DDR genes, we combined three data sources of 
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binary alteration calls in terms of loss-of-function events: 1). Deleterious mutations from 

exome sequencing; 2). Deep deletions from GISTIC calls; and 3). Epigenetic silencing 

through methylation versus expression analysis. Aggregation of the three data types and 

integration with whitelisted samples resulted in binary calls across 9,125 samples (see Data 

and Software Availability).

Overall alteration scores were computed by merging three binary calls, i.e., a sample was 

called altered for a gene if it was mutated, deleted and/or epigenetically-silenced. A sample 

was called altered for a DDR pathway if at least one gene in the pathway was altered. A 

permutation test was performed to analyze whether the alteration percentages in the DDR 

pathways were enriched or depleted (higher or lower than expected) using a null model, for 

which the genes were randomly assigned to each of the pathways. A gene-pathway graph is 

used to denote gene to pathway membership relationship. A total of 1,000,000 permuted 

gene-to-pathway graphs were generated using Birewire (Gobbi et al., 2014) Permuted 

alteration percentages were then compared to the actual percentages using the standard 

permutation test (Knijnenburg et al., 2009, 2011). Additionally, we analyzed whether 

alterations of different types tended to be mutually exclusive or co-occurring. For each 

combination of a cancer type and DDR pathway, we have three binary vectors that indicate 

for the samples of that cancer type whether at least one gene in a DDR pathway was 

mutated, deleted or silenced. These vectors were randomly permuted 100,000 times, after 

which the original alteration percentage is compared with the permuted percentages.

Filtering and functional annotation of somatic mutations in DDR genes—A 

total of 313,497 somatic mutations in 276 curated DDR genes were selected from the MC3 

MAF (v0.2.8) and underwent the following stepwise filtering process (Figure S1C). In brief, 

“PASS” filter mutations were selected and supplemented manually with mutations called in 

whole-genome amplified (wga) samples and by gap-filler assays that were not marked with 

the “PASS” filter tag. Mutations with low mutant allelic fractions and mutations had a low 

variant coverage were then removed. Thereafter, common variants reported in ExAc, the 

Phase-3 1000 Genomes Project or in the ESP6500 databases were removed. The intronic 

mutations, the mutations in 3′ or 5′ UTR regions or UTR flanking regions, silent 

mutations, and small, in-frame insertions and deletions were also removed. Mutations were 

removed if samples were duplicate-sequenced, marked as PanCanAtlas “Do not use” 

samples, or not included in the MC3 exome bam free best pairing samples. Approximately 

89% of raw mutation calls were filtered out by this process, leaving a final list of 279,002 

mutations that were used for further analysis.

To estimate the probability of missense mutations being damaging, we further annotated 

these missense mutations using six commonly used functional prediction algorithms (Figure 

S1D): PolyPhen-2 (Adzhubei et al., 2013), SIFT (Kumar et al., 2009), Mutation Taster 

(Schwarz et al., 2014), Mutation Assessor (Reva et al., 2011), LR and LRT (Chun and Fay, 

2009). The missense mutations that were called as “deleterious” or “damaging” by four or 

more algorithms were defined as “deleterious” mutations. TP53 hotspot mutation 

substitutions such as R175H and R273H that didn’t meet this threshold were manually 

rescued.

Knijnenburg et al. Page 16

Cell Rep. Author manuscript; available in PMC 2018 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DDR gene epigenetic silencing events—Illumina Infinium DNA methylation bead 

arrays, including both HumanMethylation27 (HM27) and Human Methylation450 (HM450), 

were used to assay 9,106 cancer samples (i.e., 8,586 primary solid cancers, 361 metastatic 

cancers and 159 blood malignancies) across 33 different cancer types, together with 1,066 

adjacent normal samples. We excluded 19 normal prostate samples for potential label 

switching as identified by the Working Group and confirmed by pathology re-review. An 

external HM450 brain dataset containing 58 sorted neuronal and glial cells (Guintivano et 

al., 2013) from post-mortem frontal cortex of normal individuals was introduced as a normal 

control as GBM had only two adjacent normal samples, as were 60 sorted blood samples 

from 6 healthy individuals examined by HM450 (Reinius et al., 2012)). Data from HM27 

and HM450 were then combined and normalized using a probe-by-probe proportional re-

scaling method to yield a common set of 22,601 probes with comparative methylation levels. 

