Journal of

Sensor and ﬁw\pp|
Actuator Networks \)

Article

Design and Analysis of Adaptive Hierarchical
Low-Power Long-Range Networks

Dimitrios Amaxilatis ! ¥ and Ioannis Chatzigiannakis **

1 Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece;

amaxilatis@ceid.upatras.gr

Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of
Rome, 00185 Rome, Italy

* Correspondence: ichatz@diag.uniromal.it; Tel.: +39-06-7727-4073

check for
Received: 15 October 2018; Accepted: 21 November 2018; Published: 27 November 2018 updates

Abstract: A new phase of evolution of Machine-to-Machine (M2M) communication has started where
vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually
change to multi-purpose IoT infrastructures that service different applications across multiple
industries. New networking technologies are being deployed operating over sub-GHz frequency
bands that enable multi-tenant connectivity over long distances and increase network capacity
by enforcing low transmission rates to increase network capacity. Such networking technologies
allow cloud-based platforms to be connected with large numbers of IoT devices deployed several
kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area
Networks (LPWAN:Ss), it remains unclear how to organize the wireless sensor network in a scaleable
and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new
capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly
used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is
presented in detail along with the technical details on the implementation in real-world hardware
platforms. A platform-agnostic software firmware is produced that is evaluated in real-world
large-scale testbeds. The performance of the networking scheme is evaluated through a series of
experimental scenarios that generate environments with varying channel quality, failing nodes, and
mobile nodes. The performance is evaluated in terms of the overall time required to organize the
network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as
well as the ability to adapt to channel failures. The experimental analysis indicate that the combination
of long-range and short-range networking technologies can lead to scalable solutions that can service
concurrently multiple applications.

Keywords: wireless sensor networks; low power networks; long range networks; algorithm
engineering; self-stabilization; implementation; protocols; software design; cross-layer; cross-platform

1. Introduction, Related Work and Our Approach

A plethora of small-factor devices with networking, computation and sensing capabilities are
embedded in the physical world and interconnect it with the digital world of the Internet, creating
the “Internet of Things” (IoT). Such networked devices are continuously deployed to accomodate the
needs of different application domains, and, as a result, they have already surpassed the number of
computers and mobile phones operated by humans. All these devices connected to the Internet enable
an entirely new type of application and services that clearly affect all aspects of business and living.

One fundamental aspect of IoT is the networking technologies that allow the communication
between the embedded devices and the Internet cloud services. For this reason, all the efforts up until

J. Sens. Actuator Netw. 2018, 7, 51; doi:10.3390/jsan7040051 www.mdpi.com/journal/jsan

http://www.mdpi.com/journal/jsan
http://www.mdpi.com
https://orcid.org/0000-0001-9938-6211
https://orcid.org/0000-0001-8955-9270
http://www.mdpi.com/2224-2708/7/0/51?type=check_update&version=1
http://dx.doi.org/10.3390/jsan7040051
http://www.mdpi.com/journal/jsan

J. Sens. Actuator Netw. 2018, 7, 51 2 of 26

now focused predominantly on wireless low-power transmission technologies such as IEEE 802.15.4
(ZigBee, Z-Wave) and IEEE 802.15.11 (Bluetooth, BLE) [1]. These technologies provide reasonably
high bit rate exchanges over a short range. Due to this low-power and short-range mode of operation,
deploying a large-sized network requires the use of communication protocols that deliver messages
based on a multi-path approach [2]. Such a multi-path approach provides certain benefits, such as
the capability to overcome communication obstacles [3,4], and the overall improvement of security
of the network [5]. Experimentation over real-world wireless sensor networks has highlighted the
difficulties and limitations of the multi-hop short-range paradigm [6]. In order to overcome these
technical difficulties, several alternative solutions have been proposed, for example, by varying the
transmission range of the nodes [4], providing hierarchical network structures [7] or even employing
mobile nodes to facilitate network management [8]. Despite all these efforts, the reduced transmission
range creates several difficulties that are difficult to overcome. As a result, real-world deployments
need to use a combination of networking technologies in order to deliver urban-scale coverage in the
context of smart city services [9,10].

Recently, a new approach has been proposed that exploits sub-GHz communication, which allows
for transmitting over longer distances, and very low data transmission rates, which allow for reducing
significantly power consumption [11]. This approach of network has been titled Low-Power Wide
Area Networks (LPWANS) as apposed to short-range high-frequency communication. Low-frequency
signals are not as attenuated by thick walls or multi-path propagation as high-frequency signals
contributing in this way to robustness and reliability of the signal [12]. In LPWAN, the embedded
devices are connected to Concentrators (also called a collector or concentrator) that are located several
kilometres away. Evidently, LPWANSs provide multiple benefits for IoT deployments, providing higher
autonomy due to the reduced energy consumption, and decrease deployment costs as a small number of
concentrators is required [12].

LPWAN uses proprietary modulation techniques that are derivatives of the Chirp Spread
Spectrum (CSS) and operate in the sub-GHz bands. It allows end-nodes to communicate independently
and asynchronously, similarly to an ALOHA-protocol. As a result, an LPWAN concentrator can receive
data on the same channel from multiple IoT devices at the same time if the bit rates are different.
This increases the capacity of nodes in a LPWAN. However, due to restrictions of the low duty
cycle regulations in the unlicensed sub-GHz bands, LPWAN creates asymmetric situations where
concentrators that are connected to a large number of IoT devices will be able to send downstream
messages (i.e., messages arriving from the network servers to the IoT devices) less frequently to
each node than a concentrator handling fewer IoT devices. Existing designs foresee both IoT devices
and concentrators to transmit only 1% of the time to achieve low power consumption and high
deployment numbers. On top of that, since IoT devices are operating in a low-power mode, listening
to the communication channel for down-link messages is done occasionally, also severely limiting
downstream message exchanges. Keeping in mind that many of the proposed applications require the
deployment of very large number of devices, it is critical to propose certain extensions to existing LPWAN
structures so that they can eventually accommodate very dense deployments of IoT devices without
exceeding the capacity of the LPWAN [13,14].

Typical examples of dense IoT deployments can be easily identified in the remote metering
and monitoring domain like [9,15-17]. Installation scenarios like this could include hundreds of
connected meters installed deep inside buildings close to each other including both up-link and
down-link transmissions or mobile devices that are installed on public buses, cars or bicycles that move
throughout the city. Our work follows the same principles, organizing the network using hierarchical
structures to reduce the number of the LPWAN enabled or equivalent devices within a certain area
and consequently reduce the total number of devices accessing the sub-GHz spectrum. For example,
the hierarchical solution can be used to reduce the number of LPWAN enabled meters to one per
building or one per building block, thus helping to significantly reduce the overall cost of the network.
End-level IoT devices, (e.g., inside a house) can communicate locally using non-LPWAN technologies

J. Sens. Actuator Netw. 2018, 7, 51 3 of 26

to exchange data and choose a nearby one that is capable of accessing the LPWAN network to relay
their information to the local concentrator. Such a device can act as a local gateway or access-point,
as it happens with the typical broadband modems for homes or small enterprises. Other wireless
technologies can be used to allow smart meters to forward their messages to the local LPWAN gateway
and then to the rest of the network.

In this work, an architectural organization of the IoT devices is introduced in order to increase
the scalability of the LPWAN. In fact, since [18], grouping sensor nodes into clusters has been widely
pursued by the research community in order to achieve network scalability. The main concept is
to equip IoT devices with multiple network interfaces that enable both long-range and short-range
communication. The architectural organization is achieved with appropriate levels of flexibility, in
order to be able to accomplish the network’s global goals and objectives. The IoT devices decide
which of the multiple network interfaces to use by communicating, cooperating and forming adaptive
sub-organizations. Such a solution can be used to increase the scalability of complex systems such as
the one presented in [19]. In this system, multiple agents collaborate locally to decide the configuration
of the HVAC (Heating, ventilation, and air conditioning) and environmental control inside an office.
Using our system, the agents of the system can elect a local leader that is capable of communicating
with external sources of information (e.g., a weather service) and is capable of aggregating all the
choices of the inhabitants to reach a common agreement.

The hierarchical network scheme presented here includes some of the concepts and ideas
presented in [7,20]. Like in [7], the network scheme uses the concept of grouping nodes; however,
routing is not carried out through these groups of nodes by creating multiple hierarchical levels.
In contrast, in this work, (a) the hierarchy introduced is limited to only two levels; and (b) the concept
of nodes that have access to two networking technologies (802.15.4 and LPWAN) instead of only one.
Furthermore, in this work, we employ a duty-cycling technique across both networking technologies in
order to further conserve battery power among the devices. The combination of a power-conservation
scheme with topology detection was not examined in either of the previous works. Finally, the proper
combination of these building blocks is examined from an implementation point of view and an
integrated solution is presented.

The rest of the paper is organized as follows: in Section 2, we present the basic ideas behind a
hierarchical organization in a Wireless Sensor Network. Section 3 presents an adaptive mechanism that
helps reduce the traffic in the Wireless Sensor Networks once it is partitioned in multiple sub-networks.
Section 4 presents the implementation details of the presented protocol stack using an algorithmic
library for real world and simulation environments. In Section 5, we showcase a set of experimental
results from simulations and experiments on hardware testbeds. Finally, in Section 6, we present our
conclusions and possible extensions of our work.

