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Abstract

The material contained in the present PhD Thesis is part of a joint work in progress with Marco
Manetti.

The aim is the formalization of Deformation Theory in an abstract model category, in order to
study several geometric deformation problems from a unified point of view. The main geometric
application is the description of the DG-Lie algebra controlling infinitesimal deformations of a
separated scheme over a field of characteristic 0.
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Introduction

During the last sixty years Deformation Theory has played a crucial role in Algebraic Geometry.
The functorial approach has been formalized by A. Grothendieck [19], M. Schlessinger [44], M.
Schlessinger and J. Stasheff [45], and M. Artin [1]. The key idea is that infinitesimal deformations
of a geometric object can be better understood through a deformation functor of Artin rings, which
can be thought as infinitesimal thickening of a point. Several examples of deformation problems
appear in various areas of mathematics, many of them are listed in e.g. [39].

The main motivation for this work is the study of infinitesimal deformations of a separated
scheme over a field of characteristic 0. The deformation functor associated with this geometric
problem is defined as follows.

Problem 0.1 (Geometric deformation functor for separated K-schemes, see Definition 5.33). Let
X be a separated scheme over a field K of characteristic 0. The geometric deformation functor

associated to X is the functor of Artin rings
Defx: Artg — Set
defined by

DefX (A) = {

morphisms O — Ox of sheaves of flat A-algebras,
and the reduction 04 ® 4 K — Ox is an isomorphism | /~

for every A € Artg. Two infinitesimal deformations O4 — Ox and O’y — Ox are isomorphic if
and only if there exists an isomorphism O 4 =N O’ of sheaves of A-algebras such that the diagram

Op—— 50,

N,

Here we denoted by Artg the category of local Artin K-algebras (with residue field K). Since
Spec(A) consists of a point for every A € Artgk, the deformation problem associated to X is
equivalent to the one associated to its structure sheaf. This motivates the definition above.

comimutes.

The modern approach “solves” deformation problems as the one above via differential graded
Lie algebras. The leading principle, which is due to P. Deligne, V. Drinfeld, D. Quillen and M.
Kontsevich [30], can be formulated by saying that “in characteristic zero, every deformation problem
is controlled by a differential graded Lie algebra, with quasi-isomorphic differential graded Lie
algebras giving the same deformation theory”, see [12] and [16]. This approach has been deeply
investigated by M. Manetti, see [33] and [34]. More precisely, every DG-Lie algebra L is associated
with a deformation functor of Artin rings Def: Artg — Set defined by Maurer-Cartan solutions
modulo gauge equivalence:

1
{x€L1 ®K mA\dm—ki[%x] 20}

/Ngauge

Def (4) = MO(L @k ma) /

~gauge =
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where m4 denotes the (unique) maximal ideal of A € Artx . By “solving” the geometric deformation
problem defined above we mean to find a DG-Lie algebra L € DGLAk together with a natural
isomorphism between the deformation functor Def, associated to L and the geometric deformation
functor Def x.

Respectively in [35] and [23], M. Manetti and V. Hinich explicitly adopted the point of view of
the so-called Derived Deformation Theory, which looks at functors F': DGArtg — Set. The choice
of passing to Artin DG-algebras seems natural; in fact in order to lift first order deformations to
second order deformations one needs to study the fiber of the map

F () = F (F )
which in turn leads to the homotopy cartesian square

b an — 5y

{L‘2

l |

K —>K[51]

where €1 has degree —1. Clearly, in order to apply F' to the diagram above it is not sufficient for F’
to be a classical deformation problem (i.e. only defined on Artx ). In [35] and [23], for every DG-Lie
algebra L the construction L — Defy described above is extended to Artin DG-algebras. This led
to the formalization of the leading principle of Deformation Theory in characteristic 0. In fact, J.
Lurie [32] and J. Pridham [40] proved that the association L +— Def}, extends to an equivalence of
categories between the homotopy category of DG-Lie algebras and the category of formal moduli
problems, which are functors defined on DG Artgk satisfying certain additional conditions. This was
somehow expected after the ideas carried out by V. Drinfeld [13], M. Kontsevich, M. Manetti, V.
Hinich, M. Kapranov and I. Ciocan-Fontanine.

The abstract theory developed in this Thesis will be adapted to the general framework of ez-
tended deformation functors [35] defined over Artin DG-algebras in a future work in collaboration
with M. Manetti. Here the aim is to provide definitions and well-posedness results, together with
concrete geometric applications. Namely, we will focus on the classical deformation problem 0.1.

The strategy to solve the geometric deformation problem associated with Def x can be briefly
described as follows. Given a separated K-scheme X together with an open affine cover {Up, }rem,
we consider the associated nerve defined as I = {a = {ig, ..., ik} |[Us = UsyN---NU;, # 0}. Roughly
speaking, the idea consists in thinking of Ox as a diagram (indexed by I) of commutative differential
graded algebras, see Example 3.32. More precisely, for every a € I we consider the commutative K-
algebra Sx o = Ox(Uy). Moreover, whenever o < 8 in I the open immersion Ug < U, corresponds
to a morphism s.5: Sx,o — Sx, g of K-algebras. Thus, with the pair (X, {Up}ren) it is associated
a diagram

Sx: I — CDGAZ’
o = SX,Q

where each Sx , has to be thought as a commutative DG-algebra concentrated in degree 0. The
reason why it is convenient to deal with Sy instead of X itself is that the category of diagrams
(CDGAHEO)I is endowed with the Reedy model structure, see Remark 3.5. This allows us to consider
a cofibrant replacement R — Sx, which in turn induces the DG-Lie algebra of (global) K-linear
derivations Derg (R, R), see Definition 4.45. The result below represents the solution for the geo-
metric deformation problem introduced at the beginning.

Theorem 0.2 (DG-Lie algebra controlling Def x, see Theorem 5.46). Let X be a separated scheme
over a field K of characteristic 0. Choose an open affine cover for X and let I be its nerve. Moreover,
consider the associated diagram Sx together with a cofibrant replacement R — Sx in (CDGAHEO)I,
Then there exists a natural isomorphism

’l/): DefDer]’g (R,R) — DefX
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of functors of Artin rings.

Actually, in the literature it was somehow expected that the DG-Lie algebra controlling Def x
should be given by K-linear derivations of a suitable resolvent of the scheme X, see [37], [8], and [14].
Nevertheless, a precise statement (and proof) was still missing. Moreover, from our point of view the
notion of resolvent existing in the literature is not good enough for geometric applications. Therefore
we decided to restrict the concept to the one of cofibrant resolutions. We point out that to prove the
existence of the resolvent V. P. Palamodov constructs in fact a Reedy cofibrant resolution, see [37].

The philosophy that to deal with deformations of X we need to pass to a cofibrant resolution
was already suggested by V. Hinich, see [21]. Moreover, the deformation problem was already solved
by V. Hinich in [22] with a completely different approach.

Since both the tangent space T' Def x and an obstruction theory for Defx are easily described
in terms of the cohomology of the DG-Lie algebra Derg (R, R), we also prove a result for concrete
computations of it in terms of the cotangent complex of X.

Theorem 0.3 (see Theorem 4.64). Let K be a field of characteristic 0, let X be a separated
finite-dimensional Noetherian scheme over K, and consider the associated Sx. Take a cofibrant
replacement R — Sx in (CDGA%O)I. Then for every k € Z

H* (Derk (R, R)) = H* (Hom} (Qr/x ®r Sx,Sx)) = Ext},  (Lx,Ox)
where Lx denotes the cotangent complex of X. In particular,
T' Defy = Exty, (Ly,Ox)

and there exists an obstruction theory with values in Ext%x (Lx,Ox).

The study of the deformation functor Def x has to be intended as the main geometric motivation
for the theory developed in the present Thesis. Our goal is indeed to develop a homotopy-theoretic
formalism of Deformation Theory in abstract model categories, in order to obtain general results
which can be applied in several geometric deformation problems. To this aim, several steps have
been considered.

The notion of flatness is definitely essential for a good Deformation Theory, since it comes out
in all geometric examples we are interested in, see e.g. [38, Section 1.3] for a discussion about the
flatness assumption in the case of deformations of complex spaces. Chapter 1 contains the notion of
flat morphism in a model category M, see Definition 1.50. A map f: A — B is flat if the induced
functor

fi=—lUaB:AlM—B|M

preserves pullback diagrams of trivial fibrations. In order to keep the exposition as clear as possible
we decided to carry on the example M = CDGA%O throughout all the chapter. Hence, explicit
characterizations will be given for every notion defined in abstract model categories, see e.g. The-
orem 1.55. Moreover, several notions of flatness for morphisms in CDG:AHE0 can be found in the
literature (see e.g. [2]); we discuss the relation between them, and we also show that if A — B
is a morphism of commutative DG-algebras concentrated in degree 0 then our notion of flatness
coincides with the usual algebraic one, see Theorem 1.56.

In Chapter 1 we also define formally open immersions in abstract model categories, see Def-
inition 1.39. As explained in Remark 4.38, this notion represents the geometric setting to work
on. We characterize formally open immersions in CDGAHEO in terms of Kéhler differentials, see
Proposition 1.48.

Chapter 2 is devoted to the development of Deformation Theory in a left-proper model category
M. In particular, in Section 2.1 it is introduced the notion of deformation of a morphism in M, see
Definition 2.3, while in Section 2.2 it is proven a homotopy invariance result, see Theorem 2.16. When
dealing with geometric applications, it is useful to consider strict deformations of a morphism, see
Definition 2.23. This concept is introduced in Section 2.4, where it is proven that under some mild



assumptions (isomorphism classes of) deformations are in bijection with (isomorphism classes of)
strict deformations, see Theorem 2.28. In particular, this result suggests that cofibrant replacements
are expected to play a key role in Deformation Theory on model categories.

In Chapter 3 we introduce pseudo-schemes and pseudo-modules, see Definition 3.23 and Defini-
tion 3.44 respectively. Examples of pseudo-schemes are schemes and DG-schemes, see Section 3.3.
In the seventies V. P. Palamodov studied deformations of complex spaces through a similar con-
struction, this is the reason why pseudo-schemes over CDGA%O will be called Palamodov pseudo-
schemes. The notion of pseudo-module aims to imitate (complexes of) quasi-coherent sheaves. In
particular the category of pseudo-modules over a pseudo-scheme will be endowed with a model
structure, see Theorem 3.47, so that it makes sense to consider objects in its homotopy category;
this plays the role of the derived category of quasi-coherent sheaves over a separated scheme. The
main (geometric) motivation for the notion of pseudo-scheme (see Definition 3.23) relies on the fact
that the pseudo-module of Kéhler differentials over a Palamodov pseudo-scheme is quasi-coherent,
see Theorem 4.35.

In Chapter 4 we develop the theory of the cotangent complex over a Palamodov pseudo-scheme.
In particular, given a pseudo-scheme B over CDGAH%O7 see Definition 3.23, we consider the model
category YMod(B) of pseudo-modules over B; in its homotopy category we construct the cotangent
complex Lp of B, see Definition 4.34.

One of the main results of the chapter is the proof that the global cotangent complex Lp lies
in the homotopy category of quasi-coherent pseudo-modules over B, see Theorem 4.35. Moreover,
we shall prove in Theorem 4.36 that our definition of the cotangent complex Lg is consistent with
the usual one whenever the pseudo-scheme B comes from a finite-dimensional separated Noetherian
K-scheme X.

Chapter 5 presents the geometric application described above. In particular, Theorem 5.49
summarizes the main results of the chapter in a series of natural isomorphisms of deformation
functors. We conclude the chapter with an example in the non-affine case, where all the objects
involved in the theory are described in detail.

Further developments. Other geometric applications are going to be investigated; above all
we plan to deal with the deformation problem associated to a separated DG-scheme in the sense
of [29], see Definition 3.38. To this aim, several preliminary results are already contained in the
Thesis. We expect to solve this deformation problem through the same approach that we adopted
for separated K -schemes.

Acknowledgements. I am deeply in debt to my advisor, professor Marco Manetti, who ac-
companied me during the last four years. I am sincerely grateful to him for the opportunity I was
given to daily learn how to approach mathematical problems, looking for plenty of ways to solve
them under his constant supervision. He definitely taught me everything I know about Deformation
Theory, Model Categories and Derived Algebraic Geometry. I hope the trust he had in my skills
will be successfully rewarded.

My sincere gratitude goes to the referees Vladimir Hinich and Donatella Iacono for their precious
comments after carefully reading the Thesis.

January 28, 2018
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Notation

Our general setting will be a fixed left-proper model category M. Recall that a model category is
called left-proper if weak equivalences are preserved under pushouts along cofibrations. Moreover,
for every A € M we shall denote by A] M (or equivalently by M 4) the model undercategory of
maps A — X in M, and by M | A the overcategory of maps X — A, [25, p. 126]. Notice that for
every f: A— B we have (Al M) | B=A| (M| B).

Every morphism f: A — B in M induces two functors:

ff=—of:Mp— My, (B*)X)H(ALB*)X),

fo=-T4B: M4 —>Mp, X XII4B.

According to the definition of the model structure in the undercategories of M, a morphism h in M g
is a weak equivalence (respectively fibration, cofibration) if and only if f*(h) is a weak equivalence
(respectively fibration, cofibration), see [25, p. 126].

We shall often think of Artx as a subcategory of CDGA%0 where every object is concen-
trated in degree 0. Therefore, for every fixed A € Artxg we will consider the model undercategory
CDGA3’ = A | CDGAZ".

For notational simplicity, in the diagrams we adopt the following labels about maps: C=cofibration,
F=fibration, W=weak equivalence, CWW=trivial cofibration, FW=trivial fibration. We adopt the
labels J for denoting pullback (Cartesian) squares, and ™ for pushout (coCartesian) squares.

In all the examples and applications, K denotes a fixed field of characteristic 0.

For the reader convenience we now summarize the categories which we deal with throughout
the Thesis.

e Artg: the category of local Artin K-algebras (with residue field K).

e Set: the category of sets.

e Ho(M): the homotopy category of a model category M.

o CDGAKk: the category of commutative differential graded K -algebras.

° CDGA%O: the category of commutative differential graded K -algebras concentrated in non-
positive degrees.

. CGAHEO: the category of commutative graded K-algebras concentrated in non-positive de-
grees.

. (CDGA%O)I: the category of diagrams over CDGA%0 indexed by a Reedy poset I.
e Mod(R): the category of modules over a commutative ring R.
e DGMod(A): the category of differential graded modules over a commutative DG-algebra A.

e DGMod=(A): the category of DG-modules concentrated in non-positive degrees over a com-
mutative DG-algebra A.

e DGMod(Ox): the category of cochain complexes of sheaves of Ox-modules.
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K(Ox): the homotopy category of sheaves of Ox-modules.
D(Ox): the derived category of sheaves of Ox-modules.
D(QCoh(X)): the derived category of quasi-coherent sheaves on a separated scheme X.

Dy (Ox): the derived category of cochain complexes of sheaves of Ox-modules with quasi-
coherent cohomology.

DGAffk : the category of differential graded affine K-schemes.

DGSchg : the category of differential graded K -schemes.

USch;(M): the category of pseudo-schemes over M indexed by the Reedy poset I.
UMod(A): the category of pseudo-modules over a pseudo-scheme A € USch;(M).

\IlModSO(A): the category of pseudo-modules concentrated in non-positive degrees over a
pseudo-scheme A € ¥Sch;(M).

QCoh(A): the category of quasi-coherent pseudo-modules over a pseudo-scheme A € USch;(M).

Ho(QCoh(A)): the homotopy category of quasi-coherent pseudo-modules over a pseudo-
scheme A € USch;(M).
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List of axioms

Throughout the Thesis, we shall assume additional properties (called axioms) on a model category
M.

Remark 0.4. The axioms are subjected to the following mandatory conditions:
1. the axiom is valid in CDGAHEO;
2. if the axiom is valid on M, then it is valid on every undercategory M 4

3. if the axiom is valid on M, then it is valid on M, for every Reedy poset I, see Definition 3.1.

In order to keep the exposition as clear as possible, we summarize all the axioms that will be
introduced.

Axiom 0.5 (Cone and cylinder, see Axiom 1.44). A model category M satisfies the Cone and
cylinder Axiom if the following holds. Every morphism of trivial extensions B - C Lp2p

extends canonically to a diagram of trivial extensions

f

B—‘» C——oyl(f) —— DB

—
B —> cone(f)

where § is a trivial fibration, v is a fibration and the square 1 is cartesian. If f is a fibration then

also cyl(f) b2, cone(f) xp D is a fibration.

Axiom 0.6 (Hereditarity of fibrations, see Axiom 1.59). A model category M satisfies the Heredi-
tary of fibrations Axiom if for every pair of morphisms A — B — C, if A — C is a fibration, then
sois B— C.

Axiom 0.7 (Flatness of cofibrations, see Axiom 1.62). A model category M satisfies the Flatness

of cofibrations Axiom if every cofibration is flat.

Axiom 0.8 (Idempotent axiom, see Axiom 2.21). Given a deformation model category M, a mor-

phism A — K in M(K) satisfies the idempotent axiom if the natural map
F(A) — F(A) XF(K) F(K)
18 surjective.

Axiom 0.9 (CW-lifting axiom, see Axiom 2.26). Given a deformation model category M, a mor-
phism A — K in M(K) satisfies the CVW-lifting axiom if the natural map G(A) — G(K) Xax) G(K)

s surjective.

Axiom 0.10 (Meet axiom, see Axiom 3.20). A Reedy poset I satisfies the meet axiom if for every
a €1 the set {8 € I|a <} is closed under the meet operator.
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Chapter 1

FLATNESS IN MODEL
CATEGORIES

The notion of flatness is definitely essential for a good Deformation Theory, since it comes out in
all geometric examples we are interested in. The main goal of the present chapter is to introduce
the notion of flat morphism in an abstract model category M. As we will see in Definition 1.50, a
map f: A — B is flat if the induced functor

fo=-14B:AlM—>B|M

preserves pullback diagrams of trivial fibrations. The exposition carries on the example M =
CDGA]IEO throughout all the chapter, so that for every notion defined in abstract model categories
we shall prove explicit characterizations, see e.g. Theorem 1.55. In the literature (see e.g. [2]) there
exist several notions of flatness for morphisms in CDGA]I%O; we discuss the relation between them,
and moreover we prove that if A — B is a morphism of commutative DG-algebras concentrated in
degree 0 then our notion of flatness coincides with the usual algebraic one, see Theorem 1.56.

In Section 1.3 we also define formally open immersions in abstract model categories, see Defini-
tion 1.39. We will characterize formally open immersions in CDG}AHE0 in terms of Kahler differen-
tials, see Proposition 1.48, explaining why this notion represents a good geometric setting to work
on.

1.1 Preliminaries on CDGA]%{O and Kahler differentials

Let K be a field of characteristic 0. The category of commutative differential graded K -algebras
concentrated in non-positive degrees will be denoted by CDGAz". This is endowed with a model
structure where weak equivalences are quasi isomorphisms, fibrations are surjections in negative
degrees, see [6]. In CDGAZ’, cofibrations are retracts of semifree extensions, see [4, Theorem 5].
We shall recall the notion of semifree extension in Definition 1.64 and Remark 1.65. Moreover, the
model category CDGA%O is left-proper, see [47]; i.e. pushouts along cofibrations preserve weak
equivalences.

Remark 1.1. If we drop the assumption on the characteristic of the field K then CDGA]I%O does
not admit a model structure where weak equivalences are quasi-isomorphisms and fibrations are
surjections in negative degrees. Moreover, in positive characteristic we should not expect CDGAHE0
to be Quillen equivalent the model category of simplicial commutative K -algebras. Therefore we
shall always assume K to be of characteristic 0, even when if not explicitly written.

The category of unbounded commutative differential graded K-algebras CDGAxk is endowed
with a model structure where weak equivalences are quasi isomorphisms and fibrations are surjec-
tions, see [24, Theorem 4.1.1 and Remark 4.2] or [46].



1. Preliminaries on CDGA%0 and Kahler differentials

Given A € CDG‘:A]I%O we consider the undercategory CDGAf‘O =A] CDGAHEO7 which inherits
the same model structure, see [25, p. 126]. Given a commutative differential graded K-algebra B,
we shall denote by DGModSO(B) the model category of DG-modules over B concentrated in non-
positive degrees, where weak equivalences are quasi isomorphisms and fibrations are surjections
in negative degrees. Similarly, we denote by DGMod(B) the model category of unbounded DG-
modules over B, where weak equivalences are quasi-isomorphisms and fibrations are surjections.
Notice that given a commutative (unitary) algebra B, the homotopy category with respect to such
a model structure is the standard derived category D(B) = Ho (DGMod(B)).

We begin by introducing Kahler differentials and trivial extensions in CDGAHEO, in order to
prove the Quillen adjunction of Theorem 1.3.

Theorem 1.2 (Existence of Kéhler differentials, see [47]). Let B € CDGAS". Then there exists a
DG-module Qp ) € DGMod="(B) together with a closed derivation of degree 0, § € Z°(Der’ (B, Qp/a)),
such that for every other DG-module M € DGMod(B) the natural morphism

—o00d: Homp(Qp/a, M) — Der’y (B, M)
is an isomorphism of differential graded B-modules.
Let B € CDGA%O. Then it is defined a functor
—® B: DGMod=<’(B) - CDGAZ’ | B
as follows. Consider M € DGMod=°(B).

1. For every j € Z, define (M @ B)? = M7 @ B’ where the direct sum is taken in the category
Mod(B?).

2. For every j € Z, the differential is given by

Fyop: (M@ B) — (M & B)7H
(m,b) — (de,de)

3. For every j, k € Z, the (graded) commutative product is given by
(M @ B)Y x (M @ B)* — (M @ B)’**

((m,b), (m, b)) = (bm/ 4 (=1)7T*b'm, bb)

4. Since B € CDGA%O7 there is a natural morphism A — M @& B which endows M & B with a
structure of CDGA%O. Moreover, the morphism M & B — B is the natural projection, which
is clearly a morphism in CDGA%O7 so that M @ B is a well defined object in CDGAE‘0 I B.

5. The morphisms are induced in the obvious way.

Given M € DGMod=’(B), the DG-algebra M & B € CDGAS" | B is called a trivial exten-
sion of B.

Theorem 1.3. Given B € CDGA%O, the pair of functors
Q_ 4 ®_ B: CDGAY’ | B = DGMod=’(B): — @B

is a Quillen adjunction. In particular, Q_,4 ®_ B preserves cofibrations and trivial cofibrations,

and commutes with arbitrary small colimits.

Proof. Given R € CDGAEO J B,and M € DGMOdSO(B), we shall exhibit a binatural bijection

Homgpgaso, (R, M @ B) & Hompgyioa<o(p) (r/a @ B, M).



1. Preliminaries on CDGA%0 and Kahler differentials

To this aim, it is sufficient to consider the following chain of isomorphisms:

Hompgyoaso(py (Qr/a ®@r B, M) = Hompgyoaso(r)(Q2r/a, M) =
>~ Dery(R, M) =

=~ Hom

cpgasoyp (B M @ B)

where the first isomorphism follows from the base change, and the second one follows by Theorem 1.2
thinking of M as an R-module and passing to 0-cocycles. Moreover, the last isomorphism is explicitly

given as follows:

Hom (R,M & B) — Dera(R, M)

(fra) = f
where oo: R — B is the fixed morphism of DG-algebras coming with R. Notice that f is a derivation

CDGAS|B

if and only if (f,«) is a morphism in CDGA%O } B. All the above isomorphisms are functorial
with respect to both R and M.

To conclude the proof, it is now sufficient to show that the right adjoint —® B preserves fibrations
and trivial fibrations. This is immediate by construction and by recalling that in both categories
DGModSO(B) and CDGAf‘0 1 B weak equivalences are quasi-isomorphisms while fibrations are
surjections in negative degrees. Hence _,4 ®@_ B is a left Quillen functor, so that it preserves

cofibrations and trivial cofibrations, and commutes with arbitrary small colimits. O

We now recall three different notions of flatness for DG-modules due to Avramov and Foxby.

Definition 1.4 (Avramov-Foxby, [2]). Let R be a commutative (unitary) K-algebra. An object
M € DGMod(R) is called:

e DG-flat if the functor — @z M: DGMod(R) — DGMod(R) preserves the class of injective

quasi-isomorphisms,
o m-flat if the functor — ®r M: DGMod(R) — DGMod(R) preserves quasi-isomorphisms,

o #-flat if M7 is a flat R-module for every j < 0.

Clearly every morphism f: A — B in CDGAEO endows B with a structure of DG-module over
A. In particular, Definition 1.4 induces several notions of flatness on f whenever A is concentrated
in degree 0.

Definition 1.5. Let f: A — B be a morphism in CDGA%O, and assume that A is concentrated
in degree 0. Consider the functor

fo=—®a B: CDGAS’ — CDGAJ’
given by the (graded) tensor product. Then f is called:
o DG-flat if the functor f,. preserves the class of injective quasi-isomorphisms,
e r-flat if the functor f, preserves quasi-isomorphisms,

e #-flat if B is a flat A-module for every j < 0.

An object A € CDC-}AHE0 is called DG-flat (respectively w-flat, #-flat) if the initial morphism
K — A is DG-flat (respectively w-flat, #-flat). We shall prove in Lemma 1.6 that Definition 1.5 is
consistent with Definition 1.4.

Lemma 1.6. Let f: A — B be a morphism in CDGAHEO, and assume that A is concentrated in

degree 0. Then the following conditions are equivalent:
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1 B is DG-flat (respectively: w-flat, #-flat) in DGMod="(A), see Definition 1.4,
2 f is DG-flat (respectively: w-flat, #-flat) in CDGA%O, see Definition 1.5.

Proof. First notice that the statement is tautological for #-flatness. It is clear that 2 follows from 1
since every map C' — D in CDGA%0 can be seen as a morphism in DGMod="(A). For the converse,
take a morphism M — N in DGModSO(A) and apply — @ A: DGModSO(A) — CDGA%0 J A,
which is a right Quillen functor by Theorem 1.3. It is immediate to check that M — N is a quasi-
isomorphism (respectively, an injective quasi-isomorphism) if and only ift M @ A — N @ A is so.
By definition, if A — B is 7-flat (respectively, DG-flat) in the sense of Definition 1.5, applying the
(graded) tensor product — ® 4 B we get that the map

(M@, B)® B2 (M®A)@aB— (N®A) @4 B~ (N®4sB)®B

is a quasi-isomorphism (respectively, an injective quasi-isomorphism) in CDGA]I%O } B. This in
turn implies that the map
M®asB—N®yB

is a quasi-isomorphism (respectively, an injective quasi-isomorphism) in DGMod(B). O

Example 1.7. Recall that a commutative DG-algebra A € CDGA%0 is called contractible if
it is so as a complex, i.e. its identity morphism is homotopic to the zero map. Any contractible
DG-algebra A € CDGAHEO is w-flat.

Throughout Chapter 1 we will introduce several notions of flatness in abstract model categories.
In order to make these notions as clear as possible we shall always consider examples and prove
explicit characterizations in M = CDGAHEO, see e.g. Theorem 1.55. We will investigate relations
between them and the ones given in Definition 1.5, see e.g. Theorem 1.56.

The following result shows that m-flatness implies #-flatness for a morphism of commutative
(unitary) K-algebras. Notice that in this case the notion of #-flatness coincide with the usual
algebraic one. We shall see in Theorem 1.56 that the converse holds.

Lemma 1.8. Let f: A — B be a morphism in CDGA]I%O, and assume that both A and B are
concentrated in degree 0. If the (graded) tensor product

fo =—©®a B: CDGA}’ — CDGA}’

preserves quasi-isomorphisms (i.e. f is w-flat), then B is a flat A-module in the usual algebraic

sense (i.e. [ is #-flat).

Proof. Take a short exact sequence of A-modules
0NLSMEZPso
and consider the trivial extensions
R =cone(i)® A and S=PqpA

obtained applying the Quillen functor — @& A, see Theorem 1.3. Clearly the projection R — S is a
trivial fibration and the morphism

R®4 B: ii—> 00— NXUB—>MppB—>0——>---
i A N
S®u B: 0 0 Pe B 0
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is a weak equivalence if and only if
0—>N@saB—-M®sB—-PesB—0

is a short exact sequence of B-modules. O

As we will see in Section 1.2.1, it is useful to extend the notion of w-flatness to general morphisms
in CDGAHEO. This will lead us to the definition of W-cofibrations in abstract model categories.

Therefore, in the following result we consider morphisms f: A — B in CDGA%O such that f,
preserves quasi-isomorphisms dropping the assumption that A is concentrated in degree 0.

Lemma 1.9. Let f: A — B be a morphism in CDGAIE0 and consider the (graded) tensor product
S CDGA%O — CDGA%O. Then the following conditions are equivalent:

1 f, preserves quasi-isomorphisms,
2 f. preserves surjective quasi-isomorphisms (i.e. f. preserves trivial fibrations).

Proof. In order to prove the claim above, take a trivial fibration h: P — R in CDGAEO and
assume that condition 1 holds. By definition & is a surjective quasi-isomorphism so that

f.(h): P@4s B — R®a B

is a quasi-isomorphism by hypothesis, and moreover it is a surjection being f, a right exact functor.
For the converse assume that condition 2 holds. Take a weak equivalence h: P — R in CDG‘:A%O

and consider a factorization

in CDGAS’. Now, f.(1): P®4 B — Q ®4 B is a trivial cofibration since the class of trivial
cofibrations is closed under pushouts. By hypothesis f.(7): Q®4 B — R®4 B is a trivial fibration,

so that f.(h) is a weak equivalence as required. O

We conclude the section by recalling the explicit construction of (co)cones for a morphism of
DG-modules.

Definition 1.10 (Cocone of a morphism between DG-modules). Let B € CDGrA]I%O and let
f: M — N be a morphism in DGMod(B). The cocone of f is defined by the following

87 cocone(f)! = M7 @ N7 — cocone(f)! T = Mt ¢ N7
(m,n) = (dym, f(m) — dyn)
for every j € Z. Hence cocone(f) € DGMod(B).
Similarly we can define the cone of a morphism between DG-modules.

Definition 1.11 (Cone of a morphism between DG-modules). Let B € CDGA%O and consider a
morphism ¢: M — N in DGMod(B). We define the cone of ¢ as

cone(p)? = Mt @ N7, dzone(wi cone(ip)’ — cone(p)’ !

(m,n) (—dﬂrlm, @t (m) + d?vn)

for every j € Z. Hence cone(yp) € DGMod(B).
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Remark 1.12. By the distributivity of the tensor product with respect to direct sums, it follows
that tensor products commute with (co)cones.

Remark 1.13. In the setup of Definition 1.11, it is clear that if ¢: M — N is a morphism between
DG-modules concentrated in non-positive degrees, then cone(yp) lies in DGModSO(B). This is false
for the cocone, see Definition 1.10. In fact, (cocone(y))' does not necessarily vanish even if M
and N are both concentrated in non-positive degrees. More precisely, cocone(p) € DGMod="(B) if
and only if M is concentrated in non-positive degrees and N is concentrated in (strictly) negative

degrees.

1.2 (§-cofibrations and G-immersions

The goal of this section is to introduce and to study the notions of WW-cofibration and WW-immersion.
To this aim, we first define G-cofibrations and G-immersions.

Let M be a category closed under finite colimits; recall that the codiagonal V: B114 B — B of
a morphism f: A — B is defined by the commutative diagram

A !

B
f iiQ 1d
B—"s BII, B
Q
B

Id

where both i; and iy are pushouts of f by itself and differ by an automorphism of B 114 B. More
generally, for every morphism h: B — C' we define the codiagonal V: C'I14 B — C by extending
the above diagram

At .p " ¢ (1.2.1)

AN

B—">BIl,B—>BI,C

\Q \
1d B—I" S¢

Definition 1.14. Let G be a class of morphisms of M such that G is closed under composition and

the isomorphisms are contained in G. A morphism f: A — B in M is called:

1. a G-cofibration, if for every A — M 9y N with g € G, the pushout morphism
MUy, B— NIz B

belongs to G;

2. a G-immersion, if it is a G-cofibration and for every morphism h: B — C the codiagonal
V:Cly B — CisinG.