Briefly, we modeled the difference between HM27 and HM450 by two different technical 

replicates (TCGA-07-0227/TCGA-AV-A03D, measured 44/198 times and 12/169 times on 

HM27 and HM450, respectively), and applied a proportional rescaling method to remove 

platform effects.

Probes located within potential promoter regions (upstream and downstream 1500bp 

flanking regions of Transcription Start Sites (TSSs) of all annotated transcripts by UCSC) of 

the 276 DDR genes were examined for evidence of epigenetic silencing. We started with 

such probes that are consistently unmethylated (median beta value < 0.2) in each of the 

normal tissue types as well as sorted blood cells. Within each cancer type, for each probe/

gene pair, the gene expression was first Z-score transformed using the mean and standard 

deviation calculated with the unmethylated cancer samples (i.e., sample with a beta value of 

(0, 0.1)). Samples across all cancer types were then pooled together. We chose the probes 

that exhibited epigenetic silencing using the following criteria: 1)at least 5 samples were 

observed with a beta value of 0.3 or above (defined as the methylated group); 2) mean Z 

score of the methylated group was lower than −1.65; 3) FDR-corrected p value according to 

one-side t test on Z scores was lower than 1e–2 between unmethylated and methylated 

group; and 4) the maximum beta value of the methylated group was higher than 0.75. Probes 

meeting these standards were retained to summarize epigenetic silencing events at the gene 

level. For genes with only one retained probe, a beta value cutoff of 0.3 was applied to call 

their silencing status, while genes with multiple probes left, the cutoff was relaxed to 0.2 but 

requiring that greater than half of the probes consistently silenced for that gene.

For DDR gene RAD51C, there were no common probes located in the promoter region. 

However, probe cg14837411 on HM27 and probe cg27221688 on HM450 were only 100bp 

apart and both correlated with gene expression. We manually added these back based on a 

beta value cutoff of 0.2 or above and combining both probes to call RAD51C epigenetic 

silencing.

Determination of deep deletions of DDR genes and SCNA-based DDR scores
—Binary deep deletion calls were made using output from a PanCan GISTIC2.0 run on the 

samples (Mermel et al., 2011). GISTIC calls of −2 (indicating a loss of more than half of 

baseline ploidy) were called as deep deletions. Deep deletion calls were transformed into 

binary matrix format and made available in the (see Data and Software Availability).
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The two SCNA burden scores (number of segments and fraction of genome altered) were 

computed using relative copy number segment data (see Data and Software Availability). 

For the first score, we counted the number of segments present in the copy number profile 

for each TCGA sample, and for the second score, we took the percentage of base pairs 

present in the copy number profile for each sample that belonged to segments with either 

greater than 0.1 or less than −0.1 log2 fold-change from baseline ploidy. All SCNA burden 

scores are available in Data and Software Availability.

The aneuploidy score reports the total number of arm-level amplifications and deletions in 

each cancer and was computed using ABSOLUTE (Carter et al., 2012) and an arm-level 

clustering algorithm, as described in Taylor et al. (2018). The two LOH scores (total number 

of segments with LOH events and fraction of genome containing LOH events) were 

computed directly using output from ABSOLUTE (Carter et al., 2012). All aneuploidy and 

LOH scores are available online (see Data and Software Availability).

Computation of homologous recombination deficiency (HRD) scores—We 

calculated HRD scores following previous published 3 components of HRD/genome 

scarring scores: HRD-LOH (Abkevich et al., 2012), LST (Popova et al., 2012), NtAI 

(Birkbak et al., 2012) and the implementation of a sum of the three (Marquard et al., 2015). 

Segment LOH and SCNA were generated by TCGA Network Aneuploidy AWG using 

ABSOLUTE (Carter et al., 2012)

Ridge Regression Analysis—Bayesian ridge regression was performed on 276 DDR 

genes using alteration status and encoding tumor type as 33 additional binary variables. 