2. A Hierarchical Communication Scheme

The main idea of the proposed architectural organization is that devices are equipped with two
different networking interfaces. One network interface provides short-range high-rate communication
capabilities by exploiting IEEE 802.15.4 technologies. The second network interface provides long-range
low-rate communication based on recently introduced LPWAN technologies. Each networking
interface operates independently and it is controlled by the software firmware that can choose for each
interface if it will be active or not. When a networking interface is inactive, the corresponding power
consumption is reduced to very low levels (at the order of a few pA).

A self-organizing distributed algorithm is used to assign devices to groups based on the
short-range 802.15.4 network. In the sequel, each group selects in a distributed manner one device
that assumes the role of the controller of the group. The controller activates the LPWAN network
and becomes the gateway of the group to the internet, while all other devices of the group keep their
LPWAN network interfaces deactivated, thus reducing power consumption and at the same time
limiting congestion of the LPWAN. In this way, a hierarchy is created within the network where (i) the

J. Sens. Actuator Netw. 2018, 7, 51 4 of 26

vast majority of the devices are positioned at the lowest level of the hierarchy, (ii) the controllers form
the intermediate level of the hiercarchy, and finally (iii) the LPWAN gateways form the top layer of the
hierarchy that connect the IoT deployments with the Internet. Figure 1 provides an example of such a
hierarchical topology.

A central idea of the communication scheme is the inherent redundancy of IoT deployments in
terms of devices, where a specific physical location is usually monitored by more than one device.
Based on this deployment design property, each device independently uses a duty-cycling scheme
that periodically activates and deactivates the IEEE 802.15.4 network interface in order to conserve
energy. Depending on the chosen level of redundancy selected by the network administrator, the
duty-cycling scheme is suitably adjusted so that, on average, a minimum, yet adequate number of
devices to achieve proper monitoring is always active. The self-organization protocol continuously
monitors the IEEE 802.15.4 network topology and reassigns devices to groups when nearby devices
switch between active and inactive states.

A second central idea of the communication scheme is that devices that assume the role of
the controller are spending more energy than the other devices within the same group since they
are forwarding upstream and downstream messages through the LPWAN. In order to limit the
overspending of energy, the controller role is periodically reassigned to another device within each
group. When a device stops acting as the controller, the self-organization protocol identifies another
device to become the new controller. The protocol guarantees that each group will always maintain
connection with the LPWAN by properly and timely selecting a controller device.

Network organization has been vastly presented in literature in the past. In the relevant
bibliography, several surveys (e.g., [21-24]) categorize and classify the various protocols based on the
methodologies used to organize the network. For example, in [21], they classify the protocols based on
their main objectives in the following categories: load balancing, fault tolerance, increased connectivity
and reduced delay, minimal cluster count, and maximal network longevity. Ref. [23] organizes
the literature based on Cluster Count, Cluster Overlap, Cluster-head Selection, Node Mobility and
Time Complexity but also distinguishes the algorithms in two main categories: Probabilistic and
Non-probabilistic, depending on the criteria and parameters used for controller selection. Ref. [24]
analyzes the available protocols based on their use for routing data throughout the network in three
major categories: Block, Grid and Chain organization and represent how efficient each protocol is in
terms of energy, delivery delay, scalability and stability.

In the Wireless Sensor Networks domain, the problem of data aggregation and collection is a
major topic for research. Various solutions have been proposed [25] dealing with the problem of
forwarding data to facilitate the aggregation of the information using multiple techniques:

* Tree-based solutions like TinyAGgregation [26] or Directed Diffusion [27] are based on the
generation of a tree like structure in the whole network to forward the data to a single node that
handles the aggregation of the whole dataset.

e Cluster-based approaches like LEACH [28] are based on the formation of smaller structures in
the network that can locally aggregate the data in multiple nodes.

¢ Multipath routing solutions like Synopsis Diffusion [29] or Ring Routing [30] are closer to the
tree-based solutions but provide a backup path in the event of a single node failure.

* Hybrid approaches like Tributaries and Deltas [31] tries to overcome the problems of both tree and
multipath structures by combining the best features of both schemes. They form multiple data
structures inside the network and use the best one in terms of communication cost and latency.

The solution presented here is based on the combination of the tree-based and cluster-based
approaches. Network structures formed behave like clusters inside the network and inside each
cluster a tree-based solution is used for forwarding data to the controller of each structure. Finally, the
controller device of each group is directly connected with the Internet through the LPWAN to finally
deliver the aggregated data.

J. Sens. Actuator Netw. 2018, 7, 51 5 of 26

2.1. Network Model and Device Capabilities

The communication scheme presented in this work is designed for heterogeneous wireless sensor
network installations that span over large areas (i.e., a public building, a neighborhood or a whole
city). It is designed to benefit from the merits of the different networking interfaces and achieve the
best mixture in terms of power consumption and data exchange rates. For example, Figure 1 provides
a graphical representation of an installation that spans over two physical locations (LPW1 and LPW?2).
Each location contains an LPWAN gateway, and a set of devices, capable of communicating with
the LPWAN gateway. In both locations, the devices form a set of sub-networks (depicted with the
different colors). The controllers of each sub-network have activated their LPWAN interfaces and act
as the sub-network gateway to the LPWAN (depicted with a thicker border). Inside the sub-networks,
the devices communicate using the short-range IEEE 802.15.4 network interfaces that operate over
completely different frequency bands and do not interfere with LPWAN. They can also use these radio
interfaces to communicate with nearby sub-networks if needed.

% Lora Gateway --- 802154
o Sub-network Controlier - LoRAWAN
O Sub-network Member — IPv4/IPvE
. Sub-network 1 O Sub-network 4

O Sub-network 2 O Sub-network 5

O Sub-network 3 O Sub-network 6

Figure 1. An example of a topology with two Long-power Wide-area Networks (LPWAN) installations
with sub-networks formed in the 802.15.4 network.

Based on the requirements of the installation, once the sub-networks are formed, the applications
running on the devices can benefit from techniques like duty cycling to increase the life of the network.
We assume that this functionality is implemented on the lower level of the network stack. The low-level
mechanism divides time into slots of fixed duration during which the network interface of the device
can either be active or inactive. The state of each single device is completely independent from the
others and there is no actual synchronization resulting in a network operation like the one presented
in Figure 2 where active periods are presented with gray and inactive with white.

o W -

Figure 2. Two devices alternating between active and inactive states: Device 1 broadcasts while Device
2 is sleeping (white arrows).

The network monitoring mechanism used by the self-organization protocol can detect possible
changes in the network topology also when devices change their location due to passive (e.g., when
attached to a mobile object) or active mobility (e.g., in the case of robots). Each group will suitably

J. Sens. Actuator Netw. 2018, 7, 51 6 of 26

adjust the network structure in order to remove a device that has moved away, or include a new device
that has appeared.

Given existing hardware platforms, the network interfaces provided to each device implement a
naming scheme that offers a unique identifier to each device. It is assumed that each device generates
a unique identity based on the unique identifiers provided by the network interfaces.

Finally, each device has access to an internal clock. The clocks of the devices are not required to
be synchronized in any way. It is assumed that the hardware of the clocks of each device are similar in
terms of capabilities, thus each device is measuring the same amount of time for a given period of time
(i-e., clocks have similar drift rates).

2.2. Network Monitoring Mechanism

As it was described in the previous section, an important aspect of the operation of the
self-organization protocol is the ability of each device to detect the local topology of the network.
The purpose for detecting the topology is twofold—first, to update the network structure as devices
change their state between active/inactive due to the duty-cycling mechanism; second, to discover
devices that change their position due to active/passive mobility or due to failures. Given the changes
detected, the self-organization protocol will accordingly adjust the sub-network structures to maintain
proper connectivity in the network.

Network monitoring relies on the very effective technique for detecting the local topology of
wireless networks, which is beaconing. Beaconing [7,32] is based on the period transmission of a special
message that signifies the presence of a device also informing nearby nodes about the current view of
the device on the sub-network structure. In particular, a beacon message includes the unique identifier
of the device (e.g., based on the ID provided by the MAC (Medium Access Control) protocol of the
network interface) along with a list of IDs of all nearby devices, that is, all the devices from which
a beacon is received regularly. These beacon messages, unlike the HELLO messages of [33], contain
additional quantitative metrics to help the devices estimate the quality of the communication channel
and classify devices based on the trustworthiness of these channels.

In this work, an adaptive sub-network detection mechanism is used that avoids constant periodic
beacon exchanges [20]. The main idea is to adapt the beacon broadcast period to reduce unnecessary
message exchanges when the network is adequately stable. Each device adapts its beaconing interval
independently, based on its local perception of the network. The rating for the status of the network is
based on the changes detected by the device in its vicinity. The rule used is the following: as long as
a device does not detect any changes on its sub-network, the status of the network is characterized
as consistent. While the network is consistent, the beaconing interval is doubled until a maximum
period. When a significant alteration is detected in the network (i.e., the quality of a communication
channel is changed, a new node is detected or lost), the network is inconsistent. When the network
becomes inconsistent, the beaconing interval is reduced to a predefined minimum interval. The network
monitoring mechanism is presented in more detail in Section 3.

The adaptive sub-network detection mechanism used here also eliminates the possibility of two
neighbors operating in complementary intervals (as in the case depicted in Figure 2). Since the interval
of each device is modified during the execution of the network in a way independent from the other
devices, neighboring devices will eventually find a period of time where both are active to guarantee a
proper message exchange (see Figure 3).

Device 1 s
Device 2 PR
Figure 3. Adaptive sub-network detection mechanism: Device 1 broadcasts beacons on variable
intervals to detect devices with complementary schedules (white arrows).

