
Spatial Organization and Molecular Correlation of Tumor-
Infiltrating Lymphocytes Using Deep Learning on Pathology 
Images

Joel Saltz1,*, Rajarsi Gupta1,4, Le Hou2, Tahsin Kurc1, Pankaj Singh3, Vu Nguyen2, Dimitris 
Samaras2, Kenneth R. Shroyer4, Tianhao Zhao4, Rebecca Batiste4, John Van Arnam5, The 
Cancer Genome Atlas Research Network, Ilya Shmulevich6, Arvind U.K. Rao3,7, Alexander 
J. Lazar8, Ashish Sharma9, and Vésteinn Thorsson6,10,*

1Department of Biomedical Informatics, Stony Brook Medicine, Stony Brook, NY 11794, USA

2Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA

*Correspondence: joel.saltz@stonybrookmedicine.edu (J.S.), vesteinn.thorsson@systemsbiology.org (V.T.).
10Lead Contact

SUPPLEMENTAL INFORMATION
Supplemental Information includes five figures and two tables and can be found with this article online at https://doi.org/10.1016/
j.celrep.2018.03.086.

AUTHOR CONTRIBUTIONS
Conceptualization, J.H.S., V.T., A.J.L., T.K., I.S.; Methodology, J.H.S., V.T., A.S., A.J.L., A.U.K.R., I.S., T.Z., D.S., V.N., P.S., T.K., 
L.H., R.G.; Investigation, J.H.S., V.T., A.S., A.J.L., A.U.K.R., I.S., J.V.A., R.B., T.Z., D.S., V.N., P.S., T.K., L.H., R.G.; Writing – 
Original Draft, J.H.S., V.T., A.S., A.J.L., A.U.K.R., K.R.S., D.S., V.N., T.K., L.H., R.G.; Writing – Review & Editing, J.H.S., V.T., 
A.S., A.J.L., K.R.S., D.S., T.K., L.H., R.G.; Supervision, J.H.S., V.T., A.J.L., K.R.S., D.S., T.K.; Visualization, V.T., A.S., A.U.K.R., 
T.Z., P.S., L.H., R.G.; Data Curation, V.T., A.S., I.S., A.J.L., V.N., T.K., L.H., R.G.; Software, A.S., V.N., P.S., T.K., L.H.; Formal 
Analysis; J.H.S., V.T., A.U.K.R., V.N., P.S., T.K., L.H.

DECLARATION OF INTERESTS
Michael Seiler, Peter G. Smith, Ping Zhu, Silvia Buonamici, and Lihua Yu are employees of H3 Biomedicine, Inc. Parts of this work 
are the subject of a patent application: WO2017040526 titled “Splice variants associated with neo-morphic sf3b1 mutants.” 
Shouyoung Peng, Anant A. Agrawal, James Palacino, and Teng Teng are employees of H3 Biomedicine, Inc. Andrew D. Cherniack, 
Ashton C. Berger, and Galen F. Gao receive research support from Bayer Pharmaceuticals. Gordon B. Mills serves on the External 
Scientific Review Board of Astrazeneca. Anil Sood is on the Scientific Advisory Board for Kiyatec and is a shareholder in BioPath. 
Jonathan S. Serody receives funding from Merck, Inc. Kyle R. Covington is an employee of Castle Biosciences, Inc. Preethi H. 
Gunaratne is founder, CSO, and shareholder of NextmiRNA Therapeutics. Christina Yau is a part-time employee/consultant at 
NantOmics. Franz X. Schaub is an employee and shareholder of SEngine Precision Medicine, Inc. Carla Grandori is an employee, 
founder, and shareholder of SEngine Precision Medicine, Inc. Robert N. Eisenman is a member of the Scientific Advisory Boards and 
shareholder of Shenogen Pharma and Kronos Bio. Daniel J. Weisenberger is a consultant for Zymo Research Corporation. Joshua M. 
Stuart is the founder of Five3 Genomics and shareholder of NantOmics. Marc T. Goodman receives research support from Merck, Inc. 
Andrew J. Gentles is a consultant for Cibermed. Charles M. Perou is an equity stock holder, consultant, and Board of Directors 
member of BioClassifier and GeneCentric Diagnostics and is also listed as an inventor on patent applications on the Breast PAM50 
and Lung Cancer Subtyping assays. Matthew Meyerson receives research support from Bayer Pharmaceuticals; is an equity holder in, 
consultant for, and Scientific Advisory Board chair for OrigiMed; and is an inventor of a patent for EGFR mutation diagnosis in lung 
cancer, licensed to LabCorp. Eduard Porta-Pardo is an inventor of a patent for domainXplorer. Han Liang is a shareholder and 
scientific advisor of Precision Scientific and Eagle Nebula. Da Yang is an inventor on a pending patent application describing the use 
of antisense oligonucleotides against specific lncRNA sequence as diagnostic and therapeutic tools. Yonghong Xiao was an employee 
and shareholder of TESARO, Inc. Bin Feng is an employee and shareholder of TESARO, Inc. Carter Van Waes received research 
funding for the study of IAP inhibitor ASTX660 through a Cooperative Agreement between NIDCD, NIH, and Astex 
Pharmaceuticals. Raunaq Malhotra is an employee and shareholder of Seven Bridges, Inc. Peter W. Laird serves on the Scientific 
Advisory Board for AnchorDx. Joel Tepper is a consultant at EMD Serono. Kenneth Wang serves on the Advisory Board for Boston 
Scientific, Microtech, and Olympus. Andrea Califano is a founder, shareholder, and advisory board member of DarwinHealth, Inc. and 
a shareholder and advisory board member of Tempus, Inc. Toni K. Choueiri serves as needed on advisory boards for Bristol-Myers 
Squibb, Merck, and Roche. Lawrence Kwong receives research support from Array BioPharma. Sharon E. Plon is a member of the 
Scientific Advisory Board for Baylor Genetics Laboratory. Beth Y. Karlan serves on the Advisory Board of Invitae.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2018 May 10.

Published in final edited form as:
Cell Rep. 2018 April 03; 23(1): 181–193.e7. doi:10.1016/j.celrep.2018.03.086.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1016/j.celrep.2018.03.086
https://doi.org/10.1016/j.celrep.2018.03.086


3Department of Bioinformatics and Computational Biology, University of Texas MD Anderson 
Cancer Center, Houston, TX 77030, USA

4Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA

5Department of Pathology and Laboratory Medicine, Perelman School at the University of 
Pennsylvania, Philadelphia, PA 19104, USA

6Institute for Systems Biology, Seattle, WA 98109, USA

7Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, 
TX 77030, USA

8Departments of Pathology, Genomic Medicine, and Translational Molecular Pathology, The 
University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

9Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA

SUMMARY

Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images 

of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-

infiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL 

maps are derived through computational staining using a convolutional neural network trained to 

classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and 

correlation with overall survival. TIL map structural patterns were grouped using standard 

histopathological parameters. These patterns are enriched in particular T cell subpopulations 

derived from molecular measures. TIL densities and spatial structure were differentially enriched 

among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial 

infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic 

patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for 

the TCGA image archives with insights into the tumor-immune microenvironment.

In Brief

Tumor-infiltrating lymphocytes (TILs) were identified from standard pathology cancer images by 

a deep-learning-derived “computational stain” developed by Saltz et al. They processed 5,202 

digital images from 13 cancer types. Resulting TIL maps were correlated with TCGA molecular 

data, relating TIL content to survival, tumor subtypes, and immune profiles.
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INTRODUCTION

Although studies in humans have shown that chronic inflammation can promote 

tumorigenesis (Trinchieri, 2012), the host immune system is equally capable of controlling 

tumor growth through the activation of adaptive and innate immune mechanisms (Galon et 

al., 2013). Such intratumoral processes are often referred to collectively as immunoediting, 

where this selective pressure can result in the emergence of tumor cells that escape immune 

surveillance and, ultimately, to tumor progression. At the same time, many observations 

suggest that high densities of tumor-infiltrating lymphocytes (TILs) correlate with favorable 

clinical outcomes (Mlecnik et al., 2011a) such as longer disease-free survival or improved 

overall survival (OS) in multiple cancer types (Angell and Galon, 2013). Recent studies 

further suggest that the importance of spatial context and the nature of cellular heterogeneity 

of the tumor microenvironment, in terms of the immune infiltrate involving the tumor center 

and/or invasive margin, can also correlate with cancer prognosis (Fridman et al., 2012). 

Prognostic factors, most notably the Immunoscore, that quantify such spatial TIL densities 

in different tumor regions have high prognostic value that can significantly supplement and 

sometimes even supersede the standard TNM classification and staging in certain 

settings(Galon et al., 2006; Broussard and Disis, 2011; Mlecnik et al., 2011b). Given this 

and the central role of immunotherapy treatments in contemporary cancer care, these 

assessments of tumor-associated lymphocytes are increasingly important both in the clinical 

assessment of pathology slides, as well as in translational research into the role of these 

lymphocytic populations.

Tissue diagnostic studies are carried out and interpreted by pathologists for virtually all 

cancer patients, and the overwhelming majority of these are stained with hematoxylin and 

eosin (H&E). The TCGA Pan Cancer Atlas dataset includes representative H&E diagnostic 

whole-slide images (WSIs) that enable spatial quantification and analysis of TILs and 

association with the wealth of molecular characterization conducted through the TCGA. 
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Previously, this rich trove of imaging data has primarily been used solely to qualify samples 

for TCGA analysis and gleaning of some limited histopathologic parameters by expert 

pathologists. Using digital pathology and digitized whole-slide diagnostic tissue images, 

machine learning and deep learning approaches can create a “Computational Stain.” This 

allows identification and quantification of image features to formulate higher-order 

relationships that go beyond simple densities (e.g., of TILs) to explore quantitative 

assessments of lymphocyte clustering patterns, as well as characterization of the 

interrelationships between TILs and tumor regions. We apply this to the TCGA samples in a 

broad multi-cancer fashion. Only a few TCGA tumor types have been explored for TIL 

content based on feature extraction from histologic H&E images and in a more limited 

fashion (Rutledge et al., 2013; Cancer Genome Atlas Research Network, 2017).