HRD scores were modeled for 8464 tumor samples (MSI-high and POLE mutant samples 

were excluded from this analysis). Maximally uninformative gamma-distributed priors with 

shape and rate parameters equal to 0.1 were used for the precision of coefficients weighting 

and regularization factor. Coefficient significances were computed by first dividing the 

coefficient values by the square roots of the diagonal elements of the variance-covariance 

matrix of the weights to obtain coefficient t-statistics, and then by performing two-tailed t 

tests with 8326 degrees of freedom on these values. The regression was performed in 

Python-3.6.3 using the linear_model module in scikit-learn-0.19.1.

Survival Analysis—We evaluated clinical outcomes associations using newly developed, 

well-validated clinical data for each cancer type by the PanCanAtlas Survival Working 

Group’s paper and following their recommendations (Liu et al., 2018). Their analysis was 

based on clinical outcomes data from primary sources that were analyzed with extensive 

quality control and validation.

We considered two primary clinical outcomes: overall survival (OS), defined as “the period 

from date of diagnosis until death from any cause”; and progression free interval (PFI), 

defined as “the period from date of diagnosis until the occurrence of an event in which the 

patient with or without the tumor does not get worse.” Within each cancer type, we 

dichotomized the cohort according to the median score of each DNA damage footprint score 

to create two groups (high versus low) for survival comparisons. For a given cancer type, we 

fit univariate and multivariate Cox proportional hazard models using the DDR footprint 
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score group as a predictor. For multivariate models, we considered age, tumor grade, and 

tumor American Joint Committee on Cancer pathology stage as covariates. We divided 

cancer grade into two categories of “low-grade” for grades 1–2, and “high-grade” for 3–4. 

Cancer stages were grouped as “early” for stages I and II, and “late” for stages III and IV. 

Additional covariates such as subtype, gender and race were considered but not used 

because of sparsity or convincing evidence for inclusion. For each set of DDR footprint Cox 

models, we applied the Benjamini-Hochberg correction to control the false discovery rate for 

DNA damage footprint scores.

Curation and Examination of DDR Fusion Events—We downloaded 30,001 fusion 

gene (FG) transcript candidates from the ChimerSeq module of ChimerDB 3.0 (December 

2016) (Lee et al., 2017). By overlapping these putative fusion genes with 276 DDR genes, 

we identified 889 fusions involving 224 DDR genes. Among these, 464 FGs including 173 

DDR genes were derived from TCGA cancer samples. To reduce false positives, we used 

read count information together with FusionScan, TopHat-Fusion, and PRADA. Following 

their filtering criteria, we used fusion transcripts having ≥ 2 seed/junction reads for 

FusionScan and PRADA analyses, and those with ≥ 100 spanning pairs for TopHat-Fusion 

analyses that identified 289 FGs. We were able to augment these with 343 additional FGs 

involving 141 DDR genes by downloading putative FGs from TCGA Fusion Data Portal 

using our 276 DDR genes as a query (September 2016) (Yoshihara et al., 2015). Combining 

these two FG datasets we identified 488 FGs involving 174 DDR genes in 477 cancer 

samples.

We next checked the read alignments for each DDR fusion gene. RNA-seq data of 477 

samples were downloaded using gdc-client. BAM files were processed to obtain unmapped 

reads only using Bowtie2. We created fusion transcript composed of 100 bp sequences 

before and after break points using nibFrag, one of the BLAT Suite of programs. After 

creating a 200 bp length index of each fusion transcript, we aligned the unmapped reads to 

this fusion sequence index, then manually checked the read alignments. If a FG had at least 

one 20nt-20nt seed spanning read at the break point with a stair-shaped mapping of all reads 

we considered this a high likelihood gene fusion. This analysis identified 192 high 

likelihood FGs involving 108 DDR genes in 209 cancer samples.

Generating Protein Structural Models at Atomic Resolution—We began our 

structure-based analysis from UniProt canonical isoform sequences, and searched the PDB 

(Berman et al., 2000) for existing experimental structures. Experimental structures exist for 

human POLQ domains including the DEAD-box, Helicase, Sec63, and polymerase. The first 

three domains were solved in a single crystal structure, 5A9J (Newman et al., 2015). The 

polymerase domain is available in 4X0P (Zahn et al., 2015). We will abbreviate these POLQ 

structures as DHS and Pol, respectively, that together encompass 65% of the POLQ protein. 