J. Sens. Actuator Netw. 2018, 7, 51 7 of 26

2.3. Self-Organizing Sub-Network Formation

Each device operates by dividing time into epochs of fixed duration T. The length of the epochs
is defined by the administrator of the network during the initial deployment of the device and can be
changed dynamically during the execution of the network. The epoch of a single device is completely
independent of others and there is no actual synchronization resulting in a network operation like the
one presented in Figure 4 where epochs of different devices in gray and white color.

Device 5
Device 4
Device 3
Device 2

Device 1

Figure 4. Asynchronous cycling in a five-device network—gray and white boxes show different epochs
during which a device re-initiates the controller selection mechanism.

When a new epoch starts for a given device, the device declares itself as a controller. This decision
is signaled to all neighboring nodes by including a special bit within the beacon of the network
monitoring mechanism. All devices inspect this bit and generate a list with all nearby devices that have
declared themselves as controllers. This list is included in the beacons periodically broadcasted by the
network monitoring mechanism. In this way, devices are informed about controllers further away up
to a maximum distance of d hops. If a controller is notified about the existence of another controller,
within d — hops distance, with a smaller unique identity (i.e., with a smaller identity provided by
the MAC address of the network interface), it decides to step down accepting that the other device
will be the active controller. Therefore, multiple controllers eventually step down after a period of at
most d — hops. As it is evident, the parameter d is used to control the size of the sub-networks. The
parameter is initially set by the network administrator during the deployment and can be modified
during the execution of the system based on a special downstream control message distributed to all
the devices via the LPWAN.

Essentially, the network adjusts its operation to form sub-network structures so that each device
is never more than d hops away from its selected controller and at most 2 x d hops away from any
other member of the same sub-network. Note that, although a device may be 2 x d hops away from
each other in the formed sub-network, the actual distance may be smaller since each hop need not be
at a maximum tranmission range.

If at some point a device realizes that the previous controller is no longer available, e.g., due to a
nearby nominated controller being eliminated by a final controller in a distance of more than d — hops,
or due to the duty-cycling mechanism, or due to a failure in the network, or because the controller has
changed location, it restarts the process forming its own sub-network.

The above mechanism guarantees that controllers are rotated periodically so that no single device
keeps the role of the gateway for a long duration of time, thus overspending the available energy
resources. In some cases, there can be periods where multiple devices re-initiate the controller selection
mechanism resulting in increased congestion in the short-range network. As it will become evident in
Section 5, this issue does not have serious impacts on the overall performance of the network.

As soon as a device becomes a controller, it enters a waiting period of duration O(d) time to allow
for the controller selection mechanism to stabilize. At the end of this period, the device will either be
identified as the controller or not. If no other controller within distance less than d exists with a smaller
unique identifier, the device is the active controller and initiates the sub-network construction phase.
If another controller is located with a smaller unique identifier, then the device steps down, exits the
waiting period and becomes a sub-network follower.

After this waiting period, all controllers that remain active activate the sub-network formation
phase by using a simple breadth-first search protocol to invite its nearby devices in its sub-network.
Devices receiving these invitation messages respond by joining the sub-network by sending back to its

J. Sens. Actuator Netw. 2018, 7, 51 8 of 26

controller a message declaring their join decision. This breadth-first process is expected to take O(d)
rounds so that all messages are properly received.

After the sub-network is established, any device that wishes to forward traffic through the LPWAN
transmits to the coordinator using a routing protocol such as RPL [34]. In this way, only one device for
each d — hop sub-network accesses the LPWAN, thus improving the overall scalability.

The network structure that operates to maintain the self-stabilizing properties is analysed in [35].

The self-organizing mechanism presented here for forming sub-networks operates to maintain
the self-stabilizing properties analysed in [35]. The experimental evaluation of the algorithm presented
in Section 5 indicates that the algorithm always succeeds in selecting a controller and all devices end
up joining a sub-network. The theoretical analysis of the correctness and required convergence time is
based on the arguments used in [35].

Given the self-stabilizing properties of the protocol, the protocol does not require any specific
initialization phase. Each device can start from any arbitrary configuration. Some devices may
consider themselves as members of a sub-network, others as members of non-existing sub-networks,
etc.. Regardless of this initial arbitrary state, within a bounded number of O(d)steps, the network
structure converges to a stable configuration, i.e., a configuration where all devices of the network
participate in a valid sub-network of d — hop diameter. This is done regardless of the way that the
devices are positioned in the network area. In fact, as explained in the following section, the network
structure will suitably adapt its operation to the physical topology of the network.

3. Adaptive Sub-Network Organization

The devices periodically check the state of their sub-network by transmitting beaconing messages
over the short-range network. An interval period signifies the period during which a devices transmits
one and only one beacon message. During this period, each device examines received beacons and
characterizes as consistent any beacon received from an already known nearby device. As long as the
device only receives beacons from consistent neighbors, it remains in the consistent state. If the device
receives a beacon from an unknown device, i.e., an inconsistent beacon, the device changes state and
becomes inconsistent.

Once the current interval of the device expires, it has to decide the duration of the next interval
and therefore the message rate it will maintain. The next interval’s duration is doubled when the device
is consistent, reducing the messaging rate down to half. If the device is inconsistent, it immediately
notifies its neighbors and reduces the next interval’s duration to the minimum defined period while
the beacon generation rate increases to the maximum defined. In this way, given the appearance of a
new neighbor, the device is alerted and starts re-evaluating the state of the network. The actual values
of the maximum and minimum intervals are set by the network administrator based on the expected
deployment and the anticipated number of changes in the topology in every given period. Notice that
the experiments reported in the Section 5 based on real-world deployment provide useful insights on
how to set the minimum and maximum intervals and how such settings affect the performance of the
network. Every time a device decides to use a new interval, the device sets a future time ¢ when a
re-evaluation of the consistency of the sub-network will be conducted. This future time ¢ is selected
randomly so that nearby devices do not start the re-evaluation of their network concurrently and thus
congest the network.

3.1. Adaptation to the Changes of the Sub-Network

The aggressiveness of the adaptation process for the transmission of the beacons is controlled by
setting the following protocol parameters:

1. I,i,—the minimum beaconing interval,

2. ILjpgy—the maximum beaconing interval,

3. k—minimum number of consistent messages that a device needs to receive within a given period
to become consistent.

J. Sens. Actuator Netw. 2018, 7, 51 9 of 26

The parameters I, and L4y control the beaconing rate. Recall that devices that are characterized
as inconsistent use the minimum interval I;,;,,. If the higher-layer application requires that the IoT
network adapts quickly to topological changes, the network administrator is advised to set the value
of I,,i, very low value. However, it should be noted that a very low value of I,,;, will cause congestion
and degradation of the communication channels. On the other hand, the parameter I, affects those
devices that are characterized as consistent devices and controls the reductions in energy consumption
due to the beaconing mechanism in networks where no topological changes occur. While setting the
Iinax parameter, it is important to keep in mind that very long beaconing periods lead to very slow
responses to possible changes.

The parameter k controls the threshold that evaluates the consistency of a device. An internal
counter c is used to count the number of consistent messages received. Given a sufficient number of
consistent messages received (c >= k), there is no need to send a beacon as the network is characterized
stable. However, if the threshold value k is not reached (¢ < k), the network is said to be unstable due
to outdated or incomplete information on the local topology. The network immediately transmits a
new beacon. At the beginning of each current beaconing interval, the counter c is reset.

When these parameters are set, it is important to have an understanding of the expected density
of the IoT deployment. In dense deployments, k should be set to a high value to keep track of the state
of each sub-network. For sparse deployments, however, a very high value for k may lead to cases
where very few sub-networks become stable.

3.2. Estimating the Sub-Network Consistency

It is evident that the selection of the threshold value k controls the overall performance of the
network. Setting a high value might create unnecessary re-evaluations of the sub-network, thus
leading to overspending the energy resources of the devices. In order to avoid such cases, the network
administrator is provided with two mechanisms in order to suitably set the parameter value of k:

FixK—in controlled deployments where the density of the network is uniform, the value of the
parameter k will remain fixed for the full lifetime of the network.

AverageK—in deployments where the network density varies between the different locations, each
device is allowed to have a different threshold k. During the evolution of the network, each
device can independently modify the value of k by observing the consistency of its sub-network
during the past intervals. An adaptive algorithm is introduced (see Algorithm 1) that smoothly
modifies the threshold gradually during each period.

Algorithm 1 AverageK method for calculating a new value for k

1: intervaleoynter++

2: consistent_mess;,, +=consistent_mess,pcoived

3: Keurrent < ceil(consistent_mess;opa /intervaleoynter)
4: Kpew kprev *W + Keurrent * (1 - ZU)

5: consistent_mess,peoived < 0

The advantage of the AverageK approach is in dynamic deployments where it is common for
devices to be relocated, or deployments with uneven distribution of devices. In order to better
understand the benefits of having a fixed threshold or an adaptive threshold, a set of experiments are
presented in Section 5 that provide feedback on the benefits of each method.

3.3. Assessing Communication Channel Quality

To assess the quality of the communication channels between the devices of our sensor network
we use the Link Quality Indicators (LQI) provided by the communication layer. For each message
exchanged, the quality of the received message is used to evaluate status of the link. Devices that are

J. Sens. Actuator Netw. 2018, 7, 51 10 of 26

either too far away or with limited transmission capabilities (e.g., due to interference of malfunctioning
hardware) tend to provide degraded metrics. The goal is to filter out those devices that have poor
communication capabilities, and find alternative paths to deliver messages more efficiently and reliably.
Using such indicators has proven to be a reliable solution when trying to define the exact neighborhood
of a device [7]. Devices consider any broadcaster as a nearby device once a number of consecutive
beacon messages are received with an LQI value above a certain threshold. A second LQI threshold is
introduced to set a minimum channel quality acceptable. All beacons received whose LQI is below
this threshold are simply dropped. This LQI threshold is made up of two different values as presented
in Algorithm 2. The first part of the threshold is used to accept another device within the sub-network,
while the second threshold is used for devices that are already members of the sub-network.