Over the past 12 years, The Cancer Genome Atlas (TCGA) has profoundly illuminated the 

genomic landscape of human malignancy. More recently, it has been recognized that 

genomic data derived from bulk tumor samples, which include the tumor stromal, vascular, 

and immune compartments, as well as tumor cells, can provide detailed information about 

the tumor immune microenvironment. Molecular subtypes of ovarian, melanoma, and 

pancreatic cancer have been defined based on measures of immune infiltration (Cancer 

Genome Atlas Research Network, 2011; Cancer Genome Atlas Network, 2015; Bailey et al., 

2016), and a number of other tumors show variation in immune gene expression by 

molecular subtype (Iglesia et al., 2014, 2016; Kardos et al., 2016). Recent publications 

(Charoentong et al., 2017; Li et al., 2016; Rooney et al., 2015) have presented 

comprehensive analyses of TCGA data on the basis of immune content response. A recent 

study (Thorsson et al., 2018) reports on a series of immunogenomic characterizations that 

include assessments such as total lymphocytic infiltrate, immune cell type fractions, immune 

gene expression signatures, HLA type and expression, neoantigen prediction, T cell and B 

cell repertoire, and viral RNA expression. From these base-level results, integrative analyses 

were performed to derive six immune subtypes, spanning tumor types and subtypes. The 

comprehensive pairing of clinical, sample, molecular tumor, and immune characterizations 

with H&E WSIs in the TCGA is a unique resource (Cooper et al., 2017) and offers the 

possibility of identifying relationships between computational staining of whole-slide 

images and other measures of immune response that may in turn inform research into 

immuno-oncological therapy. In this work, we characterize spatial patterns of TILs and 

present relationships between TIL patterns and immune subtypes, tumor types, immune cell 

fractions, and patient survival, illustrating the potential of this kind of analysis and the kinds 

of questions that can be explored. For example, through integration of spatial patterns with 

molecular TIL characterization, we found evidence for these patterns being enriched in 

particular T cell populations.

This study represents an important milestone in the use of digital-pathology-based 

quantification as we are able to present results relating spatial and molecular tumor immune 

characterizations for roughly 5,000 patients with 13 cancer types. TILs and spatial 

characterizations of TILs have shown significant value in diagnostic and prognostic settings, 

and the ability to quantify TILs from diagnostic tissue has proven to be demanding, 

expensive, challenging to scale, and beleaguered by subjectivity. Human review of 

diagnostic tissue is highly effective for traditional diagnosis but is qualitative and thus is 
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prone to both inter- and intra- observer variability, particularly when attempting to quantify 

or reproducibly characterize feature-rich phenomena such as tumor-associated lymphocytic 

infiltrates. The spatial characterizations we present are high resolution, with TIL infiltration 

assessed in whole-slide images at a 50-micron resolution, and all TIL maps are available to 

the scientific community for further exploration. The recent FDA approval (FDA News 

Release, 2017) of whole-slide imaging for primary diagnostic use is leading to more 

widespread adoption of digital whole-slide imaging. It is widely expected that, within 5–10 

years, the great majority of new pathology slides will be digitized, thus enabling the 

development and clinical adoption of various digital-pathology-based diagnostic and 

prognostic biomarkers that will likely provide decision support for traditional pathologic 

interpretation in the clinical setting.

RESULTS

Generating Maps of Tumor-Infiltrating Lymphocytes using Convolutional Neural Networks

In order to accurately generate maps of tumor-infiltrating lymphocytes (TIL Maps) from 

digitized H&E stained tissue specimens, we developed a comprehensive methodology and 

accompanying interactive tools. This methodology is termed Computational Staining and 

employs deep learning methods to analyze images and tools to incorporate expert feedback 

into the deep learning models. Such iterative feedback results in the improvement of the 

overall accuracy of TIL Maps. Key highlights and the validation strategy for Computational 

Staining are presented here, with further details provided in the Method Details.

Computational Staining uses convolutional neural networks (CNNs) to identify lymphocyte-

infiltrated regions in digitized H&E stained tissue specimens. The CNN is a supervised deep 

learning method that has been successfully applied in a large number of image analysis 

problems (Cireşan et al., 2013; Huang et al., 2016; Xie et al., 2015a, 2015b; Wang et al., 

2016; Sirinukunwattana et al., 2016; Bayramoglu and Heikkila, 2016; Su et al., 2015; Hou et 

al., 2016a; Murthy et al., 2017;Chen et al., 2017; Xu and Huang, 2016). A CNN first uses a 

set of training data to learn a classification (or predictive) model in the training phase. The 

resulting trained model is then used to classify new data elements in a prediction phase. 

Deep-learning-based automatic analysis methods generally require large annotated datasets. 

Many state-of-the-art methods employ semi-supervised training strategies to boost trained 

model performance using unlabeled data (Ranzato et al., 2006; Masci et al., 2011; 

Bayramoglu and Heikkila, 2016; Xu and Huang, 2016; Su et al., 2015). They (1) pre-train an 

autoencoder for unsupervised representation learning; (2) construct a CNN from the 

pretrained autoencoder; and (3) fine-tune the constructed CNN for supervised classification. 

One can train the unsupervised autoencoder on image patches with the object to be classified 

(e.g., nucleus) in the center of each patch (Hou et al., 2016a; Murthy et al., 2017) in order to 

capture the visual variance of the object more accurately. This method, however, requires a 

separate object detection step. Instead of tuning the detection and classification modules 

separately, recent studies (Graves and Jaitly, 2014; Ren et al., 2015; Redmon et al., 2016; 

Kokkinos 2017) have developed CNNs to perform these tasks in a unified but fully 

supervised pipeline.
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Our methodology uses two CNNs: a lymphocyte infiltration classification CNN (lymphocyte 

CNN) and a necrosis segmentation CNN (necrosis CNN). The lymphocyte CNN categorizes 

tiny patches of an input image into those with lymphocyte infiltration and those without. It is 

a semi-supervised CNN, initialized by an unsupervised convolutional autoencoder (CAE). 

The necrosis CNN segments the regions of necrosis and is designed to eliminate false 

positives from necrotic regions where nuclei may have characteristics similar to those in 

lymphocyte-infiltrated regions. Details about the two CNNs are shown in Figure S1A and 

described in the Method Details.

Figure 1 illustrates both the training and model development phase of our methodology (top 

half of the figure) and the use of the trained model to generate TIL Maps (bottom half of the 

figure). The CNN training and model development phase starts with expert pathologists 

reviewing a set of images and marking regions of lymphocytes and necrosis. The 

lymphocyte and necrosis regions are then subdivided into tiny patches to create the initial 

training dataset. Training with patches rather than with individual regions and cells is done 

for computational efficiency. The lymphocyte CNN is trained with 50 × 50 μm2 patches 

(equivalent to 100 × 100 square pixel patches in tissue images acquired at 20× magnification 

level) from WSIs. The necrosis CNN is trained with larger patches of size 500 × 500 μm2, as 

more contextual information results in superior prediction of patches being necrotic. The 

initial training step is followed by an iterative cycle of review and refinement steps to 

improve the prediction accuracy of the lymphocyte CNN. This prediction step generates a 

probability value of lymphocyte infiltration for each patch in the images. The patch-level 

predictions for an image are combined and represented to pathologists as a heatmap for 

review and visual editing using our TIL-Map editor tool. The pathologists refine the CNN 

predictions for an image by first adjusting the probability value threshold (which globally 

updates the labels of the patches in the image; if the probability value of a patch exceeds the 

adjusted threshold, the patch is labeled a TIL patch) and then manually editing the heatmap 

to correct prediction errors for individual or groups of patches. At the end of the editing step, 

the updated heatmaps are processed to augment the training dataset. The lymphocyte CNN 

is re-trained with the updated training dataset. This iterative process continues until adequate 

prediction accuracy is achieved, as determined by the pathologist feedback. The necrosis 

CNN was retrained only once in this study, because it achieved sufficient prediction 

accuracy. The training and re-training steps of both CNNs involve cross-validation to assess 

prediction performance and avoid overfitting (Hou et al., 2017). See the Method Details for 

an in-depth description of this process.

The trained models are used on test datasets (bottom half of Figure 1). In this work, we 

applied our method to 5,455 diagnostic H&E WSIs from 13 TCGA tumor types in which 

lymphocytes are known to be present. See Additional Resources for listing and acronyms. 

We included uveal melanoma (UVM) as one of the 13 cancer types essentially as a type of 

negative control (Figure S3A), since it has the fewest immune cells among TCGA tumors 

(Thorsson et al., 2018). Tumor types were selected to represent a range of known positive 

involvement of lymphocytes and immunogenicity from literature and from molecular 

estimates of lymphocyte content. Each image was partitioned into patches of 50 × 50 μm2 

and each patch was classified by the CNNs. TIL maps were successfully generated (see 

Figure S1C and Table S2) for 5,202 TCGA tumor images from 4,759 individual participants 
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in the 13 tumor types. 253 images (4.6%) did not yield TIL maps because of low image 

quality or low prediction accuracy or because the images were duplicates (see Figure S1C).