No experimental structure exists for full-length human POLE. Thus we utilized the high-

resolution experimental structure from yeast (4M8O (Hogg et al., 2014); 57% sequence 

identity) to generate our initial model (Roy et al., 2010) of the first 1155 amino acids of 

POLE that encompasses the polymerase and exonuclease domains.
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Experimental structures for full-length human POLD1 and HMF1 are also lacking. Thus we 

utilized homology modeling using as templates 3IAY (Swan et al., 2009) (52% identical), 

and 4KIT (Mozaffari-Jovin et al., 2013) (31% identical), respectively. The structure of 

human BLM was taken from 4CGZ (Newman et al., 2015) and TOP3A from 4CGY 

(Bocquet et al., 2014). ERCC2 has been solved (5IVW [He et al., 2016]), but at 94% 

sequence identity. Thus homology modeling was used to update the experimental structure 

to the target wild-type sequence.

The remaining proteins for which we applied molecular modeling (Figure 4)are available in 

the PDB at > 95% sequence identity. We used homology modeling to revert protein to wild-

type sequences and to fill in missing loops. FoldX (Schymkowitz et al., 2005; Van Durme et 

al., 2011) was used to perform in silico mutagenesis and side chain rotamer optimization, 

and to calculate ΔΔGfold for each variant. Results are summarized and visualized in Figure 

4 and Figure S5.

Molecular Dynamics Simulations—In order to provide a detailed assessment for the 

most recurrent variants in selected DDR proteins (n = 86; observed in at least 2 samples for 

POLQ or 3 samples for others), we utilized Generalized Born implicit solvent molecular 

dynamics (MD) simulations, which were carried out using NAMD (Phillips et al., 2005) and 

the CHARMM27 with CMAP (Mackerell et al., 2004) force field. We utilized an interaction 

cutoff of 12Å with strength tapering (switching) beginning at 10Å, a simulation time step of 

1fs, and conformations recorded every 2ps. Each initial conformation was used to generate 2 

replicates that were each independently energy minimized for 10,000 steps, followed by 

heating to 300K over 0.5ns via a Langevin thermostat and a further 6ns of simulation 

generated at 2fs/step with the final 5ns analyzed. Implicit solvation accelerates system 

kinetics due to lack of explicit motion by the solvent required for solute motion. For POLE 

we studied in greater depth the recurrent V411A/D/I/L/M and P286R substitutions. For 

each, 30ns of simulation trajectory was generated after minimization and heating, for each 

variant in triplicate, and the final 20ns analyzed. Across the 6 variants plus the WT, 640ns of 

MD trajectory was generated. All proteins were modeled without substrate (as apo 

structures). In total, 1118ns of MD trajectory was generated and used to better understand 

the differences in effect of different protein variants on dynamics.

All MD trajectories were first aligned to the initial wild-type conformation of each protein 

using Cα atoms. Root Mean Squared Deviation (RMSD) was calculated using Cα atoms. 

Principal Component (PC) analysis was performed in Cartesian space. Analysis was carried 

out using custom scripts, leveraging VMD (Humphrey et al., 1996) and the Bio3D R 

package(Grant et al., 2006). Protein structure visualization was performed in PyMol (The 

PyMOL Molecular Graphics System. Version 1.5.0.3. Schrödinger, LLC) and VMD.

We used wild-type simulations as a benchmark for determining if variants altered the 

intrinsic dynamics of each protein (ΔPC). We first identified the region of PC space sampled 

by the densest 90% of each protein WT simulation (Figure S5). If the median PC coordinate 

for a variant was outside of this region, we considered the variant to have altered the 

activation of the corresponding PC motion. Differences in folding energy were classified as 
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moderately (ΔΔGfold ≥ 1 kBT ≈ 0.6 kcal/mol) or strongly (ΔΔGfold ≥ 3 kBT ≈ 1.8 kcal/mol) 

destabilizing.

In-silico expression-based predictor of TP53 inactivation—We trained a classifier 

to use RNA-seq expression data to predict TP53 functional status. In brief, we trained a 

logistic regression classifier with an elastic net penalty using the Scikit-learn implementation 

of stochastic gradient descent (Pedregosa et al., 2010). The labels (y) for the supervised task 

included samples with MC3 annotated deleterious TP53 mutations (samples with silent 

mutations were considered TP53 wild-type) and samples with TP53 deep copy number loss 

as predicted by the GISTIC2.0 algorithm (Mermel et al., 2011). We included cancer-types in 

the model that had greater than 15 samples in each class, and between 5% and 95% of 

samples in both classes. Other samples were removed (see Figure S6A). The features (X) 

consisted of the 8,000 most variably expressed genes by median absolute deviation (MAD). 