Therefore, for each device participating in the sub-network, two LQI values are stored. The LQI
value of the last received message, and the respective value received by the beacon of the device which
is the LQI value of the last outgoing message as it was received from the device on the other end.
These values can also cause a device to enter an inconsistent state. If a device receives a beacon where
the reported LQI value is greatly different than the previous one, it considers itself inconsistent.

Algorithm 2 Processing Beacons

if (node is in neighbor_list) {
if (Iqi >= threshold_min) {
neighbor_list.update(node)

} else {

}
} else if (1gi >= threshold_max) {

1

2

3

4

5: drop beacon
6

7

8 neighbor_list.add(node)
9

3.4. Dealing with Low Power and Lossy Links

In low-power networks, it is common for the wireless channels to experience temporary
degradation of the quality. Even in sub-networks where link quality is very high, it is common
to experience periods where the LQI of received beacons are below the corresponding thresholds.
Experimental evidence has proven that message transmissions, even from nearby devices, may fail
at times due to interference from nearby electrical devices, even ones that do not have wireless
communication capabilities (e.g., a microwave oven).

To avoid removing the sub-network devices that have acquired the status of a consistent neighbor
and are therefore characterized as being stable, which however for some the wireless channel has
transient noise, the algorithm defines a timeout period during which, even if a beacon is not received,
the communication channel is still considered valid.

Previous experiments [7,33,36] have shown that up to two beacons may be lost (especially on
dense deployment) so a good practice is to set the timeout close to a time period equivalent to
three consecutive beacons. However, this may turn out to be non-trivial as beacon broadcasting
periods are not predefined and change during the execution of the protocol as part of the adaptation
process. Note that higher timeout periods cause the network to respond slowly to changes, while lower
timeouts can create unwanted inconsistencies by reacting to misinterpreted changes of the physical
topology.

Taking into consideration the relaxed beaconing of the sub-network mechanism, defining the
timeout period is not as straightforward. Timeouts should not only be bounded by I;,5x as devices can

J. Sens. Actuator Netw. 2018, 7, 51 11 of 26

choose not to transmit a message during every interval. Therefore, to avoid falsely removing devices
from a sub-network, the timeout should not also be less than % Iinax. This value is computed as the more
relaxed interval between two successfully received consecutive beacons while two communication
failures can happen: Timeout = 2T]%* + ;’:ﬁfesﬁd = 2Lyax + I”’% = 51’%

Of course, the timeout selection depends completely on the special network characteristics but

the above threshold provided a reliable behaviour during all our experiments.

4. Software Implementation

In Theoretical Computer Science, researchers usually design their algorithms as abstract as
possible to hide technical issues that may arise due to hardware restrictions. Due to this, developers
can decide on how the given protocol can be turned into functional code for a real-world system.
In theory, this part is simple, as developers need to simply follow the steps provided by the theoretical
algorithm, but, in reality, hardware and development software limitations may require hard work to
work around the assumptions made in the theoretical description. Implementing protocols for wireless
sensor networks is even harder, as devices have extremely limited resources and the same software
implementation needs to usually run on different types of devices. This heterogeneous nature (both in
terms of hardware and software) and complexity can explain also why many theorists rarely engage in
Software Engineering.

To overcome these issues, we implement our algorithm in Wiselib [37]: a code library
that allows implementations to be OS-independent. Wiselib is implemented based on C++ and
templates, but without virtual inheritance and exceptions which is rarely available in wireless sensor
networks. Algorithm implementations of Wiselib can be on-demand compiled for several supported
platforms and firmwares. It also supports simulators without the need to change any code in your
implementation. In its latest version, Wiselib can support systems implemented using C (Contiki,
RiotOS), C++ (iSense), nesC (TinyOS), Android (via the C/C++ NDK) and iOS.

Wiselib also provides developers with the ability to share their implemented algorithms and
re-use the algorithms implemented by other developers. It also offers implementation of various data
structures that are implemented and support all the available hardware platforms, overcoming the
different ways to store data (due to memory alignment, inability to support dynamic memory, etc.). It
is important to use these safe types as much as possible since they have been tested before on most
hardware platforms. Currently, Wiselib offers a total of 60 Open Source implementations of standard
algorithms like Localization algorithms, Cryptographic schemes, Distributed data structures, etc.

Wiselib also supports the simulator Shawn [38] and TOSSIM [39], allowing developers to easily
test their software before the transition to actual hardware. This feature allows for validation of the
implementation and also offers quality and scalability testing without time-consuming deployment
procedures and harsh debugging environments. Furthermore, apart from ordinary sensor device
targets or simulation environments, it is also possible to run Wiselib code directly as a native C
application on a Linux or Windows PC. The generated application acts as a sensor device, but with the
limitations of the host machine. On the one hand, there is basic OS functionality provided, such as a
timer for event registration, or a clock providing the current time. On the other hand, it is possible to
connect an IEEE 802.15.4 device to the host machine, so that the application can directly communicate
even with other hardware sensor devices.

4.1. Duty Cycling

Wiselib’s core components are implemented for the different platforms as generic Facets. Facets
are interfaces that internally interact with the hardware and wrap up the device specific code with a
number of generic methods common to all target platforms. For example, the Radio Facet offers the
“send” method that sends a payload using the device’s 802.15.4 radio, and the “receive” callback that
can be used to receive incoming messages.

J. Sens. Actuator Netw. 2018, 7, 51 12 of 26

The duty cycling mechanism is implemented as a standalone facet of Wiselib. It provides basic
functionality so that protocols and application running on top of the operating system can easily
allow the device go to sleep when no operation is required with a generic method call (allow_sleep).
The allow_sleep method is internally implemented for each one of the Wiselib’s platforms using the
hardware specific operating system calls.

On top of the above basic functionality, a duty cycling protocol is implemented that changes
the device status from sleeping to operational based on a defined schedule. The implementation is
based on the basic approach that clearly depicts an idea of duty cycling over a predefined period. The
implemented algorithm requires two parameters to define the duty cycling process: a percentage rate
value and a period of time over which to apply the duty cycling operation. For examples with a rate of
30% and a period of 1000 ms, the sensor device will be operational for 300 ms and go to sleep for the
other 700.

Note that the actual operation of the duty cycling algorithm slightly differs from the requested
values, as timer events that are set while the device is operational causes it to wake up, execute the
requested handler and then sleep again. Although these events are not supposed to be time-consuming
(as the are interrupt handlers), frequent timers or interruptions can counter effect the effects of a duty
cycling algorithm.

4.2. Network Monitoring Mechanism

The beacon interval of the protocol is controlled by each device independently based on its local
perception on the consistency of the network (i.e., the changes to the local neighborhood detected
by the device). At a random time during each interval (to ensure low congestion at the moment of
transmission), devices check the number of consistent beacons received so far and decide whether
to send their own beacon or not. Every device additionally piggybacks on the data from different
applications requested according to the concept of ULA [40]. On the other end, upon receiving the
beacon, devices unpack the data and deliver them to the registered receivers.

An additional beaconing mechanism is implemented so that the network monitoring mechanism
adjusts its operation to the duty cycling rates by querying the duty cycling services. Duty rate and
duty period are used across the whole network to identify possible missing beacons. The extremely
lower number of messages used to detect neighbors in the initial implementation allowed us to relax
this requirement and benefit from using the beacon repetition mechanism presented above. The
k-parameter is used to control the transmission and adaptation rate is auto-adjustable so the operation
of our protocol is not affected by environments with variable device densities. As a result, the time
difference between the two consecutive transmissions is either the sleep period or the period set by the
neighboring discovery protocol’s interval. To implement this property, we added a timer based event
to be scheduled after each beacon broadcast, called duplicate_transmission, that given a payload
rebroadcasts it after the predefined time. The performance evaluation indicates that the resulting
component is not affected by the existence of duty cycling, as sleeping devices will get a chance to
receive the missing beacons for every transmission, while message loss is also limited due to the
increased number of transmissions.

4.3. Adaptive Sub-Network Organization

Following Wiselib’s design principles for code re-usability, we implement our algorithm in a
modular way based on [22]. We separate the modules that implement the selection of the coordinator,
the formation of the sub-network and the communication and routing of messages to ease the
development and their operation in the final implementation. These three components are then
orchestrated by a core-component that allow for information exchange. All components provide clean
interfaces to easily communicate with each other, without heavy information exchanges.

J. Sens. Actuator Netw. 2018, 7, 51 13 of 26

Coordinator Selection (CS). The first module is related to the sub-network coordinator selection
process. The coordinator selection mechanism is implemented as a single, stand-alone, software
component.

Join Decision (JD). The second module is responsible for deciding which sub-network the device
decides to join. This component handles the join request from elected coordinators and once it decides
to join a sub-network replies with a confirmation message. The decision is based on the distance of the
coordinator and the ID of the device as described in Section 2.3.

Iterator (IT). The third module is related to the routing of data once the organization of the
sub-networks is complete. This module is responsible for categorizing and storing nearby devices
into those that have already joined the sub-network, devices that have not joined yet and devices that
have joined another sub-network. Collected information is maintained in membership tables by the IT
module. This module monitors the device’s sub-network and updates the membership tables based on
observed changes to the local topology.