We assessed the performance of our approach in two complementary, yet orthogonal ways. 

The first assessment method, described in Zhao et al. (2017), compares performance 

prediction of our method with that of a popular and widely used CNN—called VGG16 

(Simonyan and Zisserman, 2014)—using a set of WSIs from TCGA lung adenocarcinoma 

(LUAD) cases. The training set of the lymphocyte CNN consisted of 20,876 patches. Each 

patch usually contains 0 to 30 nuclei and was annotated by a pathologist as lymphocyte 

infiltrated or not lymphocyte infiltrated. The training set of the necrosis segmentation CNN 

consisted of 1,800 patches. Each patch was annotated with a necrosis region mask 

segmented by a pathologist. We sampled 2,480 patches to create the test dataset. The ROC 

curve shows that our approach slightly outperforms VGG16 by 3.1% with respect to the area 

under ROC curve (AUROC) metric (Figure 2A). We also performed direct comparison of 

TIL patch assignments by the Computational Staining pipeline with those by experienced 

pathologists by scoring 8 × 8 “super-patches” for TIL content. Three pathologists assessed 

400 super-patches as having low, medium, or high TIL content, while machine-derived 

scores were assigned for the patch by counting TIL-positive patches (thus ranging from 0 to 

64). Consistency was high among each of the pathologists (> 80%), as assessed by rescoring 

of 100 super-patches. As seen in Figure 2B, the median machine-derived score is quite 

distinct between the three ordinal bins. This is evidenced in strong correlation as assessed by 

the polyserial coefficient (Drasgow, 2014), designed for comparing ordinal with continuous 

values (0.36 with 95% CI [0.27,0.45], p value = 5.2 × 10−15, R package polycor).

Assessment and Correlates of TIL Spatial Fraction

Spatial Fraction of TILs—The spatial fraction of TILs was estimated as the fraction of 

TIL-positive patches among the total number of patches identified on the tissue sample. A 

wide range in spatial infiltrate is seen among the TCGA tumor types (Figure 3A and Table 

S1), with high infiltrates in gastric cancer (STAD) with a mean of 14.6%, rectal cancer 

(READ) at 13.0%, squamous cell carcinoma in the lung (LUSC) at 11.6%, while uveal 

melanoma (UVM) has only 1% estimated TIL fraction, consistent with its inclusion as 

negative control (Figure S3A). Wide differences are also seen grouping tumors by the nature 

of the immune response, according to a recent immune characterization of all TCGA tumors 

(Thorsson et al., 2018)(Figure 3B). The most immunologically active immune subtypes 

(e.g., C1, C2) tend to have the greatest spatial infiltration of lymphocytes. Within 

documented TCGA subtypes, which are typically characterized by specific molecular 

changes in tumor cells, strong differences are also seen (Figure S2A). EBV-positive gastric 

cancer is particularly rich in TILs, with an average of 25% of spatial regions infiltrated by 

TILs (Figure 3C). The lung squamous secretory subtype (Wilkerson et al., 2010) is also 

particularly rich in infiltrate (17%, Figure 3D) as is the mutation-rich POLE subtype of 

endometrial cancer. Among breast cancer tumors, the basal subtype has the greatest infiltrate 

(Figure 3E), consistent with what has been observed in other studies (Iglesia et al., 2014). 

Taken together, these data show that the nature of the infiltrate has strong ties to aspects of 

the tumor microenvironment and that the nature of the infiltrate may be reflective of 

particular molecular aberration states of tumor cells.
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The spatial fraction of TILs was compared with molecular estimates of TIL content from 

molecular genomics assays (Thorsson et al., 2018). The molecular estimate of TIL fraction 

is obtained by multiplying an estimate of the overall leukocyte fraction, based on DNA 

methylation arrays, with an estimate of the lymphocyte proportion within the immune 

compartment obtained by applying CIBERSORT (Newman et al., 2015) to RNA sequencing 

data. Good, albeit imperfect, agreement is seen between the imaging and molecular 

estimates (Figure 4A), with Spearman correlation values ranging from 0.20 to 0.45 for the 

most part accompanied by highly significant p values, and with UVM, the negative control, 

showing no correlation. The reasons for the differences between the molecular estimates and 

spatial TIL fraction include: (1) molecular data are extracted from a fresh frozen tissue 

section in proximity to the formalin-fixed paraffin-embedded (FFPE) sample used to 

generate the diagnostic H&E image, but the exact spatial relation is unknown; (2) the 

molecular estimate is proportional to the number of lymphocytes, whereas the spatial 

fraction of TILs is estimated by tissue area; (3) the spatial analysis and TIL fraction are an 

assessment of lymphocyte-infiltrated tissue that can also include non-tumor regions on the 

diagnostic slides; and (4) the molecular quantification is obtained from frozen sections that 

are highly enriched for tumor as a criterion for project inclusion. We further examined the 

outlier cases (see Figures 4B and 4C) having high levels of discordance between molecular 

and spatial image-derived TIL estimates for several tumor types, including BRCA, SKCM, 

LUAD, LUSC, STAD, and READ. We determined that spatial TILs in non-tumor regions 

appeared to play a major explanatory role (Figures S3B and S3C). Attempts to exclude such 

areas by manual negative masking and/or CNN-based automation for tumor recognition will 

be included in future efforts in order to reduce the discordance between the molecular 

estimates from samples that are highly enriched for tumor and the spatial TIL estimates 

derived from diagnostic H&E images.

Automated Assessment of Local Structures in the TIL Infiltrate and Association with 
Molecular and Clinical Readouts

Local Spatial Structure of the Immune Infiltrate—A unique feature of imaging data 

is the ability to go beyond total lymphocytic infiltrate load to the assessment of patterns of 

lymphocytic infiltration. To identify such patterns, we first used affinity propagation (Frey 

and Dueck, 2007) to find spatially connected and coherent regions (clusters) of TIL image 

patches (APCluster R package; Bodenhofer et al., 2011). Examples of H&E images, TIL 

maps, and clusters are shown in Figures 5A–5D for selected cases exemplifying sparse and 

dense lymphocyte infiltrates. For each slide, the resulting cluster pattern was characterized 

using measures for simple count and extent statistics but also by clustering indices, which 

assess more complex characteristics such as cluster shape. Summary measures include the 

number of clusters Ncluster, the mean number of TIL patches in the clusters NP, the mean of 

the within-cluster dispersion WCD, and the mean of cluster spatial extents CE (see Figure 

5E, Method Details, and Table S1). In terms of TIL patch distances to a given cluster center, 

the dispersion is related to their variance, while spatial extent is akin to the maximal 

distance. Ncluster ranged from 2 to 46 over the entire cohort (4,480 cases, excluding non-

tumor slides), with a median of 12, and the mean cluster membership was 293 TIL patches. 

We calculated the clustering indices of Ball and Hall (1965), Banfield and Raftery (1993), 

the C index, and the determinant ratio index, as implemented in the R package clusterCrit 
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(see Method Details and Table S1). The Ball-Hall index is the mean of the dispersion 

through all of the clusters, equivalent to the mean of the squared distances of the points of 

the cluster with respect to its center. In our data, the Ball-Hall index is correlated (ρSpearman 

= 0.95) with the mean cluster extent, CE. The Banfield-Raftery index is the weighted sum of 

the logarithms of the mean cluster dispersion, which in our data correlates with Ncluster 

(ρSpearman = 0.95). We found similarity among several of the various scores (Figure S4A), 

including overall trending of some clustering indices to simpler measures such as Ncluster 

and TIL fraction. The C index is derived from pairwise distances and does not scale with any 

of the simpler measures. Values of these scores for the cases depicted in Figures 5A–5D are 

shown in Figure 5E. Clustering indices vary widely over slides, as illustrated in Figure 6A 

for the Ball-Hall index. Tumors with relatively high values of this index, such as BRCA and 

PRAD, are not among those with highest overall infiltrate (Figure 3A). Since the Ball-Hall 

index scales with approximately cluster extent, this implies that, in some of these tumor 

types of moderate infiltrate mass, TIL clusters of relatively large spatial extent are formed. 

In summary, this implies that, in some tumor types, local clustering of TILs may be a more 

distinctive feature than overall TIL infiltrate, in comparison with other tumor types.

Correlates of Local TIL Spatial Structure with Survival—We examined the extent to 

which TIL fraction might impact overall survival and the extent to which spatial 

characteristics of the tumor microenvironment—beyond overall densities—may provide 

additional predictive power of outcome. We used Cox regression, accounting for age and 

gender as additional clinical covariates to perform survival analysis. In order to mitigate 

possible problems in interpretation due to the inherent correlation between some clustering 

indices and the TIL densities, we used linear regression to obtain adjusted cluster indices by 

computing residuals with respect to TIL density (see Method Details). p values were 

obtained for four adjusted indices and 13 tumor types, which were then adjusted for multiple 

testing using the Benjamini-Hochberg procedure. Five associations between cluster index 

and outcome were significant (at p < 0.05) and are shown in Figure 6B. Interestingly, the 

various indices were significant across different tumor types. Examples of Kaplan-Meier 

curves for median-split clustering indices are shown in Figures 6C (BRCA) and 6D 

(SKCM). In SKCM, increased Banfield Raftery-index (“cluster count”) associates with 

superior survival, while in BRCA increased Ball-Hall index (“cluster extent”) associates 

with inferior survival, both adjusted for overall TIL density. Of interest, checkpoint 

inhibition immunotherapy has been successfully applied to melanoma, while breast cancer 

tumors have generally been unresponsive to checkpoint blockade therapy. The association of 

structure with survival, as evidenced by less favorable survival in tumors with elevated 

adjusted Ball-Hall index (“cluster extent”) could be worthy of further investigation as a 

stratification factor for patient tumors in clinical studies of response.