We dropped expression of TP53 itself from the features to prevent the model from relying on 

target gene data. MAD genes were z-scored and concatenated with binarized dummy 

variables for all cancer types and mutation burdens (total log10 mutation count) to adjust for 

potential confounding factors. To reduce the effect of mutation burden confounding, we also 

removed outlier samples with the most extreme hypermutation phenotypes (> 5 standard 

deviations above the mean log10 mutation count). The goal of the classification scheme was 

to determine the weights (w) that minimize the following objective function:

P(yi = 1 Xi) = f (Xiw) = 1

1 + e
−wXi

L(w X) = − ∑
i = 1

n
yi log f (Xiw) + (1 − yi) log (1 − f (Xiw))

w = argmin L(w X) + λ∑‖w‖l

Where i indexes samples, p indexes genes, λ and l are regularization and elastic net mixing 

hyperparameters, respectively. We selected optimal hyperparameters by balanced 5-fold 

cross validation with the goal of inducing a sparse solution. We also used a balanced 10% 

held out set to test the performance of the classifier on data that was not used for training or 

hyperparameter optimization. We fit the final model on the remaining 90% of the data and 

report performance using receiver operating characteristic (ROC) curves and area under the 

ROC curve (AUROC) metrics.

We manually selected an a priori set of genes known to interact with TP53 for our 

phenocopying experiment (L.A. Donehower, unpublished data). We tested MDM2, MDM4, 

and PPM1D amplifications, CDKN2A deletions, and ATM, ATR, CHEK1, CHEK2, 

CREBBP, and RPS6KA3 mutations. For the copy number tests, we included both deep and 

shallow alterations in the altered set compared to cancers with wild-type profiles only. We 
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removed tumors with deleterious TP53 mutations or deep copy number loss (n = 4,037). 

From the remaining 5,629 tumors, we removed 219 hypermutated cancers leaving an 

analytic set of 5,410 cancer samples. We performed independent t tests and calculated 

Cohen’s D effect sizes comparing the assigned TP53 classifier scores for wild-type against 

altered cancers. We considered variants significant if they were less than a Bonferroni 

adjusted p value (p > 0.005). We visualized the results in a network diagram presented in 

Figure 5E. The underlying interaction network was downloaded from the STRING database 

(version 10.5) (Szklarczyk et al., 2017). The thickness of edges in the STRING network 

display interaction confidence and were generated by experimental data. Note that there are 

no direct interaction edges between RPS6KA3 and TP53 and PPM1D and TP53.

We provide materials under an open source license to reproduce and expand upon this 

analysis at https://github.com/greenelab/pancancer. Additional details, including 

benchmarking analyses, are provided in Way et al. (2018).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• DNA damage repair (DDR) gene alterations are prevalent in many human 

cancer types

• Homology-dependent recombination (HR) and direct repair were most 

frequently altered

• Loss of DDR function is linked to frequency and types of cancer genomic 

aberrations

• Altered HR function can be associated with better or worse outcomes by 

cancer type
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Figure 1. Cancer Types Display Variable DNA Damage Repair Gene Somatic Alterations
(A) DDR gene alterations are frequent and non-uniformly distributed by type and frequency 

across cancer types. Clustered heatmap indicates the percentage (%) of samples in a cancer 

type (rows, with cancer types listed right, number of samples between parentheses) altered 

for at least one core gene in a given DDR pathway (columns, with core gene numbers 

indicated in parentheses for each pathway, bottom). Color intensity indicates the percentage 

altered, with the percentage given as a number in each cell. RGB color indicates mutations 

(red), deep deletions (blue), or epigenetic silencing through methylation (green). Gray scale 

indicates equal contribution from all three alteration types. A “u” symbol in cells indicates a 
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statistically significant enrichment (FDR [false discovery rate] < 10%, difference in 

alteration percentages > 2%) in alterations. A “co” or “me” symbol in cells indicates a 

statistically significant (FDR < 10%) co-occurrence or mutual exclusivity of samples altered 

by mutation, deep deletion, or silencing. Only “co” relations were observed. The two 

rightmost columns, Mut.load and SCNA load, indicate average mutation frequency (non-

silent mutations/Mb) and copy-number burden (number of copy-number segments) by 

cancer type.