Example 1.15. When G is exactly the class of isomorphisms, then every morphism is a G-
cofibration and a morphism A — B is a G-immersion if and only if the codiagonal BII4 B — B is an
isomorphism. In fact, under this assumption the natural map B — BIl4 B — B is an isomorphism
and for every morphism B — C' the double pushout square of (1.2.1) implies that C — C 114 B is

an isomorphism too.
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For the applications we have in mind, it is convenient to point out the role of G-cofibrations and
G-immersions when M = CDGA]%0 and G = W is the class of weak equivalences. The following
examples make this notions explicit in terms of (graded) tensor products.

Example 1.16. Let M = CDGAHE0 and let G = W be the class of weak equivalences. Then a
morphism A — B in CDGAHEO is a W-cofibration if and only if the (graded) tensor product

—®4 B: CDGAY’ — CDGAJ’

preserves quasi-isomorphisms. In particular, if A is concentrated in degree 0 we recover the notion
of m-flat morphisms in the sense of [2], see Definition 1.5 and Lemma 1.8. We shall see how W-
cofibrations in CDGA%0 are related to the different notions of flatness in model categories, see
Theorem 1.56.

Example 1.17. Let M = CDGAHE0 and let G = W be the class of weak equivalences. We will
prove (see Corollary 1.22) that a morphism A — B in CDGAHE0 is a W-immersion if and only if
the following conditions are satisfied

1. the (graded) tensor product —®4 B: CDG:A;‘0 — CDGAE0 preserves quasi-isomorphisms,
2. the natural map B ® 4 B — B is a quasi-isomorphism.

Remark 1.18. Since finite colimits are defined by a universal property, they are defined up to
isomorphism: therefore the assumption on the class G are required in order to have that the notion

of G-cofibration makes sense.

Lemma 1.19. In the situation of Definition 1.1/, the classes of G-cofibrations and G-immersions
contain the isomorphisms and are closed under composition and pushouts. If G is closed under

retractions, then the same holds for G-cofibrations and G-immersions.

Proof. Tt is plain that every isomorphism is a G-immersion. Let f: A — B and g: B — C be
G-cofibration; then for every A — M LN N, if h € G then also the morphism M 114 B LENG, 14 B
belongs to G, and therefore also the morphism

MU, C=(MI,B)llgC LS (NI, B)llg C = NI, C

belongs to G. Let A — B be a G-cofibration and A — C a morphism. For every C — M LN

we have
MHC(CHAB):MHAB&NHAB:NHC(CHAB),

and then C' — C' 14 B is a G-cofibration.

Thus we have proved that G-cofibrations are stable under composition and pushout; we now
prove that the same properties hold for G-immersions. Let f: A — B and g: B — C be two G-
immersions: since for every morphism h: C' — D the codiagonal D IIg C — D belongs to G, in
order to prove that the composition gf is a G-immersion it is sufficient to prove that the natural
map D14 C — DIlg C belongs to G. The commutative diagram

RN
SO
o
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induces a colimit map

DIy, B=DIlg B, B2V hii, B=D

which belongs to G because f is a G-immersion. The same diagram induces a colimit map

Idp IpVIIgIde
%

DI, C=Dlp By BlpC DlpBllgC=DlpC

which belongs to G since g is a G-cofibration.
Assume now that f: A — B is a G-immersion and let g: A — C be any morphism. Then for
every morphism h: C'[[4 B — D the codiagonal map

Do (CliyB)=DIl4B—D
belongs to G and then also C' — C'II 4 B is a G-immersion.
Finally, assume that G is closed under retracts and consider a retraction

p
—_— —_

C A
C ]
— -pD-*.B.

W<—0n

Then every morphism A = M gives a commutative diagram

My
R
A——sC—254
ook
q

B——D——2B

and then a functorial retraction M 114 B — M IIo D — M 114 B.
If g is a G-cofibration, then f is a G-cofibration, since for every A — M 95 N the morphism
MHAB—>NHABisaretractofMHcD%NﬂcD.

Similarly, every morphism B Sm gives a commutative diagram

A——sC——>A
ook
B——D——2B

o,

H Id H Id H

and then a functorial retraction HlIo B — Hllc D — H1l4 B. If g is a G-immersion then also f is a
G-immersion, since for every B — H the codiagonal H 114 B — H is a retract of H IIc D SH O

Corollary 1.20. Assume that the class G satisfies the 2 out of 3 axiom. Let A i> B be a G-

immersion and B 2 C' a G-cofibration. Then g is a G-immersion if and only if gf is a G-immersion.

Proof. We have already seen in the proof of Lemma 1.19 that for every morphism C' — D, the
morphisms D[], C — D]]; C belongs to G. O
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1.2.1 W-cofibrations and W-immersions

Assume now that M is a left-proper model category: we shall denote by C, F, W the classes of cofi-
brations, fibrations and weak equivalences, respectively. All these classes contain the isomorphisms
and are closed by composition, and then it makes sense to define G-cofibration and G-immersion
for G =C,F,W,CNW,FNW,CNF. For instance, since (trivial) cofibrations are preserved under
pushouts, we have that every morphism is a C-cofibration and also a (C N W)-cofibration.

Here we are only interested in the case G = W, and we shall denote by Cofyy and Imm,y the
classes of W-cofibrations and W-immersions respectively.

It is immediate from definition of left-properness in model categories that every cofibration is a
W-cofibration (C C Cofyy). The class Cofyy of W-cofibrations was considered by Grothendieck in
his personal approach to model categories [17, page 8], and more recently by Batanin and Berger
[3] under the name of h-cofibrations.

Lemma 1.21. In a left-proper model category every cofibration is a W-cofibration. Weak equiva-

lences between W-cofibrant objects are preserved by pushout, i.e. for every commutative diagram

A—f>E
\ih, f.g € Cotyy, heWw,
g

D

and every morphism A — B the pushout map E 114 B — D114 B is a weak equivalence.

Proof. The first part follows immediately from the definition of left-proper model category. For the
second part, consider a factorization A = P S BwithaeCc Cofyy, B € W and then apply the
2 out of 3 axiom to the diagram

Ell,P- Y~ ET,B

A

DI, P-YsDlL B
to obtain the statement. O
Corollary 1.22. Let W be the class of weak equivalences in a left-proper model category. Then:

1. a morphism f: A — B is a W-cofibration, if and only if for every A — M % N with
g € WNF, the pushout morphism M 114 B — N 114 B belongs to W;

2. a morphism f: A — B is a W-immersion if and only if it is a W-cofibration and the codiagonal
V:B1lls4 B — B is a weak equivalence.

3. WnN Cofyy C Immyy, i.e. a weak equivalence is a W-immersion if and only if it is a W-
cofibration.

Proof. The first part follow from the fact that every weak equivalence is the composition of a trivial
cofibration and a trivial fibration, and trivial cofibrations are preserved under pushouts.

For the second part, assume that f: A — B is a Wh-cofibration and the natural morphism
B =BIll4 A— Bl B is a weak equivalence. By Lemma 1.19 the composition A - B — B1l4 B
is a W-cofibration and then, by Lemma 1.21, for every morphism B — C' the pushout

C=ClyB— Clig(BII4B)=CII4 B

is a weak equivalence. The conclusion follows from the 2 out of 3 axiom. Finally it is immediate
from definition that if f: A — B is a Wh-cofibration and a weak equivalence, then its pushout

B — B1I B is a weak equivalence. O
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Example 1.23. Let K be a field of characteristic 0. Consider an open immersion between affine K -
schemes o: Spec(B) — Spec(A). Then the morphism ¢#: A — B can be considered as a morphism
between commutative DG-algebras concentrated in degree 0. As we will see in Theorem 1.56, the
functor — ®4 B preserves quasi-isomorphisms, being ¢ a flat map in the usual algebraic sense.
Moreover, the map of K-algebras B ®4 B — B induced by ¢* is an isomorphism (in particular,
" is a weak equivalence). Therefore, by Corollary 1.22 it follows that for every open immersion
¢: Spec(B) — Spec(A), the induced map of algebras ¢ : A — B is a W-immersion in CDGA%O.

Example 1.24. Let f: A — B be a morphism of commutative K-algebras. By Corollary 1.22
and Lemma 1.8 it immediately follows that if f is a W-cofibration in CDGA]I%O then B is a flat
A-module.

Theorem 1.25. Consider a commutative diagram

R4

i,

s Y. B

with f,g W-cofibrations and the horizontal arrows weak equivalences. Then the natural morphism
SUgrS — Bl B is a weak equivalence. In particular f is a W-immersion if and only if g is a

W-immersion.
Proof. Since R — S is a W-cofibration, the natural maps
SlrS— Slg B, S=SIlrR— SIi A,
are weak equivalences. By the universal property of pushout we have a diagram

R——=A

and q is a weak equivalence by the 2 out of & axiom. Now, since g: A — B is a W-cofibration, the
composite map
SHRS—)SHRB:(SHRA)HAB%BHAB

is a weak equivalence. The last part follows from Corollary 1.22 and the commutative diagram

SlrS——BlUsB

Corollary 1.26. Consider a commutative diagram

A*f>B

w w
c—2~DpD

such that C 114 B — D is a W-cofibration. If f is a W-immersion, then g is a YW-immersion.

10
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Proof. Since f is a W-immersion, its pushout C — C' II4 B is a W-immersion and the morphism
B — C' 14 B is a weak equivalence. By the 2 out of 3 axiom the morphism C'Il4 B — D is a
weak equivalence and therefore a W-immersion by Corollary 1.22. Thus ¢ is composition of W-

immersions. O
Corollary 1.27. Consider a commutative diagram

A*f>B

e
N

w w

E-".F

such that k: C 114 B — D is a W-cofibration. If f and h are W-immersions, then g and k are

W-immersions.

Proof. By stability of W-immersions under pushouts it is not restrictive to assume A = C and
the map B — D a W-cofibration. Thus g is composition of W-cofibrations and then it is a W-
immersion by Theorem 1.25, since h is a W-immersion. The proof that k is YW-immersions follows
from Corollary 1.20 applied to the factorization g: C' ELNY) 14 B LNY») O

Example 1.28. Let A be a commutative unitary algebra over a field of characteristic 0, and let
M be a contractible complex of A-modules. Then the inclusion A — A & M of A into the trivial
extension (see Theorem 1.3) is a W-cofibration CDGA%O.

Example 1.29. For every R = ®&,<oR" € CDGA%O and every multiplicative part S C R°, the
natural morphism R — S7'R = S7'R° ®po R is a W-immersion. In fact R® — S~'R? is flat,
STIRY®Rro STIRY = S71(S7LIRY) = S71RY and W-immersions are preserved by pushouts.

1.3 Formally open immersions

This section plays a key role in order to define pseudo-schemes, see Definition 3.23. The main
tool we will deal with is the notion of formally open immersion in abstract model categories, see
Definition 1.39. Proposition 1.48 characterizes formally open immersions in the model category
M= CDGA]I%0 in terms of Kahler differentials. This will imply that the pseudo-module of Kéahler
differentials over a Palamodov pseudo-scheme is quasi-coherent, see Theorem 4.35, motivating in
fact Definition 3.23.

As usual we work in a left-proper model category M, although the first part of this section
makes sense over any category closed under finite limits and finite colimits.

Every retraction B — C' % B induces the two dotted morphisms

a1: CllgC — C and a: CllgC — C

11
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through the following commutative diagram

B—1* C\\\ ///C i B
C——>ClpC N CTyC~——C
| o,
1dc\: C i’—/e

where we defined e = ip: C' — C. Notice that the universal property of the coproduct C' Ilip C

implies that pa; = pas. Therefore, every retraction B - C 2y B induces a natural morphism
a: Cllp C — C xp C through the following commutative diagram

in M. For instance, in the category of commutative differential graded algebras over a field K, the
morphisms introduced above are defined as

ar(z@y) =ze(y), z@y)=ecl@)y, alz®y)=(ze(y) e(r)y)
for every x®y € C®pC. The equality pa; = pas is guaranteed by the relation pe = pip = p: C — B.

Lemma 1.30. In the above setup, the diagram

B——=CllC—>C

Lo

C—2>CxpC—>B
1§ commutative.

Proof. Tt is straightforward to check the commutativity of the diagram above. O

Definition 1.31. Let C be a category closed under finite limits and finite colimits. A retraction
B4 C % Bis called a trivial extension of B if:

1 the pushout of o under the codiagonal is an isomorphism:

ClizC——~Y ¢

al ///gi/////;l: . q=a 'V,
CxpC Yo (CxpC) len,c C

2 The diagram

CXBCXBC (d.0) CXBC
(q»Id)i J{q
CxpC 1 C

is commutative.

12
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3 If my,me: C xp C — C are the projections, then for every ¢ = 1,2 the commutative diagram

CxpC—L1sC
|*
ux p
c—" .p

is a pullback square.

Notice that the commutativity of the last diagram follows formally from 1 and Lemma 1.30.
Example 1.32. B 14, B 19 B is a trivial extension.

Example 1.33. In the setting of Definition 1.31, let C be the category of rings. If B Lo Bis
a retraction then C' = B@® M as a B-module, where M = ker(p), the morphism « is surjective and

ker(o) = M ®p M. Thus
C

V(ker(a))

and then the pushout of @ under V is an isomorphism if and only if M2 = 0. In this case we have

(C XB C) ®C®Bccz

:CxpC—=C, gy =x+y—elz)=v+y—ey),
and the condition 2 and 3 are trivially satisfied.
Example 1.34. In an abelian category every retraction is a trivial extension.

For every trivial extension B %025 Band every morphism f: X — B, we define the set of
liftings as L(f,C) = {g: X — C'| f = pg}.

Lemma 1.35. In the setting of Definition 1.51, the set L(f,C) carries a group structure with

product

(g,h) = g-h: X Y oxpo L,

and unit element if: X — C.

Proof. The associativity is clear. Given any g € L(f,C) it is easy to check that g-if =if -g=g.

1

Finally, define g7 = w2, where G is defined by the diagram

1

By construction g - g7+ = ¢f; exchanging 7m; and 75 in the above construction, we get a morphism

1

g € L(f,C) such that g-g = if. Now the associativity implies that ¢ = g~* is the inverse of g. O

Definition 1.36. A morphism between trivial extensions of B is a commutative diagram

where both rows are trivial extensions.

13
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For notational simplicity we shall write either B — C < D % B or C % D the morphism of
trivial extensions over B as in Definition 1.36. It is clear that for every morphism f: X — B the
induced map of liftings L(f,C) — L(f, D) is a group homomorphism.

From now on we come back into our left-proper model category M.

Definition 1.37. Let M be a left-proper model category. In the setting of Definition 1.36, a
morphism B 5 C' % D 2 B of trivial extensions of B is called a semitrivial extension if the

map « is a fibration.

Example 1.38. Let M = CDGAHEO. Every semitrivial extension of B € CDGAHEO is of the form

BoMoeB5 NaB-B

for some fibration g: M — N in DGModSO(B). This can be checked as in Example 1.33.

Definition 1.39. A morphism u: U — V in a left-proper model category is called a formally
open immersion over s: S — U if it is a W-immersion and it has the lifting property with respect

to every diagram

LI v (1.3.1)

S U

Lo )
. yE

B c_t.p_*

(3

B

where the bottom row is a semitrivial extension. When S = 0 is the initial object we shall simply

talk about formally open immersion, without any mention to the (unique) morphism 0 — U.

For instance, every trivial cofibration is a formally open immersion.

Example 1.40. In the model category M = CDGA%O, formally open immersions have a precise
characterization in terms of K&hler differentials. We shall prove in Proposition 1.48 that a W-

immersion f: P — R in CDG‘:AE0 is a formally open immersion if and only if the induced map
Qp/a@p R— Qr/a

is a trivial cofibration in DGMod=’(R). In particular, by the fundamental sequence of Kihler
differentials (see Theorem 4.9) it turns out that given a formally open immersion f: P — R in

CDGA%O there exists a short exact sequence
cw
0— QP/A ®p R — QR/A — QR/p —0
in DGMod=°(R).
Lemma 1.41. Formally open immersions are stable under composition, pushouts and retracts.

Proof. Since the same is true for W-immersions, the proof becomes completely straightforward.
Keep attention that we have two different kind of pushout: assume S % U = V with u a formally
open immersion over S. Then for every factorization s: S — T — U, the morphism u is a formally
open immersion over T'; in particular the pushout U llg T — V lIg T is a formally open immersion
over T O

Remark 1.42. Let K be a field of characteristic 0 and assume M = CDGAHEO. Then the lifting
property (1.3.1) of u: U — V in Definition 1.39 can be checked only on semitrivial extensions of V.
In order to prove this claim, first notice that Example 1.38 implies that every semitrivial extension
of B is of the form

BoMoB5, NoB— B

14
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for some fibration g: M — N in DGModSO(B). Moreover, every commutative diagram

S—° U v 1%
T
B—“M®&®B—>N&B-2>B

induces in particular a morphism pg: V — B, and therefore it can be extended to a diagram

. U & Vv

L

S
V—sMeV—NpV ——=V
B

o

— “MoB—>NaoB2 B
whence the statement.

Corollary 1.43. Consider a commutative diagram

A—f>B

w w
c—2sD
such that C 14 B — D 1is a cofibration. If f is a formally open immersion, then g is a formally

open immersion.

Proof. Since f is a W-cofibration, the morphism B — C 114 B is a weak equivalence and then
Cliy B — D is a trivial cofibration, hence a formally open immersion. Since f is a formally open
immersion, also C' — C'II 4 B is a formally open immersion and ¢ is the composition of two formally
open immersions. O

In general we cannot expect that the usual factorization properties hold in the category of trivial

extensions. In some cases it is therefore necessary to add as an axiom the existence of canonical
mapping cylinder and mapping cones, see [15, p. 155].

Axiom 1.44 (cone and cylinder). Every morphism of trivial extensions B oL D2 B estends

canonically to a diagram of trivial extensions

f

B—L+C——+qﬂﬂ—7»D—i+B
i i” /
B —— cone(f)

where § is a trivial fibration, v is a fibration and the square 1 is cartesian. If f is a fibration then

also cyl(f) ISEIN cone(f) xp D is a fibration.

Notice that the cone and cylinder axiom holds in the category CDGAHE0 and extends immedi-
ately to the model category of diagrams over a Reedy poset, see Definition 3.1.
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1. Formally open immersions

Theorem 1.45. Assume that the left-proper model category M satisfies the cone and cylinder
axiom. Then a W-immersion uw: U — V is a formally open immersion over s: S — U if and only
it has the lifting property with respect to every diagram

S*S>U*u>_V
) y
B—>c—t.p

where the bottom row is a semitrivial extension and etther

p

B

(E1) f is a trivial fibration, or

(E2) a=ipPu=ipfa.
Proof. Up to a restriction to the undercategory S | M, we can assume S the initial object with-
out loss of generality. Applying the cone and cylinder axiom to the semitrivial extension of dia-

gram (1.3.1), the lifting property (E1) gives a diagram:
U——=V
N
B—ts(C——>ol(f)—2=D-—"-B
ipJ iv
B—% cone(f)

Denoting by (y¢)~1: V — cone(f) the inverse of ¢ in the group L(pS3,cone(f)), by functoriality
(7¢) 1w is the inverse of the unit element y¢u = jpa. Therefore, by the lifting property (E2) we

get a commutative diagram

U—* s>V
;:1/ wiW)
B—>C cyl(f) g cone(f) xp D ——B

where by construction d(¢-9) = 8 -ipf = B, ’y(d) 1) = jpp. Thus we have a commutative diagram
V
-
B4>Cg>cy1(f )—2~p-2-B
lpJ iv
B—’- cone(f)
where the dotted arrow exists in view of the lower pullback square. O

Remark 1.46. Notice that the condition (E2) of Theorem 1.45 is equivalent to the lifting property

for a diagram

oy
B—isc-t.p

with the bottom row a semitrivial extension.

p

B
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1. Formally open immersions

Corollary 1.47. Assume that the left-proper model category satisfies the cone and cylinder axiom,
see Axiom 1.44. Let w: U — V be a cofibration such that the codiagonal map V: V1yV — V is a

weak equivalence, then u is a formally open immersion.

Proof. We have already proved that u is a W-immersion, see Corollary 1.22. Therefore we may use
the criterion of Theorem 1.45. The lifting property (E1) is clear since w is a cofibration and f is a
trivial fibration. As regards condition (E2) we need to prove the lifting property in a commutative
diagram

V<—-U—">V

l - f i‘?

B—=C D B

with the lower row a semitrivial extension. Taking the pushout of the upper row we get a commu-

P

tative diagram
sV

b

V—VILyV |8

B C D
and the dotted lifting exists since f is a fibration and V' — V II; V is a trivial cofibration. O

The above results apply in particular to the category CDGA%O7 which we are particularly inter-
ested in. The following result is a characterization of formally open immersions in undercategories
of CDG:AHE0 in terms of Kahler differentials, see Theorem 1.3.

Proposition 1.48. Let P ER R be a W-immersion in the category CDGA%O, The following

conditions are equivalent:
1 f is a formally open immersion in CDGA%O,
2 the induced map Qpja @p R — Qg4 is a trivial cofibration in DGModSO(R),

3 Qp/a ®p R — Qpya is a cofibration in DGModSO(R) and Qr/a @p R — Qrg,r/a 15 a trivial
cofibration in DGMod=°(R ®p R).

Proof. By Remark 1.42 it is sufficient to deal only with semitrivial extensions of R. Notice that
every semitrivial extension of R in CDGAE0 is of the form

RoMaR“Y, No RS R

for some fibration g: M — N in DGModSO(R). We first prove that condition 1 is equivalent to
condition 2. Consider a commutative diagram of solid arrows

A P R

L]

R—>Ma&R-I>-NoR—>R

in CDGA%O. By the adjointness of Theorem 1.3 there exists the dotted lifting h: R — M & R if
and only if there exists the dotted lifting in the diagram

QP/A ®PR*>QR/A

]

- 9 N
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1. Formally open immersions

in DGModSO(R). By the arbitrariness of the fibration g, it follows that h’: Qp,4 — M exists if and
only if the map Qp/4 ®p R — Qg/4 is a trivial cofibration in DGMod="(R).
A completely analogous argument shows that the lifting property (E1) of Theorem 1.45 is

equivalent to require that the induced map
Qp/a®p R— Qr/a

is a cofibration. Moreover, by Remark 1.46 the lifting property (E2) of Theorem 1.45 is equivalent
to require the existence of the dotted morphism h: R®p R — M & R in the diagram

A P R
R R®p R
s F
R——M®R N®&®R——R

in CDGA%O. Notice that the above diagram can be extended on the bottom by adding the following
rows
R——>M®®R z NeR—————>R

| | | |

R®pR——>M&(R®pR)— > N® (R®p R) —> R®p R

l i | l

R M@&R r NeR— =R

where any vertical composition gives the identity. It follows that the lifting property (E2) of The-
orem 1.45 is equivalent to the existence of the dotted lifting h': R®p R — M & (R ®p R) in the
diagram

R R®p R

.
M @& (R®p R) —2> N & R@p R)

which in turn by Theorem 1.3 is equivalent to the existence of the dotted lifting h": Q(rg . r)/a — M
in the diagram

Qr/a ®r (R®p R) —— QrapRr)/A

M= N

in DGModSO(R ®p R). By the arbitrariness of the fibration g, it follows that h": Q(rg,.r)/a — M

exists if and only if the map
Qr/a®@p R=Qp/a ®r (R®p R) — Qrepr)/A

is a trivial cofibration in DGModSO(R ®p R). Hence, by Theorem 1.45 condition 1 is equivalent to
condition 3. O

In particular, by Proposition 1.48 it follows that the morphism of Example 1.29 is a formally
open immersion.
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1. Flat morphisms

Corollary 1.49. Assume that the left-proper model category M satisfies the cone and cylinder

axiom, see Axiom 1.44. Let

A—f>B

e
b

E—lsF
be a commutative diagram such that k: C Iy, B — D is a cofibration. If f is a formally open

immersion and h is a W-immersion, then g and k are formally open immersions.

Proof. According to Corollary 1.27 both g and k are W-immersions and then k is a formally open
immersion by Corollary 1.47. The morphism g is the composition of k and the pushout of the

formally open immersion f. O

1.4 Flat morphisms

The aim of this section is to introduce a notion of flatness in model categories. In order to better
understand this abstract definition of flatness, we shall investigate step by step how flat morphisms
A — B between (unitary) commutative K -algebras are related to flat morphisms and W-cofibrations
introduced in Definition 1.50 and Section 1.2.1 respectively. Once again the idea is to consider the
morphism A — B above as a morphism in the model category M = CDGA%0 of commutative
differential graded algebras concentrated in non-positive degrees.

Recall that a morphism A — B in a model category M is a W-cofibration if and only if the
functor —I14 B: M4 — M p preserves weak equivalences, see Section 1.2.1. Therefore, in the special
case M = CDGAHEO, a morphism A — B is a W-cofibration if and only if the (graded) tensor
product — ® 4 B preserves quasi-isomorphisms.

Every morphism f: A — B in M induces two functors:

ff=—o0f:Mp—>My, (BoX)—(ALB-X),
f*Z—HAB:MA%MB, X— X1, B.

According to the definition of the model structure in the undercategories of M, a morphism
h in Mp is a weak equivalence (respectively fibration, cofibration) if and only if f*(h) is a weak
equivalence (respectively fibration, cofibration), see [25, p. 126].

The functor f, preserves cofibrations and trivial cofibrations, and f is a W-cofibration if and
only if f, preserves weak equivalences. Given a pushout square

' . B

l I

Y. Cl4B

we have the base change formula
f*h* = k*g*I MC — MB, (141)

which is equivalent to the canonical isomorphism D 114 B = D Il (C 114 B) for every object D in
the category Mc.

Definition 1.50. A morphism f: A — B in M is called flat if the functor f, preserves pullback
diagrams of trivial fibrations. An object A € M is called flat if the morphism from the initial object
to A is flat. We adopt the label b for denoting flat morphisms.
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1. Flat morphisms

In a more explicit way, a morphism A — B in a model category M is flat if every commutative
square
A——F

.

c-2%Dp
gives a pullback square:
(C XDE)HABHEHAB

| |

C1i,B—2Y - D1y B
or, equivalently, if CII4 B — DIl 4B is a trivial fibration and the natural map
(C XDE)HAB—> (CHAB) X DIIsB (EHAB)
is an isomorphism.

Remark 1.51. In the choice of the above terminology we have followed [2]. Given C' — A ER B,
then the morphism f is flat in the undercategory Mc¢ if and only if it is flat in M; in particular a
morphism A — B is flat if and only if B is a flat object in M 4. Clearly, every isomorphism is flat.

Remark 1.52. The above notion of flatness also makes sense in categories of fibrant objects and it
is not invariant under weak equivalences: thus it does not make sense to talk about flat morphisms
in the homotopy category.

As usual we are particularly interested in the case M = CDGA%O. The next results relate
W-cofibrations and flat morphisms. Moreover, Theorem 1.56 shows that a morphism A — B of
commutative K-algebras is flat in the sense of Definition 1.50 if and only if it is flat in the usual
algebraic sense.

Lemma 1.53. Every flat morphism is a W-cofibration.

Proof. Assume A — B flat, given A — M RAN N, consider a factorization A — M RNy AN VS
Then
M1, B <Y PlIy B =PI, (M1, B)

is a trivial cofibration by model category axioms, while
PliiaBZY N1, B
is a trivial fibration by flatness. O

IfM = CDGA%O, a morphism A — B is flat in the sense of Definition 1.50 if and only if the
(graded) tensor product — ® 4 B preserves pullback diagrams of surjective quasi-isomorphisms.

Lemma 1.54. Let A — B be a morphism in CDGAHE0 such that the associated functor
—®a B: CDGAS" — CDGA5’

preserves injections and trivial fibrations. Then A — B is flat in the sense of model categories, see
Definition 1.50.

Proof. By hypothesis the functor — ® 4 B preserves the class of trivial fibrations. Then we only
need to show that it commutes with pullbacks of a given trivial fibration f: P BN Q. To this aim,
consider a morphism C' — @ and the pullback P X C represented by the commutative diagram

0 ker(f) PxqgC——C——0
7
0 ker(f) P Q 0
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1. Flat morphisms

whose rows are exact. Applying — ® 4 B we obtain the commutative diagram

0——=ker(f)®a B——= (PxoC)®4 B——C®4B——0

“ | |

0—>ker(f)®a B———> P4 B C@sB—>0

whose rows are exact by hypothesis. It follows that (P xg C') ® 4 B is (isomorphic to) the pullback
(P®a B) x(g.B) (C ®a B) as required. O
For the proof of the next result it is convenient to recall that in the category of DG-modules

over a commutative DG-algebra there exists an explicit construction for the cone of a morphism,
see Definition 1.11.

Theorem 1.55 (Flatness in CDGAHEO). Let f: A — B be a morphism in CDGAH%O. The

following conditions are equivalent:

1 the graded tensor product — @4 B: CDGAE\0 — CDGAJ%O preserves the classes of injections

and trivial fibrations,
2 f is flat in the sense of model categories, see Definition 1.50.

Proof. We already proved in Lemma 1.54 that condition 2 follows from condition 1. For the converse,
assume that f: A — B is flat. In particular, by definition f preserves trivial fibrations. We are only
left with the proof that the graded tensor product — ® 4 B preserves injections. To this aim, take an
injective morphism ¢: N — M in CDGAE0 and consider the exact sequence of differential graded
A-modules

0>NSHM—-Q—0

where Q € DGMod="(A) is the cokernel of ¢; here we should think of ¢+ as a map of DG-modules

over A. Now consider the following pullback diagram

cone(idy) & A ——— > cone(i) & A
l i]-‘w
A QoA

where — @ A denotes the right Quillen functor of Theorem 1.3. Now, by assumption the functor
—®a B: CDGA%O — CDGAE0 preserves pullback diagrams of trivial fibrations, so that

(cone(idy) @ A) ®4 B ——2— > (cone(i) ® A) @4 B
l \LJ—'W
B (QeA)®aB

is a pullback square. Notice that the map B — (Q ® A) ® 4 B is split injective as a map of DG-

modules over B. Therefore also the morphism
P: (cone(idy) ® A) ®4 B — (cone(i) ® A) ®4 B
is injective. Now observe that there are natural isomorphisms

(cone(idy )P A)®4 B = (cone(idy)®4 B)® B and (cone(1)®A)®4 B = (cone(i) @4 B)® B
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1. Flat morphisms

in CDGA]%O 1 B. Moreover, it is immediate to check that a morphism ¢ in DGMod(B) is injective
if and only if ¢) @ B is so in CDGA%O J B. In particular, the injectivity of @ implies that the map

cone(idy) ®4 B — cone(i) ®4 B

is injective in DGModSO(B), whence we obtain the injectivity of 7: N ® 4 B — M ® 4 B thanks to
Remark 1.12. O

Theorem 1.56 (Relation between usual algebraic flatness and flatness in CDGAZ").
Consider a map A — B in CDGAHEO, and assume that both A and B are concentrated in degree

0. The following are equivalent.
1 A — B is a W-cofibration (see Section 1.2.1);
2 A — B is flat in the usual algebraic sense (i.e. B is a flat A-module);
3 A — B is flat in the sense of model categories (see Section 1.4).
Proof. The proof is organized in three steps.

e Lemma 1.8 proves that 1 implies 2.

e In order to prove that 2 implies 3, we begin by showing that the (graded) tensor product
— ®4 B preserves trivial fibrations. Let f: P EALN Q@ be a trivial fibration in CDGA%O. In
particular, f is surjective degreewise so that the induced morphism P @4 B — Q ®4 B is a
fibration. By hypothesis B is concentrated in degree 0, therefore by the Universal coefficient
Theorem for (co)homology there exist short exact sequences

0— H*(P)®4 B — H*(P®4 B) — Tor{ (H*(P),B)[1] = 0

0— H*(Q)®a B — H*(Q®4 B) — Tori (H*(Q), B)[1] = 0
see e.g. [9, Theorem 3.3]. Moreover Tori' (H*(P), B) = Tori' (H*(Q), B) = 0, being B a flat
A-module. Therefore there exist natural isomorphisms

H*(P®4 B) = H*(P)®4 B — H*(Q) 4 B= H*(Q®4 B)

showing that the induced morphism P ® 4 B — Q ® 4 B is a quasi-isomorphism as required.
Now observe that the functor — ® 4 B preserves injections, being A — B flat by hypothesis.
Thus Lemma 1.54 gives the statement.

e Lemma 1.53 proves that 3 implies 1.