Characterization of Overall TIL Map Structural Patterns and Association with Molecular 
Estimates

We undertook further characterization of TIL spatial structure, looking beyond local spatial 

structures toward a global structure classification that reflects standard descriptions in 

current use by practicing pathologists. We incorporated qualitative and semiquantitative 

descriptions and scoring of the TIL map structural patterns in the combined intratumoral and 
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peri-tumoral regions (collectively referred to as “tumor”) that are grossly defined by the 

corresponding H&E-stained whole-slide images.

As seen in the recommendations from of the International TILs Working Group (Salgado et 

al., 2015), International Immuno-oncology Biomarkers Working Group (Hendry et al., 

2017a, 2017b), and the prognostic descriptions used to characterize TILs in cutaneous 

melanoma (Crowson et al., 2006), pathologists classify patterns within the TIL maps in both 

the intratumoral and peritumoral regions. Correspondingly, patterns in the 5,202 TIL maps 

were visually assigned by a pathologist into one of five categories: “Brisk, diffuse” for 

diffusely infiltrative TILs scattered throughout at least 30% of the area of the tumor (1,856 

cases); “Brisk, band-like” for immune responses forming band-like boundaries bordering the 

tumor at its periphery (1,185); “Non-brisk, multi-focal” for loosely scattered TILs present in 

less than 30% but more than 5% of the area of the tumor (1,083); “Non-brisk, focal” for 

TILs scattered throughout less than 5% but greater than 1% of the area of the tumor (874); 

and finally “None” in 143 cases where few TILs were present involving 1% or less of the 

area of the tumor (see Method Details). TIL maps with corresponding H&E images with 

insufficient or no grossly identifiable tumor at low magnification were designated as 

indeterminate (61). The examples in Figures 5A–5D are categorized as follows: Figure 5A, 

TCGA-33-AASL Brisk, diffuse pattern in a case of squamous cell carcinoma of the lung 

showing a relatively strong immune infiltrate within the tumor; Figure 5B, TCGA-D3-A2JF 

Brisk, band-like pattern in a case of cutaneous melanoma showing immune infiltrates 

forming boundaries bordering the tumor at its periphery and < 30% TILs in the intratumoral 

component; Figure 5C, TCGA-E9-A22H Non-brisk, multi-focal pattern in a case of invasive 

ductal carcinoma of the breast showing a weak immune response with loosely scattered 

TILs; Figure 5D, TCGA-EW-A1OX Non-brisk, focal pattern in a case of invasive ductal 

carcinoma of the breast showing a very weak immune response in a focal area (categories 

also listed in final column of Figure 5E).

The TIL map global patterns are not distributed in an equal manner among TCGA tumor 

types. Figure 7A shows the ratio of observed counts over those expected randomly. BRCA is 

enriched in the “Non-brisk, focal” phenotype (374 observed; 166 expected; p value < 3 × 

10−16, Fisher’s exact test, Benjamini-Hochberg adjusted). PAAD is enriched in the “Non-
brisk, multi-focal” phenotype (70 observed; 36 expected; p = 8 × 10−8), as is PRAD (151; 

70; p < 3 × 10−16). The “Brisk, band-like” phenotype is most enriched in SKCM (134; 86; 3 

× 10−7) and very rare in PAAD (7; 37; 2 × 10−9) and PRAD, whereas “Brisk, diffuse” is 

more prevalent in STAD, READ, and CESC (p = 2 × 10−13, 4 × 10−6, and 3 × 10−10, 

respectively). Some TCGA subtypes also show enrichment in particular patterns (Figure 

S5A). For example, EBV-positive GI cancers are enriched in the “Brisk, diffuse” phenotype 

(14; 5; 6 × 10−3). Differences are also seen among immune subtypes (Figure S5B) defined in 

the TCGA pan-immune analysis (Thorsson et al., 2018), where the C4 subtype is enriched in 

the “Non-brisk, focal” (82; 44; 6 × 10−8). This is noteworthy, as subtype C4 is relatively 

richer in cells of the monocyte/macrophage lineage, which may play a role in sculpting the 

TME as evidenced in these patterns. Interestingly, the immune subtype C3, which tends to 

have good prognosis overall, has relatively few “Brisk band-like” structures (59; 162; < 3 × 

10−16), perhaps reflective of the more moderate and tempered immune response or 

productive infiltration of lymphocytes into tumor regions. C2, which has relatively poor 
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outcome, is somewhat richer in “Brisk” phenotypes, consistent with expectations that the 

relatively large degree of lymphocytic infiltrates are not adequately controlling tumor growth 

in this class of tumors. In summary, the global structural patterns show associations with 

distinct immune responses that can be either particular to subtypes, or shared across multiple 

tumor types, and may play a role in the determining the nature of the immune responses in 

the corresponding tumor microenvironments.

We also examined whether there was evidence of differences in the types of lymphocytes, 

such as signatures for CD4 T cells, CD8 T cells, B cells, and NK cells, represented in each 

phenotype. These cells cannot be distinguished by the H&E image analysis, but estimates of 

their proportions are available through analysis of the molecular data (Thorsson et al., 2018 

and Method Details). Averaging these values within structural patterns, we see emerging 

relationships (Figures 7B and S5C), where “Brisk” phenotypes have a higher proportion of 

CD8 T cells than those seen in the “Non-Brisk” phenotypes (mean 13.2% versus 10.7%, p 

value < 2.2 × 10−16, Mann–Whitney–Wilcoxon test). Correspondingly, “Non-Brisk” 

phenotypes tend to have a slightly greater proportion of CD4 T cells (p = 0.03). Thus, by 

combining molecular estimates of cell proportion with structural analysis of imagining data, 

we see evidence that particular T cell subsets may play distinct roles in the formation of 

global structural patterns.

DISCUSSION

The scanned archival H&E archives of the TCGA are a rich but quite underutilized resource 

within this project. In effect, it is a largely ignored source of data that has only been 

manually and sporadically mined and awaits more systematic characterization using the 

variety of analytic tools and analyses currently available. These images have generally been 

used solely to ensure the correct diagnosis, and panels of expert pathologists also used the 

images to glean other variables such as mitotic activity, tumor grade, and histologic subtypes 

for some of the TCGA marker papers. The recently published sarcoma TCGA marker paper 

utilized automated feature extraction of nuclear properties for correlation with copy number 

load and genomic doubling (Cancer Genome Atlas Research Network, 2017). The cutaneous 

melanoma TCGA marker paper used a visual inspection of expert pathologists to assess the 

degree and pattern of lymphocytes in the frozen section images of the tissue going to the 

molecular platforms to correlate with other genomic and proteomic assessments of 

lymphocytic infiltrate and also directly with clinical outcome (Cancer Genome Atlas 

Network, 2015). This was a manual process done by expert pathologists, and there was no 

attempt at automation. The efforts presented in this present work represent an initial attempt 

to systematically employ automated image processing to assess lymphocytic infiltrates 

across multiple TCGA tumor types for correlation with genomic and epigenomic 

assessments of lymphocytic infiltrates, as well as clinical outcome. Our sincere hope is that 

this early attempt to exploit this remarkable TCGA resource of associated scanned histologic 

images will spur others to similar approaches.

We report a scalable and cost-effective methodology for computational staining to extract 

and characterize lymphocytes and lymphocytic infiltrates in intratumoral, peri-tumoral, and 

adjacent stromal regions. In comparing TIL fraction identified via molecular methods to TIL 

Saltz et al. Page 11

Cell Rep. Author manuscript; available in PMC 2018 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maps derived from digital image analyses of H&E images, we found good but certainly not 

perfect agreement. Several factors may be contributing. First, perfect agreement is not 

expected, since the estimates being compared are not of the same quantity or source. Indeed, 

the molecular estimates are analogous to cell count ratios, and the image fractions 

correspond to the proportion of spatial areas that contain TILs. Second, the exact spatial 

relation between the sample from which the molecular data is extracted (between the so-

called frozen tissue top-section and bottom-section) and the diagnostic images from the 

FFPE examples used to generate the diagnostic H&E slides is not known. The TIL maps are 

derived from high-quality scanned diagnostic FFPE H&E slides from tissue samples in an 

adjacent or possibly a more distant portion of the tumor relative to where the top and bottom 

frozen sections are sampled. Unfortunately, the frozen section images are not of a quality 

that permits robust features extraction. Even though some degree of correlation is certainly 

expected since TIL status is often a property of the tumor as a whole, upon further 

evaluation, we observed regional differences in a subset of samples within the overall 

assessment. These differences are largely explained by the effect of spatial TILs in non-

tumor regions in the diagnostic H&E images, which appeared quite different than the spatial 

TILs in the frozen section samples used for molecular TIL estimates.