(B) Mutations and deep deletions contribute disproportionately to alter HR genes across 

nearly all TCGA cancer types. Color and color intensity provide a visual summary of the 

relative contribution of alteration types to HR pathway variation. The vertical position of 

each cancer type symbol indicates the percentage altered samples. M+D, mutation and 

deletion; D+S, deletion and silencing.

(C) Multiple genes contribute to enrichment of DDR pathway alterations. Heatmap depicts 

for each core DDR pathway (columns) statistically enriched alteration frequencies for genes 

with >2% alterations. Color intensity indicates percentage altered, with the percentage given 

in each cell. Specific cancer examples representing gene and pathway associations are listed 

under each column.

(D) The top 50 most frequently mutated genes among 276 DDR genes. Genes are listed in 

order of frequency of non-synonymous mutations (y axis left, blue rectangles), together with 

the fraction of concurrent mutations and LOH events (y axis right, red bars). See also Figure 

S1 and S2.
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Figure 2. Epigenetic Silencing of DDR Genes and Pathways in Cancer
(A) Gene/probe pairs showing evidence of silencing. Gene expression for gene/probe pairs 

(x axis) was Z score-transformed based on probe methylation level then plotted as a mean Z 
score among samples within a methylated group. Negative false discovery rate (FDR)-

corrected log10-transformed p values are plotted on the y axis. Green dashed lines indicate 

the cutoffs for mean Z scores and FDRs. Genes meeting cutoffs for evidence of silencing 

have red labels, with specific probes listed in parentheses (see STAR Methods for additional 

details).

(B) Gene expression and methylation are inversely correlated for silenced genes. Scatterplots 

show silenced gene/probe pairs for MGMT (two probes), EXO5, RAD51C, MLH1, and 

FANCF. Gene expression level is plotted on the y axis and methylation on the x axis with 

red dots representing silenced samples.

(C) Silenced genes are variably distributed across cancer types. Left: oncoprint plot displays 

the overall frequency of deleterious mutations, deletions, and epigenetic silencing events for 

each significantly silenced DDR gene (rows, with gene names listed to the right) across 

8,739 PanCanAtlas samples. Cancer type is shown in the color key to the right. Frequencies 

were calculated over the entire cohort, with only altered samples plotted. Right top scale 

indicates the number of events by molecular type, with the distribution of alterations across 

cancer types.

(D) Heatmap depicting variable frequency of epigenetic silencing events across 33 cancer 

types and DDR pathways. Cancer types (rows, shown using the same color code as in C) and 

12 significantly silenced DDR genes (columns). Bar plots (right) summarize the frequency 

of silencing events by pathway: DR (ALKBH3 and MGMT), HR(BRCA1, RAD51C, and 
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NSMCE3), and MMR (MLH1, MLH3, and PMS2). Numbers (x axis) below each bar graph 

indicate the proportion of samples by cancer type with at least one epigenetically silenced 

gene annotated to that pathway.

(E) EXO5 silencing shows cancer subtype variation. Scatterplots as in (B) display the same 

silenced samples, now color-coded according to cancer subtypes as indicated by the dot 

color code bottom left. Grey dots represent samples that were expressed/not silenced. See 

also Figure S2 and S3.
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Figure 3. Somatic Copy-Number Alteration Scores in Relation to Clinical Outcomes and DDR 
Gene Alterations
(A) Matrix heatmap of mean Spearman correlation between SCNA scores and mutation load 

across 33 cancer types.

(B) Forest plot of association between homologous recombination deficiency (HRD) score 

and progression-free interval (PFI). Results are shown for 28 cancer types with valid 

outcomes data. Cancer type symbols to the left are followed by sample number (N) included 

in the model and the number of PFI events. Hazard ratios (HR) and HR 95% confidence 

intervals are shown to the right. The “P Value” represents the Cox proportional hazards 

model p value for differences in survival between high versus low HRD score samples. *, a 

statistically significant association after applying a false discovery correction (threshold 

10%).