O

Theorem 1.56 explains why some authors often avoid the name “W-cofibration” simply defining
“flat” morphisms. The next result relates our notion of flatness in model categories with the one of
w-flatness given in [2], see Definition 1.5.

Proposition 1.57. Let f: A — B be a morphism in CDGAHE0 and assume that A is concentrated
in degree 0. Then f is flat in the sense of model categories (see Definition 1.50) if and only if B
is a flat A-module for every j <0 (i.e. [ is #-flat).
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1. Flat morphisms

Proof. First, assume that f is flat. Take a short exact sequence of A-modules
05NLHM—=P =0
and consider the trivial extensions
R =cone(i)® A and S=PdA
as in Lemma 1.8. Now observe that there exists a pullback diagram

cone(idy) ® A —— cone(i) @ A

| |

A PoA

where the projection R — S is a trivial fibration. Moreover, the map B=A®4 B - (P®A)®4 B

is split injective. Thus we obtain that
(cone(idy) ® A) @4 B — (cone(i) ® A) @4 B
is injective. Now observe that there exist isomorphisms
(cone(idy)DA)R4 B = (cone(idy)®4 B)®B and (cone(i)®@ 4 B)®B = (cone(i)®@4B)®B

and recall that a morphism ¢ in DGMod="(B) is injective if and only if ¢ @ B is injective in
CDGA%O l} B. Therefore we obtain the injectivity of the map

cone(idy) ®4 B — cone(i) ®4 B,

and this is equivalent to the injectivity of N ®4 B — M ®4 B’ for every j < 0. Conversely, if
every BJ is a flat A-module then the same argument used in Theorem 1.56 proves that f preserves
trivial fibrations, just replacing [9, Theorem 3.1] by [9, Theorem 3.3]. By flatness, the hypothesis of
Lemma 1.54 are satisfied and the statement follows. O

Lemma 1.58. The class of flat morphisms is stable under composition, pushouts and retractions.

Proof. Composition: let A i> B % C be two flat morphisms, then both the functors fs: My — Mp
and g.: Mp — Mg preserve pullback diagrams of trivial fibrations. Therefore also (¢f)« = g« fx
preserves pullback diagrams of trivial fibrations.

Pushout: let A L B, A — C be two morphisms with f flat. Then it follows from the base
change formula (1.4.1) that g: C — C' II4 B is also flat.

Retracts: let C be any category, and denote by CA'XA" the category of commutative squares
in C. It is easy and completely straightforward to see that every retract of a pullback (respectively,

x Al

pushout) square in ca! is a pullback (respectively, pushout) square. Consider now a retraction

A—sCc-Lon

pol b
B——=D—+B
in M, with g a flat morphism. By the universal property of coproduct, every map A — X gives a

canonical retraction

XUaB—-XlecD— X1IyxB.

Therefore, every commutative square £ € Mﬁl xat gives a retraction EIy B - £l D - (1la B
in the category MA A 1f & is the pullback square of a trivial fibration, then also £ Il D is the
pullback of a trivial fibration. Since trivial fibrations and pullback squares are stable under retracts,

it follows that also £ IT4 B is the pullback square of a trivial fibration. O
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1. Flat morphisms

For the application that we have in mind it is useful to introduce two more axioms on our model
category. We shall prove later that they satisfy our general requests, see Remark 0.4.

Axiom 1.59 (Hereditarity of fibrations). For every pair of morphisms A — B — C, if A — C is
a fibration, then also B — C is a fibration.

Example 1.60. Since fibrations are surjective morphisms in negative degrees, the model category
CDGA]IE0 satisfies Axiom 1.59.

Lemma 1.61. Assume the Axiom 1.59 holds on a model category M. Then:
1. if the initial object is fibrant, then every object is fibrant;
2. if Morm(X,Y) # 0, then the projection X x Y — X is a fibration.

Proof. The first part is clear; for the second part notice that the set Mory(X,Y) is the same as

the sections of the projection map. O
Axiom 1.62 (Flatness of cofibrations). Every cofibration is flat.

Remark 1.63. By Lemma 1.53, the Axiom 1.62 implies that the model category is left-proper.

In order to show that the model category CDGAHEO satisfies Axiom 1.62 (see Proposition 1.66)
we first recall the notion of semifree extension.

Definition 1.64 (Semifree extension). Denote by
~#: CDGAZ" — CGAZ’

the forgetful functor, where CGA%O is the category of commutative non-positively graded algebras
over K. A morphism f: A — Bin CDGAHE0 is called semifree extension if there exists a graded

K -vector space M together with an isomorphism
B# = A% @ Symj (M)
in A% | C(}AHEO7 where Symg (M) € CGA%0 denotes the graded symmetric power of M.

Remark 1.65. Roughly speaking, the role of the forgetful functor —#: CDGA]IE0 — CGAHE0 in
Definition 1.64 is to require that a morphism A — B is a polynomial extension when regarded as
a morphism of graded algebras. Every cofibration in CDGA%O is a retract of a semifree extension,
see [4].

Proposition 1.66. In the model category CDGA%O every cofibration is flat.

Proof. By left-properness it immediately follows that every cofibration is a W-cofibration. More-
over, every trivial fibration in CDGAHE0 is surjective. Therefore, since tensor products preserves
surjections the functor

—®a B: CDGAS" — CDGAF’

preserves the class of trivial fibrations for every cofibration A — B in CDGA%O.

Now recall that cofibrations in CDGAHE0 are retracts of semifree extensions (see Remark 1.65),
and since flat morphisms are closed under retracts it is not restrictive to assume the cofibration
A — B to be in fact a semifree extension. By Lemma 1.54 we are only left with the proof that the
functor — ® 4 B preserves the class of injective morphisms, and this is clearly the case being B a

polynomial extension of A. O
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1. Flat morphisms

Lemma 1.67. Assume that cofibrations are flat and fibrations satisfy the hereditary property. Then

trivial fibrations between flat objects are preserved by pushouts.
Proof. By assumption the model category M satisfies Axioms 1.59 and Axiom 1.62. Given a diagram

A*b>E

FW
\b\

D

together with a morphism A — B, consider a factorization A S p I B Now, since A — P is
flat the morphism EIl4 P — D Il4 P is a trivial fibration. Similarly

EN,.P 2% priaB, D1y P Y% D1y B,

and the statement follows by the hereditary property of fibrations applied to the commutative
diagram
Ell, P2 E1I,B

o

pu,P-2% D1, B
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Chapter 2

DEFORMATION THEORY IN
MODEL CATEGORIES

The aim of this chapter is to develop Deformation Theory in an abstract model category M.
In particular, in Section 2.1 we introduce the notion of deformation of a morphism in M, see
Definition 2.3. Moreover, in Section 2.2 it is proven a homotopy invariance result, see Theorem 2.16.
For the study of the geometric applications we have in mind, it will be useful the notion of strict
deformations of a morphism, see Definition 2.23. Therefore, Section 2.4 is devoted to the study of
the relation between deformations and strict deformations of a morphism in M. In particular, we
shall prove that under some mild assumptions (isomorphism classes of ) deformations are in bijection
with (isomorphism classes of) strict deformations, see Theorem 2.28.

Throughout this chapter we shall work in a fixed left-proper model category M. Recall that
a model category is called left-proper if weak equivalences are preserved under pushouts along
cofibrations. In particular, in a left-proper model category every cofibration is a WW-cofibration, see
Lemma 1.21. Moreover, weak equivalences between W-cofibrant objects are preserved by pushouts,
i.e. for every commutative diagram

A*f>E

\g\ lh . f.geCofy, heWw,
D

and every morphism A — B the induced morphism F I, B — D Il4 B is a weak equivalence.
Recall that the label b denotes flat morphisms, see Section 1.4.

2.1 Deformations of a morphism

In order to define deformations of a morphism in a model category, our first goal is to introduce
small extensions, see Definition 2.2.

Definition 2.1. Let M be a left-proper model category. For every object K € M we denote by
M(K) the full subcategory of M | K whose objects are the morphisms A — K that have the

following property: for every commutative diagram

A*b>E

AN

the morphism h is a weak equivalence (respectively, an isomorphism) if and only if the induced

pushout map EIl4 K — DII4 K is a weak equivalence (respectively, an isomorphism).
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2. Deformations of a morphism

Definition 2.2. Let M be a left-proper model category. A small extension in M is a morphism
A — K in M(K) for some object K € M. The class of small extensions is denoted by SExt.

Definition 2.3. Let M be a left-proper model category and take (A £ K) € M(K). A deforma-

tion of a morphism K I X over A% K is a commutative diagram

A x,

Qo

such that f4 is flat and the induced map X 4 14 K — X is a weak equivalence.

A direct equivalence is given by a commutative diagram

A&-XA

gra

Two deformations are equivalent if they are equivalent under the equivalence relation generated by
direct equivalences.

Notice that the assumption (A £ K) € M(K) implies that the morphism & in Definition 2.3 is
a weak equivalence. In fact, the pushout along p gives a commutative diagram

K— % X, LK

, l n' l
ga

YUy K — X

and h' is a weak equivalence by the 2 out of 3 axiom.

We denote by Def s(A) the quotient class® of deformations up to equivalence.
Remark 2.4. Given an object K € M in a left-proper model category there could be several mor-
phisms A — K in M(K), so that the notation Def ;(A) introduced above may seem not satisfactory.
Nevertheless, this is not going to be the case for the geometric applications we have in mind, where
we shall consider morphisms A — K in Artg annihilating the maximal ideal m 4.

Remark 2.5. Following a standard terminology in algebraic geometry, a deformation as in the
Definition 2.3 is called small if there exists only one morphism from A to K; otherwise it is called
large.

If every cofibration is flat (Axiom 1.62), we can also consider c-deformations, defined as in
Definition 2.3 by replacing flat morphisms with cofibrations. We denote by ¢Def;(A) the quotient
class of c-deformations up to equivalence.

Since flat morphisms and cofibrations are YW-cofibrations (see Lemma 1.53) according to Lemma 1.21
every morphism A — B in M(K) induces two maps

Deff(A)—>Deff(B), cDeff(A)—>cDeff(B), Xa—Xaq1I4B.

Lemma 2.6. In the above setup, if every cofibration is flat (Aziom 1.62) then the natural morphism
cDef;(A) — Def;(A) is bijective.

1We shall see that in almost all cases of algebro-geometric interest this class is a set.
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2. Deformations of a morphism

Proof. Replacing every deformation A o x A with a factorization A N X4 W x A, by Lemma 1.21
we have X4 ®4 K 2 X4 ®4 K, and this proves that cDef;(A) — Def ;(A) is surjective. The in-
jectivity is clear since we can always assume X4 = X4 whenever A — X4 is a cofibration, and

every direct equivalence of deformations

AT x,

| |

Yo—X

lifts to a diagram

A4>XA—>XA

1y

YAHYAHX

O

Definition 2.7. A cf-deformation of a morphism K Ly X over a morphism A & K is a
c-deformation

A1 x,

lp J«
f
K——X
such that the map X4 — X is a fibration. Equivalence of c¢f-deformations is defined in the same

way as for deformations, and the quotient class is denoted by cf Def¢(A).

If A— X4 — X is a cf-deformation, then for every factorization A N Ya LN X 4, the triple
A —Ys — X is a cf-deformation. In fact, the composite map Y4 — X4 — X is a fibration; since
weak equivalences of W-cofibrant objects are preserved by pushouts, the induced map Y4 114 K —
X404 K is a weak equivalence.

If the class of fibrations satisfies the hereditary property (Axiom 1.59), then every morphism
A — B in the overcategory M | K induces a map

cf Defs(A) — cf Def¢(B), Xar—Xally B.

In fact, we have X4 — X41l4 B — X and by the hereditary property the morphism X114 B — X
is a fibration. In particular, for every cf-deformation A — X4 — X, the induced weak equivalence
Xa 04 K — X is a trivial fibration.

Lemma 2.8. If the class of fibrations satisfies the hereditary property (Axiom 1.59), then the
natural morphism cf Def ;(A) — c¢Def;(A) is bijective.

Proof. For every c-deformation A Sx 4 — X there exists a factorization A Sx A ov, 5(; X,
It is not restrictive to assume that X4 = X 4 whenever X 4 — X is already a fibration. By applying

the pushout functor —IT4 K we get a commutative diagram

A X4 cw ~

| o X

K—> XAy K- X, K —— X

and by Axiom 1.59 the map « is a trivial fibration. This proves that cf Def(A) — cDef(A) is

surjective.
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2. Deformations of a morphism

The injectivity is clear since every direct equivalence of c-deformations

A4C>XA

Wk

extends to a commutative diagram

A4>XA—>XA
YAHYAHX
O

Definition 2.9. We shall call deformation model category every left-proper model category
that satisfies Axiom 1.59 and Axiom 1.62.

Thus in a deformation model category we have cf Def y = cDef s = Def.

Example 2.10. Recall that CDGAHE0 is a left-proper model category which clearly satisfies Ax-
iom 1.59. Moreover, it satisfies Axiom 1.62 by Proposition 1.66. Therefore CDGAHE0 is a deforma-

tion model category in the sense of Definition 2.9.
Lemma 2.11. In a deformation model category consider a commutative diagram

A

LI

X<z, Yoy, (2.1.1)

N

X

of cf-deformations A - X4 - X, A—>Ys—>X and A—-Z4 - X. Then A - Xalz, Y4 — X

is a cf-deformation.

Proof. Since the composite map A LN Ya o, X llz, Y4 is a cofibration, and X4z, Y4 — X
is a fibration by the hereditary property, we only need to prove that

(XAHZA YA)HAK%X

is a weak equivalence. Since Y4 — X411z, Y4 is a weak equivalence between flat A-objects, looking

at the commutative diagram
Valla K~ (Xa 11y, Ya) 14 K

h/

X

the statement follows from the 2 out of & axiom. O
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2. Homotopy invariance of deformations

Proposition 2.12. In a deformation model category two cf-deformations A — X4 — X and
A — Ya — X are equivalent if and only if there exists a cf-deformation A — Z4 — X and a

commutative diagram

A

L

Xy -z, Yy, (2.1.2)

N

X

Proof. We need to prove that:
1) the relation ~ defined by diagram (2.1.2) is an equivalence relation. This follows immediately

from Lemma 2.11.
2) if

A
Xa—2 v,

L

is a direct equivalence of cf-deformations, then X 4 ~ Y4. To this end consider a factorization

Xp—C o X Y <Y,

ic
Za
i}'W Id
Ya

and by Lemma 1.67, the morphism Z4 14 K — Y4 II4 K is a trivial fibration. O]

Remark 2.13. In the diagram (2.1.2) it is not restrictive to assume that X4 IIa Y4 — Z4 is a
cofibration: in fact we can always consider a factorization X 4 T4 Y <, Qa W, 7 4 and by
Lemma 1.67 the map Qa Iy K — Z4 114 K is a trivial fibration.

2.2 Homotopy invariance of deformations

This section is devoted to the proof of the homotopy invariance of deformations in a deformation
model category, see Definition 2.9 and Theorem 2.16. The following preliminary result is essentially
contained in [7, 41].

Lemma 2.14 (Pullback of path objects). Let f: A — B be a fibration in a model category. Then,
for every path object

BLBI WPl p  pli=pri=1d,ieW, p=(p,p2) € F,
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2. Homotopy invariance of deformations

such that p1,ps € F, there exists a commutative diagram

AN _ql W _ Axp B!
\ lﬁ / lm
f AxpBl xpA—"" s A
S
B z B! — B

where every vertical arrow is a fibration, A xg BT x5 A is the limit of the diagram
AL p&prpd oy

A x g B! is the fibered product of f and p1, a = (Id,if,1d) and 7; denotes the projection on the i-th
factor.

Proof. Define A! by taking a factorization of a as the composition of a trivial cofibration and a
fibration 8: AT — A xg B! xg A. Now we have a pullback diagram

AXBBI XBA4>A

| |

AXBB14>B
P22

and, since f is a fibration, also v and the composition y3: AT — A xp B! are fibrations. Finally,
the projection A xg BT — A is a weak equivalence since it is the pullback of the trivial fibration

p1- Hence [ is a weak equivalence by the 2 out of 8 axiom. O

Lemma 2.15. Let M be a deformation model category, see Definition 2.9. Take (A LN K) e M(K)
and let

AfA

Q
o

be a cf-deformation of f, and consider a weak equivalence 7: X — Y. Then for every morphism
k: Q — X such that Th =1k, kfa = fp, the diagram

fa

—

A Q
P, L
f

K—X
is a c-deformation equivalent to the previous one.

Proof. We have a diagram

X
h T
A 0= 0l K Y
k T
X
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2. Homotopy invariance of deformations

and by the 2 out of 3 axiom k' is a weak equivalence, i.e. the map A — Q %y X is a c-deformation.
Moreover, 7 is an isomorphism and h = k in the homotopy category of M 4. Now, since A — @
is a cofibration, the maps h and k are right homotopic. In other words there exist a path object
X - X == (pl’m) X x X together with a morphism ¢: Q — X' such that h = p1¢, k = pa¢. Thus

we have the following commutative diagram in M 4

Id

Q- Qxx X —=Q

N

el X.

P1

Applying Lemma 2.14 to the fibration h, we obtain the commutative diagram

Q' QX X!

b l
Qxx X xxQ Q

bed X.

Since @ is cofibrant there exists a lifting of :
»
Q> Qo Qxx XTxx Q> Q xx XT |

(Id,¢,m)

In particular hnp = pa¢ = k, and the morphism 7 gives the required equivalence of deformations:

O

Our next result shows the homotopy invariance of deformations. Given morphisms K — X — Y
we shall write Def x and Defy instead of Defx_, x and Def i _.,y respectively.

Theorem 2.16 (Homotopy invariance of deformations). Let M be a deformation model category,
see Definition 2.9. Then for every A — K in M(K) and every weak equivalence K — X Xy

between fibrant objects, the natural map
Def x (A) — Defy (A), A-X4—=-X)»(A=>X4—>X=Y),

is bijective.
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2. Idempotents and fixed loci

Proof. By Ken Brown’s lemma we may assume that 7 is a trivial fibration. Recall that we may
replace Def(A) with either ¢Def(A) or c¢f Def(A) at any time, being M a deformation model
category, see Lemma 2.6 and Lemma 2.8.

In order to show the surjectivity of c¢Defx(A) — cDefy (A) observe that if A — Yy % Yisa
c-deformation, then K — Y4 114 K is a cofibration. Therefore the weak equivalence Y I14 K h—/> Y
lifts to a weak equivalence Y 114 K — X.

Next we prove the injectivity. Possibly taking a factorization K <, Q T, X it is not restrictive
to assume K — X to be a cofibration. Let X4 — X, Z4 — X be two c¢f-deformations such that
Xa—>X =Y, Zy— X =Y are equivalent in Defy (A4). Also, it is not restrictive to assume that

they are direct equivalent, i.e. the existence of a commutative diagram

A—CSox,*.ox
c // T
h T

Zp—X ——Y

Now g: Z4 — X is clearly equivalent to k: X4 — X, and g,h: Z4 — X are equivalent by
Lemma 2.15. O

2.3 Idempotents and fixed loci

In order to study the relation between deformations and strict deformations of a morphism in a

model category (see Section 2.4) we need a preliminary result on the structure of idempotents, see

Proposition 2.20. This essentially relates the notions of idempotent and fixed locus of a morphism,

see Definition 2.17 and Definition 2.18 respectively.

Definition 2.17. An idempotent in a category C is a morphism e: Z — Z such that eoe =e.
We now introduce the notion of fized locus of a morphism in a complete category. It is defined

simply as an equalizer. Proposition 2.20 shows how this notion is related to idempotents.

Definition 2.18 (Fixed locus of a morphism). Let C be a complete category, and let g: Z — Z
be a morphism in C. The fixed locus of g is defined by the limit of the diagram

and it is denoted by F} 4 Z.
Example 2.19. Let g: Z — Z be a morphism in Set. Then the fixed locus of g is given by
F,={:€Zlg(z)=2} 5 Z

where v: F; — Z is the natural inclusion. To prove the claim above, consider a map of sets f: C — Z
such that go f = f: C — Z. In other terms, g(f(c)) = f(c) for every ¢ € C and this proves that
the image of C' under f is contained in Fy. Therefore there exists the inclusion h: C' — Fy, which

is the unique morphism such that the diagram

¢ !
:

idz
Fyp—>2__ 2Z

33



2. Idempotents and fixed loci

commutes in Set. This proves that ¢: F; — Z satisfies the required universal property.

Proposition 2.20 (Structure of idempotents). Let C be a complete and cocomplete category and

let e: Z — Z be an idempotent in C. Then the following holds.

1. There exists a retraction
F.5% 75 F,

such that 1p = e, where F, % Z is the fized locus of e, see Definition 2.18.

2. If there exists a retraction
XLHz5%hx
such that vp = e and pv = idx, then X = Z is the fized locus of e.

3. The fized locus of e commutes with pushouts; i.e. for every span Z <+ A — B in C there exists

a (unique) natural isomorphism
Fe HA B = FeHAB
in C.
Proof. We begin by showing that (1) holds. Consider the fixed locus F, % Z of e. By the universal

property it immediately follows that ¢ is a monomorphism in C. Again by the universal property
it follows the existence of a (unique) morphism p: Z — F, fitting the following diagram of solid

arrows
VA
p A
\ej
w//
I

in C, so that tp = e. Moreover, by the following chain of equalities
tipt) =er=1=1(idp,)

it follows that pt = e, being ¢ a monomorphism. As a converse, we now prove that (2) holds. For

every morphism 7' = Z such that er = 7, consider a diagram of solid arrows

T

where we have a (unique) dotted morphism p = pr: T — X satisfying ip = p7 = er = 7, 80
that X = Z satisfies the universal property of the limit as required. To conclude, it remains to be
shown that (3) holds. For simplicity of exposition we denote by e = elly B: Z = Z 114 B — Z the
idempotent obtained by the pushout. By (1) it follows the existence of a retraction

F.L5Z5%F,

such that tp = e, where F, < Z is the fixed locus of e. Applying the functor — IT4 B we obtain a

retraction
F.=F1,B5Z%F,

and by (2) it follows that 7: F, — Z is the fixed locus of € as required. O

34



2. cf-deformations vs strict cf-deformations

The next goal is to introduce an axiom for a morphism in a deformation model category M,
see Definition 2.9. To this aim, we first introduce the general notion of trivial idempotents. Let
(C,W) be a category with weak equivalences (every model category is in particular a category
with weak equivalences). Given an object X € C, an idempotent e: X — X in W is called trivial
idempotent. Given a deformation model category M together with a small extension A — K in
M(K), see Definition 2.2, we define

F(A) = { cofibrations Py — @4 in M4 such that A — P4 is flat, }
- e

together with a trivial idempotent e: Q4 — Q4 in Mp,
F(A) = {cofibrations P4 — Q4 in M4 such that A — Py is ﬂat}/N

We shall denote by pa: F(A) — F(A) the map which simply forgets the trivial idempotent. Simi-
larly, we can define

F(K) = cofibrations Px — Qk in Mg such that K — Py is flat,
| together with a trivial idempotent e: Qx — Qx in Mp, [ 4

F(K) = {cofibrations Px — Qf in Mg such that K — Pk is ﬁat}/N'

We shall denote by pux : F(K) — F(K) the map which simply forgets the trivial idempotent. Clearly,
there exist morphisms F(4) — F(K) and F(A) — F(K) induced by the functor — T4 K: My —
Mg.

Axiom 2.21 (Idempotent axiom). Given a deformation model category M, a morphism A — K

in M(K) satisfies the idempotent axiom if the natural map
F(A) — F(A) XF(K) F(K)
18 surjective.

Example 2.22. We shall prove later that in the special case M = CDGAH%O7 every surjective
morphism A — B in Artg satisfies Axiom 2.21, see Corollary 5.29.

2.4 cf-deformations vs strict cf-deformations

The main result of this section is Theorem 2.28, which relates cf-deformations of a morphism in a
model category with strict cf-deformations.

Definition 2.23. Let M be a left-proper model category and take (A & K) € M(K). A strict

deformation of a morphism K 1y X over A B K is a commutative diagram

At x,

f
K——sX
such that f4 is flat (see Definition 1.50) and the induced map X4 14 K — X is an isomorphism.

We shall say that two strict deformations A - X4 — X and A — Y4 — X are isomorphic if
there exists a commutative diagram

A&-XA

Yy ——X

and we denote by D¢(A) the set of strict deformations of f over A — K modulo isomorphisms.
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2. cf-deformations vs strict cf-deformations

Remark 2.24. Notice that the assumption (4 2 K) € M(K) implies that the dotted morphism
above h: Y4 — X4 is an isomorphism, see Definition 2.1. Hence Df(A) is a well defined set.

Following the previous sections we say that A — X4 — X in D;(A) is a strict cf-deformation if
A — X4 is a cofibration and X4 — X is a fibration. We shall denote by cf D(A) the set of strict
cf-deformations of f over A modulo isomorphisms.

Given (A — K) € M(K) and a morphism K Lox , there exists an obvious map of classes
na: cf Df(A) — cf Def¢(A) taking A = X4 — X to itself.

Proposition 2.25. Let M be a deformation model category, and consider (A — K) € M(K)
together with a morphism K Iy X, Then the map na: ¢f Dy(A) — cf Def;(A) defined above is
injective.

Proof. Consider A -+ X4 — X and A — Y4 — X in ¢f Ds(A). By Proposition 2.12, we need to
show that if there exists A — Z4 — X in cf Def¢(A) together with a commutative diagram

A

R

Xy —>7Zp<"—Ya

K:i;/" F/

with o and ¢ trivial cofibrations, then A — X4 — X is isomorphic to A — Y4 — X. To this aim,
notice that the diagram of solid arrows

Yy —25v,

ZA Y. x
admits the dotted lifting 7: Z4 — Y. Therefore, the diagram

)

X4 u Y4

¥ /%{

commutes, and the reduction 7z: X4 114 K — Y4114 K is an isomorphism. To conclude, recall that
(A — K) € M(K) so that 7 o« is an isomorphism and the statement follows. O

Given a deformation model category M together with a small extension A — K in M(K), see
Definition 2.2, we define

G(A) = {trivial cofibrations P4 — Q4 in M4 such that A — P, is ﬂat}/gl
G(A) = {flat morphisms A — P4 in M}/N.

We shall denote by As: G(A) — G(A) the map which simply forgets the trivial cofibration. Simi-
larly, we can define

G(K) = {trivial cofibrations Px — Qx in M such that K — P is ﬁat}/g.
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2. cf-deformations vs strict cf-deformations

G(K) = {flat morphisms K — Pk in M}/N.
We shall denote by A\i: G(K) — G(K) the map which simply forgets the trivial cofibration. Clearly,
there exist morphisms G(A4) — G(K) and G(A) — G(K) induced by the functor — 114 K: M4 —
Mg.

Axiom 2.26 (CWH-lifting axiom). Given a deformation model category M, a morphism A — K in
M(K) satisfies the CW-lifting axiom if the natural map G(A) — G(K) XG ) G(K) is surjective.

Example 2.27. We shall prove later (see Remark 5.17) that in the special case M = CDGA%O,
every surjective morphism A — B in Artg satisfies Axiom 2.26.

Theorem 2.28. Let M be a deformation model category, and consider a morphism A — K in
M(K) satisfying Aziom 2.21 and Aziom 2.26. Given a cofibration K L X in M, the map

na: cfDyf(A) — cf Defy(A)
is bijective.

Proof. The injectivity is proven in Proposition 2.25. Given a c¢f-deformation X4 — X 14 K 5 X
in cf Def¢(A), consider the commutative diagram

TN

XAHAK—C+ (XAHAK)HKXGC—X

¥ /
\\ Y idx
X <—"

in M, and take a factorization of the natural map ¢: (X4 14 K) lIx X — X as a cofibration
followed by a trivial fibration:

(XAl K1 X S 25 X

By the 2 out of 3 axiom we obtain the following commutative diagram of solid arrows

XA CW >ZA
l V
XAHAK CW: A4 C:/V X
\ }'W\Lp /
. id
\—>X<‘/ X

in M, where by Axiom 2.26 there exists a trivial cofibration X4 — Z4 lifting X4 114 K — Z.

Now observe that e = tp: Z — Z is a trivial idempotent, whose fized locus (see Definition 2.18)

coincides with X by Proposition 2.20. By hypothesis, the morphism A — K satisfies Axiom 2.21

so that there exists a trivial idempotent é: Z4 — Z4 lifting e. Now consider the fized locus X'y =
id 5

lim< Zgy :: Z4 o of € together with the natural morphism X/ % Z4, and observe that its

€

reduction Xy Iy K — Z4 114 K is v: X — Z by Proposition 2.20. To conclude, observe that since
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2. cf-deformations vs strict cf-deformations

A — K belongs to M(K) we obtain the following commutative diagram

Zp<~—w— X,

| i

et

|

X <~—

proving that X — X Y X isa cf-deformation equivalent to Z4 — Z — X, and therefore to

XA%XAHAK—)X.
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Chapter 3

PSEUDO-SCHEMES AND
PSEUDO-MODULES

In this chapter we shall introduce pseudo-schemes and pseudo-modules, see Definition 3.23 and
Definition 3.44 respectively. As we will see in Section 3.3, pseudo-schemes aim to be an abstract
generalization of schemes and DG-schemes in model categories. Concerning pseudo-modules, the
goal is to give a notion of (complexes of) quasi-coherent sheaves on pseudo-schemes. In particular
the category of pseudo-modules over a pseudo-scheme will be endowed with a model structure, see
Theorem 3.47, so that it makes sense to consider objects in its homotopy category; this plays the
role of the derived category of quasi-coherent sheaves over a separated scheme.
Section 3.1 should be thought as an introductory part for the present chapter.

3.1 Colimits of diagrams and Reedy model structures

As outlined above, the aim of this section is to prove some preliminary result which will be useful
later on. In particular we shall recall the Reedy model structure on diagrams over a model category,
see Remark 3.5. Moreover, we point out some technical issues that arise when dealing with colimits
in undercategories, see Remark 3.14.

Definition 3.1 (Reedy poset). A partially ordered set I is called a Reedy poset if there exists a
strictly monotone map deg: I — N, i.e. deg(a) < deg(B) whenever o < .

Example 3.2. For every set S, the family I = Py(S) of finite subsets of S is a Reedy poset, where
a < B if and only if a C S while the degree function on «a € Py(S) is defined as the cardinality of

Q.

Remark 3.3. Every Reedy poset is Artinian (i.e. every descending chain is stationary) but the
converse is false in general. For instance, if S is an infinite set, then the poset Py(S) U {S} is
Artinian but not Reedy.

Definition 3.4. Let I and J be Reedy posets. A map of sets ¢: I — J is called a morphism of

Reedy posets if it commutes with the Reedy structure, i.e. ¢ satisfies the following condition

deg;(p(a)) < deg;(¢(B)) whenever deg;(a) < deg;(53) .

Let M be a model category. Following the notation of the previous chapters, for every A € M we
shall denote by A M the model undercategory of maps A — X in M, and by M | A the overcategory
of maps X — A [25, p. 126]. Notice that for every f: A— B wehave (AJM) | f=f| (M| B).
Remark 3.5 (Reedy model structure). Let I be a Reedy poset. Since I is a direct Reedy category,
for every model category M the category of functors M’ naturally inherits a model structure, [25,
Theorem 15.3.4], where a morphism A — B in M/ is
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3. Colimits of diagrams and Reedy model structures

1. a (Reedy) weak equivalence if and only if the morphism A4, — B, is a weak equivalence in

M for every a € I,
2. a (Reedy) fibration if and only if the morphism A, — B, is a fibration in M for every « € I,
3. a (Reedy) cofibration if and only if the natural morphism

c’(y)Li(Iln B, HC?ELH(A”) Ay, — B,

is a cofibration in M for every o € I.

The Reedy model structure commutes with undercategories and overgategories. In other terms:
(ALM) = c(A) 4 M), (MLA) =M | c(4),
where ¢: M — M denotes the constant diagram.

Remark 3.6. In particular, an object A € M! is Reedy cofibrant if and only if the natural morphism

colim A, — A,
<o

is a cofibration in M for every a € I. Moreover, a morphism A — B in M/ is a Reedy trivial
cofibration if and only if the natural morphism

colim B-, I A, — B
Yo Y eolim(Ay) S «

is a trivial cofibration in M for every « € I, see [25, Theorem 15.3.15].