Integrated analysis of TIL maps and molecular data reveals patterns and associations that 

can improve our understanding of the tumor microenvironment, and we illustrate some 

emerging relationships in this work. Both local patterns and overall structural patterns are 

differentially represented among tumor types, immune subtypes, and tumor molecular 

subtypes, the latter of which are typically driven by particular molecular alterations in the 

tumor cell compartment. This implies that the nature of spatial lymphocytic infiltrate state 

may be reflective of particular aberration states of tumor cells. In some tumor types (such as 

PAAD and PRAD), local clustering of TILs may be a more distinctive feature than overall 

TIL infiltrate, as compared with other tumor types. Structural patterns are further seen to be 

associated with survival, implying that the nature and effectiveness of immune response is 

encoded in patterns that may be assessable at the time of tumor diagnosis. For example, in 

breast cancer, less favorable survival in tumors with elevated adjusted Ball-Hall index 

(“cluster extent”) might be worth further investigation in terms of stratification of patient 

tumors in clinical studies of response. Overall structural patterns show associations with 

immune responses that are shared across multiple tumor types and may thus play a role in 

the determining the nature of those responses. For example, tumors with C2 immune 

subtypes, which tend to have relatively poor outcome, are somewhat richer in “Brisk” 

phenotypes, consistent with expectations that the relatively large degree of lymphocytic 

infiltrates are not adequately controlling tumor growth in these tissues. The immune subtype 

C3, which tends to have good prognosis overall, has fewer “Brisk band-like” structures, 

perhaps reflective of the more moderate and tempered immune response, or productive 

infiltration of lymphocytes into tumor regions. In contrast, tumors with the C4 immune 

subtype, which tends to be rich in cells of the monocyte/macrophage lineage, tend to have 

more “Non-brisk, focal” structures that may play a role in sculpting the TME as evidenced 

in these patterns. Finally, these patterns are enriched in particular T cell subpopulations as 

derived from molecular measures. For example, “Brisk” phenotypes have a higher 

proportion of CD8 T cells than those seen in the “Non-Brisk” phenotypes.
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A number of factors can contribute to cancer patient outcome. In our analyses, we attempted 

to control for age and sex, but other factors such as tumor grade could affect the presence or 

function of tumor-infiltrating lymphocytes. Grade is more challenging to control for across 

tumor types, as some are not graded such as melanoma while others such as breast and 

prostate cancer have very different grading systems that are challenging to compare 

rigorously. We readily accept that tumor grade and potentially other factors could influence 

lymphocytic infiltrates in both degree and pattern.

These analyses and early results demonstrate the vast potential of combining analysis of 

spatial structure with advanced genomics and molecular assessment, as the TIL information 

is being provided in the context of tumor molecular data wide in detail and in scope. The 

TCGA molecular datasets and the characterizations performed on them through the work of 

the PanCancer Atlas consortium, including those on the tumor-immune interface and the 

tumor microenvironment, provide an extraordinarily rich source of correlative molecular 

information for our discovered TIL patterns.

H&E imaging is performed routinely in labs throughout the world as a component of tumor 

diagnostics. Methods for extracting information on TILs from H&E scanned images are 

potentially of enormous research validity and possible clinical applicability—hundreds of 

thousands of whole-slide images exist in public repositories, in hospital system databases, 

and many more will be generated for years to come. In a clinical setting, rapid and 

automated identification of the degree and nature of TIL infiltrate might be instrumental in 

determining whether options for immunotherapy should be explored or whether more 

detailed and costly immune diagnostics should be introduced. Indeed, our approach might 

also complement immunophenotyping data, and the patterns of immune infiltration assessed 

by pathologists are already widely employed in the standard clinical reports of primary 

melanomas as a prognostic factor. Applying methods like those we present here could also 

allow for very incisive research at very reasonable price points and levels of convenience. 

These kinds of analyses can only improve with more detailed molecular-marker-based 

assays such as immunohistochemistry, which are not currently applied in most standard 

clinical settings due to lack of clinical necessity. Since the TCGA cohorts often predate the 

broad clinical application of effective immunotherapy such as checkpoint inhibitors and 

contain little data regarding outcomes with such therapy, association of our TIL estimates 

and derived infiltration patterns await more appropriate datasets to test associations.

We believe our CNN-derived TIL mapping provides a reproducible and robust tool for the 

assessment of these lymphocytic infiltrates. The ability to assess this tumor feature is rapidly 

becoming vital to both clinical diagnosis and translational research for onco-immunologic 

cancer care. These results show that this approach correlates with molecular assessments of 

TILs generated by the molecular platforms of the TCGA and can also correlates with 

clinical outcome for certain tumor types. Importantly, this study shows the value of feature 

extraction from the information-rich resource of the scanned H&E image archive of the 

TCGA. This resource has not been exploited to the degree of the other TCGA molecular and 

clinical outcome resource and clearly not to the degree it can support. This present study 

demonstrates value that can be added by careful examination of this rich resource, and it is 

our sincere hope that others will soon explore the many facets of these imaging data.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT OR RESOURCE SOURCE IDENTIFIER

Deposited Data

Tumor-infiltrating lymphocyte maps This paper https://doi.org/10.7937/K9/TCIA.2018.Y75F9W1

Software and Algorithms

Convolutional neural networks for 
TIL maps

This paper https://doi.org/10.7937/K9/TCIA.2018.Y75F9W1

QuIP Saltz et al., 
2017

https://sbu-bmi.github.io/quip_distro/

Theano Theano 
Development 
Team, 2016

http://deeplearning.net/software/theano/

DeconvNet Noh et al., 2015 https://github.com/HyeonwooNoh/DeconvNet

CIBERSORT Newman et al., 
2015

https://cibersort.stanford.edu/

APCluster Bodenhofer et 
al., 2011

https://cran.r-project.org/web/packages/apcluster/index.html

clusterCrit The 
Comprehensive 
R Archive 
Network 
(CRAN)

https://cran.r-project.org/web/packages/clusterCrit/

polycor Drasgow, 2014 https://cran.r-project.org/package=polycor

Other

Data (images, clinical and 
molecular) used in this study

National Cancer 
Institute 
Genomics Data 
Commons

https://gdc.cancer.gov/about-data/publications/tilmap

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Vésteinn Thorsson (Vesteinn.Thorsson@systemsbiology.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—A total of 4612 participants were included in this study. This study 

contained both males and females, with inclusions of genders dependent on tumor types. 

There were 2655 females and 1957 males. TCGA’s goal was to characterize adult human 

tumors; therefore, the vast majority of participants were over the age of 18. However, one 

participant under the age of 18 had tissue submitted prior to clinical data. Age was missing 

for 40 participants. The range of ages was 15–90 (maximum set to 90 for protection of 

human subjects) with a median age of diagnosis of 63 years of age. Institutional review 

boards at each tissue source site reviewed protocols and consent documentation and 

approved submission of cases to TCGA. Detailed clinical, pathologic and molecular 

characterization of these participants, as well as inclusion criteria and quality control 

procedures have been previously published for each of the individual TGCA cancer types.
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Sample Inclusion Criteria—Surgical resection of biopsy bio-specimens were collected 

from patients that had not received prior treatment for their disease (ablation, chemotherapy, 

or radiotherapy). Institutional review boards at each tissue source site reviewed protocols 

and consent documentation and approved submission of cases to TCGA. Cases were staged 

according to the American Joint Committee on Cancer (AJCC). Each frozen primary tumor 

specimen had a companion normal tissue specimen (blood or blood components, including 

DNA extracted at the tissue source site). Adjacent tissue was submitted for some cases. 

Specimens were shipped overnight using a cryoport that maintained an average temperature 

of less than −180°C.

Pathology quality control was performed on each tumor and normal tissue (if available) 

specimen from either a frozen section slide prepared by the BCR or from a frozen section 

slide prepared by the Tissue Source Site (TSS). Hematoxylin and eosin (H&E) stained 

sections from each sample were subjected to independent pathology review to confirm that 

the tumor specimen was histologically consistent with the allowable hepatocellular 

carcinomas and the adjacent tissue specimen contained no tumor cells. Adjacent tissue with 

cirrhotic changes was not acceptable as a germline control, but was characterized if 

accompanied by DNA from a patient-matched blood specimen. The percent tumor nuclei, 

percent necrosis, and other pathology annotations were also assessed. Tumor samples with ≥ 

60% tumor nuclei and ≤ 20% or less necrosis were submitted for nucleic acid extraction.

METHOD DETAILS

Image and Molecular Data Acquisition—Whole-slide tissue images were obtained 

from the public TCGA Data Portal (images are currently available from the Genomic Data 

Commons (GDC) Legacy Archive, following the deprecation of the TCGA Data Portal). Our 

study uses the diagnostic images, with some images from frozen tissue specimens used in 

the analysis of discrepancies with molecular estimates. The images were downloaded in the 

native image format, Aperio SVS files, in which they had been scanned. An SVS file stores 

an image in multiple resolutions, including the highest resolution the image data was 

captured; for example in an image that is acquired at a 40x magnification, each pixel is 

~0.25 × 0.25 microns. An open source library called OpenSlide (http://openslide.org/

formats/aperio/) was used to extract the highest resolution image data for our study. 5455 

diagnostic slides were analyzed the 13 TCGA tumor types in the study.

Clinical and molecular data were obtained from processed and quality controlled files of the 

PanCancer Atlas consortium, available at (https://gdc.cancer.gov/about-data/publications/

pancanatlas).

Convolutional Neural Networks for TIL Maps—Our overall methodology consists of 

two CNNs (a lymphocyte-infiltrated classification CNN (lymphocyte CNN) and a necrosis 

segmentation CNN), as well as mechanisms for capturing and incorporating feedback from 

pathologists, to evaluate and refine a generated Tumor-Infiltrating Lymphocyte (TIL) Map.

As is presented in the Results section, the lymphocyte CNN classifies image patches. Only 

foreground patches are processed and classified. To determine if a patch is a foreground 

patch, our analysis pipeline checks if the patch has enough tissue using the variance in Red, 
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Green and Blue channels of the patch. A patch is labeled background and discarded if 

(σ(Red) + σ(Green) + σ(Blue))/3 < 18. The values of the Red, Green, and Blue channels 

range from 0 to 255. The threshold value of 18 was selected by adjusting it across several 

slides. We compute percent TIL values using only the foreground patches (i.e., patches with 

tissue). Note the set of patches with tissue includes TIL patches.