The three modules above are used by the main module which is called the Core Component
(CO). It is the kernel of the implementation that controls and coordinates all other components so
that sub-networks are properly formed and maintained. The CC provides a public interface for other
algorithms to take advantage of the resulting network organization. In the following, the life-cycle of
CC during the formation of a new sub-network is presented.

1. CSisinvoked to decide on the role of the device. Based on the received messages, it decides to be
elected as a coordinator or chooses to remain a simple member.

2. If the device is a coordinator: JD it sends an invitation message to nearby devices for them to join
the sub-network.

3. Upon receiving an invitation message, CC isolates the message’s payload and passes it to JD.

If JD decides to join, a confirmation message is sent to the coordinator and the IT is notified of the
address in order for it to be saved as the device’s coordinator.

If JD decides not to join, a deny message is generated from JD and passed to the sender of
the invitation.

4. If a deny message is received, its payload is passed to JD to be examined, in case the sub-network’s
conditions are of interest and the IT is notified in order to keep track of which devices have joined
the sub-network and which have not.

5. Once all devices have replied, the membership tables are filled in the IT, the process of
sub-network formation is completed and routing of data can begin.

4.4. Implementation Details

In Wiselib, the interface of each module is called a concept. We present here the Wiselib concepts
for each one of four basic modules. The design goal of the concept is provided with clear interfaces so
that the implementation can be easily used by other algorithms with minimum effort.

Core Component (CC) Concept. The CC concept takes as template parameters a set of components
types such as the Radio and Timer that are needed for sending messages and registering events.
The most important parameters are the types for the CS, JD and IT which the CC will use for the
sub-networking algorithm. The first method that initializes the module also provides instances of the
components that the module will use. Then, two methods are provided for enabling and disabling
the module, which is useful when it should only be run at certain points in time. After the module is
enabled, the calculate_coordinator () method is called and starts the sub-network formation. Next,
a method for setting the parameters of the algorithm is provided, which also sets the parameters for
every other component. Then, another method is provided for registering a callback in order to get
notifications upon events. Finally, CC provides a set of functions to access useful information such as
the coordinator id, the parent device (if any), etc. The interface of the module is presented in Listing 1.

J. Sens. Actuator Netw. 2018, 7, 51 14 of 26

Listing 1. Core Component.

template <typename OsModel,
typename Radio,

typename Timer,

typename CoordinatorSelection,
typename JoinDecision,
typename Iterator>

class CoreComponent {

public:

void init(Radio&,Timer&,CS&,JD&,IT &);
void enable(void);

void disable(void);

void set_parameters(parameters_t =);
void find_head (void);

template <typename T, void(T::+TMethod)(uint8_t)>
int reg_changed_callback(T+ obj);

node_id_t parent()

node_id_t sub_network_id ()
bool is_controller(void);

};

The CC components also provide a public interface that implements the Wiselib concept of Sub-Network
and thus provides the coordinator’s ID, and also allows for registering a function callback in order to
be able to deliver events to external components whenever an change to the sub-network occurs, e.g.,
when the device joined a new sub-network, or a device from a different sub-network was discovered,
or a new sub-network was formed, etc.

Coordinator Selection (CS) Concept. In the CS concept, a method is provided for setting the parameters
(e.g., a probability value that the module will use). Additionally, there is the method for calculating
if the current device is a coordinator and a method to get this result. The interface of the module is
presented in Listing 2.

Listing 2. Coordinator Selection module.

template <typename Radio>
class CoordinatorSelection {
public:

void init(Radio&);

void enable(void);

void disable(void);

void set_parameters(parameters_t =);
bool is_coordinator(void);
bool calculate_coordinator ();

}s

J. Sens. Actuator Netw. 2018, 7, 51 15 of 26

Join Decision (JD) Concept. In the JD concept, a method is supplied that gives the hop distance from
the coordinator of the sub-network after the device has joined one. It also provides methods to generate
the join request, accept and deny messages. Finally, the available join method is invoked once an
invitation payload arrives. The interface of the module in Wiselib is available in Listing 3.

Listing 3. Join Decision module.

template <typename Radio>
class JoinDecision {
public:

void init (Radio&);

void enable(void);

void disable (void);

int hops();

void get_join_request_payload (block_data_t =);
void get_join_accept_payload(block_data_t =);
void get_join_deny_payload(block_data_t =);
size_t get_payload_length(int);

bool join(uint8_t =, uint8_t);

};

Iterator (IT) Concept. This module provides methods for getting the sub-network ID and the parent
of the device in the sub-network’s routing table. Moreover, the next_neighbor () method allows the
device to communicate with the rest of the devices in the sub-network. If the sub-network information
is available, a callback function can be registered so that the Iterator can call back to inform about
changes in the topology. The interface of the module is available in Listing 4.

Listing 4. Join Decision module.

template <typename Radio, typename Timer>
class Iterator {

public:

void init(Radio&, Timeré&);

void enable(void);

void disable (void);

node_id_t sub_network_id(void);
node_id_t parent(void);
node_id_t next_neighbor ();

template <typename T, void (T::*TMethod)(uint8_t)>
int reg_next_callback(T+ obj);

private:

vector_t sub_network_neighbors_;
vector_t non_sub_network_neighbors_;
node_id_t parent_;

b

J. Sens. Actuator Netw. 2018, 7, 51 16 of 26

5. Real-World Evaluation

The results presented in this section use a deployment of the iSense hardware platform (v2,
Coalesences, Liibeck, Germany). The iSense platform provides an IEEE 802.15.4 compliant radio,
a 32-bit RISC controller running at 16 MHz, 96 kbytes of memory, a highly accurate clock and a
switchable power regulator. A total of 46 iSense nodes were deployed in an indoor environment. In
all experiments the transmission power of the 802.15.4 radio was set at —6 dB to enforce one-hop
exchanges in room resolution. Data samples were collected every one second via a USB connectivity
attached to each node. In this way, debugging was encoded out-of-band and it did not affect the
experiments.

Due to space limitations, we report the results from the UNIGE experiment here. Similar results
hold for the other testbeds.

5.1. Assessing Channel Quality and Its Effect on the Performance of the Sub-Network Discovery Module

The evaluation starts with a collection of preliminary experiments that aim to fine-tune the
sub-network discovery operation of the algorithm. This essentially includes the appropriate adjustment
of the two LQI threshold pairs (see Section 2.2) and the periodicity of the broadcast beacon. It is
expected that when strict LQI thresholds are set, the resulting sub-networks will be smaller and
more stable. While when relaxing the LQI thresholds, the sub-networks will grow in size however
making them more prone to channel quality fluctuations. The experiments conducted examined two
different pairs of LQI thresholds: (35,75) and (55, 95). The resulting sub-network sizes are depicted
in Figure 5. Based on the outcome of these experiments, the LQI threshold pair (55,95) is more
suitable for the particular indoor deployment. For this range, the hierarchical scheme generates stable
sub-networks within a short period of time and the resulting topology is dense enough to provide
stable communication.

13 T T T T T T T
IGE,Thresholds (55,95} ——

UNIGE,Thresholds (35,75):

Average Degree

1 1 1 1 1
68 ilt} 188 128 148 168

Tine {zec)

Figure 5. Average sub-network size with different LQI (Link Quality Indicators) thresholds.

The next step is to examine the impact of beacon interval period and the timeout period in the
detection of nearby nodes. Figure 6 presents the results of four different sets of beacon intervals. For
each one, the number of changes in the detected sub-networks (i.e., the events) are measured during
the evolution of the experiment. It is evident that, as the beacon interval increases, the sub-network
discovery experiences fewer fluctuations. Based on these results, it seems that a beacon interval of
2000 ms and above is a good trade-off between adaptivity and responsiveness to topology changes
and induced overhead on the wireless medium.

J. Sens. Actuator Netw. 2018, 7, 51 17 of 26

4HB T T T T T T
5008/29808, Thresholds {55,95)}: ——
1888/5008, Thresholds {55,95): ——
358 - 2800/10008 , Thresholds (55,95} — A
38008/150808, Thresholds {55,95)}: ——
3g8 — 7]

2508

288

Events

158

188

58

a oa 188 150 208 250 360 350
Tine

Figure 6. Sub-network discovery for various beacon interval and timeout periods.
5.2. Assessing the Mechanisms That Control the Adaptation Process

The next experiment focuses on the difference between the FixK and AverageK approaches for
characterizing device consistency. Figure 7a depicts the messages transmitted by FixK. With FixK, less
messages are transmitted over time as sub-networks are larger than three nodes and so the consistency
requirement is met even when nodes lose some of the messages. On the other hand, the AverageK
version has a slightly higher message rate as it adapts to the size of the reported neighborhood. Note
that the sub-network detection component reported the same sub-networks in both experiments,
confirming the correctness of the implementations. The specific characteristics of the IoT deployment
define the version of mechanism that should be chosen to minimize network traffic during stable
periods. When the nodes are uniformly distributed over the network without prior knowledge of
the deployed topology, we can use FixK with the network density as the k value. AverageK is a more
adaptive implementation and operates reliably on any given network as each device uses a different k
value based on its own neighborhood with a small overhead on the number of messages.

Al u‘lﬂJ i V NJ il

o 00 400 s00 600 700 800 %00 1000 1100 1,200 o 00 500 900 1000 1100 1200
Time(sec) Tlme(sec)

of Messages
of Messages

(a) FixK mechanism with k = 2 (b) AverageK mechanism
Figure 7. Message transmissions during sub-network detection.