Remark 3.7. Let I be a Reedy poset and let M be a left-proper model category (i.e. weak equiv-
alences are stable under pushouts along cofibrations). Then the model category of diagrams M is

left-proper. To prove the claim, consider a commutative diagram

A c g D

L

B— > Bl C—'>BIl,D

in M, where h is a cofibration and g is a weak equivalence. Recall that colimits in M’ are taken

pointwise, so that for every o € I the map
fa: (BOAC)y 2By, Co — By 114, D, = (B4 D),

is the pushout of g, along h,. Now notice that every Reedy cofibration is pointwise a cofibration
in M; therefore for every a € I the map f, is a weak equivalence in M by left-properness, whence

the statement.

Definition 3.8 (Lower set). A subset H C I is called a lower set (or initial segment) if for
every o € H, then {y e I|y<a} CH.

The following is a preliminary result we need in order to prove Lemma 3.10, where we will prove
the same result dropping the assumption on the cardinality |H \ K.

Lemma 3.9. Let I be a Reedy poset and let A € M! be a Reedy cofibrant object. Then the natural
morphism

colim A, — colim A,
yeEK yeH

is a cofibration in M for every pair of lower sets K C H in I such that the cardinality |H \ K| is
finite.
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3. Colimits of diagrams and Reedy model structures

Proof. Assume for the moment that |[H \ K| =1, and let h € H \ K. Then the following

colim A, — colim A,
y<h yeK

L

Ap —— colim A,
yeH

is a pushout square in M, so that the vertical morphism on the left hand side is a cofibration by
hypothesis and the other vertical morphism is therefore a cofibration too.
If |[H\ K| =n > 2 then there exist n + 1 lower sets {Y,, }meqo,....n} Such that

LEK=YyCcY1C---CY,=H,
2. |Yo, \ Yi—1| =1 for every m € {1,...,n}.

Now observe that the morphism coli}r{n A, — ColiIr{n A, is precisely the composition
YyE YE

colim A, = colim A, — colim A, — --- — colim A, = colim A,
vEK YE€Yo YEY: YEYm YEH

in which every morphism is a cofibration. The statement follows. O
Lemma 3.10. Let I be a Reedy poset and let A € M! be a Reedy cofibrant object. Then the natural

morphism
colim A, — colim A,
yEK yeEH
is a coftbration in M for every pair of lower sets K C H in I.
Proof. We shall prove that the morphism
colim A, — colim A,
yEK yeH

satisfies the left lifting property with respect to the class of trivial fibrations. Let p: U — V be a

trivial fibration and consider a commutative square
colimA L= U
K
|k
colimA ——=V
H
in M. Define F to be the set of pairs (Y, f) such that
e Y is a lower set,
e KCYCH,

e the diagram
g

colim A U
K
l f
colim A p
Y

co}lqim A—m =V

commutes in M.
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3. Colimits of diagrams and Reedy model structures

Clearly F # 0 since (K,g) € F. Moreover, there is a natural partial order relation on F, where
(Y1, f1) < (Y3, f2) if and only if the diagram

co}lfim A fl—> U
1
|
colim A
Y>

commutes in M. Now, let C' = {(V}, fi)}ser be a chain in F and define ¥ = Uier Y: € H. By the
universal property of colimy A there exists a morphism f: colimg A — U such that (Y,f) e F.
Hence, Zorn’s Lemma ensures the existence of a maximal element (Y, f) € F. To conclude the
proof it is sufficient to show that Y = H. By contradiction, suppose H \ Y # (). Then there exists a
minimal element h € H \ 'Y, so that Y U {h} is a lower set. Lemma 3.9 implies that the morphism

colim A — colim A
Y Yu{n}

is a cofibration; therefore there exists a morphism f’: colimy () A — U such that the diagram

colim A U
Y
|~
colim A P
YU{h}
colim A \%
H

commutes in M. In particular, (Y U {h}, f') € F and (Y, f) < (Y U {h}, f'). By maximality we
obtain Y =Y U {h}, whence h € Y. O

Lemma 3.11. Let I be a Reedy poset and let A € M! be a Reedy cofibrant object. Then the
morphism Ao — Ag is a cofibration in M, for every o < 8 in I.

Proof. By Lemma 3.10 it is sufficient to observe that the morphism A, — Ag is obtained as the
natural morphism

Ay = C%lgl A, — C;)lgl/ran A, = Ap.
O

Lemma 3.12 (Commutativity of colimits). Let X € M be an object in a cocomplete category,
H a small category, and denote by c(X) € MH the constant diagram. Moreover, take a span
Q<+ A— c(X) in MH . Then:

co}}m QU4 (X)) = co}{imQ H< ) co}}m c(X)

colim A
H
and
li il X = coli M4 ce(X)) 1T
COHHHC2 (colim A) COI—}m (Q A C( >) <colim c(X))
H H
Proof. The first part of the statement is just to say that colimits commute with pushouts, and to
obtain the second it is sufficient to apply the functor — H< i (X)> X to the first one. O
colim ¢
H
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3. Colimits of diagrams and Reedy model structures

Remark 3.13 (Undercategory of functors over a constant diagram). Let X € M be an object in a
cocomplete category, H a small category, and denote by ¢(X) € M¥ the constant diagram. Then
the undercategory c¢(X) | M is (isomorphic to) the category of functors (My ), where as usual
we denoted by M x the undercategory X | M.

Motivated by Remark 3.13, we shall simply denote by M4 the undercategory
(X)L M7 = (Mx)H .

Remark 3.14 (Colimits in undercategories). When dealing with colimits in undercategories

there is a technical issue to be aware of. More precisely, let X € M be an object in a cocomplete

M x
category, and H a small category. Take an object A € M. Denote by coll}mA € Mx the colimit
Mx
of A. Of course, the diagram A can be considered as an object in M, as well as co}{imA can be

Mx
thought of as an object in M. Therefore, one may investigate the relation between co}lqimA and
co}lqim A. By Remark 3.13, it follows that

Mx .
co}lL}rn A= co}{unA Hcogm(c(x)) X.

Clearly, if H is a connected category this is just to say that the two colimits are the same since
in this case cogm(c(X)) = X and the natural morphism co}{im(c(X)) — X is the identity. On the
other hand, suppose for instance that H = H II Hs is a category with two connected components.
Then:

M
colim A = colim A IT colim A, while coli);n A = colim A ITx colim A.
H Hy Hy H H, H»

Notice that applying the functor —ITx1x X to the object on the left we obtain the one on the right.
For the general case, observe that co}}m(c(X )) is simply the coproduct of a number of copies of X
(one for each connected component of H). Roughly speaking, the role of the functor —Icqjim(c(x)) X
is indeed to turn the coproduct II into ITx. "

Lemma 3.15. Let I be a Reedy poset and let M be a model category. Consider a Reedy cofibration
A — Q in M. Then the diagram

Rg={yel|y<pB} =My,

v Qya, Ap

is Reedy cofibrant in M}}j for every B € I. Equivalently, the diagram Q 14 c¢(Ag) is cofibrant in
the undercategory c(Ag) | MRs.

Proof. We need to show that the map c¢(Ag) — Q14 c¢(Ap) is a Reedy cofibration in MR i.e. that

for every ¢ <  the natural morphism

021<1£n (Q’Y HAw Aﬁ) H( ) Aﬁ — Qs HAS Ag

lim A
colim A

is a cofibration in M. To this aim, consider the following commutative diagram

i I A, —— coli I A
C2<Hsn @ (cggrsn A’y) ) C2<1£11 @ <c$1<115n A'y) 7
Qs Qe HAE A,B
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3. Colimits of diagrams and Reedy model structures

where the left vertical arrow is a cofibration by hypothesis, and observe that it is actually a pushout
square since

v<e

colim @) H< ) Ag = (colim Qy H(COMm A'y) A6> 4, Ag.

colim A, v<e li
y<e

y<e

Therefore the morphism

c9{l<1£n (Q"/ IMa, Ag) H( ) Ag = [Lemma 3.12] = C21<1£I1 Qy H( > Ag — Q- 14, Ap

colim Ag colim A,
y<e y<e

is a cofibration in M as required. O

Theorem 3.16. Let I be a Reedy poset and let M be a model category. Consider a Reedy cofibration
A = Q in ML. Then, for every o < B in I, the natural morphisms

o s, Ag — coli il A
Qula, As > ol Q T,y 42

colim Ay
and
Qo lly, Ag — Qg

are cofibrations in M.

Proof. Fix a <  in I. Observe that the morphism

hﬂAB 1V[A
Qo lls, Ag= col<im (QI4 c(Ap)) — colién (QI4 c(Ap)) = [Remark 3.14] =
<« <

colim (Q T ¢(Ap)) Weotm(e(as) As =
= [Lemma 3.12] =

= colim eon A
o @ ooy 4, 42

is a cofibration by Lemma 3.15 and Lemma 3.10. The statement follows. O

For future purposes we point out some other properties of colimits.

Remark 3.17. Let I be Reedy poset, fix o € I and define R, = {y € I |y < a}. The colimit functor
colimg,_ : MR« — M is a left Quillen functor, the right adjoint being the constant diagram functor.
In particular:

1. given a Reedy cofibration X — Y in MR then the morphism colim X, — colimY, is a

<o y<a
cofibration in M,

2. given a Reedy weak equivalence X — Y between Reedy cofibrant objects in MR« then the
morphism

colim X, — colim Y,
y<a y<a
is a weak equivalence in M.

Example 3.18. Let I be the Reedy poset

1—=3——=5

e
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3. Colimits of diagrams and Reedy model structures

If A, B are cofibrant objects in M, then the diagram

A——AIIB—— AIlB

A

B——=AIIB

where every map is the natural inclusion, is Reedy cofibrant. Notice however that if J = {a | 1 <

x} C I, then the restriction of the above diagram to J is generally not Reedy cofibrant.

In order to avoid the unpleasant situation of the above example we introduce the following
assumption on a Reedy poset.

Definition 3.19. Let J be any poset; we shall say that the meet o A § of two elements «, 8 € J
is defined if the set of common lower bounds S = {y € J | v < «, v < §} is not empty and has a
maximum aA S = max(S). We shall say that a subset K C J is closed under the meet operator
if for every «, 8 € J their meet a A 5 is defined in J, and belongs to K.

Axiom 3.20 (meet axiom). A Reedy poset I satisfies the meet axiom if for every a € I the set
{Be€l]|a<B}is closed under the meet operator.

Lemma 3.21. Let F': I — C be a diagram into a cocomplete category indexed by a Reedy poset I,
and let K C I be a nonempty subset which is closed under the meet operator. Denoting by

K={ael| a<p for somepB e K},
the smallest lower set containing K, we have

colim F' = colim F'.
K K

Proof. For every a < (8 denote F(aw — ) = faa: Fo — Fjs. By the universal property of colimits

it is sufficient to prove that for every M € C, every set of arrows
{fa: Fa = M}ack such that f,f,3 = fs whenever § <~

extends uniquely to K. Given v € K, the set K, = {§ € K | v < §} is nonempty and contains a
unique element o of minimum degree: in fact if o, § € K, and deg(a) = deg(f) < deg(d) for every
d € K, then a A € K, deg(o) = deg(B) = deg(a A ) and this implies o = 3.

We then define f, = fo fay: Fy — M. Since the unicity is clear, we only need to show that for
every v < § in K the relation f5fs, = f, holds. To this aim, let « € K, and 8 € K;s be the elements
of minimum degree; since v < 0 we have 8 € K, so that a A § € K, and therefore « A 8 = « by
the minimality of the degree of a. Thus o <  and then

f6f5'y = fﬁfﬁ&fé’y = fﬁfﬁ’y = fﬁfﬂafa'y = fozfoz'y = f’y~
O]

Theorem 3.22 (Restrictions of Reedy cofibrant diagrams). Let I be a Reedy poset. Let K C I be
a nonempty subset which is closed under the meet operator. Then for every Reedy cofibrant diagram
F € M! the restriction F|x € M¥ is Reedy cofibrant.

Proof. Fix 8 € K and define K3 = {a € K | @ < §}. We shall prove that the natural morphism
colimKB F — Fjp is a cofibration in M. To this aim, define

Kg={ael|a<kforsomeke Kg}
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3. Pseudo-schemes over deformation model categories

and observe that the morphism

colim F' = colim F' — colim Fi, = Fj3
Kp Kp a<p

is a cofibration by Lemma 3.21 and Lemma 3.10. O

3.2 Pseudo-schemes over deformation model categories

The aim of this section is to introduce one of the main topics of our study, namely pseudo-schemes
over model categories (see Definition 3.23). Pseudo-schemes over a fixed model category M form a
full subcategory of the category of diagrams over M, endowed with the Reedy model structure.
In particular, we shall prove that this subcategory is closed under cofibrant replacements, see
Proposition 3.28. Concrete geometric examples and motivations will be discussed in Section 3.3.

Throughout all this section, M will denote a deformation model category (see Definition 2.9)
satisfying the cone and cylinder axiom, see Axiom 1.44.

Definition 3.23 (Pseudo-schemes over a deformation model category). Let I be a Reedy poset, see
Definition 3.1. A pseudo-scheme indexed by I over a deformation model category M satisfying
Axiom 1.44 is an object A € M! such that A, — Ajg is a formally open immersion for every a < 3
in I, see Definition 1.39.

We shall denote by ¥Sch;(M) C M the full subcategory of pseudo-schemes over M indexed
by I. We will see in Section 3.3 that schemes and DG-schemes are examples of pseudo-schemes, see
Example 3.32 and Example 3.42.

Definition 3.24 (Global sections of a pseudo-scheme). Let A € USch;(M) be a pseudo-scheme
over a deformation model category M satisfying Axiom 1.44. The object of global sections of A
is defined to be

I'(A4) = li}nA eM.

Remark 3.25. Notice that flatness in model categories only depends on trivial fibrations and pull-
back squares, see Definition 1.50. Given a Reedy poset I (see Definition 3.1) we can consider the
model category (CDGA%O)I where pullbacks and trivial fibrations are detected pointwise, see Re-
mark 3.5. Therefore, all the results of Section 1.4 about flatness in CDGAH§O immediately extend
to (CDGAZ’)’.

Remark 3.26. Let I be a Reedy poset, and let M be a deformation model category satisfying
Axiom 1.44. Given a pseudo-scheme A € ¥Sch;(M), for every oo < § in I the natural morphism

A[g HAa Aﬂ — Aﬁ

is a weak equivalence in M. This immediately follows by Corollary 1.22 recalling that every formally

open immersion is, in particular, a YW-immersion.

Definition 3.27 (Palamodov pseudo-scheme). Let I be a Reedy poset and let M = CDGA%O.
An object A € ¥Sch;(M) is called Palamodov pseudo-scheme.

Definition 3.27 is motivated by [37], where V. P. Palamodov constructs the resolvent of a K-

scheme X, essentially thinking of X as a pseudo-scheme over CDGAHEO.
Our next result shows that ¥Sch;(M) is closed under relative cofibrant replacements.

Proposition 3.28 (Closure of pseudo-schemes under cofibrant replacements). Let A — B
be a morphism in M between pseudo-schemes. Consider a factorization A LN Q IV, B in M! as

a cofibration followed by a trivial fibration. Then Q is a pseudo-scheme.
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3. Geometric examples: schemes and DG-schemes

Proof. In order to show that @ is a pseudo-scheme, fix « < 8 in I and consider the commutative
diagram

Ay ——= Ag

L

Qs
and observe that the dotted morphism is a cofibration by Theorem 3.16. By Corollary 1.49 it follows
that Q. — Qs is a formally open immersion. O

Remark 3.29. Notice that if A Q WV, B are morphisms between pseudo-schemes in M!, then

the natural morphism
Qo lla, Ag — Qp

is a formally open immersion for every @ < § in I. In fact, by Theorem 3.16 it follows that it is a
cofibration. Therefore, by Corollary 1.49 it is a formally open immersion.

Proposition 3.28 suggests that the subcategory ¥Sch;(M) C M inherits part of the algebraic
structure of M!. However, it is natural to consider morphisms between pseudo-schemes indexed by

different Reedy posets. Geometrically, even in the case of schemes over C, this can be rephrased

saying that we need to consider morphisms between schemes X = |J Uy and Y = |J Vj covered
heH kEK
by open affines indexed by different sets, see Remark 3.35.

Motivated by these geometric situations, our next goal is to define a natural notion of morphism
between pseudo-schemes indexed by different Reedy posets. To this aim, first notice that given a
morphism of Reedy posets f: I — J there exists a functor

f~': USch;(M) — WSch; (M)
A— 1A

defined as follows.
1. f71A, = Ap(q) for every a € 1,
2. For every o < f3 in I, the morphism f~'A, — f~'Az in M is given by Af) — Afg)-

3. For every morphism ¢: A — B in ¥Sch;(M), the morphism f~!(¢) in ¥Sch;(M) is given
by f7H@)a = fa): Afa) = By(ay, for every a € I.

Definition 3.30 (Morphisms between pseudo-schemes). Let M be a deformation model category
satisfying Axiom 1.44, and let A € ¥Sch;(M) and B € USch;(M) be pseudo-schemes indexed by
J and I respectively. A morphism of pseudo-schemes A — B consists of a morphism f: [ — J
between Reedy posets, together with a morphism f~'A — B in ¥Sch;(M).

3.3 Geometric examples: schemes and DG-schemes

The aim of this section is to provide concrete geometric examples of pseudo-schemes, see Defini-
tion 3.23. Namely, we show that schemes and DG-schemes are pseudo-schemes over the deformation
model category M = CDGA%O, see Example 3.32 and Example 3.42 respectively. We shall also
discuss how morphisms of schemes are related to morphisms of pseudo-schemes, see Remark 3.35.
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3. Geometric examples: schemes and DG-schemes

3.3.1 Schemes

In order to explain the main geometric motivation which led to Definition 3.23 we begin by showing
the following preliminary result.

Lemma 3.31. Given an open immersion between affine K -schemes ¢: Spec(B) — Spec(A4), the

induced natural morphism Q4 ® 4 B — Qp is an isomorphism of B-modules.

Proof. In order to keep the notation as clear as possible we shall write U and V in place of Spec(A)

and Spec(B) respectively. To prove the statement it is sufficient to show that
UQuy = L_lQU R,-104 Oy — Oy
is an isomorphism of sheaves on V. To this aim, take z € V and observe that

(), = Qu () D0y, () Ova = Q(Ou,Lm) ®0u,.(2) Ove = Qoy,,) = v),
are isomorphisms at the level of stalks. O]

Example 3.32 (Schemes as pseudo-schemes). Let X be a separated scheme over a field K
covered by open affines {Up}, . Setting M = CDG:A]%O and I = Py(H) we can define U, =
Up, N -+~ N U, for every a = {hg,...,h,} € I. Notice that I is a Reedy poset as explained in
Example 3.2, and U, is affine for every o € I being X separated. We can now define the pseudo-
scheme A € WSch;(M) associated to X (depending on the choice of the affines {Ux}),.p) as

follows:

1. for every a € I define A, as the coordinate K-algebra of U, concentrated in degree 0, i.e.
U, = Spec(4,),

2. the morphism A, — Ag is given by the open immersion Spec(Ag) — Spec(A,) for every
a<pBinl.

To prove that A is indeed a pseudo-scheme, first notice that every open immersion is a flat morphism
of unitary algebras, so that A, — Ag is a W-cofibration by Theorem 1.56. Now observe that the
intersection Ug = Ug N Up is given by Spec(Ag) = Ug xy, Ug = Spec(Apg ®a, Apg), so that
the natural morphism Ag ®4, Ag — Ag is an isomorphism. By Corollary 1.22 it follows that
A, — Apg is a W-immersion in CDGA%O. To conclude, Lemma 3.31 and Proposition 1.48 imply
that A, — Ag is a formally open immersion, hence A € ¥Sch;(M) is a Palamodov pseudo-scheme
(see Definition 3.27).

Remark 3.33 (Formally open immersions in Classical Algebraic Geometry). Of course in
classical Algebraic Geometry there is a notion of formally open immersion, see [18]. A morphism
f+ Spec(B) — Spec(A) of affine schemes is a formally open immersion if and only if it is flat and
the natural map B ® 4 B — B is an isomorphism, see [18, Theorem 17.9.1 and Proposition 17.2.6].
Example 3.32 proves that the classical notion of formally open immersion is consistent with the one
of Definition 1.39, where A and B are considered as objects in CDGAHEO concentrated in degree 0.

We now want to understand how standard geometric situations are related to Definition 3.30.

Namely, let ¢: X — Y be a morphism of separated schemes over C. Then every choice of open

affine coverings X = |J Up and Y = |J Vj induces a morphism between pseudo-schemes. This is
heH kEK
explained in Remark 3.35, but we first need a preliminary result.

Lemma 3.34. Let p: X — Y be a morphism between separated schemes over a field K. Given open
affines U and V of X and Y respectively, then the intersection U N =1 (V) is an open affine of X.
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Proof. First notice that the product X x Y is a separated scheme by hypothesis, so that the
morphism id X p: X — X XY is a closed immersion, being the projection X x Y — X a retraction.
Recall that if a morphism into a separated scheme admits a retraction then it is a closed immersion.
Now, take open affines U and V in X and Y respectively, and consider the following pullback
diagram
Une (V) X

-

UxV —XxY

of schemes. This shows that U Np~1(V) — U x V is a closed immersion too. In particular, it is an

affine morphism. The statement follows since U x V is affine, being U and V both affines. O

Remark 3.35 (Morphisms of schemes as morphisms of pseudo-schemes). Let ¢: X — Y be

a morphism of separated schemes over K. Then every choice of open affine coverings X = |J U
heH’
and Y = |J V4 induces a morphism of pseudo-schemes as follows. First define
keK

H={(hk)|o(Un) NV, #0} CH x K  and Wy =U,Ne (Vi)
Now notice that by Lemma 3.34 we have an affine open covering

X = U W(h7k)
(h,k)eH

of X such that (W, x)) C Vi for every (h,k) € H. Setting
M = CDGAZ", I ="Py(H), J =Po(K),

we can define Wo, = W ko) N -+ - N Wip,, 1, for every a = {(ho, ko), ..., (hn,kn)} € I. Notice that
I and J are Reedy posets, see Example 3.2. Moreover, since X is assumed to be separated W, is
an open affine for every «a € I. Therefore, X induces a pseudo-scheme A € USch;(M):

1. for every o € I define A, as the coordinate K-algebra of W, concentrated in degree 0, i.e.

W, = Spec(Aq),

2. the morphism A, — Ag is given by the open immersion Spec(Ag) — Spec(4,) for every
a<finl.

Similarly Y induces a pseudo-scheme B € USch ;(M). Our next goal is to understand how ¢: X —
Y induces a morphism of pseudo-schemes B — A. First, define a morphism of Reedy posets as

fl]—)J, {(ho,ko),...,(hn,k‘n)}}—){ko,...,k‘n}

so that f~1B € USch;(M). In order to define a morphism f~!B — A in WSch;(M) it is sufficient
to give a morphism f~'B, = B f(a) = Aq for every a € I, and by definition these are given by the

restrictions ¢ W Wa = Spec(Aa) — Spec(By(q)) = Va, for every a € I.

Example 3.36. Recall that a scheme over K is a scheme X together with a morphism ¢: X =Y,
with Y = Spec(K). Let us stress how Remark 3.35 works in this case. Take an open affine covering
{Un}hen for X. Clearly the most natural choice for an open affine covering for Y is simply Y itself,
so that K = {kq} is a singleton. Therefore, we have H = H' and W, = U,, for every o € I = Py(H).
Now, for every «a € I let A, be the coordinate ring of U, = Spec(A4,). Similarly, the pseudo-scheme
B associated to Y is just defined by By, = K. Moreover, f: I — J is the constant map between the
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two Reedy posets, so that f~'B € USch;(M) is defined as f~'B, = By(a) = K for every a € I.
To conclude, observe that the morphism f~'B — A in M/ is the collection {K — A }acr, which is
given pointwise by the restriction ¢: U, — Spec(K). Roughly speaking, the role of the morphism
B — A induced by ¢: X — Spec(K) is precisely to give a K-algebra structure to every A,, so that
A becomes a well defined pseudo-scheme over CDGAHEO, indexed by I.

Example 3.37. Take a morphism ¢: X — Y between affine K-schemes, say X = Spec(4) and
Y = Spec(B). We now want to understand how the procedure explained in Remark 3.35 works in
this case. Of course, we can choose X itself as an open affine covering for X, and the same for Y.
This means in particular that H = {hg} and K = {kq} are reduced to one element. Therefore we
have H = H' and Wy 1,) = X = Up,, moreover I = Py(H) = H and J = Py(K) = K. Now,
the pseudo-scheme A associated to X is just defined by A,, = A. Similarly, the pseudo-scheme B
associated to Y is just defined by By, = B. Moreover, f: I — J is the unique (bijective) map of
Reedy posets, so that f~1B € WSch;(M) is defined as f~1 By, = Bf(he) = B. To conclude, observe
that the morphism f~'B — A in M is just a morphism of K-algebras B — A, which is given by
¢: Spec(A) = X — Y = Spec(B). Therefore, in the case of affine schemes, the morphism B — A
induced by ¢: X — Y is precisely ¢ : B — A.

3.3.2 DG-schemes

DG-schemes have been introduced by Maxim Kontsevich as a first approach to Derived Algebraic
Geometry in 1995, see [31]. A few years later the notion of DG-scheme was further developed by
Tonut Ciocan-Fontanine and Mikhail Kapranov; in particular they constructed the first examples
of derived moduli spaces using DG-schemes, see [10] and [11]. For the definition of DG-scheme (see
Definition 3.38) we followed [29].

Here our goal is to prove that DG-schemes are in fact examples of pseudo-schemes over the
deformation model category M = CDGA§O7 see Example 3.40.

Definition 3.38 (DG-scheme, [29]). A differential graded scheme (or DG-scheme) is a scheme
(X, Ox) together with a sheaf O% of commutative differential graded O x-algebras concentrated in
non-positive degrees such that Ox = 0%, and OY% is a quasi-coherent sheaf on X for every i < 0.
We shall denote the DG-scheme by (X, O%).

A DG-scheme over a field K is simply a DG-scheme (X, O%) such that (X, 0%) is an ordinary
K -scheme. A DG-scheme (X, O%) is called separated if (X,0%) is so.

Definition 3.39. A morphism of DG-schemes is a pair (f,¢): (X,0%) — (Y, 05%), where
1 f: X — Y is a morphism of schemes,

2 ¢: f*Oy — O% is a morphism of sheaves of DG-algebras.

The category of DG-schemes over a field K will be denoted by DGSchyk . A morphism of DG-
schemes (f,¢): (X,0%) — (Y,0%) is an isomorphism if both f: X — Y is an isomorphism of
schemes and ¢: f*O§j — O% is an isomorphism of sheaves of DG-algebras.

Example 3.40 (Affine DG-schemes). Every A € CDGA%O induces a DG-scheme (X, O%) over
K as follows. The scheme X is defined by X = Spec(A?), while O% is defined to be the quasi-
coherent sheaf ;17, being A* an A%module for every i < 0. The differential on O% is induced by
the one of the commutative DG-algebra A. With an abuse of notation, we shall write (X, 0%) =

Spec(A).

50



3. Geometric examples: schemes and DG-schemes

DG-schemes obtained from commutative DG-algebras as explained in Example 3.40 are called

affine DG-schemes. The full subcategory of affine DG-schemes over a field K will be denoted by
DGAffx C DGSchg.
Remark 3.41 (DGAffk is the opposite category of CDGAHEO). Take A, B € CDGAHE0 and con-
sider the associated DG-schemes (X, O%) = Spec(B) and (Y, O3) = Spec(A), see Example 3.40.
Moreover, take a morphism of DG-schemes (f, ¢): (X, 0%) — (Y, O3 ), see Definition 3.39. Notice
that to give f: Spec(B°) — Spec(AY) is the same as giving a map of K-algebras f#: A° — B°.
Moreover, we have

1703 (8pec(B)) = 1705 (Spec(B)) @ (410 (specseyy) 0% (Spec(B) =

= colim
f(Spec(B9))CV

B . . 0 0
n f(spgg(lggl))gv (OY(V) B0y ) A ) Da0 B

O;(V) ®(colim OQ,(V)) BO =

Therefore, since we are dealing with affine schemes the data of
¢: ffOy — Ok
is equivalent to give a map of DG-modules over B°

. * 0 0 * 0yy —
f(Spgg(lgf%)gv (OY(V) Doy )4 ) @a0 BT = Ox(Spec(BY)) = B

which in turn is equivalent to a morphism of DG-modules over A°

. % 0
f(Sp(e;CO(%I(%)gV (OY(V) Fogv) A ) B

by adjunction. The morphism above is the same as the data of a map A — B in CDGA%O. Hence

affine DG-schemes over K form the opposite category of CDGAHEO.

Example 3.42 (DG-schemes as pseudo-schemes). Let (X, O%) be a separated DG-scheme
over K, see Definition 3.38. Then, every affine open cover U = {Up}nren of (X,0%) induces a
pseudo-scheme as follows, see Definition 3.23. Setting M = CDGAE0 and I = Py(H) we can
define Uy = Upy N --- N Uy, for every a = {ho,...,h,} € I. Notice that I is a Reedy poset as
explained in Example 3.2, and U, is affine for every a € I being (X, 0% ) separated by assumption.
We can now define the pseudo-scheme A € ¥Sch;(M) associated to the DG-scheme (X, 0%) as
follows:

1 for every a € I define A, = O%(U,) € CDGAZ’,

2 the morphism A, — Ag is given by the restriction map O% (Uy) — O% (Up) for every a < 8 in
1.

In order to show that the object A € (CDGA%O)I defined above is in fact a pseudo-scheme, we
are only left with the proof that the map A, — Ap is a formally open immersion for every a <

in I. To this aim, first notice that Ag = Ay ® 10 A%, since the sheaf Ag is simply the restriction of
A, for every i < 0. Moreover, by Example 3.32 the map A), — A} is a formally open immersion
and so is its pushout A, — Ag = Ay @49 A}, see Lemma 1.41.

Remark 3.43. Let (X,0%) be a separated DG-scheme over K, see Definition 3.38. Then every
affine open cover U = {Up}nen of (X,0%) induces a pseudo-scheme A € (CDGA%O)I where
I = Py(H), see Example 3.42. In particular, this implies that for every a < § in I the codiagonal
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3. The model category of pseudo-modules over a Palamodov pseudo-scheme

V:Ag®a, Ag — Ag is a quasi-isomorphism in CDG:AH%O7 since every formally open immersion is
a W-immersion by Definition 1.39. It turns out that V is in fact an isomorphism.
In order to prove the claim, observe that by Remark 3.41 it is equivalent to show that the natural

dotted morphism in the diagram

Spec(Ag)

AN

Spec(Ag) X Spec(Aq) Spec(Ag) — Spec(A4p)

| |

Spec(Ag) ——— > Spec(4,)

is an isomorphism of DG-schemes. To this aim, first notice that this is true at the level of underlying
schemes, i.e. f is an isomorphism of schemes. In fact by Example 3.32 we have A% ® A0 A% =N A%.
Now, for every p € Spec(Ag) consider the morphism

Up: 7 (O %oy Og)p = Ohp

between the stalks at p, where O} and (92‘3 are defined to be the sheaves ;1: and ;17, respectively.
Observe that O is simply the restriction of O to Spec(A%), so that OF , = O, for every
p € Spec(A4p). In particular, O oz, Op, = Op . Therefore we have the following chain of
isomorphisms

f* (05 %o OZ)p = (0} xo; Op) ®( O =0, ®oy Ofp

F(p)

£0) = (0900 03)

for every p € Spec(Ag). Hence v, is an isomorphism for every p € Spec(Ag) and the thesis follows.

3.4 The model category of pseudo-modules over a Palam-
odov pseudo-scheme

As already outlined at the beginning of this chapter, the aim of this section is to introduce the
category YMod(A) of pseudo-modules over a Palamodov pseudo-scheme A € USch;(M), see Defi-
nition 3.44. Moreover, we will be able to endow YMod(A) with a model structure, see Theorem 3.47.
This result plays a crucial role in the theory of the cotangent complex, since we are allowed to deal
with the derived category of quasi-coherent sheaves over a separated K-scheme in terms of the
homotopy category of pseudo-modules where it is easier to work, see Chapter 4.