TIL % = (Number o f TIL Patches)/(Number o f Patches with Tissue)

The lymphocyte CNN is a semi-supervised CNN, initialized by an unupervised 

Convolutional Autoencoder (CAE). The CNN and the CAE are designed to have relatively 

high resolution input such that one can recognize individual lymphocytes. We have chosen 

to apply unsupervised CAE pre-training because many studies have shown that it boosts the 

performance of the CNN, please refer to our technical report (Hou et al., 2017). Using the 

lung adenocarcinoma (LUAD) patches, we empirically showed that the CNN without pre-

training achieved significantly lower area under the curve (AUC). The CAE encodes 

(compresses) an input image patch of 50 × 50 μm2 (100 × 100 square pixels, corresponding 

to 20x magnification) into several vectors of length 100, and then reconstruct the input 

image patch using these encoding vectors. We train the CAE in an unsupervised fashion, to 

minimize the pixel-wise image patch reconstruction error, with limited number of encoding 

vectors. By doing this, the CAE implicitly learns to encode the position, appearance and 

morphology etc. of nuclei, in the encoding vectors. Our guideline of designing the 

architecture of the CAE is that, each encoding vector, in the ideal case, should be capable of 

encoding one and only one nucleus. As a result, the CAE has 13 encoding layers and 3 

pooling layers. The lymphocyte CNN is built based on the trained CAE: we discard the 

decoding (reconstruction) part of the CAE, and added several more layers on the encoding 

vectors. Therefore, our lymphocyte CNN is a 18-layer network with 14 convolutional layers, 

3 pooling layers, and 1 fully connected layer (Zhao et al., 2017).

We use two different CNNs for classification of necrosis regions and TILs, because our 

experiments showed necrosis regions and lymphocytes are best recognized and classified at 

different image scales. The necrosis CNN model performs best with larger input tissue 

regions, whereas the lymphocyte CNN model achieves the best results with local, high-

resolution image patches. The necrosis segmentation CNN is used to eliminate false 

positives from the lymphocyte CNN in necrotic regions. In these regions, nuclei may have 

characteristics similar to those in lymphocyte infiltrated regions. Because recognizing a 

region of 50 × 50 μm2 need contextual information in a larger region, we model this as a 

segmentation problem with larger input patches at a relatively lower resolution: 500 × 500 

μm2 patches are extracted from the image and downsampled 3 times. The resulting patch is 

333 × 333 pixels at 20x magnification. The necrosis segmentation CNN outputs pixel-wise 

segmentation results. We use DeconvNet (Noh et al., 2015) for this task because it is 

designed to predict pixel-wise class labels and handle structures and objects at multiple 

scales (which is more suitable for segmentation than patch-level classification) and it has 

been shown to achieve high prediction accuracy with several benchmark image datasets. We 

train DeconvNet to classify each pixel as inside or outside a necrosis region. The output of 

the necrosis segmentation CNN is resized to match the output resolution of the lymphocyte 

Saltz et al. Page 16

Cell Rep. Author manuscript; available in PMC 2018 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CNN. If over half of a 50x50 patch intersects with a necrotic region, the patch is classified as 

non-lymphocyte-infiltrated.

Convolutional Autoencoder Details—The Convolutional Autoencoder (CAE) contains 

one branch with a small number of low resolution, dense features maps, and a second branch 

with high resolution, but sparse feature maps The high resolution sparse feature maps are 

designed to capture foreground objects (e.g., cancer cell nuclei and lymphocytes) - these 

objects are sparsely distributed in the tissue and contain substantial high spatial frequency 

color and texture variability. The network learns foreground feature maps in a “crosswise 

sparse” manner: neurons across all feature maps are not activated (output zero) in most 

feature map locations. Only neurons in a few feature map locations can be activated. Since 

the non-activated neurons have no influence in the later decoding layers, the image 

foreground is reconstructed using only the non-zero responses in the foreground encoding 

feature maps. The low resolution dense feature maps are designed to encode background 

color and texture of the background. We first model the background (tissue, cytoplasm etc.) 

and then extract the foreground that contains nuclei.

The supervised CNN takes the unsupervised encoded features from the unsupervised CAE 

for classification. We initialize the parameters in these layers to be the same as the 

parameters in the CAE. We attach four 1x1 convolutional layers after the foreground 

encoding layer and two 3x3 convolutional layers after the background encoding layer. Each 

added layer has 320 convolutional filters. We then apply global average pooling on the two 

branches. The pooled features are then concatenated together, followed by a final 

classification layer with sigmoid activation function (Hou et al., 2017).

CNN Training and Testing Details—We train our CAE on the unlabeled dataset, 

minimizing the pixel-wise root mean squared error between the input images and the 

reconstructed images. No regularization loss is deployed. We use stochastic gradient descent 

with batch size 32, learning rate 0.03 and momentum 0.9, and train the network until 

convergence (6 epochs).

For the lymphocyte CNN (constructed from the CAE) training, we use stochastic gradient 

descent with batch size 100, learning rate 0.001, and momentum 0.985. We train the CNN 

until convergence (64 epochs) and divide the learning rate by 10 at the 20th, 32th, and 52th 

epoch. We use sigmoid as the nonlinearity function in the last layer and log-likelihood as the 

loss function. No regularization loss is deployed. We apply three types of data augmentation. 

First, the input images are randomly cropped from a larger image. Second, the colors of the 

input images are randomly perturbed. Third, we randomly rotate and mirror the input 

images. We trained the CAE and CNN on a single Tesla K40 GPU. During testing phase, we 

augmented the test patch 24 times and averaged the prediction results. The CAE and CNN 

used the Theano library (http://deeplearning.net/software/theano/).

CNN-VGG Comparison Experiment Details—We fine-tuned the VGG 16-layer 

network which was pre-trained on ImageNet. Fine-tuning the VGG16 network has been 

shown to be robust for pathology image classification (Xu et.al. 2015; Hou et al., 2016b). 

We used stochastic gradient descent with batch size 32, learning rate 0.0001, and momentum 
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0.985. We trained the lymphocyte CNN until convergence (32 epochs). We used the same 

loss function and data augmentation method used for the proposed CNN. To match the input 

size of the VGG16 network, we re-sized the input patches from 100 × 100 pixels to 224 × 

224 pixels. Same as the proposed CNN, during testing phase, we augment the test patch 24 

times and average the prediction results.

Iterative Model Training and Data Labeling—We have implemented an iterative 

workflow as depicted in Figure S1 in order to train the CNN models. First, an unsupervised 

image analysis of WSIs is executed to initialize a CNN model. This model is refined in an 

iterative process in which CNN predictions are reviewed, corrected and refined by expert 

pathologists and the CNN model is re-trained with the updated data in order to improve its 

classification performance. After a training phase, the CNN model is applied to patches in 

the test set. For each test patch, the lymphocyte CNN produces a probability of the patch 

being a lymphocyte-infiltrated patch. The label of the patch is decided by simple 

thresholding; if the probability value is above a predefined threshold, the patch is classified 

as lymphocyte-infiltrated.

Training a fully supervised CNN requires a large number of training instances with ground 

truth labels. Masci et al. (Masci et al., 2011) have shown that utilizing unlabeled instances 

can boost the performance of a CNN. Drawing from those findings, we first trained an 

unsupervised Convolutional Auto-Encoder (CAE) to learn the representation of nuclei and 

lymphocytes in histopathology images and initialize the lymphocyte CNN (Zhao et al., 

2017). In this way, the initial lymphocyte CNN model captures the appearance of 

histopathology images without supervised training. We initialized the weights of the necrosis 

segmentation CNN randomly following the DeconvNet approach. We then trained the CNNs 

with labeled images. The training phases of the CNNs involve a cross-validation step to 

assess prediction performance and avoid overfitting (Hou et al., 2017).

Review and Refinement of CNN Predictions—We developed a web application, 

called the TIL-Map editor, to support the review and refinement by the pathologists of the 

tumor-infiltrating lymphocyte patch predictions and the segmentation of necrotic regions. 

The TIL-Map editor extends caMicroscope (Sharma et al., 2014) interface to enable the 

visualization of patch-level classification labels as a heatmap overlay on a WSI. It is 

distributed as part of a suite of tools called QuIP - Quantitative Imaging for Pathology (Saltz 

et al., 2017). QuIP is an open-source software system which consists of a suite of integrated 

data services and web-based user applications designed for the management and analysis of 

whole-slide tissue images and indexing and exploration of image features. When using the 

TIL-Map editor, a user can interactively visualize, pan, and zoom-in/out of the whole-slide 

tissue image and interactively pan and zoom around the image, in a manner similar to 

various online mapping systems. It display the TIL-Maps, as polygonal overlays that appear 

over the H&E image. The intermediate and final TIL Maps are stored in the QuIP 

FeatureDB, which manages and indexes both the image metadata and the TIL classification 

results. Figure 2B shows an example heatmap along with the TIL-Map editor.

Each patch in a WSI is represented as a rectangle and associated with a classification label 

and the probability value computed by the CNN. This information is stored as a data element 
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(document) in FeatureDB and indexed to speed up queries by the TIL-Map editor to retrieve 

and display subsets of patches. After classification results for a set of WSIs have been 

loaded to the database, a pathologist can use a web browser to view and update the 

classification results. The pathologist would use the TIL-Map editor to examine an image, 

query FeatureDB to retrieve patches visible within the view point and zoom level and 

display them as a two-color heatmap. The pathologist can edit the heatmap using the 

“Lymphocyte Sensitivity,” “Necrosis Specificity,” “Smoothness” sliders in a panel. These 

slides allow the pathologist to change the threshold value which determines if a patch should 

be classified as lymphocyte-infiltrated or not. For finer-grain editing of individual patches or 

sets of patches, the pathologist can use the “Markup Edit” function to markup specific 

patches and label them as lymphocyte-infiltrated or not-lymphocyte-infiltrated. The 

pathologist can then save the updated patch labels to the database. The updated patch labels 

are used to retrain the CNN. Changes to the heatmap are only visible to the user him/herself: 

multiple users can work independently selecting lymphocyte sensitivity and making finer-

grain editing in the same slide without knowing each other’s editing choices.