In order to further understand the effect of the LQI thresholds on the sub-network formation
process, an additional experiment was conducted based on the AverageK implementation with an
LQI threshold of 180. The results of the experiment are depicted in Figure 8. Using LQI to ignore
devices with noisy channels provides much more stable links for the whole duration of the experiment,
eliminating devices on the outskirts of the sub-network that have a high rate of communication failures

J. Sens. Actuator Netw. 2018, 7, 51 18 of 26

and allows the devices to reach a consistent state easily. Not using LQI thresholds allows more distant
devices to be included in the sub-network, and results in less stability as message loss rates are higher
over high distances. However, in real IoT deployments, without LQI thresholds, it is very difficult to
reach a consistent state. The results of the experiment indicate that providing a suitable LQI threshold
significantly improves the stability of the IoT deployment.

.
P R I

pome (A
A AN
/w.\f,-*\,\\‘/ Yol
LN A

of Nodes
9
o

of Nodes

100 n«’#VJd\FE j
75 = LA s - |
A . L W |
sof M W 1] (UL “Um,{_Lm‘ H‘LITJL ‘ J : '“.L)
1/ e W ﬂ 1 ﬂ HR R It /
n n
oo 0L [Ty : 1]
o 00 200 300 400 500 600 700 800 500 1000 1100 1200 a 00 200 200 400 500 00 700 800 S00 1000 1100 L1200
Time(sec) Time(sec)
|— Avg Neighbors — Min Neighbors — Max Ne\ghborsl |—Avg Neighbors — Min Neighbors — Max Nelghborsl
(a) No LQI threshold applied (b) LQI threshold 180

Figure 8. Sub-network detection in combination with AverageK .
Assessing the Effect of the Sub-Network Detection Mechanism on the Network Lifetime

Results from previous experiments indicate that the sub-network detection mechanism achieves
the design goal of minimizing message exchanges. The next step is to evaluate the performance
on battery powered devices to find out how it affects the lifetime of the devices. In this experiment,
six devices are used that are powered with 2 AA rechargeable batteries. The devices were located in
a way such that a single neighborhood would be formed (see Figure 9a). An additional device was
introduced that was connected and powered via USB—the role of this additional device is to collect
battery statistics from the operation of the battery powered devices. For each experiment, the 2 AA
batteries where fully recharged and confirmed that the Voltage of all batteries was the same before each
experiment. The results of the experiment are depicted in Figure 9b nodes where a network running
a Fixed beaconing mechanism had an average lifetime of 1332 min while both adaptive mechanisms
achieved a longer lifetime of 1612 min for the FixK version and 1406 for the AverageK. Interestingly, the
FixK implementation achieved on average 21% longer lifetime.

1600

1400

1300

Fixed-ND Adaptive-ND Adaptive-ND
Fixl Avgk
(a) Deployment Topology (b) Average lifetime per beaconing mechanism

Figure 9. Network lifetime during sub-network detection.

Note that, in these experiments, the devices are configured so that no duty cycling is used. All
devices are operated continuously during the whole experiment. Taking into account that computations
consume far less power than message exchanges, the longer lifetime achieved by the sub-network
detection is almost completely due to minimizing beacon exchanges.

J. Sens. Actuator Netw. 2018, 7, 51 19 of 26

In the next experiment, the performance is investigated in combination with duty cycling and
how it can help improve the overall network lifetime of the IoT deployment. The same six devices
are used, deployed in the same locations. This set of experiments demonstrates that duty cycling
can considerably improve the network lifetime without affecting the performance of the sub-network
detection mechanism. Figure 10 indicates the network lifetime as recorded by the gateway device.

As is evident in Table 1, for a duty cycling rate of 50%, the network’s lifetime is increased by 88.5%
on average, while the decrease of rate down to 30% extends the lifetime at 172%.

Table 1. Network lifetime during sub-network detection.

DC Lifetime Extension

100% 1709 min -
80% 1861 min 8.9%
70% 2035 min 19%
50% 3222 min 88.5%
30% 4662 min 172%

g0

70

50

Metwaork Lifetime (hours)

30

100% 90% 70% 50% 30%

Duty Cyeling (%)

Figure 10. Effect of duty cycling on network lifetime during sub-network detection.

An important point we have to note here is that the actual duty cycling rate achieved differs
from the targeted rate. This happens mainly because interruption-like timer events are executed even
when the device is set to sleep mode. Figure 11 shows exactly how, for extremely low duty cycling
rates (<50%), the actual rate is higher than requested. This fact explains how the operation of higher
protocols is adversely affected in such conditions.

Figure 11 shows how the duty cycling service actually operates and achieves the requested
timings. This is a requirement as the timers scheduled by our protocols and any external interruptions
can cause the device to wake-up and continue its operation while the timer routine is served. As each
function call is processed in a few milliseconds, this may actually seem of minimal impact, but, as it is
obvious for extremely low duty cycle rates, we fail to actually conserve that much.

J. Sens. Actuator Netw. 2018, 7, 51 20 of 26

M Expected DG M Achieved DC

— 0.8
£
on
£
2 0.6
[
=
=
]
= 0.4
T
=
a
=
(=}
=L [

40% 55% 0% B5% 100%

Target Duty Cyeling (%)

Figure 11. Expected and Achieved Duty Cycling.

5.3. Assessing the Speed and Quality of Adaptation

One would expect that there exists a linear correlation between the time required for the module
to stabilize (i.e., correctly detect the neighboring nodes) and the beacon interval. Reducing the beacon
interval period (i.e., increasing the rate of transmission) should lead to a quicker response to changes
in the topology (i.e., shorter delays in detecting changes to the neighboring nodes). Surprisingly, the
experiments reveal that, for small beaconing values (less than 1000 ms), the time the sub-network
discovery module needs to stabilize is longer. This leads to a larger number of events generated. This is
caused by the excess traffic generated due to the short beacon interval, which itself creates interference
that leads to losses of message beacons. Thus, many devices are falsely removed from the sub-network
and then re-added. Compared to the 1000 ms/5000 ms, the 500 ms /2500 ms Beacon Interval /Neighbor
Timeout needs about 30% more time to stabilize and generates almost twice the amount of events.

The experiment looks on how this period of stabilization affects the performance of the final
formation of the sub-networks. Essentially, the goal is to investigate if a high rate of events prevents the
eventual formation of the sub-networks and thus the stabilization of the communication scheme. These
experiments are conducted for 30 min using short beacon interval periods of 500 ms/2500 ms and
long beacon interval periods of 3000 ms/150,000 ms. As observed in Figure 12, for the case of 500 ms
period, the network requires more time to stabilize. The sub-network discovery module wrongfully
reports changes in the topology for such sort beacon interval and this leads the sub-network formation
module to constantly attempt to adapt to the new state. However, when using 3000 ms beacon interval,
the communication channels reported by the sub-network discovery module seem to be stable, as the
number of generated events is very limited.

J. Sens. Actuator Netw. 2018, 7, 51 21 of 26

of Events
of Events

0 250 500 750 Looo 1,250 1,500 1,750 0 250 500 750 1,000 1,250 L1500 1,750

time in seconds time in seconds
|— SubNetwork Formation — SubNetwork Discovery |— SubNetwork Formation — SubNetwork Discovery
(a) Interval 500 ms/2500 ms (b) Interval 3000 ms/15,000 ms

Figure 12. Events generated by the sub-network formation module while reacting to events generated

by the sub-network discovery module.

Assessing the Ability to Adapt to Mobile Devices

The next experiment looks into deployments where some devices are mobile and how the
communication scheme can adapt properly to such changes. The evaluation is based on a predefined
mobility path that is followed by a member of the team that is carrying an IoT device while moving
with different walking speeds. The path followed as well as the positions of the sensors are depicted in
Figure 13. To better evaluate the operation of the communication scheme in the presence of mobile
devices, the used two different speeds: slow, 1 step every 10 s and fast, 1 step every 5s.

Figure 13. Walk path for the mobility experiment.

The results of the experiment are included in Figure 14, which indicate that the mobile devices
transmits over 80% more messages during the walk while all devices transmit more messages than
they would without movement. This is because mobile devices are always expected to be inconsistent
and transmit regularly, while other devices operate on longer intervals for the largest part of the
experiment. Comparison of the events reported by the devices simply confirms that all devices properly
identified the mobile devices in their sub-network and correspondingly the mobile devices identified
the changes around it. At this point, it is important to mention that the mobile devices were detected
by the sub-network of fixed nodes faster (on average after 8 s) than they were detected by the mobile
devices (on average 13 s) since their sub-network was always changing and their beaconing rate was
higher.

J. Sens. Actuator Netw. 2018, 7, 51 22 of 26

Messages per Minute

(=]

No Slow Slow Fast Fast
Mobility — Walk walk walk walk
Mobile Fixed Mobile Fixed
Mode Modes Mode Modes
Figure 14. Messages transmitted per minute with no mobile devices, by mobile and fixed nodes during

slow and fast walks.

5.4. Assessing the Ability to Adapt to Channel Failures

Channel failures refer to a situation where a device is unable to successfully send most of its
outgoing messages due to temporary noise on the wireless communication medium. Such channel
failures were emulated by introducing a special device called “the Jammer” that continuously
broadcasts long messages in order to create collisions, reduce link quality and in general reduce
the message delivery rate. The Jammer device has normal communication range, identical to all other
devices. The Jammer device is positioned in a way such that it can reach almost 50% of the network.