Throughout all this section we shall work on the deformation model category M = CDGAHE0
of commutative differential graded algebras over a fixed field K, see Example 2.10.

Definition 3.44 (Pseudo-modules over a pseudo-scheme). Let I be a Reedy poset and consider
the deformation model category M = CDGAHEO. A pseudo-module F over a pseudo-scheme
A € USch;(M) (see Definition 3.23) consists of the following data:

1. an object F,, € DGMod(A,), for every o € I,
2. a morphism fo5: Fo ®a, Ag — Fj in DGMod(Ag), for every oo < B in I,
satisfying the cocycle condition fz, o (fag ®Ag A,y) = fay, for every a < g < in I.

Definition 3.45 (Morphisms between pseudo-modules). Consider the deformation model category
M = CDGAHEO. A morphism of pseudo-modules ¢: F — G over a Palamodov pseudo-scheme
A € ¥Sch;(M) consists of the following data:
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3. The model category of pseudo-modules over a Palamodov pseudo-scheme

1. a morphism ¢, : F, — G, in DGMod(4,), for every « € I,

2. for every a < 8 in I, the diagram

Fo®a, Ag —2> Go ®a, Ap

f{xﬁl lga[i

Fp Gg

PB

commutes in DGMod(Ag).

We shall denote by ¥Mod(A) the category of pseudo-modules over A. Moreover, we shall denote
by \IlModSO(A) the full subcategory of pseudo-modules concentrated in non-positive degrees. Our
next goal is to endow the category YMod(A) with a model structure. To this aim, we first prove
a preliminary result.

Lemma 3.46. Let I be a Reedy poset, consider M = CDGA%O, and let A € USch;(M) be a
pseudo-scheme. Then for every morphism ¢: F — G in WMod(A) the following conditions are
equivalent.

1. For every a € I, the morphism ¢u: Fo — G4, is a weak equivalence in DGMod(A,,), and the
natural morphism
c’(yii(rxn (Gv ®a, Aa) H F,— G,

colim(F,y®A,YAa)
<o
is a cofibration in DGMod(A,,).

2. For every o € I, the natural morphism

coLim (Gy ®a, Ad) | I Fo — Ga
«
v CSEEl(nyQ@AW Aqa)

is a trivial cofibration in DGMod(A,).

Proof. Fix o € I and consider the following diagram

colim (F @4, Aa)

o

H F,

colim (G7 ®a, Aa) —— colim (G7 ®a, Aa)
« cﬁ?ii;n(Fﬂ,@A,YAa)

< y<o

Now define R,, = {y € I'|y < a} and consider the category DGMod(A, )R+ endowed with the
model structure (see Remark 3.5). Define two diagrams X,Y € DGMod(4,)®= as

Xy =F,®a, A and Y, =G, ®a, Aa for every v € Ry,

and notice that if either (1) or (2) holds the morphism X — Y induced by ¢ is a Reedy cofibration,
since colimits commute with coproducts. Moreover, by Remark 3.6 it follows that X — Y is a
Reedy weak equivalence if either (1) or (2) holds, so that the vertical morphisms in the diagram
above are trivial cofibrations in DGMod(A,) by Remark 3.17. Therefore, ¢, is a weak equivalence

if and only if v is so, because of the 2 out of 3 axiom. O
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3. The model category of pseudo-modules over a Palamodov pseudo-scheme

Theorem 3.47 (Model structure on pseudo-modules). Let M = CDGAHEO, and let A €
USch;(M) be a pseudo-scheme. The category of pseudo-modules over A is endowed with a model
structure, where a morphism F — G in YMod(A) is

1. a weak equivalence if and only if the morphism F, — G, is a weak equivalence in DGMod(A,)
for every a € 1,

2. a fibration if and only if the morphism F, — G4 is a fibration in DGMod(A4,) for every
a€el,

3. a cofibration if and only if the natural morphism

colim (G, ®4, Aa) H Fo — Go
y<a nggn(FWQ@AWA(,)

is a cofibration in DGMod(A,,) for every o € I.

Proof. Tt is sufficient to prove that UMod(A) with the classes defined in the statement satisfies the
axioms of a model category. First notice that the category YMod(A) is complete and cocomplete
since limits and colimits are taken pointwise. Moreover, the class of weak equivalences satisfies the
2 out of 3 axiom by definition.

The closure with respect to retracts holds since if 7 — G is a retract of 7/ — G’ in the category
of maps of Y¥Mod(A), then the natural morphism

c’(y)Li(an (GA, ®a, Aa) H F, — G,

C’\?LILH(F’Y(@A'Y Aq)
is a retract of the natural morphism

c’(y)Li(an (G, ®a, Ad) H F, — G,

nggl(F’/Y(gA’Y Aq)

in the category of maps of DGMod(A,,), for every o € I.
In order to show that the lifting axiom holds, observe that a morphism F — G is a trivial

cofibration in YMod(A) if and only if for every « € I the natural morphism

c’cy)Lién (Gn, ®a, Aa) H F,— G,

C?LIE‘(FV@)AW Ay)

is a trivial cofibration in DGMod(A4,), see Lemma 3.46. Therefore the required lifting can be
constructed inductively on the degree of a.

The factorization axiom can be proved inductively as follows. Take a morphism ¢: F — G, we
need to define (functorial) factorizations F — Q — G in ¥Mod(A) as a cofibration (respectively,
trivial cofibration) followed by a trivial fibration (respectively, fibration). Now, fix o € T of degree
d and suppose ¢, has been factored for all v € I of degree less that d. Consider a (functorial)
factorization of the natural morphism

colim (G A, F,— Q. — G,
<o (G @4, )COlim(F%AWAQ) Q
Y<a
in DGMod(A,) as a cofibration (respectively, trivial cofibration) followed by a trivial fibration

(respectively, fibration). Lemma 3.46 implies that Q satisfies the required properties by construction.
O
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3. The model category of pseudo-modules over a Palamodov pseudo-scheme

Remark 3.48. The same proofs show that the statements of Lemma 3.46 and Theorem 3.47 hold
replacing YMod(A) by ¥Mod="(A) and DGMod(A4,) by DGMod=’(4,,).
We conclude this section by introducing the notion of quasi-coherent pseudo-modules over a

pseudo-scheme.

Definition 3.49 (Quasi-coherent pseudo-modules). Let M = CDGAHEO. A pseudo-module F over
a pseudo-scheme A € USch;(M), see Definition 3.44, is called quasi-coherent if the morphism

fozﬁ: F, XA, Aﬁ — FI@

is a weak equivalence in DGMod(Ag) for every o < 8 in I.

We shall denote by QCoh(A) C ¥Mod(A) the full subcategory of quasi-coherent pseudo-
modules.

Example 3.50 (Quasi-coherent sheaves as quasi-coherent pseudo-modules). Let X be a K-
scheme with an affine open cover {U; };¢r, and let A € USch;(M) be the associated pseudo-scheme,
see Example 3.32. Every quasi-coherent sheaf over X induces in the obvious way a quasi-coherent

pseudo-module over A.

As we will see in Chapter 4, quasi-coherent pseudo-modules will play a crucial role in the theory
of the global cotangent complex.
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Chapter 4

THE COTANGENT COMPLEX
FOR PALAMODOV
PSEUDO-SCHEMES

This chapter is devoted to the study of the cotangent complex. In particular, given a Palamodov
pseudo-scheme B € ¥Sch;(M), see Definition 3.27, we consider the model category YMod(B) of
pseudo-modules over B, see Theorem 3.47. In the homotopy category of YMod(B) we construct
the cotangent complex Lp of B, see Definition 4.34.

The main result of Section 4.1 will be Theorem 4.18, which plays a crucial role to prove that
the global cotangent complex Lg lies in the homotopy category of quasi-coherent pseudo-modules
over B, see Theorem 4.35. Moreover, we shall prove in Theorem 4.36 that our definition of the
cotangent complex L is consistent with the usual one whenever the pseudo-scheme B comes from
a finite-dimensional separated Noetherian K-scheme X. To this aim we first need to relate the
homotopy category of quasi-coherent pseudo-modules with the derived category of quasi-coherent
shaves on X. This motivated the study of the extended lower shriek functor (see Definition 4.22),
which led us to a Quillen adjunction

Y,: ¥Mod(B) — DGMod(Ox): T*

see Theorem 4.27, eventually obtaining in Section 4.3 the (restriction of the derived) functor

LY,: Ho(QCoh(B)) — D(QCoh(X))

between the homotopy category of quasi-coherent pseudo-modules over B and the usual derived
category of quasi-coherent sheaves on X, see Theorem 4.32.

In Section 4.5 we introduce the notion of derivations for pseudo-modules, so that in Section 4.6
we exploit the theory developed throughout this chapter to compute the cohomology of the DG-Lie
algebra of derivations associated to a cofibrant replacement of a scheme in terms of its cotangent
complex, see Theorem 4.64.

4.1 The affine relative cotangent complex

In this section we develop the theory of the affine relative cotangent complex, see Definition 4.4.
Some of the results are well-known, such as the fundamental sequence of Kahler differentials (see
Proposition 4.9) and the fundamental triangle of the cotangent complex (see Theorem 4.11). Nev-
ertheless, in order to fix ideas and notations we decided to give proofs for all of them, trying to
keep attention to the notions introduced in the previous chapters.

We shall begin by recalling the characterizations of W-cofibrations, YW-immersions and formally
open immersions in CDGASO, see Remark 4.2 and Remark 4.3.
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4. The affine relative cotangent complex

Remark 4.1 (Kéhler differentials). Recall that by Theorem 1.3, given B € CDGAS’ there is a

Quillen adjunction
Q_,4®_ B: CDGAY" | B = DGMod=’(B): — @B

and therefore the functor Q2_,4 ®_ B preserves the classes of cofibrations and trivial cofibrations,

and commutes with arbitrary small colimits.

As in the previous chapters, given a morphism f: A — B in CDGAHEO we shall denote by

fo =—®4 B: CDGAY’ - CDGA3Z’

the graded tensor product.

Remark 4.2 (W-cofibrations and WW-immersions in CDGA%O). Recall that by Corollary 1.22 the
following statements hold.

1 A morphism f: A — B in CDGAHE0 is a W-cofibration if and only if the functor f, preserves

quasi-isomorphisms.

2 A morphism f: A — B in CDG}AHE0 is a W-immersion if and only if it is a W-cofibration and
the codiagonal V: B®4 B — B is a quasi-isomorphism.

3 A quasi-isomorphism f: A — Bin CDGA%O is a W-immersion if and only if it is a VW-cofibration.
Remark 4.3 (Formally open immersions in CDGA%O). Recall that by Proposition 1.48, given a
W-immersion P ER R in the category CDGA§0 there are three equivalent conditions:

1 f is a formally open immersion in CDG‘:A%O7

2 the induced map Qp 4 ®p R — Qg 4 is a trivial cofibration in DGModSO(R),

3 Qp/a®@p R — Qp/y is a cofibration in DGMod="(R) and Qp/a ®@p R — Qrgpr/a is a trivial
cofibration in DGMod=’(R ®p R).

Definition 4.4 (The affine relative cotangent complex). To every B € CDGA%0 it is associated
a well defined class
Lp/a = Qrja ®r B € D=°(B)

where R — B is a cofibrant replacement in CDGA%O. The class Lp/4 € D=°(B) is called the

affine relative cotangent complex of B over A.

Recall that given a Quillen adjunction F' 4 G it is induced the left derived functor
LF: Ho(M) — Ho(M')
defined on each class [A] € Ho(M) as
LE([A]) = [F(Q)] € Ho(M')
for any cofibrant replacement @ W Ain ML Dually, the right derived functor
RG: Ho(M') — Ho(M)
is defined on each class [B] € Ho(M') as
RG([B]) = [G(P)] € Ho(M)

for any fibrant replacement B Yy pin M.
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4. The affine relative cotangent complex

Remark 4.5. Notice that for every B € CDGA%O, and for every cofibrant replacement A — R — B
we have
Lp/a = Qpra ®r B=Qpa®h B

being r,4 cofibrant in DGMod=’(R) thanks to Theorem 1.3, where — @% B denotes the left
derived functor of the (graded) tensor product.

Recall that a Quillen adjunction F': C < D: G is called a Quillen equivalence, see [26], if
one of the following equivalent conditions is satisfied:

1. the total left derived functor LG: Ho(C) — Ho(D) is an equivalence of categories,
2. the total right derived functor RG: Ho(D) — Ho(C) is an equivalence of categories,

3. for every cofibrant object M € C and every fibrant object N € D, a morphism M — G(N) is
a weak equivalence in C if and only if the adjoint morphism F (M) — N is a weak equivalence
in D.

Now, notice that given a morphism f: C'— D in CDGAHEO7 it is induced an adjunction
fi = —®c D: DGMod=°(C') — DGMod=’(D): f*

where the right adjoint f* takes every DG-module to itself, being the C-module structure induced
by f. It is clear that f* preserves weak equivalences and fibrations, so that f, - f* is in fact a
Quillen adjunction. Our next result shows that if f is a weak equivalence in CDGA%O, then the
adjunction f, 4 f* is a Quillen equivalence. In particular, this means that if f: C' — D is a weak
equivalence, an object M € DGMod="(C) is acyclic if and only if M ®% D =0 in D=<°(C).

Lemma 4.6. Let f: C — D be a weak equivalence in CDGAHEO. Then the induced functor
fo = —®c D: DGMod=’(C) — DGMod=’(D): f*
is a Quillen equivalence.

Proof. Consider a cofibrant object M € DGMod="(C) and a (fibrant) D-module N € DGMod=’(D).
Now recall that the functor

M ®¢ —: DGMod=’(C) = DGMod="(D)

preserves weak equivalences, being M cofibrant. Then M = M ®c C — M ®¢ D is a quasi-
isomorphism, so that a morphism M — f*N is a weak equivalence in DGModSO(C) if and only
f«M — N is a weak equivalence in DGMod=’(D). O

Remark 4.7. Clearly we may consider the above adjunction f, 4 f* on unbounded DG-modules,

and the same proof of Lemma 4.6 shows that
fi = —®¢ D: DGMod(C) — DGMod(D): f*

is a Quillen equivalence.

Remark 4.8. Given B € CDGA%0 and a cofibrant replacement A — R — B, by Lemma 4.6 we
have an equivalence

D=°(R) = D=°(B)
which maps Qp/4 to L 4.

The following is a standard result about Kéhler differentials, which has an analogue for the
cotangent complex, see Theorem 4.11.
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4. The affine relative cotangent complex

Proposition 4.9 (The fundamental sequence of Kahler differentials). Let C — P — Q be
morphisms in CDGA]%O. Then there is an exact sequence

Qp/c@pQ — Qgc — Qg/p — 0
of differential graded Q-modules. Moreover, if P — Q is a cofibration
0—=Qp/c®pQ ER Qg/c = Qg/p— 0
is a split exact sequence in DGModSO(Q), and f is a coftbration.

Proof. Recall that if P — @ is a cofibration then f is a cofibration (hence splitting and injective)
by Theorem 1.3. Then it is sufficient to show that the sequence

Qp/c®@pQ i) Qo/c EN Qg/p— 0

is exact even if P — @ is not a cofibration. Equivalently, we can prove that the sequence of graded
@-modules

. £
0 = Hompgaiea<o (o) (R ps M) “= Hompaioa<o gy (R e M) = Hompgapea=o(o) (p/c®pQ, M)

is exact for every M € DGMod=%(Q), being Hompgyoaso(g)(—s M) a contravariant right-exact
functor. Now recall that

Hompgnoaso(q)(2p/c ®p Q, M) = Hompanoaso(p)(2p/cs M)
so that it only remains to be shown that the induced sequence of graded Q-modules
0 — Derp(Q, M) > Derc(Q, M) L Dere(P, M)

is exact thinking of M as a differential graded P-module through the morphism P — Q. In the
sequence above, one can explicitly describe the morphisms f* and g* as follows:

Derp(Q, M) L Dere(Q, M) Derc(Q, M) 2= Dere(P, M)
=0 d—~doa

where a: P — @ is the given cofibration. Then:
1. the morphism g¢* is simply the natural inclusion (hence injective),
2. the composition f* o g* is identically zero since P-derivations are clearly in the kernel of f*,

3. for every ¢ € Derg(Q, M) such that f*(§) = 0 we have §d o« = 0, so that § € Derp(Q, M)
which is the image of ¢* in Derc(Q, M).

O

Corollary 4.10 (The fundamental sequence for formally open immersions). Given a pair of mor-
phisms C — P — Q in CDGAHEO, if P — Q is a formally open immersion then there exists a split
exact sequence

0= Qpjc@p Qs Q00— Qg/p = 0

of differential graded QQ-modules. In particular, Qg p is acyclic.

Proof. The statement follows immediately from Proposition 4.9 and Remark 4.3. O
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4. The affine relative cotangent complex

We now prove a standard result which we shall refer to as the transitivity of the cotangent
complex. The distinguished triangle of Theorem 4.11 is called the fundamental triangle.

Theorem 4.11 (Transitivity of the cotangent complex). Let C — A — B be morphisms in
CDGA%O. Then there exists a natural distinguished triangle

La/c ®% B —Lp/c—Lpa— Lac®f B[]
in DS9(B).

Proof. Consider a factorization C S P Y 4 of the morphism C — A as a cofibration followed
by a trivial fibration. Now take a factorization P LN Q W, B of the composition morphism
P — A — B. Consider the commutative diagram

P

Q

in CDGA§0 where the dotted morphism is induced by the pushout. Since P — @ is a cofibration
we have that the morphism A — A ®p Q is a cofibration. Moreover, Q@ — A ®p Q is a weak
equivalence, being CDGA%O a left-proper model category. Now recall that the morphism @ — B
is a trivial fibration, so that the dotted morphism A ® p Q@ — B is a trivial fibration. This proves
that A S A® rQ W, B is a cofibrant replacement of B in CDGA%O. In particular

Lp/a =QgrQ)/a s, B

in D<9(B).
Now, apply the functor — ®¢g B to the exact sequence of Proposition 4.9. Observe that since
J[:Qp/c®p Q — Qq/c is a cofibration, the morphism f ®q B is a cofibration (hence injective) so

that the tensored sequence remains exact. Recall that

Qq/p @q B =Qq/p ®Q (A®P Q) ®ae,@) B = Lasr@)/a Dere) B
to obtain the following short exact sequence of differential graded B-modules

0— (Qp/c ®@p A)®a B — Qo ®q B — Qagpq@)/a @uepq) B — 0

which induces in D=°(B) the required distinguished triangle. O

Our next goal is to show that Kahler differentials are invariant under co-base change, in order
to extend the same property to the cotangent complex, see Proposition 4.13.

Proposition 4.12 (Co-base change for Kahler differentials). Let A’, B € CDGA%O, and consider
B' = B®a A’. Then there exists a natural isomorphism of differential graded B’-modules

QB’/A' = QB/A ®B B/.

Proof. Let M € DGMod="(B’) be an arbitrarry B’-module. Then it is sufficient to show that there

is a natural isomorphism

Hom};,(QB//A/,M) — Hom*B/(QB/A XRp B/7M).
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4. The affine relative cotangent complex

To this aim, observe that there is a canonical morphism
Hom3p, (Qprjar, M) = Der’y, (B', M) =, Dery (B, M) = Hompz(Qp/a, M) = Homp, (Qp,a®@pB", M)

where §: B — B’ is the natural morphism. Now, every A-derivation § € Der’ (B, M) uniquely
extends to an A’-derivation 8': B’ — M defined as 9'(b® 1) = 9(b), so that &’ o 8 = 9. Therefore,

— o f: Der’y,(B', M) — Der’,(B, M)

is an isomorphism and the statement follows. O

Proposition 4.12 extends to the cotangent complex (see Proposition 4.13), but only under an
assumption of flatness. Recall that a morphism f: A — B in CDG;AH%0 is a W-cofibration if the
functor

fo=—®a B: CDGAS’ — CDGA5S’

preserves weak equivalences, see Remark 4.2. The class Cofyy, of W-cofibrations is stable under
pushouts.

Proposition 4.13 (Co-base change for the cotangent complex). Let A’,B € CDGAE‘O be A-
algebras such that either A — A’ or A — B is a W-cofibration, and consider B' = B® A’. Then
there exists a natural isomorphism in D<°(B’)

LB/A ®é B/ i>]LB//A/.

Proof. Tt is clearly sufficient to consider the case where A — A’ is a W-cofibration. Consider the

following commutative diagram

A Q B

T

A/HQ(X)AA/HB/

where A — Q — B is a cofibrant replacement for B in CDGA%O. Now recall that the graded tensor
product is right exact. Therefore the morphism Q ® 4 A’ — B’ is a fibration in CDGAf‘,0 since it is
obtained by applying the functor — ®4 A’: DGMod="(A4) — DGMod=’(4’) to the surjection Q —
B. Moreover, since Q — Q @4 A’ is a W-cofibration, then the morphism Q ®4 A’ -+ B’ = A'®4 B
is a trivial fibration, so that

A 5Qes A - By A

is a cofibrant replacement for B’ in CDGA%P. Therefore the chain of isomorphisms
LB’/A’ = Q(Q®AA/)/A' ®(Q®AA/) BI >~ QQ/A ®Q (Q ®A AI) ®(Q®AA/) BI >~ ]LB/A ®é B/
holds in D<°(B’) by Proposition 4.12, and the statement follows. O

Our next goal is to prove another useful result for Kéahler differentials, and its analogue for the
cotangent complex.

Proposition 4.14. Let A, B € CDGA%O, and consider B = B®a A’. Then there exists a natural

1somorphism of differential graded B'-modules

QB//A = (QB/A ®B B/) D (QA’/A ®A/ B/) .

61



4. The affine relative cotangent complex

Proof. By Theorem 1.3 the functor
Q_4®_ B': CDGAY’ | B’ - DGMod="(B’)
preserves colimits (hence pushouts). To conclude the proof it is then sufficient to observe that

O:QA/A®AB/ QB/A@BB/

l !

Qurja @ar B’ Qpja @B B © Qa4 @a B’

is a pushout square in DGMod=’(B’). O

Proposition 4.15. Let A',B € CDG‘:A%O such that either A — A’ or A — B is a W-cofibration,

and consider B' = B®4 A’. Then there exists a natural isomorphism in D<°(B’)
]LB//A it (]LB/A ®é B/) () (LA’/A ®5&1 B/) .

Proof. It is clearly sufficient to consider the case when A — A’ is a W-cofibration. Take cofibrant
replacements A — P — A’ and A — Q — B for A’ and B respectively. The idea of the proof relies
on the following diagram

A—C sp W x

where Q @4 P - Q®4 A’ and Q ®4 P — B ®4 P are trivial fibrations because CDGA%0 is a
deformation model category. Moreover, since the class Cofyy is closed under pushouts, the fibration
Q ®4 A" — B’ is in fact a trivial fibration, and so is B ® 4 P — B’. Then, by Proposition 4.14,

there is the following chain of isomorphisms

Lpja=QQeapr)/a ®Qair) B =

= [(Q/a ®q (Q®a P)) @ (2pja @p (Q ®4 P))] @qe.r) B =
(Qg/a ®q B@p B') ® (pja ®p A @4 B') =
=~ (Lp/a ®% B) @ (Lar/a ®4% B')

1%

in D=9(B’), whence the statement. O

We now turn our attention to W-immersions. Recall that a morphism A — B in CDGAHEO

a W-immersion if and only if it is a WW-cofibration such that the natural map B ® 4 B — B is a
weak equivalence, see Remark 4.2. Our interest in such kind of morphisms comes from a geometric
situation. Consider an affine scheme Spec(A4) over K, together with a Zariski open immersion
Spec(B) — Spec(A). Then the morphism A — B is flat in the usual algebraic sense, and the fiber
product Spec(B) Xgpec(a) Spec(B) is clearly Spec(B) itself, and from an algebraic point of view this
means precisely that B ® 4 B — B is an isomorphism. If we think about the K-algebras A and B
as objects in CDGAH§O concentrated in degree 0, then the condition B ®4 B = Bis equivalent to
require that the natural morphism B ®4 B — B is a weak equivalence. Moreover, by Theorem 1.56
the flatness condition is equivalent to require that A — B is a W-cofibration. OQur aim is now to
give a different characterization of such morphisms.

Lemma 4.16. Let A — B be a W-cofibration in CDGAHEO. The following conditions are equivalent:
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4. The affine relative cotangent complex

1. the natural morphism B ® 4 B — B is a weak equivalence,
2. the natural morphism B ®4 B — B is an isomorphism in HO(CDGAHEO),
3. the derived functor — @4 B: D<U(B) — D<%(B) is the identity functor on D<°(B),
4. A — B is a W-immersion.
In particular, if the above conditions hold, then B ®4 B~ B®4 B~ B in D<°(B).

Proof. We already proved that condition (1) is equivalent to condition (4), see Remark 4.2. There-
fore, we only need to show that conditions (1), (2) and (3) are equivalent to each other. We begin by
proving that the first condition is equivalent to the second one. Take a factorization A - R — B

as a cofibration followed by a trivial fibration. Consider the following commutative diagram in
CDGA3’

B——>B®sB B

where R — R ® 4 B is a W-cofibration, being the class Cofyy stable under pushouts. In particular,
this shows that R ®4 B — B ®4 B is a weak equivalence, so that ¢ is a weak equivalence if and
only if v is so. To conclude, notice that B ®% B — B is an isomorphism if and only if 1 is a weak
equivalence.

Observe that condition (3) clearly implies condition (2). Therefore, to conclude the proof it is

sufficient to show that the converse is true. Consider the following equalities of functors:
-9k B=—-0Lk (BB =-0LB

where the left hand side clearly acts as the identity on D=°(B). To prove the first equality consider
an arbitrary object M € DGMod=(B) and a cofibrant replacement Q — M. Moreover, take a
factorization A — R — B as a cofibration followed by a trivial fibration. We proved that under our
assumptions R ® 4 B — B is a weak equivalence, so that B — R ® 4 B is a trivial cofibration. In
particular, Q ® 3 B - Q ®p (R ®4 B) is a weak equivalence in DGModSO(B), being ) cofibrant.
Therefore the equalities

M@hB=Q®pB=Qopz(RoaB) =Mk (Bek B)
hold in D=9(B), whence — ®% B = — @& (B ®% B). O
Lemma 4.17. Let A — B be a W-immersion in CDGAHEO, Then Lg/a =0 in D=°(B).

Proof. By Lemma 4.16, the derived functor —®% B: D<%(B) — D<(B) is just the identity functor,
and B®L B = B® B in D<(B). Therefore we have the following chain of equalities in D<°(B):

Lpja=Lpja®p B=Lpa@p (B4 B)=Lp/a®f (B®aB).
Now recall that by Proposition 4.13 the co-base change

L(po.n)/B =Lp/a ®F (B®4 B)
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4. The affine relative cotangent complex

holds in D=°(B® 4 B), so that to conclude the proof it is sufficient to show that L.y =0.To
this aim, consider a cofibrant replacement B — Q — B ®4 B in CDGA%O. Notice that under our
hypothesis the morphism B — B® 4 B is a weak equivalence, so that B — (@ is a trivial cofibration.
Therefore, Theorem 1.3 implies that the morphism

0=0Qp/p®Q — QB
is a trivial cofibration. Hence (2, p is acyclic, and by Lemma 4.6 we obtain
Laan)/p = Qq/p ®q (B®a B) =0
in D=Y(B ®4 B), whence Lg/4 = 0 in D=°(B) as required. O

Theorem 4.18. Let C € CDGA%O and let A — B be a W-immersion in CDGA%O. Moreover,

consider a commutative square
R A

S——B

_

n CDGA(S;O where R and S are cofibrant replacements for A and B respectively. Then the induced
morphism
Qr/c ®r B — Qg0 ®s B

is a weak equivalence in DGModSO(B). Moreover, if R — S is a cofibration in CDGA%O then the

induced morphism is a trivial cofibration.

Proof. Consider the morphisms ¢ — A — B in CDGA%O. Then by Theorem 4.11 there is an
induced distinguished triangle in D<°(B):

]LA/C ®£B i}]LB/C _>]LB/A _>]LA/C ®ﬁ B[l]

By Lemma 4.17 it follows that ¢ is an isomorphism in D<°(B). Moreover, by Theorem 1.3 Qgr/c
is cofibrant being R cofibrant in CDGA%O7 so that Qg c @k B = Qr/c ®r B in D=%(B). In
particular, this implies that

Lo ®5 B=Qp/c®% A®4 B=0Qg/c ®% B=Qr/c®rB
and then the isomorphism ¢ is precisely induced by the natural morphism
Qr/c ®r B — Qs/c ®s B

which then turns out to be a weak equivalence in DGModSO(B) as required. The last part of the
statement follows by Theorem 1.3. O

Corollary 4.19. Let C € CDGAHEO and let R — S be a W-immersion in CDGA%0 between
cofibrant objects. Then the induced morphism

QR/C ®rS — QS/C

is a weak equivalence in DGModSO(B). Moreover, if R — S is a cofibration in CDGA%0 then the

induced morphism is a trivial cofibration.
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4. The extended lower-shriek functor

Proof. Consider the following commutative square

in CDGA%O. By hypothesis R (respectively, S) can be considered as a cofibrant replacement for
R (respectively, S) itself. Therefore the statement follows by Theorem 4.18 choosing A = R and
B=25S. O

4.2 The extended lower-shriek functor

As already outlined at the very beginning of the chapter, the goal is to link the homotopy category
of quasi-coherent pseudo-modules over a pseudo-scheme A to the derived category of quasi-coherent
sheaves on a scheme X, whenever A is induced by X as explained in Example 3.32. This will be
explained in Section 4.3, see Theorem 4.32. Here, we begin by showing how the homotopy category
of pseudo-modules over A and the derived category of sheaves of Ox-modules are related to each
other. To this aim, we first introduce the extended lower-shriek functor (see Definition 4.22) which
maps the category of pseudo-modules over A to the category of (cochain) complexes of sheaves of

Ox-modules:
TIZ \DMOd(A) — DGMOd(Ox) .

Then we show that T is in fact a left Quillen adjoint, so that its left derived functor is well-defined,
see Theorem 4.27. Since the homotopy category of DGMod(Ox) with respect to the flat model
structure of Theorem 4.25 is the derived category of sheaves of Ox-modules, we then obtain the

required functor:
LY,: Ho(YMod(A)) — Ho(DGMod(Ox)).

Definition 4.20. Given a Reedy poset I, we define the category L; as:

1. Ob(L;) ={(B,y) € I xI|B <A},

2. there exists precisely one morphism (3,7) — (§,7n) if and only if 5 < § and n < in I.

In particular, condition (2) of Definition 4.20 implies that for every 8 < § < n < v the diagram

(8,7) —(6,7)

N\

(B,m) ——(6,n)

commutes in L;. We shall call a morphism (8,v) — (J,7) an horizontal morphism, and similarly
we call morphisms of the form (3,7v) — (8,7n) vertical morphisms.

Remark 4.21. Tt is possible to define the function

degy,, : Ly — Z
(B,7) = deg(B) — deg;(v) -

Then horizontal morphisms increase the degree on Lj, while vertical morphisms decrease the degree
on L;. This does not give to L; a structure of Reedy category, since the degree is not bounded from
below. Nevertheless, every morphism in L; uniquely factors as a vertical morphism followed by an

horizontal morphism.
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4. The extended lower-shriek functor

Given a separated Noetherian scheme X over K, consider the associated pseudo-scheme A €
USch;(M) as explained in Example 3.32, where I denotes the nerve of the chosen affine covering
{Un}nhen. Moreover, define DGMod(Ox) to be the category of complexes of Ox-modules, and

consider the lower-shriek functor sz, DGMod | Ox — DGMod(Ox) for every v € I. Now,

take a pseudo-module F on A, see Definition 3.44. Wevcan define a functor

T]:I L;— DGMOd(Ox)
as follows

1 Yx(8,7) = zﬁ (FB ®as AW)N for every (5,7) € Ly, where (Fg ®a, A'y)N denotes the complex
of sheaves on Spec(4,) associated to the differential graded A,-module Fg ®a4, A,.