In this work, a team of three pathologists from Stony Brook Medicine and MD Anderson 

Cancer Center reviewed and refined 10 to 20 WSIs in each cancer type using the TIL-Map 

editor. Each image was assigned to two pathologists. Each pathologist separately adjusted 

the “Lymphocyte Sensitivity,” “Necrosis Specificity,” “Smoothness” thresholds and 

manually edited regions in the images using the “Markup Edit” tool in order to generate an 

accurate patch-level classification in the entire image. Depending on the pathologists 

consensus, if retraining was needed, the pathologists collaboratively generated a consensus 

lymphocyte heatmap for each image. Data from these consensus heatmaps was input back to 

the lymphocyte CNN in a training step to further improve its performance.

Determining Lymphocyte Selection Thresholds—The trained lymphocyte and 

necrosis CNNs was applied to 5455 diagnostic slides available for the 13 TCGA tumor types 

in the study. We then determined selection thresholds based on overall probability estimates 

for each slide to correct for possible slide-specific bias, in which the CNN was seen to 

systematically over or under predicts lymphocytes depending on the overall characteristics 

of the whole slide. The process of determining the lymphocyte selection thresholds is shown 

in Figure S1. The first step is to classify each slide into categories that reflect whether there 

is systematic over or under prediction of lymphocytes. To do this. for each slide, ten patches 

were sampled from 10 ranges of the lymphocyte CNN’s scores (0.10–0.20, 0.20–0.25, 0.25–

0.30, 0.30–0.40, 0.40–0.50, 0.60–0.70, 0.70–0.80, 0.80–0.90, 0.90–1.00). Three pathologists 

labeled them as lymphocyte infiltrated or not. Based on the number of labeled lymphocyte/

non-lymphocyte patches, each slide was categorized into 1 of 7 groups: Groups A-G, based 

corresponding to 0,1,2,3–7,8,9, and 10 positive patches respectively. The second step is to 

select a threshold in each group. In each group, we randomly selected 8 slides and manually 

adjusted thresholds for each of them using our visual TIL-Map editor. The threshold of all 

slides in one group was set to be the average threshold selected for the eight slides sampled 

in that group. Note that if we categorize the slides into more number of groups, then we have 

to manually select thresholds for more slides, since per group, a meaningful averaged 

threshold requires a minimum number of selected thresholds. On the other hand, if we 
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categorize the slides into fewer groups, the intra-group variance of possible slide-specific 

biases might be too large. Therefore, we select seven as the number of groups, striking a 

balance between efficiency and effectiveness.

Subsequent to processing as described above, incomplete TIL maps or those with failed 

predictions were removed, and for LUAD additional manual review was performed to 

remove TIL maps derived from poor slides, such as those that were out-of-focus or only 

partially visible. This resulted in 5202 TIL maps (see Figure S1C, Table S2) for further 

analysis and distribution. For a number of TCGA cases, multiple diagnostics slides are 

available, distinguished by TCGA slide ID barcode suffixes DX1, DX2, …, DX13. All cases 

have a DX1 diagnostic slide; hence these slides and corresponding TIL maps were used in 

subsequent correlative analyses. The 5202 slide-derived TIL maps correspond to 4759 

TCGA participants and slide IDs with suffix DX1.

Molecular Data Estimates of Immune Response—We used estimates of tumor and 

immune characteristics derived and made available in (Thorsson et al., 2018). The estimate 

of TIL fraction by genomics measurements is obtained as described therein, by multiplying 

overall leukocyte fraction derived from DNA methylation with an aggregated proportion of 

immune-cell fractions within the immune compartment estimated using CIBERSORT 

(Newman et al., 2015). The lymphocyte fraction is an aggregation of CIBERSORT estimates 

of naive and memory B cells, naive, resting and activated memory CD4 T cells, follicular 

helper T cells, T regulatory cells, gamma-delta T cells, CD8 T cells, activated and resting 

NK cells and plasma cells. To compare with these data with TIL estimates from images, 

participant and slide barcodes were restricted to those satisfying the inclusion criteria of the 

TCGA PanCancer Atlas and Immune Response Working Group. Of the 4705 cases with 

characterized TIL map clusters and patterns (see below), 4612 were thus available for 

molecular data integration and comparison (Table S1, see also Figure S1C, Table S2).

Local Spatial Structure of Immune Infiltrate—We used the APCluster R package 

(Bodenhofer et al., 2011) to apply the affinity propagation algorithm to obtain local TIL 

cluster patterns. The affinity propagation approach (Frey and Dueck, 2007) simultaneously 

considers all data points as potential exemplars (i.e., the centers of clusters) from among 

possible data points. Treating each data point as a node in a network, it recursively transmits 

real-valued messages along edges of the network until it finds a good set of exemplars and 

corresponding clusters. We define the similarities between data points (TIL patches) as the 

negative square Euclidean distance between them. Aside from the similarity matrix itself, 

the most important input parameter is the so-called “input preference” which can be 

interpreted as the tendency of a data sample to become an exemplar. The function apcluster 
in the package contains an argument q that allows setting the ‘input preference’ parameter to 

a certain quantile of the input similarities: resulting in the median for q = 0.5 and in the 

minimum for q = 0. To select this parameter, we generated synthetic data points in a plane 

comprising two distinct Gaussian clouds of points. Using the synthetic data, we observed 

that q = 0 was best able to cluster these points into two clusters, and used this value for 

identifying TIL clusters. Of the 5202 TIL maps, 5144 clustering results were generated (see 
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Figure S1C, Table S2), with the remainder failing to complete clustering runs in time or 

failing due to memory errors, mostly in slides with numerous TILs.

Cluster characterization was made using simple measures of counts and membership and 

cluster indices from the R package clusterCrit by Bernard Desgraupes. The Ball-Hall, 

Banfield-Raftery, C Index, and Determinant Ration indices are detailed in the package 

documentation.

Variable Definition or Reference

Number of TIL Patches TIL patch count

TIL fraction (TIL patch count)/(Total number of available patches on tissue slice)

Number of TIL Clusters Number of clusters, from affinity propagation clustering

Cluster Size Mean Mean of the cluster membership counts

Cluster Size Standard Deviation Standard deviation of the cluster membership counts

Within-Cluster Dispersion Mean Mean of the values of WGSSk, the within-cluster dispersion (see 
below)

Within-Cluster Dispersion Standard Deviation Standard deviation of the values of WGSSk

Cluster Extent Mean Mean of the maximum distances to clusters exemplars. The cluster 
examplar is the most representative TIL patch for the cluster, as 
defined in the affinity propagation method

Cluster Extent Standard Deviation Standard deviation of the maximum distances to exemplars

Ball Hall Index Ball and Hall (1965). Available at: http://www.dtic.mil/docs/citations/
AD0699616

Banfield Raftery Index Banfield and Raftery (1993)

C Index Hubert and Schultz (1976)

Determinant Ratio Index Scott and Symons (1971)

Ball Hall Index - TIL count adjusted ‘Adjusted’ refers to the residual of the corresponding index after 
regression against %TIL density

Banfield Raftery Index - TIL count adjusted ‘Adjusted’ refers to the residual of the corresponding index after 
regression against %TIL density

C Index - TIL count adjusted ‘Adjusted’ refers to the residual of the corresponding index after 
regression against %TIL density

Determinant Ratio Index - TIL count adjusted ‘Adjusted’ refers to the residual of the corresponding index after 
regression against %TIL density

In the above, WGSSk is a within-cluster dispersion which is the sum of the squared distances 

between the observations and the barycenter of the cluster (see https://CRAN.R-project.org/

package=clusterCrit) for details. To compute the adjusted indices, linear regression was used 

to model the relationship between the clustering index and the %TIL density. The regression 

residual was used as the adjusted index. Cluster characteristic were generated for all 5144 

slides with cluster results (4705 with DX1 suffix)(see Figure S1C, Table S2) and adjusted 

indices for 4509 cases.

Assessment of TIL Map Structural Patterns—In order to perform a comprehensive 

assessment of the TIL map structural patterns, the collection of 5202 H&E images (see 

above, 4759 with DX1 suffix) and the corresponding TIL maps were visually inspected to 

ensure that each H&E image had a correctly matched TIL map, after which, a subset of 500 
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H&E images and corresponding TIL maps were closely inspected at higher power 

magnification (100x to 200x) in 30–50 fields to ensure that the lymphocyte-detection 

algorithm was performing as intended and not mistakenly identifying tumor cells as 

lymphocytes across the various tumor types as a quality-control measure. We further 

employed H&E images and corresponding TIL maps from cases of uveal melanoma as 

negative controls because melanoma tumor cells and melanotic pigment can be a difficult 

challenge for the lymphocyte-detection algorithm.

After the negative controls were verified and quality measures were satisfactorily addressed, 

TIL maps (total N = 4455) were assessed in a two part fashion by a qualitative description 

and a semiquantitative score based on visual inspection with respect to the tumor region 

only, which is determined by histopathologic evaluation at low-power magnification (40x) of 

the corresponding H&E diagnostic whole-slide image. The tumor region represents the 

combined intra-tumoral and peri-tumoral regions and excludes the adjacent non-tumor 

regions.