The experiments conducted consisted of three stages. Firstly, the sub-network detection and
formation modules were allowed to operate for a period of 10 min so that they can both reach a
stable state. Then, the Jammer device was activated for 10 min and finally the Jammer device was
deactivated and the network was allowed to stabilize once again. Observing the function of the Jammer
in Figure 15, it is evident that it heavily disrupts the smooth operation of both modules. During the
channel disruption, the sub-network detection module continuously produces events and so does the
sub-network formation module. Essentially, it creates the need to send more control messages in order
to adapt to the new network state increasing the network traffic. When the disruption is over, the
network stabilizes and new events are rare.

of Events
of Messages
[

0 250 500 750 1,000 1,250 1,500 1,750
0 250 500 750 1,000 1,250 1,500 1,750 Time in seconds
time in seconds

— Join Messages — Resume Messages — Attribute Messages
— Network Formation —Metwork Discovery — Jammer Strarts — Jammer Stops —Jammer Starts — Jammer Stops

(a) Total # Events generated (b) Messages generated
Figure 15. Effect of channel failures on the performance of the sub-network discovery and formation.

6. Conclusions and Future Work

This paper presented a new adaptive and hierarchical communication scheme for low-power
long-range IoT deployments. The overall design of the proposed scheme has been presented in details
along with the technical details of all the modules required to realize it. The experimental-driven
research approach was followed so that the hierarchical organization structure could be executed
in real IoT deployments. The initial collection of algorithms has been transformed into open-source

J. Sens. Actuator Netw. 2018, 7, 51 23 of 26

code that can be executed by all the major OS for embedded sensor platforms. The paper includes an
elaborate presentation of the algorithm engineering process followed including the most important
implementation details. The performance of the communication scheme has been evaluated in a
real-world deployment. The experimental evaluation indicates that, with proper fine-tuning of the
various parameters, the resulting organization structure can adapt to various internal and external
conditions and support stable and scalable communication. In testbeds located in indoor spaces, stable
communication was always established within a very short period of time. In certain cases, the system
was evaluated under the presence of failures and malicious attacks. These tests indicate the capability
of the scheme to suitably adapting the hierarchical structure and eventually overcoming the failures.

Apart from the benefits of providing a scalable communication scheme, the hierarchical
organization structure presented here provides some additional benefits. An important benefit is the
establishment of securing communication exchanges within each the sub-network by incorporating a
Group key establishment (GKE) algorithm. GKE is the procedure of setting up secret cryptographic
keys between groups of nodes. This essentially guarantees to some extent the confidentiality and
integrity of the information exchanged. A wide variety of GKE protocols based on asymmetric and
symmetric cryptographic techniques has been proposed so far, e.g., [41-43].

The big challenges when designing a GKE protocol for IoT deployments are scalability and
efficiency [5]. However, the proposed protocols aim at these goals, and a GKE mechanism could
execute faster and more efficiently when applied in combination with the hierarchical scheme presented
here and the creation of the sub-networks. Moreover, certain GKE protocols like [44] are based on the
assumption that the network is already organized into sub-networks. Thus, one can realize that the
hierarchical scheme presented here can improve the efficiency of computationally heavy protocols like
GKE protocols and respectively the overall network performance.

To provide the first feedback on the ability to offer secure communication within the sub-networks,
the GKE algorithm proposed in [5] was implemented in combination with the hierarchical scheme
presented here. It is based on Elliptic Curve Cryptograhy (ECC) and it employs a depth first traversal
that visits all the network participants who contribute to the group key. The Depth-First-Search
(DFS) traversal is implemented by registering two callback methods at the CC component so
that the common key is re-computed when each device joins the sub-network and the key is
finalized with the last device addition. The keys are generated using the ECC operations (point
multiplication,encryption/decryption) provided by Wiselib. The prob, dfs and norm components of
Wiselib are used to complete the integration. The overall implementation requires a total of 11 lines
of code. The resulting performance is evaluated based on the iSense hardware. For the topology
of 10 nodes, it requires approximately 7 min to compute a common key of 163 bits. Remark that
ECC-based cryptography of 163-bit is equivalent to 1024-bit RSA keys.

In a very similar way, protocols like [42,44] can be implemented by employing the necessary
cryptographic mechanism and by using the information provided by the IT component after the cluster
formation has finished.

The experimental driven approach presented here can be further optimized. A possible future
work direction is to further examine the interplay of the protocol parameters as the system evolves
dynamically. The adaptation mechanisms can be extended to change the structure in cases when
concurrent events take place whose performance parameters have conflicting goals. Another research
direction is to examine the performance of the organization scheme in specific application domains,
such as, for example, the tracking of mobile assets in large-scale deployments [45,46]. It is expected
that the hierarchical structure proposed here can be exploited to improve the scalability of the
tracking process.

Author Contributions: The conceptualization, methodology, experiment design, software, analysis, data curation,
writing and editing were conducted by D.A. and I.C.

Funding: This research received no external funding.

J. Sens. Actuator Netw. 2018, 7, 51 24 of 26

Acknowledgments: Apostolis Pyrgelis and Georgios Oikonomou for their support during the experimentation of
the proposed system.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645-1660. [CrossRef]

Chatzigiannakis, I.; Dimitriou, T.; Nikoletseas, S.E.; Spirakis, P.G. A probabilistic algorithm for efficient and
robust data propagation in wireless sensor networks. Ad Hoc Netw. 2006, 4, 621-635. [CrossRef]
Chatzigiannakis, I.; Mylonas, G.; Nikoletseas, S.E. Modeling and Evaluation of the Effect of Obstacles on
the Performance of Wireless Sensor Networks. In Proceedings of the 39th Annual Simulation Symposium,
Washington, DC, USA, 2-6 April 2006; pp. 50-60.

Chatzigiannakis, I.; Kinalis, A.; Nikoletseas, S. An adaptive power conservation scheme for heterogeneous
wireless sensor networks with node redeployment. In Proceedings of the Seventeenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, Las Vegas, NV, USA, 18-20 July 2005; pp. 96-105.
Chatzigiannakis, I.; Konstantinou, E.; Liagkou, V.; Spirakis, PG. Design, Analysis and Performance
Evaluation of Group Key Establishment in Wireless Sensor Networks. Electron. Notes Theor. Comput. Sci.
2007, 171, 17-31. [CrossRef]

Baumgartner, T.; Chatzigiannakis, I.; Fekete, S.P.; Fischer, S.; Koninis, C.; Kroller, A.; Kriiger, D.; Mylonas,
G.; Pfisterer, D. Distributed algorithm engineering for networks of tiny artifacts. Comput. Sci. Rev. 2011,
5, 85-102. [CrossRef]

Amaxilatis, D.; Chatzigiannakis, I.; Dolev, S.; Koninis, C.; Pyrgelis, A.; Spirakis, P.G. Adaptive Hierarchical
Network Structures for Wireless Sensor Networks. In Proceedings of the 3rd International Conference on
Ad Hoc Networks, Paris, France, 21-23 September 2011; pp. 65-80.

Chatzigiannakis, I.; Kinalis, A.; Nikoletseas, S.E. Efficient data propagation strategies in wireless sensor
networks using a single mobile sink. Comput. Commun. 2008, 31, 896-914. [CrossRef]

Sanchez, L.; Mufioz, L.; Galache, J.A.; Sotres, P,; Santana, J.R.; Gutierrez, V.; Ramdhany, R.; Gluhak, A.;
Krco, S.; Theodoridis, E.; Pfisterer, D. SmartSantander: IoT experimentation over a smart city testbed.
Comput. Netw. 2014, 61, 217-238. [CrossRef]

Chatzigiannakis, I.; Vitaletti, A.; Pyrgelis, A. A privacy-preserving smart parking system using an IoT elliptic
curve based security platform. Comput. Commun. 2016, 89-90, 165-177. [CrossRef]

Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-Range Communications in Unlicensed Bands: The
Rising Stars in the IoT and Smart City Scenarios. IEEE Wirel. Commun. 2015, 23. [CrossRef]

Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low power wide area networks: An overview. IEEE Commun.
Surv. Tutor. 2017, 19, 855-873. [CrossRef]

Mikhaylov, K.; Petaejaejaervi, J.; Haenninen, T. Analysis of capacity and scalability of the LoRa low power
wide area network technology. In Proceedings of the 22th European Wireless Conference, Oulu, Finland,
18-20 May 2016; pp. 1-6.

Varsier, N.; Schwoerer, J. Capacity limits of LoRaWAN technology for smart metering applications.
In Proceedings of the IEEE International Conference on Communications, Paris, France, 21-25 May 2017;
pp- 1-6.

Amaxilatis, D.; Akrivopoulos, O.; Mylonas, G.; Chatzigiannakis, I. An IoT-based solution for monitoring a
fleet of educational buildings focusing on energy efficiency. Sensors 2017, 17, 2296. [CrossRef] [PubMed]
Gutiérrez, V.; Theodoridis, E.; Mylonas, G.; Shi, F; Adeel, U.; Diez, L.; Amaxilatis, D.; Choque, J.;
Camprodom, G.; McCann, J.; others. Co-creating the cities of the future. Sensors 2016, 16, 1971.
Akribopoulos, O.; Chatzigiannakis, I.; Koninis, C.; Theodoridis, E. A web services-oriented architecture for
integrating small programmable objects in the web of things. In Proceedings of the International Conference
on the Developments in eSystems Engineering 2010, London, UK, 6-8 September 2010; pp. 70-75.