2 Tz maps each horizontal morphism (3,7) — (€,7) to the natural morphism of sheaves
i (Fs®a, Ay)” — i) (Fe®a, Ay)~.
3 T maps each vertical morphism (3,+v) — (8,9) to the morphism of sheaves
i 0@y (Fp @4, Ay)" —igy (Fp @4, 45)"
defined applying the standard lower-shriek functor igf to the morphism
2)(Fs®a, Ay)™ — (Fs @4, As)"
which in turn is the adjoint of the isomorphism

~

(Fs®a, Ay)” — ((Fs ®a, As) ®a, A)

Definition 4.22 (Extended lower-shriek functor). Let X be a separated Noetherian scheme over
K, and let A be the associated pseudo-scheme over CDGAHEO, see Example 3.32. The extended

lower-shriek functor Y, is defined as
T,: YMod(A4) - DGMod(Ox)
F = colim T £
L;
where YMod(A) denotes the category of pseudo-modules over A, see Definition 3.44.

Remark 4.23. Let X be a separated Noetherian scheme over K, and let A be the associated pseudo-
scheme over CDGAHEO with respect to the open affine covering {U}, } e n, see Example 3.32. Denote

by I the nerve of such covering. There exists a functor

T*: DGMod(Ox) — ¥YMod(A)

Ua }aeI

where YMod(A) denotes the category of pseudo-modules over A, see Definition 3.44.

f*—){}—

Proposition 4.24. Let X be a separated Noetherian scheme over K and let A be the associated
pseudo-scheme over CDGA%O, see FExample 3.32. Then the functors

T): ¥Mod(A) - DGMod(Ox): T*

form an adjoint pair.
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4. The extended lower-shriek functor

Proof. We need to show that there exists a bi-natural bijection of sets
Hompanmod(ox)(Y1F,G) = Homymoaa) (F, T*G)

for every F € YMod(A) and every G € DGMod(Ox). By the universal property of the colimit, the
data of a morphism ¢ € Hompgnied(ox)(Y1F,G) is equivalent to the following chain of one-to-one
correspondences

o,

O < {i»Y! (Fﬁ ®A5 A'y)N — g}('y7ﬂ)€LI A {(Fﬁ ®AB A"/)N - g U }
v/ (v,B)ELs

(%) (%) *
— {Fﬁ ®Ag Av - g(Uv)}(gﬁ)eLI — {Fv — g(Uv)}veI € HOHI\I:Mod(A)(]:7T g)
where:

1 (%) is a bijection since the morphisms of sheaves are all determined by localizations of the module
Fg®a, Ay,

2 (xx) is a bijection since for every (3,v) € L; we have a commutative diagram

f
Fp ®a, A’YL—F’Y

|

G(U,)
where the morphisms f3, are given by the pseudo-module F.
O

Let X be a separated Noetherian scheme. Recall that a sheaf F of Ox-modules is called flasque
if the restriction maps F(U) — F(V) are surjective whenever V' C U in X. In [27], M. Hovey
extends this terminology to complexes of Ox-modules: an object F € DGMod(Ox) is called a
flasque complex if 77 is a flasque sheaf for every j € Z.

Theorem 4.25 (Hovey, [27], Theorem 5.2). Let X be a separated finite-dimensional Noetherian
scheme. Then the category DGMod(Ox) is endowed with the flat model structure, where the

weak equivalences are the quasi-isomorphisms, and fibrations are epimorphisms with flasque kernel.

Lemma 4.26. Let ¢: F — G be an epimorphism of sheaves of Ox-modules with flasque kernel
over a separated Noetherian scheme X. Then oy : F(V) — G(V) is surjective for every open subset
VCX.

Proof. Let us begin by fixing an open subset V' C X and a section s € G(V). Since ¢ is an
epimorphism, the induced morphism ¢,: F, — G, on the stalk is surjective for every p € V. It
follows that for every p € V' there exist an open subset V,, CV and a section t¥ € F(V,,) such that
ov, (t?) = sly,. Clearly {V,}pev covers V. Now recall that X is a Noetherian topological space,

being a Noetherian scheme. In particular, V' is quasi-compact so that there exists p1,...,p, € V
such that
n
Uw, =V
j=1

for some n € N. Let us assume for the moment n = 2. Define t; = tP* and

k12 = t1lv, nv,, — v, A, -

By hypothesis, k12 lifts to a section k € ker ¢y, C F(Vp,). Now, define to = t"> + k € F(V,,). It
follows the existence of a section ¢ € F(Vp, UVj,) = F(V) such that t|y, =t;; j = 1,2. Hence
p(t) =s € G(V) as required. For n > 2 it is sufficient to proceed by induction on n and reproduce
the argument above. O
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4. From pseudo-modules to derived categories

Theorem 4.27. Let X be a separated finite-dimensional Noetherian scheme over K and let A be

the associated pseudo-scheme, see Example 3.32. Then the functors
T! : ‘I’MOd(A) = DGMOd(Ox)Z T

are Quillen adjoint with respect to the model structure of Theorem 3.47 on YMod(A), and the flat
model structure of Theorem 4.25 on DGMod(Ox).

Proof. The adjointness follows from Proposition 4.24, and the right adjoint Y* preserves fibrations
by Lemma 4.26. Moreover, given a quasi-isomorphism ¢: F — G of complexes of sheaves of Ox-
modules, for every p € X we have an isomorphism

H.(@p): H* (]:p) — H* (gp)

and since H® (F,) = (H* (F))

, We have an isomorphism of complexes of Ox (V')-modules

HE (v 1 (F) (V) = H* (G) (V)

for every open subset V' C X. Hence T* preserves trivial fibrations and the statement follows. [

As an immediate consequence of Theorem 4.27, we have the existence of the total left derived
functor

LY,: Ho(YMod(A)) — Ho(DGMod(Ox)).

4.3 From pseudo-modules to derived categories

The aim of this section is to show that the left derived functor of the extended lower-shriek (see
Theorem 4.27) maps classes of quasi-coherent pseudo-modules in classes of complexes of quasi-
coherent sheaves. Therefore, it is induced a functor

LY,: Ho(QCoh(A)) — D(QCoh(X))

see Theorem 4.32.

Throughout all this section we shall denote by M the deformation model category CDGAHEO,
see Definition 2.9.

We begin by recalling that given a Reedy poset I, a pseudo-module F over a pseudo-scheme
A € USch;(M) is called quasi-coherent if the morphism

Jap: Fo ®a, Ag — Fp

is a weak equivalence in DGMod(Ag) for every o < 3 in I, see Definition 3.49. The full subcategory
of quasi-coherent pseudo-modules is denoted by QCoh(A) C YMod(A4).

Lemma 4.28. Let N be a small direct category and let R be a ring. Consider the category
DGMod(R) of complexes of R-modules. Then for every functor F: N'— DGMod(R) there exists

an isomorphism of R-modules
HI ( colim F | = colim(HY (F,
(cotiya 75 ) = colim(27(7)

for every j € Z.
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4. From pseudo-modules to derived categories

Proof. For every 3 € N consider the exact sequence
: . d] . .
0— ZIFg — F} % 21" Fy — HIT Fy — 0.

Now observe that colim,y is exact, being direct on a category of modules. This means that we have

an exact sequence
(79 iy PR i e
0 — colim(Z? Fjg) — colim(F) ———— colim(Z’™ F) — colim(H’™" Fj) — 0.
BEN BEN BEN BEN
In particular,
colim Z7 F5 = ker {colim djﬁ} =277 (colim Fg) ,
BEN BEN BEN
and then we obtain:
colij{fn ZIT g zi+1 <C01%1 Fg)
colim HIT! Fig = coker {colim djﬁ} =~ FE = o€
BEN BEN ) . . .
Bitl (cohmFlg> Bitl (cohmF5
BEN BEN

= [it! (colim Fg)
BEN

O

Proposition 4.29. Let X be a separated finite-dimensional Noetherian scheme over K with an open
affine cover {U;}icr, and let A € ¥Schy(M) be the associated pseudo-scheme, see Example 3.52.
Consider a quasi-coherent pseudo-module F € WMod(A), see Definition 3.49. Then for every o € 1
there exists a quasi isomorphism

Fo — (T\F) .

in DGMod (OX

), where Y denotes the extended lower-shriek functor, see Definition 4.22.
Ua

Proof. We show that the natural morphism

="1T\F

a

CF, — lim i, (F, X))
o R (ol o, Xo)

Uq

is a quasi-isomorphism by showing that the induced morphism ¢, is so at each stalk, p € U,.
Consider the following chain of equalities

. > = colim (Z',Yg(Fﬁ x4 X'y)N) = colim ((Fﬁ ®xg X’Y)N)p =
“/p

N

(m;)

(CRIISNING P {(Bv)€In | pEUS}

(=) . ~ s ~)
= cﬁoélj{/n ((Fs ®x, X3) )p—cﬁoélgfn (Fg )

where the equality (x) holds since for every 3 < 47 < 75 the vertical morphism induced on the stalk
(Fg ®x, X%) — (F,B ®x4 le) is an isomorphism. Now take j € Z and notice that since N is
P P

connected and whenever 3, < 8, the natural morphism H7(Fg,), — H?(F3,), is an isomorphism

by hypothesis, then

Hi(p,): HI(F,), — Cﬁoeliﬁl HI(Fp), = [Lemma 4.28] = H’ (cgé%(F@)p

and the statement follows. O
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4. From pseudo-modules to derived categories

Remark 4.30. Since the homotopy category of a model category only depends on the class of weak

equivalences, there are fully faithful inclusion functors
Ho(QCoh(A)) — Ho(¥Mod(A))

and
D(QCoh(X)) — Ho(DGMod(Ox))

where Ho(QCoh(A4)) and D(QCoh(X)) should be thought of as localizations of categories with

weak equivalences.

Theorem 4.31 (Bokstedt-Neeman, [5]). Let X be a separated quasi-compact scheme. Consider
the derived category D(QCoh(X)) of cochain complezes of quasi-coherent sheaves over X, and
let Dge (Ox) be the derived category of cochain complexes of arbitrary Ox-modules over X, with

quasi-coherent cohomology. Then the natural functor
D(QCoh(X)) = Dy (Ox)
is an equivalence of categories.

Theorem 4.32. Let X be a separated finite-dimensional Noetherian scheme over K with an open
affine cover {U;}icr, and let A € USchy(M) be the associated pseudo-scheme, see Example 3.52.
Then

LY,: Ho(YMod(A)) - Ho(DGMod(Ox))

maps (classes of ) quasi-coherent pseudo-modules in (classes of ) complexes of quasi-coherent sheaves.

In particular, it is well defined the restriction functor

LY,: Ho(QCoh(A)) — D(QCoh(X))
[f] — [LT!}—].

Proof. The statement immediately follows by Proposition 4.29 and Theorem 4.31. O

4.3.1 A geometric application: The global relative cotangent complex

This subsection is devoted to the study of the global cotangent complex induced by a morphism
A — B of pseudo-schemes A € USch;(M) and B € ¥Sch;(M), see Definition 3.30. In particular,
after giving the definition of the global relative cotangent complex (see Definition 4.34) we shall
prove in Theorem 4.36 that it is consistent if A — B is induced by a morphism of separated
finite-dimensional Noetherian schemes over a field K, see Remark 3.35.

Again, in the following we shall sometimes denote simply by M the model category CDGA%O.

Example 4.33. Let f: I — J be a morphism between Reedy posets, and consider A € ¥Sch (M)
and B € ¥Sch;(M) two pseudo-schemes indexed by J and I respectively. Moreover, take a mor-
phism of pseudo-schemes ¢: f~'4 — B in ¥Sch;(M), see Definition 3.30. Then to every cofibrant
replacement f~'A — R — B in USch;(M) it is associated a pseudo-module Lg/4 € YMod(B)

over B defined as follows:
1. (LB/A)a = QRQ/(}(‘—IA)D{ XR, B, = QRQ/Af(Q) QR, B, € DGMOd(B(X) for every a € I,

2. for every a < 8 in I the morphism (LB/A)Q ®B, Bg — (LB/A)ﬁ in DGMod(Bjg) is simply

the natural composite morphism
QRo/Apay ORa B = Qry /a0y ORs Bs = Qryyass) ®Ors Bp

induced by Kahler differentials.
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Definition 4.34 (The global relative cotangent complex). Let f: I — J be a morphism between
Reedy posets, and consider A € ¥Sch;(M) and B € ¥Sch;(M) two pseudo-schemes indexed by
J and I respectively. Moreover, take a morphism of pseudo-schemes ¢: f~'4 — B in USch;(M),
see Definition 3.30. The class

Lp/a € Ho(YMod(B))

defined by Lg,4 = [Lp/a], see Example 4.33, is called the global cotangent complex associated
to the morphism ¢.

Theorem 4.35. Let f: I — J be a morphism of Reedy posets, and consider A € ¥Sch;(M) and
B € USch;(M) two pseudo-schemes indexed by J and I respectively. Moreover, take a morphism of
pseudo-schemes ¢: f~1A — B in WSch;(M), see Definition 3.30. Then Lp/a is a quasi-coherent
pseudo-module over B, see Example 4.55 and Definition 3.49. In particular, the class Lp,a defined
in 4.34 lies in Ho(QCoh(B)).

Proof. We only need to show that for every a < 8 the composite morphism
QRo/Apay ORa B = Qry /a0y ORs Bs = Qrgyass) Ora Bp

induced by Kéhler differentials is a weak equivalence. The first morphism is a weak equivalence
by Theorem 4.18. In order to show that also the second map is a weak equivalence, consider the
fundamental exact sequence of differential graded Rg-modules associated to Ay — Afg) — Rp

0— QAf(B)/Af(a) ®Ra;p Bp — QRﬁ/Aﬂw - QRﬁ/Aﬂm —0

given by Theorem 4.9. Now, by Definition 3.23 the map Af,) — Aj(g) is a formally open immersion,
see Definition 1.39. Therefore, by Proposition 1.48 the induced morphism

QAf(a)/]K ®As(a) Agp) = QAf(B)/K

is a trivial cofibration. By Theorem 4.9 it follows that QAf(ﬁ)/Af(a) is acyclic, then so is the DG-
module QAf(ﬁ)/Af(a) @A,y Rp, being Apgy — Rp a cofibration. Now notice that QR,;/Af(a) —
Qry/a, 5 is a weak equivalence if and only if

QRs A0 Ors Bs = QRry/a,0) Or,s Bp
is so by Lemma 4.6. The statement follows. O

Theorem 4.36. Let X — Y be a morphism between separated schemes over K. Moreover, assume
X and Y to be finite-dimensional and Noetherian. Chosen affine open coverings for X and Y,
consider the associated morphism of pseudo-schemes f~1A — B in WSchr(M), see Remark 3.35.
Then there exists an isomorphism

LY\Lp/a = Lx)y

in the derived category D(QCoh(X)) of quasi-coherent sheaves over X, where Lx,y denotes the

usual cotangent complex associated to the given morphism of schemes X — Y.

Proof. The statement immediately follows by Theorem 4.35, Theorem 4.32, and Proposition 4.29.
O
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4.4 The global Quillen adjunction

The aim of this section is to prove the global version of Theorem 1.3. Recall that the full subcategory
UMod="(B) C YMod(B) of pseudo-modules concentrated in non-positive degrees admits a model
structure where fibrations and weak equivalences are detected degreewise, see Remark 3.48. The
first step is to extend the pair of functors

Q_,4®_ B: CDGAS" | B= DGMod=’(B): — @B
defined for any B € CDGAE0 to a pair of functors
0!, ®_ B: (CDGAZ"),) | B= UMod="(B): —&'B
defined for a pseudo-scheme B € (CDGAEO) L over an arbitrary Reedy poset I.

Definition 4.37. Let I be a Reedy poset and take a pseudo-scheme B € (CDGA%O)Q. Then it is

defined a functor
0!, ®_ B: (CDGAZ")} | B— UMod=’(B)

where the pseudo-module Qé/A ®c B € \I/ModSO(B), see Definition 3.44, is defined as

1. (Qé/A Rc B) =Q¢, /4, ®c, Ba for every a € 1,

. . . <0
2. forevery a < B in I the morphism (Qé/A ®c B>Q®BaBﬂ — (QIC/A ®c B)ﬂ in DGMod="(Bj)
is the natural composite morphism
Qo /4. @co Bg = Qoyya, @cy Bp = Qcyya, @cs Bs

induced by Kéhler differentials.

For simplicity of notation we will often write 2_,4 ®_ B instead of of e B if no confusion
occurs.

Remark 4.38 (Kéhler differentials as an example of quasi-coherent pseudo-module). Let I be a
Reedy poset and take a pseudo-scheme B € (CDGA%O)IIL‘. Then Proposition 1.48 shows that QE/A
is a quasi-coherent pseudo-module in the sense of Definition 3.49. This motivated the definition of

formally open immersions, see Definition 1.39.

Definition 4.39. Let I be a Reedy poset (see Definition 3.1) and take a pseudo-scheme B €
(CDGA%O)Q. Then it is defined a functor

— @ B: UMod=’(B) — (CDGAZ", | B
M- Mae'B
as follows:
1. (M & B), =M, B, for every a € I,

2. for every a < 3 in I the morphism M, @ B, — Mg @ Bg is the composite morphism in the

bottom row of the commutative diagram

Aq A, Ay

N

MQ@BQHM/g@BaHMg@Bﬂ

in CDGA%O, where the morphism M, ® B, — Mg® B, in CDGA%S is obtained by applying
the functor — @ B, to the map M, — Mgz in DGModSO(B,l)7 which in turn is the adjoint of
the morphism M, ®p, Bz — Mg in DGModSO(Bg).
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4. The global Quillen adjunction

Our next goal is to observe how Theorem 1.3 implies that the functors
(@, ®_B)4(-a&B)
form an adjoint pair.

Proposition 4.40. Let I be a Reedy poset. Then, given a pseudo-scheme B € (CDGAHEO)A, the
functors

0!, ®_ B: (CDGAZ"), | B= ¥Mod="(B): —&'B
form an adjoint pair.
Proof. We shall exhibit a bi-natural bijection of sets
Hom cpeazoy, p (B M &' B) 2 Homyeaso(s) (Qf-?,/A ®r B, M)

for every R € (CDGAZ"), | B and every M € ¥Mod="(B).

First, observe that to give a morphism ¢ € Hom(

data of {¢,} € [] Hom
acl

CDGAS")L B (R,M af B) is equivalent to the
K A
cDGAT |5, (Ro, My, ® B,,) such that the diagram

R, —7% M, ® B,

L

Ry — My & By
commutes in CDGAHE0 for every a < B in I.
Similarly, to give a morphism ¢ € Homygpgoq<o(p) (QE/A QR B,M) is the same as to give a

collection {0} € [] Hompanoas<o(s,) (QEQ/AQ ®r, Ba, Ma> such that the diagram
ael

ba®p, B
QR /4. ®r, Bs ————= M, ®p, Bs

L,

QRﬁ/Aﬁ ®r, Bg Mg

commutes in DGModSO(Bﬂ) for every a < B in I. Notice that by adjunction the commutativity of

the diagram above is equivalent to the commutativity of the diagram

Ya
QR /A, ORy Ba ——— M,

o,

QRB/AB ®r, Bp Mg

in DGMod=’(B,,). The statement follows by Theorem 1.3. O

The last step is to prove the global Quillen adjunction, generalizing Theorem 1.3. Recall that
for every Reedy poset I, given a pseudo-scheme B € (CDGA%O)I{‘, the category TMod="(B) of
pseudo-modules over B admits a model structure, see Theorem 3.47 and Remark 3.48.

Theorem 4.41 (Global Quillen adjunction). Let I be a Reedy poset. Then, given a pseudo-scheme
B € (CDGAZ")L, the pair of functors

0!, ®_ B: (CDGAZ"), | B= ¥Mod="(B): —&'B

is a Quillen adjunction. In particular, QI_/A ®_ B commutes with small colimits and preserves

cofibrations, trivial cofibrations and weak equivalences between Reedy cofibrant objects.
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4. Derivations over Reedy posets

Proof. By Proposition 4.40 it is sufficient to observe that the right adjoint —@®! B preserves fibrations
and trivial fibrations, and this immediately follows recalling that in both model structures on
¥Mod="(B) and (CDGA%O)Q 1 B these classes are defined pointwise. O

Corollary 4.42. Let I be a Reedy poset, and consider a morphism A — B in (CDGAHEO)I. Then
for every cofibrant replacement A — R — B the pseudo module

Q%4 ®r B € YMod="(B)
is cofibrant with respect to the model structure of Theorem 3.47.

Proof. This is an immediate consequence of Theorem 4.41. O

4.5 Derivations over Reedy posets

This section contains basic definitions and preliminary results that will be used in Section 4.6. In
particular, we introduce the complex of derivations for pseudo-modules, see Definition 4.45.

Definition 4.43 (Total-Hom complex over a Reedy poset). Let I be a Reedy poset and consider
two pseudo-modules M, N € YMod(B) over an object B € (CDGA%O)I, see Definition 3.44. The

B-linear Total-Hom complex is defined as
Mg ®@p, By —— M,

|
Homp(M,N) = ¢ {¢a} € H Homp (Ma, No) ‘P5®€53w l*’v commutes for every 5 <y in I
ael

Ng ®p, By — N,
Remark 4.44. Let I be a Reedy poset and consider two pseudo-modules M, N € YMod(B) over
an object B € (CDGAZ’)!. The Total-Hom complex Hom®; (M, N) naturally carries a structure
of DG-module over lim; B € CDGA%O. In fact, for every a € I the complex Homp_ (M, N, ) can
be seen as an object in DGMod(lim; B) through the map lim; B — B, and the subcomplex
Hom (M, N) C [ [ Homp (M, No)
acl
is stable under the action of lim; B.

We now turn our attention to the study of derivations over a Reedy poset.

Definition 4.45 (Derivations over a Reedy poset). Let I be a Reedy poset and consider a
pseudo-module M € YMod(A) over an object A € (CDGAHEO)Q. The space of P-linear derivations

is defined as

Ag—— A,
Derp(A, M) =< {pa} € H Derp (Aa, M) ‘ l% l% commutes for every § < in I
acl
© My — M,

where Mg — M., is the morphism in DGMod(Ag) adjoint to M ®a, A, BN M., Similarly, given
a morphism A S Bin (CDGAZ)L we define

Ag —— A,
Derp(A, B; f) =< {pa} € H Derp (Aa, Ba; fa) ‘ l% i%@a commutes for every 5 <y in I
ael Bﬁ . B,Y

The elements of Derp(A, B; f) are called f-derivations.
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4. Derivations over Reedy posets

Remark 4.46. Notice that given a Reedy poset I and a pseudo-module M € ¥Mod(A) over an
object A € (CDGAZ")L, the space of P-linear derivations Derp (A, M) is endowed with a structure
of DG-module over lim; A € CDGA%O. In fact, for every a € I the complex Derp (Aq, M) can
be seen as an object in DGMod(lim; A) through the map lim; A — A,, and the subcomplex

Derp(A, M) C [] Derp_ (Aa, My) is stable under the action of lim; A. Similarly, given a morphism
acl

AL Bin (CDGA%O)f; the space of f-derivations is an object in DGMod(lim; A).

Theorem 4.47 (Existence of Kahler differentials over a Reedy poset). Let I be a Reedy
poset and let B € (CDGA%O)I{‘. Then there exists a pseudo-module QIB/A € YMod(B) together
with a closed derivation of degree 0, § € ZO(Der*A(B,QjIg/A)), such that for every other pseudo-
module M € YMod(B) the natural morphism

—o06: Homp(Qp,4, M) — Der’y (B, M)
is a natural isomorphism in DGMod(lim; B).

Proof. The pseudo-module Qé /A is obtained applying the functor
0!, ®_ B: (CDGAY") | B — ¥Mod(B)

to B % B (see Definition 4.37). Then the statement follows by Theorem 1.2. O

Let I be a Reedy poset, B € (CDGA%O)I and let f: M — N be a morphism in YMod(B).
The cocone of f is defined by the following

67 . cocone(f)) = M? @ NJ~! — cocone(f)/ = MIT @ NJ

[e%
(m,n) = (dam, f(m) — dyn)
for every o € I and every j € Z. Moreover, for every a < f in I there is an obvious map
cocone(f), ®p, Bg = cocone(fy) ®p, Bp = cocone (f @p, Bg) — cocone(fg) = cocone(f)g

induced by the morphisms M,®p, Bs — Mp and N,®p, Bg — Ng. Hence cocone(f) € YMod(B).
Similarly we can define the cone of a morphism of pseudo-modules. Let I be a Reedy poset, let
B e (CDGAHEO)I and consider a morphism ¢: M — N in Y¥Mod(B). We define the cone of ¢ as

j+1
[e3

cone(gp)é = M({;H D N({;, &

cone(e) cone(p)?, — cone(y)

(m,n) (—df;{lm, Ot (m) + d%m)
for every j € Z and every « € I. Now, for every a < 3 in [ there is a map
cone(p), — cone(p)gs

induced by the morphisms M, ®p, Bs — Mz and N, ®p, Bg — Nz as above. Hence cone(yp) €
UMod(B).

Definition 4.48. Let I be a Reedy poset, B € (CDGAHEO)I and let f,g: M — N be morphisms
in YMod(B). We shall say that f is homotopic to g if there exists h € Homz' (M, N) such that

f—g=hody +dyoh.

The homotopy relation will be denoted by f ~ g.

Remark 4.49. Let I be a Reedy poset, B € (CDGAHEO)I and let f: M — N[n] be a morphism in
UMod(B) for some n € N. If f ~ 0, then [f] = [0] € H"(Homp (M, N)).
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4. Derivations over Reedy posets

The following result gives sufficient conditions for a morphism between pseudo-modules to be
homotopic to zero.

Lemma 4.50. Let I be a Reedy poset, B € (CDGA%O)I and consider a cofibrant object M €
YMod(B).

1. If the map 0 — M is a trivial cofibration in YMod(B), then every morphism M — N in
YMod(B) is homotopic to 0: M — N.

2. Given N € Y¥Mod(B) such that 0 — N is a weak equivalence, then every morphism M — N
in YMod(B) is homotopic to 0: M — N.

Proof. Take a morphism ¢: M — N in YMod(B). In both cases (1) and (2) the diagram of solid
arrows

cocone(idy)

admits the dotted lifting (o, h): M — cocone(idy) in ¥Mod(B), for some h € Homp' (M, N). By

definition, (p, k) is a morphism of pseudo-modules if and only if
p=hody +dyoh
whence the statement. O
The following is another technical result, which will be useful for our applications.

Lemma 4.51. Let I be a Reedy poset, B € (CDGA%O)I and consider two pseudo-modules M, N &
UMod(B). Then
Hom'; (M, N) — Z° (Hom; (M, cone(idn;))))

f=(0f, 1)

is a bijection for every i € Z.

Proof. First notice that an element (g, f) € HomJp (M, cone(idyy;)) is simply the data of a mor-
phism g € Homp (M, N[i+1]) and f € Homp (M, N[i]). By definition, (g, f) € Z° (Hom} (M, cone(idyp;))))

if and only if the conditions
o gtlody = (~1)'dy " ogl
o fitlo dg\/[ — (fl)idg\}ﬂ. ofl =g’

hold for every j € Z. The second condition above is equivalent to require that 6 f = g, so that the
first one follows. This proves that an element (g, f) € Hom}p (M , cone(idN[i])) is a 0-cocycle if and
onlyif g=4f. O

Lemma 4.52. Let I be a Reedy poset, B € (CDGAx)! and consider a pseudo-module T €
UMod(B). Then the functor

Homp(—,T): Y¥Mod(B) — DGMod (lim; B)

maps cofibrations to fibrations.
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4. Derivations over Reedy posets

Proof. Let f: M — N be a cofibration in YMod(B). We need to show that the morphism
f*: Homy(M,T) — Homz (N, T)

is degreewise surjective in DGMod(lim; B). To this aim, take h € Hom'y(M,T) and observe that
by Lemma 4.51 it corresponds to a morphism ¢ € Z° (Hom} (M, cone(idry;))). Now the diagram
of solid arrows in YMod(B)

M2 cone(idpy;)
7
fl o
T
N

admits the dotted lifting i) € Z° (Hom*B(M, cone(idT[i]))), which in turn by Lemma 4.51 corre-
sponds to a morphism h € Hom' (N, T) such that f*(h) = h as required. O

Proposition 4.53. Let I be a Reedy poset, B € (CDGAHEO)I and constder a pseudo-module
T € Y¥Mod(B). Then the functor

Homp(—,T): Y¥Mod(B) — DGMod (lim; B)
maps weak equivalences between cofibrant objects to weak equivalences.

Proof. We first deal with the case of a trivial cofibration f: M — N in YMod(B). We have an
exact sequence

0 — K — Hom’y(N,T) L Hom? (M, T) — 0
in DGMod(limy B). Notice that by Lemma 4.52 f* is surjective since f is a cofibration. We shall

prove that H*(K) = 0. Define J = f(J]VV[ , so that

~

K = {g € Homj(N,T) | f(M) C ker{g} } = Homs(J, T),

Observe that J is cofibrant and acyclic in ¥Mod(B), being f a trivial cofibration. Now, an element
h € Z™ (Hompy(J,T)) is a morphism of pseudo-modules h: J — T[n]. By Lemma 4.50 it follows
that h is homotopic to 0. Therefore

[h) = [0] € H" (Homp(J, T))

and H*(f) is an isomorphism as required. The statement follows by Ken Brown’s Lemma. O

The following result resumes Lemma 4.52 and Proposition 4.53. Recall that by Definition 3.24
the algebra of global sections of B € (CDGAZ")! is defined to be I'(B) = lim;(B).

Corollary 4.54. Let I be a Reedy poset, let B € (CDGAHEO)I and consider a pseudo-module
T € YMod(B). Then the functor

Hom%(—,T): ¥Mod(B) — DGMod(T'(B))°?

is a left Quillen functor, where the right adjoint is defined as
X {Hom;i(B)(X, Ta)} .
acl

Proof. The statement immediately follows from Lemma 4.52 and Proposition 4.53. O
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4. Derivations over Reedy posets

Proposition 4.55. Let I be a Reedy poset and consider a weak equivalence between cofibrant objects
i: A= B in (CDGAZ")L. Then for every pseudo-module M € UMod(B) the morphism

i*: Derp(B, M) — Derp(A, M)
is a weak equivalence in DGMod(limy A). Moreover, if there exists a morphism p: B — A in
(CDGAHEO)fD such that pi = idy, then i* is a trivial fibration.
Proof. Notice that the map ¢* factors as
Derp (B, M) = Homp(Q5,p, M) = Hom’y (R, p, M) = Derp(A, M)

so that the first part of the statement follows by Proposition 4.53. To conclude, observe that if there
exists p as above then i*p* = idDer;( A,u)- Hence i* is degreewise surjective. O

Corollary 4.56. Let I be a Reedy poset and consider a weak equivalence between cofibrant objects
i: S = R in (CDGAHEOHD. Then for every weak equivalence p: R — S in (CDGA%O)Q, the
induced morphism

i*: Derp(R, S;p) — Derp(S, S; pi)

is a weak equivalence in DGMod(limy S). Moreover, if pi = idg, then i* is a trivial fibration.

Proof. Denote by S, € YMod(R) the pseudo-module S where the structure is induced via p.
Similarly, denote by S,; € YMod(S) the pseudo-module S where the structure is induced via the
map pi. Now, notice that the morphism ¢* factors as
Derp (R, S5p) = Derp (R, S,) =
= Hom}(Qﬁ/P, Sp) — Homz(Qs/p ®s R, Sp) = Homg(ﬂfg/P, Spi) =
= Derp(S, Spi) = Derp(S, S; pi)

so that the first part of the statement follows by Theorem 4.41 and Proposition 4.53. To conclude,
observe that if pi = idg then i*p* = idDer};(S,S)- Hence i* is degreewise surjective. O

Lemma 4.57. Let I be a Reedy poset, B € (CDGAxg)! and T € YMod(B) a cofibrant pseudo-

module. Then the functor
Hom% (T, —): ¥Mod(B) — DGMod (lim;B)
preserves fibrations.