The qualitative description characterizes the nature of the immune infiltrate with respect to 

the gross spatial distribution of the TILs in only the tumor region with terms like “Focal” 

(localized), “Multi-focal” (loosely scattered), “Diffuse” (spread out over a large area), and 

“Band-like” (well-defined boundaries bordering the tumor at its periphery). The 

semiquantitative scoring evaluates the relative strength of the immune response terms like 

“None,” “Non-brisk” (minimal to mild partial immune response), and “Brisk” (moderate to 

strong immune response).

Taken together, “Non-brisk, focal” is indicative of a “very weak” but minimally present 

immune response with a low density of TILs in a localized area of the tumor, whereas “Non-
brisk, multi-focal” is indicative of a weak partial immune response with loosely scattered 

TILs in a few areas of the tumor. However, “Brisk, diffuse” represents a moderate to strong 

immune response with a relatively dense and spread out pattern of TILs across > 30% of the 

tumor even if there are band-like boundaries bordering the tumor at its periphery. The 

“Brisk, band-like” description was reserved for cases where the TIL map patterns showed 

relatively organized structures that appear as boundaries bordering the tumor at its periphery 

and < 30% TILs in the intra-tumoral component. “None” was selected in cases where few 

TILs were present in less than 1% of the area of the tumor and “Indeterminate” was used if 

there was insufficient or no grossly identifiable tumor in the H&E image at low-power with 

the corresponding TIL map regardless of pattern and semiquantitative distribution of TILs.

Summary Table of Criteria Used to Characterize TIL Map Structural Patterns

Category Immune Response Qualitative Pattern

Proportion of Tumor 
composed of 
Lymphocytes

Indeterminate Insufficient and/or no tumor 
in the H&E image at low-
power

Not applicable Not applicable

None No response No pattern <1% TILs
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Category Immune Response Qualitative Pattern

Proportion of Tumor 
composed of 
Lymphocytes

Non-brisk, focal Very Weak (minimal) Localized <5% TILs

Non-brisk, multi-focal Weak (mild) Loosely scattered foci >5%–30% TILs

Brisk, diffuse Moderate to Strong Diffuse and dense infiltrate >30% TILs in the intra-
tumoral component*

Brisk, band-like Not applicable Infiltrate bordering the tumor 
at its periphery

<30% TILs in the intra-
tumoral component*

*
If the TIL map patterns revealed both diffuse and band-like immune responses, the predominant pattern was characterized 

and the difference between “Brisk, diffuse” and “Brisk, band-like” was based on whether the relative distribution of TILs in 
the intra-tumoral component appeared to be greater than or less than 30%, respectively.

DATA AND SOFTWARE AVAILABILITY

The original H&E stained whole-slide images used in this work can be downloaded from the 

Genomic Data Commons. All TCGA molecular data can be obtained from the Genomic 

Data Commons, as well as derived data matrices of the PanCancer Atlas. Integration with 

immune signatures of the TCGA immune response working group is available through CRI 

iAtlas web resource. Links to these data resources can be found at the accompanying 

publication manuscript page (https://gdc.cancer.gov/about-data/publications/tilmap).

The analysis codes used in this work is version controlled has also been containerized and 

made available as a Docker image. The QuIP software for iterative refinement of CNN 

prediction results is also available. The training datasets for the CNN models and the TIL 

maps generated in this study are also available for download. These different software 

resources as well as the TIL maps are available on the Cancer Imaging Archive, at: https://

doi.org/10.7937/K9/TCIA.2018.Y75F9W1

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of all experiments are reported in the text, figure legends and figures, 

including statistical analysis performed, statistical significance and counts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TCGA Tumor Types Used in this Study

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

COAD Colon adenocarcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

PAAD Pancreatic adenocarcinoma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

UCEC Uterine Corpus Endometrial Carcinoma

UVM Uveal Melanoma
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Highlights

• Deep learning based computational stain for staining tumorinfiltrating 

lymphocytes (TILs)

• TIL patterns generated from 4,759 TCGA subjects (5,202 H& slides), 13 

cancer types

• Computationally stained TILs correlate with pathologist eye and molecular 

estimates

• TIL patterns linked to tumor and immune molecular features, cancer type, and 

outcome
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Figure 1. Workflow for Training, Model Development, and Subsequent Generation of TIL Maps
Top: for training and developing CNN models, a pathologist reviews images and marks 

regions with lymphocytes and necrosis. These training data are then broken down into 

patches that are then fed into a training stage to train CNNs for lymphocyte and necrosis 

detection. A pathologist periodically reviews the results for accuracy and corrects the 

prediction. This results in a pair of Trained CNNs. Bottom: these trained CNNs are then 

used on the full set of 5,455 images from 13 cancer types to generate TIL maps. During TIL 

map generation, a probability map for TILs is generated from each image. These 

probabilities are then reviewed and lymphocyte selection thresholds are established using a 

selective sampling strategy (further information in Method Details). These thresholds are 

then used to obtain the final TIL maps. See also Figure S1 and Tables S1 and S2.
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Figure 2. Assessment of TIL Prediction
(A) Receiver Operating Characteristic depicting performance of CNN. Applied to TCGA 

lung adenocarcinoma patches. The current method is compared with a popular CNN called 

VGG16 (see main text description).

(B) Comparison of TIL scores of super-patches between pathologists and computational 

stain. x axis: median scores from three pathologists assessing 400 super-patches as having 

low, medium, or high lymphocyte infiltrate. y axis: scores from computational staining, on a 

scale from 0 to 64.
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Figure 3. TIL Fraction by Tumor Category
(A–E) Percent TIL fraction, the proportion of TIL-positive patches within a TIL map, is 

shown by various categorizations of TCGA tumor samples. Each plotted point represents a 

tumor sample for (A) 13 TCGA tumor types (4,612 cases), (B) six subtypes characterized by 

differences in the nature of the overall immune response (Thorsson et al., 2018) (C5 has very 

few samples here), (C) gastrointestinal adenocarcinoma subtypes, (D) lung squamous cell 

carcinoma subtypes, and (E) breast adenocarcinoma subtypes. See also Figure S2.
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Figure 4. Comparison of TIL Proportion from Imaging and Molecular Estimates
(A) Spearman correlation coefficients and p values for comparison of TIL fraction from 

spatial estimates of TIL maps and molecular estimates of TIL fraction from processing of 

cancer genomics data using deconvolution methods (see main text).

(B) Each point represents a breast adenocarcinoma tumor sample, with the value of TIL 

fraction from TIL maps (x axis) and from molecular estimates (y axis).

(C) As in B for 12 additional TCGA tumor types. See also Figure S3 and the companion 

manuscript (Thorsson et al., 2018).
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Figure 5. Examples of TIL Map Structural Patterns
(A–D) Four cases representing different degrees of lymphocyte infiltration. Each example is 

labeled by TCGA participant barcode and has the following three panels. Left: H&E 

diagnostic image at low magnification with tumor regions circled in yellow; middle: TIL 

map; red represents a positive TIL patch, blue represents a tissue region with no TIL patch, 

while black represents no tissue; right: diagrams of clusters of TIL patches derived from the 

affinity propagation clustering of the TIL patches. Line segments connect cluster members 

with a central representative for each cluster, and colors are arbitrarily assigned to aid visual 

separation of clusters.

(E) TIL map, cluster statistics, and global patterns for the four examples in A–D. Each 

column represents one way to characterize the TIL map, ranging from simple measures such 

as TIL count and density to more complex ones characterizing details of cluster properties 

and image patterns (see main text). See also Table S2.
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Figure 6. Associations of TIL Local Spatial Structure with Cancer Type and Survival
Associations are shown with cluster indices, which summarize properties of clusters derived 

from affinity propagation clusters of the TIL map—properties that provide details on local 

structure beyond simple densities.

(A) Ball-Hall cluster indices for all slide images considered in the study. The Ball-Hall index 

is a particular clustering index, summarizing the mean, through all the clusters, of their mean 

dispersion and is equivalent to the mean of the squared distances of the points of the cluster 

with respect to its center. In our data, the Ball-Hall index is correlated (ρSpearman = 0.95) 

with the mean cluster extent, CE.

(B) Table of significant associations between TIL fraction-adjusted cluster indices and 

overall survival based on Cox regression, accounting for age and gender as additional 

clinical covariates.

(C) Overall survival for median-stratified TIL fraction-adjusted Ball-Hall index in breast 

cancer. Significance test p value is shown in the lower left.

(D) Same as C but for adjusted Banfield-Raftery index in skin cutaneous melanoma. The 

Banfield-Raftery index is the weighted sum of the logarithms of the mean cluster dispersion 

and, in our data, often correlates with the number of clusters. See also Figure S4.
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Figure 7. Association of Spatial Structural Patterns with Tumor Type and Cell Fractions
(A) Each row corresponds to one of four spatial structure patterns, assigned in a manner 

consistent with the descriptions currently used to characterize the nature of the immune 

infiltrate in standard histopathological examinations, and each column is a TCGA tumor 

types. The values shown are the sample count for each tumor type and spatial structure 

pattern, divided by the counts expected by chance. The ratio of observed to expected co-

membership counts is shown on a color scale, where the largest ratios are in red, values near 

unity as yellow, and blue represents fewer than expected counts.

(B) Estimates of the proportion of CD4, CD8, NK cells, and B cells were segregated by 

spatial structure patterns and averaged. Bars show the proportion within each structural 

pattern. These proportions are estimated using molecular data of the TCGA. See also Figure 

S5.
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