Baker, D.; Ephremides, A. The architectural organization of a mobile radio network via a distributed
algorithm. IEEE Trans. Commun. 1981, 29, 1694-1701. [CrossRef]

Gonzélez-Briones, A.; Chamoso, P.; De La Prieta, F.,; Demazeau, Y.; Corchado,].M. Agreement Technologies
for Energy Optimization at Home. Sensors 2018, 18, 1633. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.adhoc.2005.06.006
http://dx.doi.org/10.1016/j.entcs.2006.11.007
http://dx.doi.org/10.1016/j.cosrev.2010.09.006
http://dx.doi.org/10.1016/j.comcom.2007.12.011
http://dx.doi.org/10.1016/j.bjp.2013.12.020
http://dx.doi.org/10.1016/j.comcom.2016.03.014
http://dx.doi.org/10.1109/MWC.2016.7721743
http://dx.doi.org/10.1109/COMST.2017.2652320
http://dx.doi.org/10.3390/s17102296
http://www.ncbi.nlm.nih.gov/pubmed/28994719
http://dx.doi.org/10.1109/TCOM.1981.1094909
http://dx.doi.org/10.3390/s18051633
http://www.ncbi.nlm.nih.gov/pubmed/29783768

J. Sens. Actuator Netw. 2018, 7, 51 25 of 26

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Amaxilatis, D.; Oikonomou, G.; Chatzigiannakis, I. Adaptive neighbor discovery for mobile and low power
wireless sensor networks. In Proceedings of the 15th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, New York, NY, USA, 21-25 October 2012; pp. 385-394.
Abbasi, A.A.; Younis, M. A survey on clustering algorithms for wireless sensor networks. Comput. Commun.
2007, 30, 2826-2841. [CrossRef]

Amaxilatis, D.; Chatzigiannakis, I.; Koninis, C.; Pyrgelis, A. Component Based Clustering in Wireless Sensor
Networks. arXiv 2011, arXiv:1105.3864.

Mamalis, B.; Gavalas, D.; Konstantopoulos, C.; Pantziou, G. Clustering in wireless sensor networks.
In RFID and Sensor Networks: Architectures, Protocols, Security and Integrations, 1st ed.; Zhang, Y., Yang, L.T,,
Chen, J., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 324-353, ISBN 9781138112834.

Singh, S.P.; Sharma, S. A Survey on Cluster Based Routing Protocols in Wireless Sensor Networks. Procedia
Comput. Sci. 2015, 45, 687-695. [CrossRef]

Fasolo, E.; Rossi, M.; Widmer, J.; Zorzi, M. In-network aggregation techniques for wireless sensor networks:
A survey. IEEE Wirel. Commun. 2007, 14, 70-87. [CrossRef]

Madden, S.; Franklin, M.].; Hellerstein,].M.; Hong, W. TAG: A tiny aggregation service for ad-hoc sensor
networks. ACM SIGOPS Operat. Syst. Rev. 2002, 36, 131-146. [CrossRef]

Intanagonwiwat, C.; Govindan, R.; Estrin, D. Directed diffusion: A scalable and robust communication
paradigm for sensor networks. In Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, Boston, MA, USA, 6-11 August 2000; pp. 56—67.

Heinzelman, W.B.; Chandrakasan, A.P,; Balakrishnan, H. An application-specific protocol architecture for
wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660-670. [CrossRef]

Nath, S.; Gibbons, P.B.; Seshan, S.; Anderson, Z. Synopsis diffusion for robust aggregation in sensor networks.
ACM Trans. Sens. Netw. 2008, 4, 7. [CrossRef]

Tunca, C.; Isik, S.; Donmez, M.Y.; Ersoy, C. Ring Routing: An Energy-Efficient Routing Protocol for Wireless
Sensor Networks with a Mobile Sink. IEEE Trans. Mob. Comput. 2014, 14, 1947-1960. [CrossRef]

Manjhi, A; Nath, S.; Gibbons, P.B. Tributaries and deltas: Efficient and robust aggregation in sensor network
streams. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data,
Baltimore, MD, USA, 13-17 June 2005; pp. 287-298.

Chantzis, K.; Amaxilatis, D.; Chatzigiannakis, I.; Rolim, J. Symmetric Coherent Link Degree, Adaptive
Throughput-Transmission Power for Wireless Sensor Networks. In Proceedings of the 2014 IEEE
International Conference on Distributed Computing in Sensor Systems (DCOSS), Marina Del Rey, CA,
USA, 26-28 May 2014; pp. 26-34.

Zaidi, Z.R.; Portmann, M.; Tan, W.L. Analysis of link break detection using HELLO messages. In Proceedings
of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, Miami, FL, USA, 31 October—4 November 2011; pp. 143-150.

Winter, T.; Thubert, P; Brandt, A.; Hui, J.; Kelsey, R.; Levis, P; Pister, K.; Struik, R.; Vasseur, J.; Alexander, R.
RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. IETF RFCs, REC 6550, 2012; ISSN 2070-1721.
Available online: https:/ /tools.ietf.org/html/rfc6550 (accessed on 1 October 2018).

Dolev, S.; Tzachar, N. Empire of colonies: Self-stabilizing and self-organizing distributed algorithm. Theor.
Comput. Sci. 2008, 410, 514-532. [CrossRef]

Chatzigiannakis, I.; Spirakis, P. Distributed Self-Organized Societies of Tiny Artefacts: Design & Implementation;
Lulu Press: Wake County, NC, USA, 2011.

Baumgartner, T.; Chatzigiannakis, I.; Fekete, S.P.; Koninis, C.; Kroller, A.; Pyrgelis, A. Wiselib: A Generic
Algorithm Library for Heterogeneous Sensor Networks. In Proceedings of the 7th European Conference on
Wireless Sensor Networks, Coimbra, Portugal, 17-19 February 2010; pp. 162-177.

Fekete, S.P; Kroller, A.; Fischer, S.; Pfisterer, D. Shawn: The fast, highly customizable sensor network
simulator. In Proceedings of the 4th International Conference on Networked Sensing Systems, Braunschweig,
Germany, 6-8 June 2007.

Levis, P.; Lee, N.; Welsh, M.; Culler, D. TOSSIM: Accurate and Scalable Simulation of Entire TinyOS
Applications. In Proceedings of the 1st ACM International Conference on Embedded Networked Sensor
Systems, Los Angeles, CA, USA, 5-7 November 2003; pp. 126-137.

http://dx.doi.org/10.1016/j.comcom.2007.05.024
http://dx.doi.org/10.1016/j.procs.2015.03.133
http://dx.doi.org/10.1109/MWC.2007.358967
http://dx.doi.org/10.1145/844128.844142
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1145/1340771.1340773
http://dx.doi.org/10.1109/TMC.2014.2366776
https://tools.ietf.org/html/rfc6550
http://dx.doi.org/10.1016/j.tcs.2008.10.006

J. Sens. Actuator Netw. 2018, 7, 51 26 of 26

40.

41.

42.

43.

44.

45.

46.

Levis, P; Patel, N.; Culler, D.; Shenker, S. Trickle: A self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. In Proceedings of the First Symposium on Networked Systems
Design and Implementation, San Francisco, CA, USA, 29-31 March 2004; pp. 15-28.

Kotzanikolaou, P.; Magkos, E.; Vergados, D.D.; Stefanidakis, M. Secure and practical key establishment for
distributed sensor networks. Secur. Commun. Netw. 2009, 2, 595-610. [CrossRef]

Li, X,; Yang, D.; Sawhney, R. Key establishment for layered group-based Wireless Sensor Networks. Int. J.
Ad Hoc Ubiguitous Comput. 2010, 5, 150-162. [CrossRef]

Das, A K.; Sengupta, I. An effective group-based key establishment scheme for large-scale wireless sensor
networks using bivariate polynomials. In Proceedings of the 3rd International Conference on Communication
System Software and Middleware, Bangalore, India, 6-10 January 2008; pp. 9-16.

Zhou, L.; Nj, J.; Ravishankar, C. Short Paper: GKE: Efficient Group-based Key Establishment for Large
Sensor Networks. In Proceedings of the First International ICST Conference on Security and Privacy for
Emerging Areas in Communications Networks, Athens, Greece, 5-9 September 2005; pp. 397-399.
Chantzis, K.; Chatzigiannakis, I.; Rolim, J. Design and evaluation of a real-time locating system for wireless
sensor networks. J. Locat. Based Serv. 2014, 8, 97-122. [CrossRef]

Chantzis, K.; Koninis, C.; Chatzigiannakis, I.; Rolim, J. Design and Evaluation of a Lightweight Tracking
Algorithm using WSN. In Proceedings of the 2011 IEEE 8th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS), Valencia, Spain, 17-22 October 2011; pp. 640-645.

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/sec.102
http://dx.doi.org/10.1504/IJAHUC.2010.032228
http://dx.doi.org/10.1080/17489725.2014.922224
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction, Related Work and Our Approach
	A Hierarchical Communication Scheme
	Network Model and Device Capabilities
	Network Monitoring Mechanism
	Self-Organizing Sub-Network Formation

	Adaptive Sub-Network Organization
	Adaptation to the Changes of the Sub-Network
	Estimating the Sub-Network Consistency
	Assessing Communication Channel Quality
	Dealing with Low Power and Lossy Links

	Software Implementation
	Duty Cycling
	Network Monitoring Mechanism
	Adaptive Sub-Network Organization
	Implementation Details

	Real-World Evaluation
	Assessing Channel Quality and Its Effect on the Performance of the Sub-Network Discovery Module
	Assessing the Mechanisms That Control the Adaptation Process
	Assessing the Speed and Quality of Adaptation
	Assessing the Ability to Adapt to Channel Failures

	Conclusions and Future Work
	References