Proof. We first deal with the case of an acyclic and cofibrant pseudo-module T' € YMod(B). Let
f: M — N be a fibration in ¥Mod(B) and consider the induced map

fx«: Homy (T, M) — Homz (T, N)

in DGMod(lim; B). Take h € Hom'y(T, N) and consider dh € Hom'y™ (T, N) which is in fact
a morphism dh: T — N[n + 1] in Y¥Mod(B). By our assumption on T, there exists a lifting
g € Z" T (Homz(T, M)) such that f.(g) = dh. By Lemma 4.50 the map g is homotopic to 0, so
that [g] = [0] € H""™(Hom (T, M)). Therefore there exists § € Hom'y (T, M) such that dg = g.
Now, since

d(fg—h)=dfg—dh = fdg—dh = f.(9) —dh =0

we have that (fg — h) € Z"(Hom}(T, N)), and then there exists a morphism h: T — M|n] in
¥Mod(B) such that f,(h) = f§ — h. It follows that h = f.(§ — h) as required. In order to prove
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4. Derivations over Reedy posets

the statement in the general case, let T € YMod(B) be a cofibrant pseudo-module and consider a
factorization

T5T 50
as a cofibration followed by a trivial fibration. In particular, T is cofibrant and acyclic. Now, consider

the following commutative diagram

Homp; (T, M) —— Hom (T, N)

lp* lp*
Hommy (T, M) —~ Hom’s (T, N)
in DGMod(lim; B). The vertical arrows are fibrations by Lemma 4.52, being p: T'— T a cofibration.

Moreover, we have just shown that the upper arrow is a fibration since T is both cofibrant and
acyclic. It immediately follows the surjectivity of f.: Hom3 (T, M) — Hom;(T, N) as required. [

Proposition 4.58. Let I be a Reedy poset, B € (CDGAx)! and consider a cofibrant pseudo-
module T € YMod(B). Then the functor

Hom% (T, —): Y¥Mod(B) — DGMod (lim;B)
preserves weak equivalences and trivial fibrations.

Proof. We first deal with the case of a trivial fibration f: M — N in YMod(B). By Lemma 4.57
we have an exact sequence

0 — K — Hom’y (T, M) £ Hom’y (T, N) — 0
in DGMod(lim; B). Denote J = ker f, so that
K ={g € Homi(T, M) | g(T) C J} = Homz(T, J).

Now, an element h € Z™(Homp (T, J)) is precisely a morphism h: T' — J[n] in YMod(B). Observe
that J is acyclic being f a trivial fibration, so that h is homotopic to the zero map by Lemma 4.50.
Hence [h] = [0] € H"(Homp(T,J)). Now, by Ken Brown’s Lemma it follows that the functor

Hom’ (T, —) preserves weak equivalences, and then Lemma 4.57 implies the thesis. O

The following result resumes Lemma 4.57 and Proposition 4.58. Recall that by Definition 3.24
the algebra of global sections of B € (CDGAZ")! is defined to be I'(B) = lim;(B).

Corollary 4.59. Let I be a Reedy poset, B € (CDGAx)! and consider a cofibrant pseudo-module
T € YMod(B). Then the functor

Hom% (T, —): YMod(B) — DGMod(T'(B))
is a right Quillen functor, where the left adjoint is defined as

X {Hom;:(B)(Ta,X)}aEI.

Proof. The statement immediately follows from Lemma 4.57 and Proposition 4.58. O

Corollary 4.60. Let I be a Reedy poset. Given a cofibrant replacement R 25 S in (CDGA%O)Q,
the morphism
p*: Derp(R, R; f) = Derp(R, S;pf)

is a trivial fibration in DGMod(lim; R).
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Proof. Denote by Ry € Y¥Mod(R) the pseudo-module R with the structure induced via the map
f. Similarly, denote by S,; € YMod(R) the pseudo-module S with the structure induced via the

map pf. Then observe that p* is the composition
Derp (R, R; f) = Derp(R, Ry) = Homg(Qp p, Ry) — Homp(Qp ) p, Spr) = Derp(R, Spp) =
= Derp(R, S;pf)
which is a trivial fibration by Corollary 4.42 and Proposition 4.58. O

Corollary 4.61. Let I be a Reedy poset, and let f: M — N be a weak equivalence (respectively, a
trivial fibration) of pseudo-modules over a cofibrant object R € (CDGA%OHD. Then

f*: Derp(R, M) — Derp(R, N)
is a weak equivalence (respectively, a trivial fibration) in DGMod(lim; R).
Proof. Tt is sufficient to observe that f* is the composition
Derp(R, M) = Homy (2 p, M) = Homp(2%,p, N) = Derp(R, N)

which is a weak equivalence (respectively, a trivial fibration) by Corollary 4.42 and Proposition 4.58.
O

4.6 Cohomology of derivations in terms of the cotangent
complex

The aim of this section is to compute the cohomology of the DG-Lie algebra of derivations as-
sociated to a cofibrant replacement of a separated scheme in terms of its cotangent complex, see
Theorem 4.64. Throughout all this section we shall denote by X a fixed separated scheme over a
field K of characteristic 0.

In the following we shall denote by D(Ox) the standard derived category of sheaves of Ox-
modules. Moreover, K(Ox) denotes the standard homotopy category of sheaves of Ox-modules:
objects in K(Ox) are the same as DGMod(QOx ), while morphisms are taken up to the homotopy
equivalence defined by ~j,. By definition, ¢ ~j ¥ if and only if there exists

UES Hom@i (A, B)

such that ¢ —1¢ = nods —dpon. Recall that the derived category can be obtained by localising the

homotopy category to the class W of quasi-isomorphisms, i.e. D(Ox) = K(Ox)[W], see e.g. [15].
Let X be a separated finite-dimensional Noetherian scheme over K and let Sx be the associated

pseudo-scheme, see Example 3.32. Recall that by Theorem 4.27, there is a Quillen adjunction

Tg: \I’Mod(Sx) — DGMOd(Ox)Z T

with respect to the model structure of Theorem 3.47 on ¥Mod(Sx ), and the flat model structure of
Theorem 4.25 on DGMod(Ox). In order to prove the main result of this section (see Theorem 4.64)
we begin with two preliminary results.

Lemma 4.62. Let X be a separated finite-dimensional Noetherian scheme over K. Then there

erists an isomorphism
Hom;c(ox)('f;]:, Ox [k]) = HOHID(OX)(T[]:, Ox [k])

for every k € Z and every cofibrant pseudo-module F € $Mod(Sx), see Definition 3.44.
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4. Cohomology of derivations in terms of the cotangent complex

Proof. Let Ox — J* be an injective resolution of Ox. We have the following chain of isomorphisms.

1%

Homy (o) (T1F, Ox [k]) = H* (Hom,  (Y1F, Ox)) = [ Theorem 4.27 |
Homj (F,Sx)) =
Homj (F,YT*J*))

=~ H* (Homg, (N\F,J*))
)

)

~ ~

[ Proposition 4.58 |
& [ Theorem 4.27 | &

~

H* (
H* (

2

Il

fHom,C(oX)(TJ-' J* [k
—HOmD(@X)(Tuf" J* [k]
—HomD(OX)(Tu]: Ox[k‘}

[15] =

1

~—

O

Lemma 4.63. Let K be a field of characteristic 0, let X be a separated finite-dimensional Noethe-
rian scheme over K and consider its cotangent complex Lx as an object in the derived category

D(Ox). Then there exists an isomorphism of sets
Hompo ) (Lx, Ox[k]) = Ext (Lx,Ox) .

Proof. Take an injective resolution Ox — J*, with J* € DGMod(Ox). Recall that by definition
Ext’éx (Lx,0Ox) = H* (Homp, (Lx,J*)), and notice that
0 * *
H* (Hom} (L, J*)) = 2 (Homo, (Lx, JKD) / — Homgoy) (L, J*[K]) =
= [15] = Homp(o) (Lx, J*[k]) = Homp o) (Lx, Ox[k])
whence the statement. O

We are now ready to relate the cotangent complex Lx of a separated K-scheme X with the

cohomology of the DG-Lie algebra of derivations associated to a cofibrant replacement R Bl X
of the pseudo-scheme associated to X.

Theorem 4.64. Let K be a field of characteristic 0, let X be a separated finite-dimensional Noethe-
rian scheme over K, and consider the associated pseudo-scheme Sx € WSch;(M), see Exam-
ple 3.32. Take a cofibrant replacement R EALN Sx in (CDGA%O)I. Then for every k € Z

H* (Derk (R, R)) = H* (Hom}, (Qr/x ®r Sx,Sx)) = Ext}  (Lx,Ox)

where Lx denotes the cotangent complex of X, while Derg (R, R) is the DG-Lie algebra of deriva-
tions of R, see Definition 4.45.

Proof. We proceed by proving a series of isomorphisms. In the following, we shall sometimes think
of Sx as a pseudo-module over R through the map R — Sx. Fix k € Z and consider the chain of

isomorphisms
H* (Dery (R, R)) = [Theorem 4.47] = H* (Hom} (QE/K ) R)) = [Corollary 4.61] =
~ gk (Hom}% (QE/K,S;()) ~ gk (Homfgx (QE/K QR SX,SX)>

where the last isomorphism has been obtained by observing that the standard base change for
DG-modules naturally extends to pseudo-modules. Now, by definition it follows that Sx = T*Ox;
therefore by the adjunction of Theorem 4.27 it follows that

z" (Homgx (Qf;c /x ©r Sx, SX)) =~ 7 (Hom’(‘gx (T!(Qg % Or Sx), (’)X))
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so that by recalling the definition of the differential in the Total-Hom complex we obtain

H* (HOHIEX (T!(Q%{/K ®r Sx), @X)> o Z0 (Homfgx (TI(Q{%/]K ®R SX)’OX[k]))/Nh

where Ox [k] denotes the sheaf Ox shifted in degree —k, and ¢ ~y, ¥ if and only if there exists
n e Homéi (T!(QE/K ®r Sx), OX)

such that ¢ — ¢ = nOdT (

! QQ/K®RSx) —doykon= UOdT! (Q ) Hence we proved that there

I
r/x ORSX
exists an isomorphism

H* (Der} (R, R)) = Homy (o, ) (T; (Qg x ®R SX) L Ox [k])

where C(Ox) denotes the standard homotopy category of sheaves of Ox-modules.
Now, notice that R is cofibrant by hypothesis, so that QE/K ®pr Sx is cofibrant in YMod(Sx)

by Theorem 4.41, and therefore T, (QE/K ®Rr SX) is cofibrant in DGMod(Ox) being T, a left
Quillen functor by Theorem 4.27. Hence, by Lemma 4.62 we have an isomorphism

Homy (o) (T, (Qg K ©R SX) Oy [k:]) =~ Hom poy) (T! (Q{z K ®R SX) Oy [k])

where D(Ox) denotes the standard derived category of sheaves of Ox-modules. Moreover, by

Theorem 4.36 there exists an isomorphism
Homp(o,) (r! (Qg x ®R SX) L Ox [k]) =~ Homp o) (Lx, Ox|[k])
and by Lemma 4.63 we obtain
Homp o) (Lx, Ox[k]) 2 Ext§, (Lx,Ox)

whence the statement. O
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Chapter 5

DEFORMATIONS OF SCHEMES

This chapter is devoted to the study of infinitesimal deformations of a separated K -scheme X. The
main idea is to think of X as a pseudo-scheme Sx € (CDGAg)! indexed by the nerve I of an
arbitrary affine open cover, see Example 3.32. The crucial (technical) point is that (CDGAx )’ is a
deformation model category (see Definition 2.9) satisfying the axioms required by the Deformation
Theory on model categories developed in Chapter 3.

In particular, in Section 5.1 and Section 5.2 we prove that for every surjective map A — B in
Artg the morphism ¢(A) — ¢(B) is a small extension (in the sense of Definition 2.2) satisfying
Axiom 2.21 and Axiom 2.26, while Section 5.4 deals with lifting results in (CDGAx )! expressed
in terms of smoothness of certain natural transformations.

In Section 5.3 we describe the differential graded Lie algebra controlling deformations of a cofi-
brant pseudo-scheme, and in Section 5.5 we show how this is linked with infinitesimal deformations
of a separated K-scheme. The main (geometric) result is Theorem 5.46, which will be discussed in
detail through the example of the cuspidal cubic in IP’?C, see Section 5.5.1.

5.1 Lifting of idempotents over Reedy posets

The aim of this section is to prove the statement below, which requires several preliminary results.
The complete proof will be given in Theorem 5.11. Recall that by Definition 2.17, a morphism
e: A — Ain a category C is called idempotent if e o e = e. Moreover, if C is a category with weak
equivalences, a morphism e: A — A is a trivial idempotent if e is both an idempotent and a weak
equivalence.

Theorem 5.1 (see Theorem 5.11). Let I be a Reedy poset and let A — B be a surjective morphism
in Artg . Moreover, consider a cofibration ga: Pa — Ra between flat objects in (CDGA%O)I, and
denote by

gp: PB=P4s®a B — Ra®a B=Rp

the pushout cofibration in (CDGA%O)I. Let fp: Rp — Rp be an idempotent in (CDGAHEO)QB,
and assume that the reduction
f=/B®K:R=RpepK - RpepK =R

is a weak equivalence in (CDGAHEO)I.

(CDGAR")L, lifting 5.

Then there exists a trivial idempotent fa: R4 — Ra in

Remark 5.2. The result above can be rephrased in terms of smoothness of a certain natural trans-
formation, see Corollary 5.29. This will make clear that Theorem 5.11 is equivalent to the following
statement: for every surjective map A — B in Artg the small extension ¢(A) — ¢(B) satisfies
Axiom 2.21, see Definition 2.2.
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5. Lifting of idempotents over Reedy posets

Remark 5.3. Recall that by Remark 3.25 R4 is a flat object in (CDGAS®)! if and only if it is
pointwise flat, i.e. R4 is flat in (CDGA%O)I if and only if R4 o is flat in CDGA%O for every a € I.

Our first preliminary lemma can be rephrased saying that for every A € Artg the morphism
¢(A) — ¢(K) belongs to (CDGAHEO)I (c(K)), see Definition 2.1.

Lemma 5.4. Let I be a Reedy poset, let A € Art and consider a morphism f: P — M in
(CDGA%O)I between flat objects. Then f is an isomorphism (respectively, weak equivalence) if and
only if its reduction P @4 K — M ®4 K is an isomorphism (respectively, weak equivalence) in
(CDGAZ").

Proof. We prove the statement assuming f to be a weak equivalence. The proof when f is an
isomorphism is similar. First notice that in a left-proper model category, weak equivalences between
flat objects are preserved by pushouts. Therefore the reduction P ® 4 K — M ®4 K is a weak
equivalence too. For the converse, we proceed by induction on the length of the Artin ring. Take
A € Artg, choose an element ¢t € A annihilated by the maximal ideal m4 and consider the induced

small extension
0K %A B-o.

I
We have a commutative diagram in (DGModSO(A)>

0—=PsK-+>P— >PR,B—>0

L]

0— MoKt sM—~Po4B—>0

where P®4 B — M ®4 B is a weak equivalence by induction and the rows are exact, being both

P and M A-flat. Therefore, for every j € Z it is induced a commutative diagram
Hj_l(P ®4 B) 4>Hj(P ®4K) 4>HJ(P) 4>Hj(P®A B) 4>Hj+1(P ®a K)
HI"Y M ®4 B) — H/ (M ®4 K) — H/(P) —— H/(M ®4 B) — H/"1(M @4 K)
with exact rows. The statement now follows by the five lemma. O

Remark 5.5. Lemma 5.4 implies that every surjective morphism A — B in Artg is a small extension
in the sense of Definition 2.2.

Recall that CGA]%0 denotes the category of commutative graded algebras over K concentrated
in non-positive degrees.

Lemma 5.6. Let I be a Reedy poset and consider a commutative diagram of solid arrows

mn (CDGA%U)I. If i is a cofibration and p is surjective, then there exists the dotted liftingv: C — E
in the category (CGAHEO)I.

Proof. Consider the killer algebra A[d~!] € CDGA§0 defined as the polynomial algebra gener-
ated by a symbol d=! of degree —1, equipped with the differential d(d=') = 1. It is a contractible



5. Lifting of idempotents over Reedy posets

A-module, the natural inclusion a: A — A[d~!] is a morphism of DG-algebras and the natural pro-
jection B: A[d~!] — A is a morphism of graded algebras; moreover Ba is the identity on A. For no-
tational simplicity, we shall denote by A[d~"] itself the constant diagram c(A[d~']) € (CDGAS").
Now, the morphism
_1, pllid _1
Elly A[d™'] — DI A[d™"]

is a trivial fibration and then there exists a commutative diagram

P—— S Ell, Ald]

C —o¢f> DIy A[dil]

in (CDGA%O)I. It is now sufficient to take v = Se. O

Proposition 5.7 is the “algebraic version” of Theorem 5.11, which is the main result of this
section.

Proposition 5.7 (Algebraic lifting of idempotents). Let I be a Reedy poset, i: A — P a morphism
n (CGA%O)I, and J C A a pointwise graded ideal satisfying J> = 0 for every o € I. Moreover,
consider a morphism g: P — P in (CGAZ®)T such that gi = i. Denoting g: P/i(J)P — P/i(J)P
its factorization to the quotient, assume that g> = g. Then there exists a morphism f: P — P in
(CGAZT such that f> = f, fi=1i, and f =g, i.e. f=g (mod i(J)P).

Proof. First notice that the condition gi = ¢ implies that g(i(J)P) C i(J)g(P) C i(J)P, so that
the induced morphism g is well defined. For notational convenience, in the rest of the proof we
shall write J in place of i(J), since no confusion occurs. Notice that for every x € JP we have
g*(x) = g(z); in fact take o € I and consider = = i,(a)p, with a € J, and p € P,, then

92(iaa)p) — galia(a)p) = ia(a)(ga(p) — ga(p)) € JiPa =0.

Now denote by ¢ = ¢g? — g: P — P. By hypothesis we have ¢i = 0, ¢(P) C JP, and g¢p = ¢g.
Moreover, for every o € I the morphism ¢, is a g,-derivation; in fact for every p,q € P,

ba(pq) = 92 (1)92(2) — 9a(P)9a (@) = g2 (P)Ba(a) + da(P)9a(q) = 9o (P)Pa(q) + da(P)ga(q),

where the last equality follows since g2(p)da(q) = ga(P)da(q), being ¢u(p)palq) € J2P, = 0.
Define ¢¥: P — JP as ¥ = ¢ — g¢ — ¢g, and notice that

1. 9(J) =0, ¥i =0,
2. ¢® =0 and ¢* = gy = vg = ¥g?,
3. 1 is a go-derivation for every o € I,
4o =gy =g =¢.

In particular

G+ ¥ —(g+v)=d—v+gh+1g=0.

To obtain the statement it is then sufficient to define f = g + ¢ = 3g% — 2¢3, which is a morphism
in (CGA%O)I satisfying the required properties. O

Remark 5.8. The previous result actually holds even if we replace CGA]%O with the category of
unitary graded commutative rings.
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5. Lifting of idempotents over Reedy posets

Lemma 5.9. Let I be a Reedy poset, let S % R S be a retraction in (CDGAHEO); and denote
f=1ip: R— R. Let « € Derp(R, R; f) and B € Derp(S,S) be P-linear derivations such that the

diagram

R—p>5*i>R
b
R-2s85 "R

commutes. Then iBp € Der*(R, R; f) and, setting v = a — 2ip we have
Yy=f-fr=a
Conversely, given any v € Derp(R, R; f), the P-linear f-derivation a =y — v f — fv satisfies
a(ker(p)) € ker(p),  a(i(S)) € i(95)
and factors through a derivation f: S — S as above.
Proof. Observe that i8p is an f-derivation being f = ip. Moreover, since pi = id we have

vy—"f — fv=a—2ifp — aip + 2iBpip — ipa + 2ipifp =
= a — 2iBp + 2iBp + 2ifp — 2aip = «.

Conversely, take v € Derp (R, R; f) and define a = v —~f — fv. Now, observe that ker(p) = ker(f),
and since

falz) = fy(@) = fy(2) = 1f(2) = 7f(2)
we have a(ker(p)) C ker(p). Similarly, since i(S) = f(R) the chain of equalities
af =yf =9 = frf =~frf

implies that «(i(S)) C i(S). Notice that 8 = pai = —pryi, so that af = i8p. To conclude the proof
recall that the restriction of f to S is the identity, therefore 3 is a P-linear derivation. O

Proposition 5.10. Let I be a Reedy poset, let R € (CDGAH%OH3 be a cofibrant object and consider
a trivial idempotent f: R — R in (CDGA%O)f), Then

D ={y€Derp(R,R; f) | v = fy+7f} C Derp(R, R; f)
is an acyclic subcomplex.
Proof. We can write f = ip for a retraction
SHRE S

between cofibrant objects in (CDGAHEO)fD. Since i and p are retracts of f, they are weak equiva-

lences; in particular p is a trivial fibration. By Lemma 5.9 there exists a short exact sequence

0 — D — Derp(R, R; f) 22002000, ey
in the category DGMod(lim; R), where
K = {(a,8) € Derp(R, R; f) x Derp(S,S) | Bp = pa,ifl = ai}.
Since p is a trivial fibration and R is cofibrant, the map

p«: Derp(R, R; f) — Derp(R, S;pf)
¥ = py
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5. Lifting of idempotents over Reedy posets

is a trivial fibration by Corollary 4.60. Moreover, since S is a retract of R, the map i is a weak
equivalence between cofibrant objects. Therefore, the morphism

i*: Derp(R, S;p) — Derp(S, S;id)
Ol e’

is a trivial fibration by Corollary 4.56. In order to prove the statement it is then sufficient to prove
that also the projection K — Derp (5, S) is a weak equivalece. Since every 8 € Derp(S,.S) lifts to

(ifp, B) € K, we have a short exact sequence
0 — H — K — Derp(S,5) — 0,

where
H = {a € Derp(R, R; f) | ai = par = 0} = {a € Derp(R, ker{p}) | i =0},

where the (lim; R)-module structure on ker{p} is induced via the morphism f. Therefore we have

a short exact sequence
0 — H — Der’p(R, ker{p}) = Der’p (S, ker{p}) — 0

and by Proposition 4.55 the map ¢* is a trivial fibration. It follows that H is an acyclic complex,

so that the projection K — Der}p (S, S) is a weak equivalence as required. O

Theorem 5.11 (Lifting of trivial idempotents). Let I be a Reedy poset and let A — B be a
surjective morphism in Artg . Moreover, consider a cofibration ga: P4 — Ra between flat objects
in (CDGA%O)I, and denote by

gB:PB:PAHAB—)RAHAB:RB

the pushout cofibration in (CDGAZ")! . Let fz: Rp — Rp be an idempotent in (CDGA%O)},B,
and assume that the reduction

f:fBHBK:RZRBHBK —)RBHBK =R

is a weak equivalence in (CDGA%O)I. Then there exists a trivial idempotent fa: R4 — Ra in
(CDGAZ)L lifting fp.

Proof. Tt is not restrictive to assume the morphism A — B comes from a small extension
05K -54-5B—0

in Artg . Since g4 is a cofibration, Lemma 5.6 lifts fp to a morphism of graded algebrasr: R4 — Ra
commuting with g4, and by Proposition 5.7 we may assume 72 = r. Let P = P, I14 K, and denote
by d € Homz (Ra, Ra) the differential of R4. Then

dr — rd = tym, for some v € Derp(R, R; f)

where R 5 R, is the morphism induced by the small extension while R4 =+ R is the natural
projection. It follows that v is a cocycle in the complex D of Proposition 5.10. In fact ¢f = rt and
mr = fm, so that

t(dyp + d)m = d(dr — rd) + (dr — rd)d = 0,

t(f + o f)r = rdr — r’d + dr* — rdr = dr — rd = tym.
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5. Lifting of factorizations over Reedy posets

Therefore there exists h € Der%(R, R; f) such that
dh — hd = 1, fh+hf—h=0.
Setting f4 = r — thm we have that f4 is a morphism of graded algebras. Moreover
f2 = fa=—t(hf+ fh—h)w =0, dfa — fad = t(1) — dh + hd)r = 0.
O

Remark 5.12. By Lemma 5.4 every surjective morphism A — B in Artk is a small extension in
the sense of Definition 2.2. Therefore, it makes sense to ask whether it satisfies Axiom 2.21 or not,
and it turns out that this is always the case. In Section 5.4 we shall rephrase Theorem 5.11 in order
to make this passage clear, see Corollary 5.29.

5.2 Lifting of factorizations over Reedy posets

As already outlined at the beginning of the chapter, the aim of this section is to show that for
every surjective map A — B in Artg the induced small extension (see Definition 2.2) ¢(A4) — ¢(B)
in the deformation model category (CDGAHEO)I satisfies Axiom 2.26. Actually we shall prove
stronger results (see Theorem 5.13 and Theorem 5.15), and the required statement will follow, see
Corollary 5.16.

Theorem 5.13. Let I be a Reedy poset, let A € Art and consider a morphism f: P — M in
(CDGA%O)I between flat objects. Then every factorization of the reduction of f

P=Pa,K SO0 M=MosK

lifts to a factorization

[ 3 - ANV

with Q @4 K = Q.
Proof. We have a commutative diagram

f

TN

—_— XﬁM—>

c = Fw
Q

|

in (CDGA%O)I. Taking a factorization of g we get

C D FW
\L}'W

Sl<—=x

P—2Qxy M2 s M
P C @ FW M

Notice that the composite map D — @ is surjective. Now D and M are A-flat and therefore the
morphism D = D®4 K — M is a weak equivalence, and since it factors through D — Q W, M,
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5. Lifting of factorizations over Reedy posets

the surjective map p: D — Q is a trivial fibration. It follows the existence of a section s: Q — D
commuting with the maps P — D and P — Q. Since P — D is a cofibration, by Theorem 5.11 the
idempotent € = sp: D — D lifts to an idempotent of e: D — D. Setting Q = {x € D | e(x) = x},
by Proposition 2.20 we have that Q ®4 K = Q and P — Q is a cofibration because it is a retract
of P— D. O

Corollary 5.14. Let I be a Reedy poset, let A € Art and consider a morphism f: P — M in
(CDGAEO)I between flat objects. Then f is a cofibration if and only if its reduction P ® 4 K —
M @4 K is a cofibration in (CDGAHEO)I.

Proof. If P4 K — M ®4 K is a cofibration, by Theorem 5.13 there exists a factorization P £>
Q T, M such that Q4K =M ®, K. Since @ and M are A-flat the morphism @ — M is
an isomorphism by Lemma 5.4. The converse holds since the class of cofibrations is closed under
pushouts. O

Theorem 5.15. Let I be a Reedy poset, let A € Art and consider a morphism f: P — M in
(CDGAEO)I between flat objects. Then every factorization of the reduction of f

P=Pao,K X005 M=MeosK

lifts to a factorization

P05 M

with Q @4 K = @

Proof. The proof is essentially the same as in Theorem 5.13. We have a commutative diagram
f

-9 @ JT

’ l

cw

.
i

<7
-
“

]
<|

in (CDGA3’)!. Taking a factorization of g we get
2 LM

H@X]\T

: l

cw

)

-~

ol

Notice that the composite map D — @ is surjective in negative degrees and hence a fibration. Now
D and P are A-flat and therefore the morphism P — D = D @4 K is a trivial cofibration by
Lemma 5.4. Moreover, since P — @Q factors through P — D, the surjective map p: D — Q is a
trivial fibration. It follows the existence of a section s: Q — D commuting with the maps P — D
and P — Q. Since P — D is a cofibration, by Theorem 5.11 the idempotent € = sp: D — D lifts
to an idempotent of e: D — D. Setting Q = {x € D | e(z) = =}, by Proposition 2.20 we have that
Q4K =Q and P — Q is a cofibration because it is a retract of P — D. O
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5. Deformations of cofibrant pseudo-schemes

Corollary 5.16 (CW-pushout of deformations). Let I be a Reedy poset, let A € Artx and consider
a flat object P € (CDGA%O)I. For every trivial cofibration f: P=P 24K — Q in (CDGA%O)I
there exist a flat object Q € (CDGA%O)I such that Q @4 K = Q and a lifting of f to a trivial
cofibration f: P — Q.

Proof. Tt is sufficient to apply Theorem 5.15 to the factorization P w, Q 0. O

Remark 5.17. As we shall prove in Proposition 5.30, Corollary 5.16 implies that if we choose the
deformation model category M = (CDGAEO) , see Definition 2.9, then for every A € Artg the
morphism (4 — K) € M(K) satisfies Axiom 2.26.

Corollary 5.18 (CW-pullback of deformations). Let I be a Reedy poset, let A € Artg and con-
sider a cofibrant object @ € (CDGAEO)I. For every trivial cofibration f: P — Q = Q ®4 K in
(CDGA%O)I there exist a flat object P € (CDGA%O)I such that P ®4 K = P and a lifting of f
to a trivial cofibration f: P — Q.

Proof. Since P is fibrant the diagram of solid arrows

F id P

B

|

QO

admits the dotted lifting p: Q — P in (CDGA%O)I. In particular, P is the fixed locus of the trivial
idempotent € = fop: Q — Q. By Theorem 5.11 there exists a trivial idempotent e: Q — @ whose
fixed locus P = {x € Q | e(z) = z} satisfies P ®4 K = P, see Proposition 2.20. The lifting of f is
given by Theorem 5.15. O

5.3 Deformations of cofibrant pseudo-schemes

This section describes the differential graded Lie algebra controlling strict deformations of a cofi-
brant pseudo-scheme, see Definition 2.23. This result, which will be proven in Theorem 5.24, repre-
sents the first step in order to control deformations of separated K-schemes, see Section 5.5. Notice
that every strict deformation of a cofibrant pseudo-scheme is in fact a cofibrant pseudo-scheme, see
Proposition 5.23.

For the notion of functor of Artin rings we refer to [34, Definition 3.1], which is slightly
different from the original one given in [44].

Definition 5.19. Let I be a Reedy poset. To every pseudo-scheme R € (CDGA%O)I it is associated
a functor of Artin rings
Dg: Artg — Set

defined by

morphisms R4 — R in (CDGA%O)I such that R, is flat,
Dr(4) =

and the reduction R4 ®4 K — R is an isomorphism

for every A € Artg. Two infinitesimal deformations Rs — R and R/, — R are isomorphic if
and only if there exists an isomorphism R4 — R 'y in (CDGA%O)I such that the diagram

RA—>R’

NS
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5. Deformations of cofibrant pseudo-schemes

commutes.

Remark 5.20. Notice that Definition 5.19 can be seen as a particular case of Definition 2.23. In fact,

given R € (CDGA%O)I an infinitesimal deformation R4 — R is precisely a strict deformation

¢(A) ——= R4

L

¢(K)——R

of the (unique) morphism ¢(K) — R over the small extension ¢(4) — ¢(K) in the sense of Defini-
tion 2.23.

The aim of this section is to study the deformation functor Dg: Artx — Set associated to a
cofibrant pseudo-scheme R € (CDGA%O)I . In particular, we shall prove in Proposition 5.23 that
whenever R is a cofibrant pseudo-scheme in (CDGAH%O)I , then for every strict deformation

C(A) — R4

L

¢(K)——R

of R over the small extension ¢(A) — ¢(K) the object Ry € (CDGA%O)I is in fact a cofibrant
pseudo-scheme.

Lemma 5.21. Let I be a Reedy poset, A € Artg and consider a (trivial) fibration p: S — R in
(CDGAEO)I, Then for every surjective morphism A — B in Artg the natural morphism

S—)RXR®AB (S@AB)
is a (trivial) fibration.

Proof. Denote by J the kernel of A — B. Fix a € [ and i < 0. If S — R! is surjective the
following commutative diagram

St a4 —=8 ——= S @4 B—>0

]

R.®sJ —=R, ——>R ®4B—=0

l

0
has exact rows and columns. By diagram chasing, it immediately follows the surjectivity of
SL = Rl Xpig.p (Sh®4 B).
If moreover p is a weak equivalence, then
RXxpe,p(S®aB)— R

is so, since trivial fibrations are stable under pullbacks. The statement follows by the 2 out of 3

axiom. O

Proposition 5.22. Let I be a Reedy poset, A € Artg and consider an object Ry € (CDGA%O)I,
Denote by R = Ra ®4 K its reduction in (CDGAg)!. Then the following are equivalent:
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5. Deformations of cofibrant pseudo-schemes

1.

2.

3.

R4 is cofibrant,
R is cofibrant and R4 is flat,

R is cofibrant and R4 is isomorphic to R ®k A as diagrams of graded A-algebras.

Proof. We prove the statement in three steps.

(1) = (2)

(2) < (3)

Every cofibration is flat, and cofibrations are stable under pushouts. Hence (1) implies (2).