(C) Representative Kaplan-Meier (KM) survival curves for PFI of four cancer types as a 

function of high versus low HRD Scoring. Cancer samples in GBM, ESCA, PRAD, and 
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ACC were defined as high HRD scoring if the HRD score was above the median within a 

cancer type. Log rank test p values are displayed in the top right-hand corner of each plot.

(D) Volcano plot of significance and magnitude of DDR gene ridge regression coefficients. 

Our ridge regression model fitted the alteration status of 276 DDR genes to HRD score 

across 8,464 cancer samples. Homologous recombination repair (HR) genes above a 

significance threshold of FDR < 0.2 are plotted and labeled in red.

(E) HRD scores of two cancer types stratified by BRCA1 and RAD51B alteration status. 

The two cancer types with the largest number of BRCA1 or RAD51B alterations are plotted 

to show HRD score distributions as a function of gene alteration status. Mann-Whitney U 

test p values are displayed above the bracket for each cancer-type-specific comparison. See 

also Figures S4 and S7.
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Figure 4. Rare, Recurrent DDR Gene Mutations Differentially Alter Protein Structural Stability
Key DDR genes (listed in C as column labels) were selected for protein modeling based on 

the frequency of rare and recurrent mutations and experimentally determined structures that 

covered a majority of amino acid residues.

(A) POLE mutations are clustered in protein functional domains. Spheres represent 

mutations colored by mutation frequency (boxed key top right) overlaid on a POLE 

structural model. 3D mutation hotspots are present in both the exonuclease (blue) and 

polymerase (green) domains.

(B) Most MGMT somatic mutations likely alter protein structure. The location of mutations 

shown on a structural model as spheres, colored by predicted effect. Mutations with protein 

folding energy (ΔΔGfold) ≥ 3 kBT are predicted to be strongly destabilizing, whereas those 

altering stability by less than |ΔΔGfold| < 1 kBT were considered not significant (NS).

(C) Many DDR gene somatic mutations are predicted to destabilize protein structure. 

Structure-based calculations of the effect of 1,380 mutations on ΔΔGfold are plotted, with the 

number of unique mutations/proteins given in parentheses below each protein name.

(D) Altered protein stability is associated with greater burden of genomic alterations. Plot 

uses standardized Z scores (see STAR Methods) across cancer types to compare samples 

harboring strongly destabilizing versus non-destabilizing mutations. Association strength 

depended on the DDR gene, e.g., destabilizing mutations in POLB were associated with 

lower SCNA and higher mutation burdens, while mutations in PARP1 were associated with 

a higher SCNA and lower mutation burden.

(E) Altered stability in four proteins was associated with a large shift (Z > 0.5) in SCNA 

burden. Split violin plots show the different distributions of SCNA burden among samples 

with a destabilizing versus non-destabilizing mutations in each gene.

(F) Altered stability in five proteins was associated with a large shift (Z > 2.0) in mutation 

burden. See also Figure S5.
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Figure 5. Machine Learning to Predict TP53 Inactivating Mutations in Cancer
(A) Robust classifier performance by receiver operating characteristic (ROC) and area under 

the ROC curve (AUROC). Training data, cross validation assessment, and held out test set 

(10%) for 19 cancer types were used.

(B) Model-derived gene weighting. Classifier weights indicate individual gene influence on 

classification accuracy. Negative weights indicate increased gene expression in TP53 wild-

type samples.

(C) SCNA burden is correlated with known/predicted TP53 status. Plots show SCNA/CNV 

burden as fraction altered for known or predicted TP53 status. The SCNA profile for TP53 
mutation c.375G>T in TP53 exon 4 appears similar to other TP53 loss events.

(D) SCNA in TP53-interacting genes MDM2 and CDKN2A phenocopies TP53 loss. Results 

shown are for PanCanAtlas TP53 wild-type samples.

(E) TP53 network gene alterations phenocopy TP53 deficiency. Mutations were manually 

curated and selected a priori. All mutation tests including only TP53 wild-type/non-

hypermutated cancers are indicated by orange edges. Node color indicates event class (red, 

mutation; blue, copy-number loss; and purple, copy-number amplification); edge values 
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indicate Cohen’s d effect size. Thin blue edges indicate predicted interactions from the 

STRING database. NS is “not significant” with p > 0.005. See also Figure S6.
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