Since I is a Reedy poset and the notion of flatness only depends on fibrations and weak
equivalences, the flatness of R4 can be checked pointwise. Moreover, since A € Artkx the
DG-algebra R, ®k A is A-flat for every o € I. Hence (2) implies (3). Conversely, since R is
cofibrant, by Lemma 5.6 the commutative diagram of solid arrows

K ——= Ry4

| =7

Toid
—_—

admits the dotted lifting h: P — R, which is a morphism of diagrams of graded K-algebras.
By scalar extension, this gives a morphism h: P @x A — R4 of graded A-algebras. We shall
prove that h is an isomorphism by induction on the length of A. To this aim, given a small
extension

05K 54-5B-0

in Artg we consider the following commutative diagram of functors of graded A-modules

—R—R®k A——R® B——0

R

R Ra Ra®sB——0

where the rows are exact, being R4 an A-flat object. The statement follows by the five lemma.

Take a factorization A — S4 < Ra as a cofibration followed by a trivial fibration. Define
S =54®4K and observe that S 4 is isomorphic to S ®k A as a functor of graded A-algebras.
We shall prove by induction on the length of A that A — R4 is a retract of A — S4. To this
aim, consider a small extension

0K 5A5B=0

in Artg. Since both R4 and S, are A-flat, we obtain two exact sequences of functors of
differential graded A-modules

0= R Ra— Ra®aB—0, 055 84— Sa®aB =0,

and by induction there exists a retraction

B id B id B

o, |

Ra®aB—'>5,04B—">Ry04B.

Since p is a trivial fibration, there exists a short exact sequence

0—>ker{S—>R}i>S’A—>RA XRA®AB(SA®AB)%O
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5. Deformations of cofibrant pseudo-schemes

and f is uniquely determined by its restriction to R. By Lemma 5.21 it follows that ker{S —
R} is acyclic, and by Lemma 5.6 the diagram above lifts to a commutative diagram of functors
of graded A-algebras

A id A id A

L

Ry ——S4——R,4.

Define ¢ = dg, f'— f'dr,: Ra — Sa and notice that its image is contained in t-S4 = S, and
p = 0 being pf’ a morphism of functors of DG-algebras. Moreover, ¥)(R ®g m4) = 0 and

Y € Z* (Dery (R, tker{S — R})),

where the pseudo-module structure of tS4 over R is well defined being ¢ annihilated by the
maximal ideal my. By Corollary 4.61, since R is cofibrant and tker{S — R} is an acyclic
pseudo-module, [¢p] = [0] € H! (Derg (R,tker{S — R})) . Therefore ) = dys,n — ndg for
some 7 € Der% (R, tker{S — R}), and the morphism f = f’ + 7 gives the required retraction.

O

Proposition 5.23 (Closure of cofibrant pseudo-schemes under strict deformations). Let I
be a Reedy poset and denote by M the deformation model category CDGAHEO. Consider a cofibrant
pseudo-scheme R € USchi(M) together with a strict deformation

C(A) — Ry

L

¢(K)——R

of the morphism ¢(K) — R over the small extension ¢(A) — ¢(K) in the sense of Definition 2.23.
Then R4 is a cofibrant pseudo-scheme.

Proof. First notice that by Proposition 5.22, R4 is cofibrant in (CDGA%O)I being R = Ry @4 K
cofibrant in CDGAHEO. Recall that CDG:AH%O is a deformation model category, see Example 2.10.
Now, by Definition 3.23 we need to show that the map

RA,a — RA,g

is a formally open immersion for every a < S in I. To this aim, we begin by showing that
R4.o — Ra,p is a W-immersion. To begin with, observe that since the category is left-proper every
cofibration is a W-cofibration. Moreover, applying the functor — ® 4 K : CDGA%0 — CDGA]%0
to the map
Rap @Ry, Rap— Rap
we obtain the codiagonal
Rg ®r, Rg — Rg

which is a weak equivalence by hypothesis. By Lemma 5.4 the map Ra g ®g, ., Rapg — Rag
is a weak equivalence too. Hence R4 — Rap is a W-immersion by Remark 4.2. Now, since

Raa — Rapg is a cofibration between cofibrant objects, by Corollary 4.19 it follows immediately
that the morphism

QR 0/A ORa W Rag — Qry 474

is a trivial cofibration in DGMod=°(R4 3) whenever a < 8 in I. Now the statement follows by
Remark 4.3. O
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5. On the smoothness of certain natural transformations

Let I be a Reedy poset. Recall that to every R € (CDGAHEO)I it is associated a differential
graded Lie algebra Derg (R, R) as explained in Definition 4.45, which in turn induces a deformation
functor Defpe,s (r,r): Artg — Set. In the following result we denote by MCpex (r,r)(A) the set
of Maurer-Cartan elements, i.e.

1
MCpers (r,r)(A4) = {77 € Derg (R, R) @k ma | dn+ 5[77777] = 0} :

Theorem 5.24 (Deformations of cofibrant pseudo-schemes over Reedy posets). Let I be
a Reedy poset and let R € (CDGAKk)! be a cofibrant pseudo-scheme. Then there exists a natural
isomorphism of functors

¢1: Defper: (rr) = Dr

induced by 1 (£4) = (R®k A,dr + &a) for every £a € MCper: (r,R) (A).

Proof. Take A € Artk and notice that by Proposition 5.22 a deformation R4 — R in Defgr(A) is
equivalent to a deformation di + &4 of the differential dg € Derg (R, R); i.e. to an element 4 €
Derj, (R, R) ®x my such that (dg +£4)? = 0. Moreover, the integrability condition (dg 4 £4)? = 0

can be written in terms of the Lie structure of Derg (R, R) Qg my:

0= (dr+&a)* = dpéa + Eadr + Ea€a = 64(Ea) + %[gAva]A

where d4 and [—, —] 4 denote the differential and the bracket of the DG-Lie algebra Derg (R, R) ®x
my respectively.

The statement follows observing that the gauge equivalence corresponds to isomorphisms of com-
plexes whose reduction to the residue field is the identity on R. In fact, given such an isomorphism
wa: Ra — R/, we can write ¢4 = id+n4 for some 14 € Hom% (R, R) ®k my4. Now, since K has
characteristic 0, we can take the logarithm to obtain g4 = e?4 for some 04 € Der% (R,R) ®k my,
see [35]. O

5.4 On the smoothness of certain natural transformations

Recall that a natural transformation n: F' — G between functors of Artin rings is called smooth
if for every surjective morphism A — B in Artg , the induced morphism

F(A) = F(B) xg)y G(A)

is surjective in Set.
In the following we will deal with proper classes and not only with sets. This motivates Defini-
tion 5.25 and Definition 5.26.

Definition 5.25. Let K be a field. A functor in classes of Artin rings consists of a class F/(A)
for every A € Artg together with a map fap: F(A) — F(B) for every morphism A — B in Artg
satisfying the condition F(K) = {x}.

Definition 5.25 is inspired by the notion of functor of Artin rings, see [34, Definition 3.1].
Definition 5.26. A natural transformation n: F' — G between functors in classes of Artin rings

is a collection of maps {n(A): F(A) = G(A)}acart;, such that the diagram

F(A) L Gay
faB lgAB
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commutes for every map A — B in Artkg. A natural transformation n: F' — G is called smooth

if for every surjective morphism A — B in Artg, the induced map
F(A) = F(B) xg(p) G(A)
is surjective.

Example 5.27. We present two functors in classes of Artin rings (see Definition 5.25) defined as

follows:

FA) = cofibrations P4 — Q4 in (CDGA%O)I such that P, is A-flat,
| together with a trivial idempotent e: Q4 — Q4 in (CDGA%O){DA e

F(A) = {coﬁbrations Py — Qa4 in (CDGA%O)I such that Py is A—ﬂat}/g.

We shall denote by ng: F — F the natural transformation which simply forgets the trivial idem-
potent.

The first goal of this section is to restate Theorem 5.11 in terms of the functors in classes of
Artin rings defined in Example 5.27.

Theorem 5.28 (Smoothness of trivial idempotents). Let I be a Reedy poset. The natural trans-
formation n: F — F between functors in classes of Artin rings defined in Example 5.27 is smooth,
see Definition 5.26.

Proof. The statement is equivalent to the one of Theorem 5.11. O

Corollary 5.29 (Axiom 2.21 over Reedy posets). Let I be a Reedy poset. Every surjective mor-
phism A — B in Artg induces a small extension c(A) — ¢(B) in (CDGAZ")! in the sense of
Definition 2.2, which satisfies Axiom 2.21.

Proof. First notice that A — B is a small extension in (CDGAHEO)I by Lemma 5.4. Then the

statement follows from Theorem 5.28. O

Our aim is now to explain Remark 5.17, in which we claimed that Corollary 5.16 implies that
every surjective map A — B in Artg satisfies the CW-lifting axiom, see Axiom 2.26.

Proposition 5.30 (Axiom 2.26 over Reedy posets). Let I be a Reedy poset and consider the
deformation model category (CDGAHEO)I. Given a A € Artg, the induced morphism c¢(A) — ¢(K)

n (CDGA%O)I between constant diagrams concentrated in degree O satisfies Axiom 2.26.

Proof. For simplicity of notation we denote by M the deformation model category (CDGAHEO)I .
Notice that by Lemma 5.4 the morphism ¢(A4) — ¢(K) is a small extension in the sense of Defini-
tion 2.2. Therefore we can define

G(A) = {trivial cofibrations P4 — Q4 in M4 such that A — P, is ﬂat}/u_
G(A) = {flat morphisms A — P4 in M}/N.

Similarly, we can define

G(K) = {trivial cofibrations P — @ in M such that K — P is ﬂat}/u'

G(K) = {flat morphisms K — P in M}/M
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5. On the smoothness of certain natural transformations

Notice that there are maps G(K) — G(K) and G(A) — G(A) which simply forgets the trivial
cofibration. Moreover, there exist morphisms G(A) — G(K) and G(A4) — G(K) induced by the
functor — 114 K: M4 — Mg . Now observe that the natural map G(A) — G(K) Xzw) G(K) is

surjective if and only if every diagram of solid arrows

Py Qa
P05

admits the dotted lifting h: P4 — Q4 in My, and moreover h is a trivial cofibration. This is
precisely the statement of Corollary 5.16 and therefore ¢(A4) — ¢(K) satisfies Axiom 2.26 by defi-
nition. O

Remark 5.31. In particular, given a Reedy poset I, Corollary 5.29 implies that in the deformation
model category (CDGA%O)I it makes sense to consider deformations of a morphism f: ¢(B) — X
over every surjection A — B in Artx, see Definition 2.3, where ¢(B) denotes the constant diagram
of B. In particular, for every A € Artg we can consider deformations of a cofibrant object X €
(CDGAZ)! over A, i.e. deformations of the (unique) morphism f: ¢(K) — X in (CDGAZ?)!

over ¢(A) — ¢(K). Moreover, there exist bijections

Defx(A) 2 [Lemma 2.6] = cDefx(A) =
[Lemma 2.8] = cf Defx(A) =
[Theorem 2.28] = c¢f Dx(A)

Il

in Set, since by Corollary 5.29 the map ¢(A4) — ¢(K) satisfies Axiom 2.21 and by Proposition 5.30
it satisfies Axiom 2.26.

Our aim is now to prove the smoothness of a certain natural transformation, which will be
crucial in the proof of Theorem 5.45.

Let I be a Reedy poset. Moreover, let N € (CDGA%O)I and consider a cofibrant replacement
R — N. Then it is defined a functor in classes of Artin rings {G(A)}acArty , see Definition 5.25,
where G(A) is the class (up to isomorphisms) of commutative diagrams in (CDGA%O)I

ha

Qa—Ra

] |

A%NA

N

with Qa,Ra € Dgr(A), Ma,Ny € Dy(A), such that ¢4 and ¢4 lift idg and idy respectively.
Similarly, we can define the functor in classes of Artin rings {G(A)}acArty, see Definition 5.25,
where G(A) is the class (up to isomorphisms) of commutative diagrams in (CDGAS")’

Qa Ra

w] |

MA4>NA

N

with Qa,Ra € Dr(A4), Ma, N4 € Dy(A), such that ¢4 lifts idy.
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5. Deformations of separated schemes

Notice that there exists an obvious natural transformation ng: G — G between functors in
classes of Artin rings, see Definition 5.26, which forgets the isomorphism 4 for every A € Arty .

Theorem 5.32. Let I be a Reedy poset. Moreover, let N € (CDGA]I%O)I and consider a cofibrant
replacement R — N.The natural transformation ng: G — G between functors in classes of Artin

rings defined above is smooth, see Definition 5.26.

Proof. Take a surjective morphism A — B in Artg and consider the following commutative diagram

of solid arrows

PA —FW——> NA

where Py = Ra X(n,0,8) Na in (CDGA%O)I. Now recall that since R is cofibrant, @) 4 is cofibrant
by Proposition 5.22. By the universal property of P4 there exists the dotted morphism m4: R4 —

P4, which is a weak equivalence by the two out of three axiom and also a fibration being clearly
surjective. Therefore, the unique morphism Q4 — P4 given by the universal property of P4 factors
through m4. This proves the existence of the dotted morphism 1 4: Q4 — R4 fitting the diagram,

which is an isomorphism by Lemma 5.4. O

5.5 Deformations of separated schemes

The aim of this section is to study infinitesimal deformations of a separated scheme X over a field K
of characteristic 0. Since Spec(A) consists of a point for every A € Arty, the deformation problem
associated to X is equivalent to the one associated to its structure sheaf. Therefore we give the
following notion of infinitesimal deformations of the scheme X.

Definition 5.33 (Geometric deformation functor for separated schemes). Let X be a separated
scheme over a field K of characteristic 0. The geometric deformation functor associated to X
is the functor of Artin rings

Defx: Artg — Set

defined by

morphisms O4 — Ox of sheaves of flat A-algebras,
and the reduction O4 ® 4 K — Ox is an isomorphism | /~

for every A € Artg . Two infinitesimal deformations O4 — Ox and Oy — Ox are isomorphic
if and only if there exists an isomorphism O 4 = O’ of sheaves of A-algebras such that the diagram

AN

comimutes.
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5. Deformations of separated schemes

Remark 5.34. Consider a separated scheme X over a field K of characteristic 0. In order to study
the functor Def x introduced in Definition 5.33, we shall firstly associate to X a pseudo-scheme Sx
following the procedure explained in Example 3.32. Then, using the general results of Deformation
Theory in model categories obtained in Chapter 2, we will describe the differential graded Lie
algebra controlling the infinitesimal deformations of X (see Theorem 5.46) and moreover we will
give several bijections between functors of Artin rings, see Theorem 5.49.

Take an open affine cover {U;};cs of X and consider its nerve
I={a={jo,.. .. ju} |Ua =Uj;N---NUj, #0}.
Notice that I is a Reedy poset where
deg: I — N, deg({jo,..-,Jx}) =k

and o = {jo, ..., Jxt < B ={io,...,is} in I if and only if {jo,...,jkx} C {i0,...,is} in Set.
Notice that in the above setup Ug C U, whenever o < 3, but the converse does not necessarily
hold as explained in Example 5.35.

Example 5.35. Consider an affine scheme X = Spec(A) and take the affine open cover given
by U = {Uy = X,U; = X}. Then the nerve of U is the Reedy poset I associated to the following
diagram

a = {0}

T

Y= {071}

/

p={1}
where deg;(a) = deg; () = 0 and deg;(y) = 1. Moreover, the partial order relation is defined by

a<ny and B<.
Notice that U, C Ug even if a £ f5.

Remark 5.36. The diagram constructed in Example 5.35 suggests how to associate a quiver Q to a

Reedy poset. There are essentially two rules for this procedure:

1 the vertices of Q are the elements of I, vertices with the same degree are placed in the same

“column”,

2 there exists an arrow o — [ between two vertices « and g in Q if and only if a < .

We now come back to the geometric deformation problem of a separated K-scheme X, see
Definition 5.33. As explained above, to each open affine cover {U,},cs of X it is associated the
nerve I, which turns out to be a Reedy poset. Recall that intersections of affines are affine, being
the scheme X separated. In particular, for every a € I we have U, = Spec(A,) where the K-algebra
A, is defined by A, = Ox (U,). Moreover, whenever « < 3 in [ the inclusion Ug < U, corresponds
to a morphism anp: Aq — Ag of K-algebras. Thus, to every pair (X, {U;};es) it is associated a
functor

Sx: I — CDGAZ’
a— Ay
where each A, has to be thought as a DG-algebra concentrated in degree 0.

Remark 5.37. In the above setup, we already proved in Example 3.32 that Sx is a pseudo-scheme
over the deformation model category CDGAE0 indexed by the Reedy poset I.
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5. Deformations of separated schemes

Remark 5.38. Notice that the association X +— Sx is not functorial and not even unique. In fact,
the Reedy poset is defined to be the nerve of the open affine cover U. Nevertheless, once the cover U
is fixed the association (X,U) — Sx is uniquely defined. Moreover, given a morphism of separated
schemes X — Y together with two affine open covers & and V for X and Y respectively, then it is
induced a morphism between the associated pseudo-schemes (see Definition 3.30) as explained in
Remark 3.35. Keep attention to the fact that this procedure changes (in a unique way) the open

affine cover of X.

Our next goal is to show that there is a natural isomorphism of functors of Artin rings
Dgs, = Defx: Artg — Set

where the functor Dg, associated to the pseudo-scheme Sx has been introduced in Definition 5.19.
In order to prove this claim (see Theorem 5.42) recall that

D, (4) = morphisms Sy — Sx in (CDGA3) such that S, is flat,
Sx o and the reduction S4 ®4 K — Sx is an isomorphism | 7~
for every A € Artg. Two strict deformations S4 — Sx and S’y — Sx are isomorphic if and only

if there exists an isomorphism S, —» S’y in (CDGA%O)I such that the diagram

o

Sa = A

NS

Sx

commutes. Now fix A € Artg and notice that Remark 5.20 implies that Dg, (A) is precisely the
set of strict infinitesimal deformations in the sense of Definition 2.23.
Before proving Theorem 5.42 we need the following preliminary result.

Lemma 5.39. Let A € Artx and consider a morphism f: Ry — Qa between flat objects in
CDGA%O. Denote by f: R — Q the map obtained applying the functor — @4 K to f, and define

p: Ry — R, T Qa— Q

the reduction morphisms in CDGA%O. Take a prime ideal p € Q° and consider the induced mor-

phisms between localizations

Rao1(p) f_p> Qar—1(p) Rj—l(p) ?_,,) @
where 0 = fp=1f. Iffp is an isomorphism, then so is fy.
Proof. We proceed by induction on the length of the Artin ring. Take a small extension
0-K—>A—-B—0

and consider the following commutative diagram

Rpry = (Rao-1p) ®aK - Qp = (Qan1(p) ®aK
i f |
RA’U—l(p) - QAJT’I(P)

l |

f,@aB
(Rao-1(y)) ®a B e (Qar-1(p) ®a B
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of differential graded modules over A. Notice that by hypothesis both R4 and Q4 are flat, so
that in particular the vertical rows are short exact sequences in DGMod(A). Moreover, f, is an
isomorphism by assumption, and f, ®4 B is an isomorphism by induction. Hence the statement

follows by the five lemma. O

Remark 5.40. In the setup of Lemma 5.39, since the kernel of the map 7%: Q% — QU is nilpotent
then every prime ideal of QY is of the form 7=!(p) for some prime ideal p C Q°. Geometrically,
this means that the underlying topological space of Spec(Q%) coincide with the one of Spec(Q°),
since Spec(A) is (topologically) a point.

Remark 5.41. Let X be a separated K-scheme together with an open affine cover U = {U,}e.
Consider the associated pseudo-scheme Sx € (CDGA%O)I over the nerve I. Then for every A €
Artg, every strict deformation S4 — Sx in Dg, (A) is pointwise concentrated in degree 0, i.e.
Sza =0 for every k < 0 and every « € I. In order to prove the claim, fix A € Artg and consider
a small extension

0-K—>A—-B—0

of Artin rings. Recall that by Remark 3.25, S, is a flat object in (CDGA%O)I if and only if S4 o
is flat in CDGAHE0 for every a € I. Then the functor S, ®4 —: DGMod(A) — DGMod(A) is
exact and therefore

0—>SA7a®AK —>SA,(X—>SA7O¢®AB—>O

is a short exact sequence. Now, by definition the reduced morphism Sy ®4 K — Sy is (pointwise)
an isomorphism, so that 54 ,®4K = Sx , is concentrated in degree 0. It follows that the surjective
map Saa — Sa,a ®a B is in fact an isomorphism in negative degrees and the thesis follows by
induction on the length of A in Artg.

Theorem 5.42. Let X be a separated scheme over a field K of characteristic 0. Choose an open
affine cover for X and consider the associated pseudo-scheme Sx € (CDGA%O)I. Then there exists

a natural isomorphism
¢2: DSX — Defx

of functors of Artin rings.

Proof. In order to prove the statement our first step is to introduce a well defined morphism of sets
2(A): Dgy (A) — Defx(A) for every A € Artg . To this aim, fix A € Artx and consider a strict
deformation S4 — Sx in Dg, (A). Recall that by Remark 5.41, S, is concentrated in degree 0
for every a € I. Therefore to give a strict deformation S4 — Sx in Dg, (A4) is equivalent to the

following data:
1. a collection {S4 q}aer of flat A-algebras such that S4 ., ®4 K = Sx o for every a € I,

2. a morphism s4.08: Sa,o — Sa,g for every a < 8 in I satisfying

SABy ©SAaB = SAay
whenever a < < v in I.

Now notice that for every a € I, since A € Artg is alocal ring then Oy o = 5;’; is a quasi-coherent
sheaf on U,. Our goal is to show that the collection of sheaves {O4 o }acr glue to a sheaf O4 on X

in order to define
wQ(A)Z DSX (A) — Defx(A>

(S4— Sx)— (04 — Ox) .
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The idea is that if such a sheaf O 4 exists, then the morphism O4 — Oy is given by
To: Oa(Us) = Sa,a — Sx.o = Ox(Uy)
for every o € I. In order to prove that 1o(A) is well defined we proceed in three steps.
1 For every a € I it is defined a quasi-coherent sheaf O4 o = §,;,/a on U,.
2 For every a < 8 in I there exists an isomorphism of sheaves
fap: Oaal — Oap
Us

on Ug. The claim immediately follows from Lemma 5.39; in fact for every prime ideal p C Sx o

we can consider the commutative diagram between localizations

(faﬂ)p
(Saa)s 7z w) (Sa6)m;1m)
(m)pl l(mp
(Far)
(Sl — 2 (Sx),

where fTB: Oxp — Ox,p is clearly an isomorphism.
3 faa =ido, , for every a € I, and moreover fo = fg,fop for every a < 8 <~y in 1.

Therefore there exists a sheaf @4 on X such that Oy U = 04,q for every a € I, whence the thesis.
It remains to be proved that the maps of sets {12 (2) Dsy (A) — Defx(A)} 4capy, induce a
natural isomorphism of functors of Artin rings ¢s: Dg, — Defx. The naturality is clear since for

every A — B in Artg the maps of sets
Dgs, (A) = Dg, (B) and Def x (A) — Def x (B)

are both induced by the functor — ® 4 B. Moreover, for every A € Artg the map 2(A) is bijective,
being its inverse 15 ' (A) defined by

47 (A): Defx(4) — Dy (A)
(OA — Ox) — {SA,a = OA(Ua) - OX(Ua) = SX,Q}@EI )

It is immediate to check that 15 ' (A) respects the equivalence relations given by isomorphisms in
Defx (A) and Dg, (A). The statement follows. O

Remark 5.43. Let X be a separated K-scheme together with an open affine cover U = {U;};ey.
Consider the associated pseudo-scheme Sx € (CDGAHEO)I over the nerve I. Now, take a cofibrant
replacement ¢(K) S5 RZY 5S¢ in (CDGAZ’)!. By Theorem 3.28 it follows that R is in fact
a pseudo-scheme over CDGAHEO indexed by I. Moreover, by Theorem 2.16 the trivial fibration
FW . ——
R —— Sx induces a bijection
DefR(A) i} Defsx (A)

for every A € Artg where Defr(A), respectively Defg, (A), is the set of deformations of the mor-
phism ¢(K) — R, respectively ¢(A) — Sx, over the map ¢(A4) — ¢(K) in the sense of Definition 2.3.

Remark 5.43 suggests that in order to study a deformation problem associated to the pseudo-
scheme Sy it is convenient to study the same deformation problem associated to a cofibrant re-

placement R of Sx. Our next goal is to relate strict deformations of Sx with strict deformations
of R, see Theorem 5.45; we first need Remark 5.44.
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Remark 5.44. Let R € (CDGA%O)I be a pseudo-scheme indexed by I. Moreover, assume that
H* (R,) = 0 for every a € I and every k < 0. Then for every A € Arty, every strict deformation
R — R in Dg(A) has (pointwise) cohomology concentrated in degree 0, i.e. H* (Ra,) = 0 for
every k < 0 and every a € I. In order to prove the claim, fix A € Artkg and consider a small

extension
0K —-A—-B—0

of Artin rings. Recall that by Remark 3.25, R4 is a flat object in (CDGA%O)I if and only if R4 o
is flat in CDGAZ? for every o € I. Then the functor Ra o ®4 —: DGMod(A) — DGMod(A) is
exact and therefore

0= Raa®K = Raq > Raa®4aB—=0
is a short exact sequence of complexes of A-modules. Now, by definition the reduced morphism
Ra®4K — Ris (pointwise) an isomorphism, so that R4 o®4K = R, has cohomology concentrated
in degree 0. Notice that the map H* (R4 ) — H* (Rao ®4 B) = H* (R4.o) ®4 B is surjective for

every k < 0. Therefore, it follows by the long exact sequence on cohomology that
H"(Rao) = H* (Rao®4B) = H" (Rao) @4 B

is in fact an isomorphism for every k < 0, and the thesis follows by induction on the length of A
in Artg . Observe that the long exact sequence in cohomology together with the surjectivity of the

map H Y (Ras) — H Y (Ra) ®a B also give the existence of a short exact sequence
0— H(Rao) ®aK =2 H°(R,) = H(Ra.) = H(Ra) ®a B — 0
for every small extension 0 - K — A — B — 0.

Theorem 5.45. Let X be a separated scheme over a field K of characteristic 0. Choose an open
affine cover for X and consider the associated pseudo-scheme Sx € (CDGAHEO)I, together with a
cofibrant replacement R — Sx in (CDGA%O)I, Then there exists a natural isomorphism

1/}3: DR — DSX
of functors of Artin rings.

Proof. First recall that by Theorem 3.28 it follows that R is a pseudo-scheme over CDGAHEO
indexed by I. Moreover, by Remark 5.41 it follows that every strict deformation S4 — Sx is
(pointwise) concentrated in degree 0. Now, since R — Sy is a weak equivalence we have
0 ifk<0
H*(Ra) =
Sxo k=0
for every a € I; therefore by Remark 5.44 it follows that every strict deformation R4 — R in

Dgr(A) has (pointwise) cohomology concentrated in degree 0. Hence we can define the map of sets

P3(A) as
¥3(A): Dr(A) — Dsy (4)

(R4 — R) — (H°(Ra) — H°(R) = Sx)

for every A € Artg. We need to show that 13(A) is well defined: we have to prove that H(R.)
is flat in (CDGAS")!. Recall that by Remark 3.25 the flatness of H°(R4) in (CDGAS%)! is
equivalent to the flatness of R4 o in CDGA%O for every o € I. Fix o € I, as we already observed
above R4 has cohomology concentrated in degree 0, so that there exists an exact sequence

o RN TS RY T HO(Rae) = 0
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of A-modules. Moreover, since Ry , is flat in CDGA%0 then each Riha is a flat A-module for

j <0, see Proposition 1.57. Applying the functor — ® 4 K we obtain the following exact diagram

R;% @aK >Ryt @K R W®aK —">H(Rao) ®4K —>0

ker(m) ® 4 K

T

of A-modules. The next step is to show that 7 is injective. Take = € ker(7m) ® 4 K such that 7(z) = 0.
By the surjectivity of fr there exists & € R;Lla ®4 K such that () = z, and by assumption
d=1(#) = 0. The row above is exact, so that Z lifts to R;‘?a ®4 K and since fiod=2 = 0 we get
2 = 0 whence the injectivity of 7: ker(7) @4 K — R%,a ® 4 K. We now turn our attention to the

0

short exact sequence
0 — ker(m) = R , = H(Ra.) =0

of A-modules, for which we proved the flatness of R%’a and the injectivity of the reduction .
Therefore, applying the functor Tor:'(—, K ) we immediately obtain that Tors! (H°(Ra,0),K) =0.
By the standard local flatness criterion this is equivalent to the flatness of the A-module R4 o,
see [36, Theorem 22.3]. Hence 13(A) is well defined.

We are still left with the proof that the collection of maps {13(A): Dr(A) — Dsy (A)} 4carty
define a natural isomorphism of functors of Artin rings. The naturality is clear since for every

A — B in Artg the maps of sets
Dr(A) — Dr(B) and Dsy (A) = Ds, (B)

are both induced by the functor — ® 4 B. Moreover, for every A € Artg we can define the inverse
Y3 1(A) as follows. Take a strict deformation S4 — Sy in Dg, (A). By Theorem 5.13 the diagram

of solid arrows

TN

o(A) c oS,

R

oK) RrR-% 5y

admits the dotted morphisms, and moreover R4y ® 4 K = R. We now set
Y31 (A): (Sa — Sx) — (Ra — R)

but we still need to prove that 3 '(A) is well defined. Namely, given two strict deformations
Sa — Sx and S — Sx in Dg, together with an isomorphism of deformations given by the

following commutative diagram

1R

[ —)
Sx

we have to show that the image of S4 and S’y under the map 3 1(A) coincide. To this aim, take

=

cofibrant replacements

ASR, Y S, and  ASR, N,
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in (CDGA3’)! and notice that by Theorem 5.32 the isomorphism h: S4 — S, lifts to an isomor-
phism /: R4 — R/, such that the diagram

A

|

Ra %R’A
Sa Hf A

commutes in (CDGA%O)I . Hence 15 *(A) is well defined and the statement follows. O

We are now ready to prove the main application of the theory, namely we describe the DG-Lie
algebra controlling the geometric deformation problem associated to a separated K-scheme, see
Definition 5.33.

Theorem 5.46 (DG-Lie algebra controlling infinitesimal deformations of a scheme). Let
X be a separated scheme over a field K of characteristic 0. Choose an open affine cover for X
and let I be its nerve, see Example 3.32. Moreover, consider the associated pseudo-scheme Sx €
(CDGA%O)I, together with a cofibrant replacement R — Sx in (CDGAHEO)I. Then there exists a
natural isomorphism

1/1: DefDerT’g (R,R) — Def x

of functors of Artin rings.

Proof. The natural isomorphism ) is defined to be the composition
1/): DefDerU’g(R,R) ﬂ) DR ﬁ DSx ﬂ) DefX

where 17 is the natural isomorphism defined in Theorem 5.24, 13 is the natural isomorphism defined
in Theorem 5.42, and 15 is the natural isomorphism defined in Theorem 5.45. O

Remark 5.47. Recall that as an immediate consequence of Theorem 5.46 there exists an isomorphism
of K-vector spaces T' Defy = H?! (Derg (R, R)), and moreover there exists an obstruction theory
with values in H? (Derj (R, R)). For concrete computations it is useful to recall Corollary 4.60,

which gives a quasi-isomorphism of complexes
Derg (R, R) — Derg (R, Sx).

This is due to the fact that the object Sx € (CDGAHEO)I is pointwise concentrated in degree 0, so

that it is easier to compute cohomology groups.

Remark 5.48. In the setting of Theorem 5.46, if X is assumed to be finite-dimensional and Noethe-
rian then Theorem 4.64 applies and the cohomology of the DG-Lie algebra Derg (R, R) is controlled
by the cotangent complex of X:

H" (Derf; (R, R)) = H* (Hom}, (Qr/x ®r Sx,Sx)) = Exty, (Lx,Ox)

for every k € Z.

The following result summarizes most of the results obtained in this section.
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Theorem 5.49. Let X be a separated scheme over a field K of characteristic 0. Choose an open
affine cover for X and consider the associated pseudo-scheme Sx € (CDGA%O)I, together with a
cofibrant replacement R — Sx in (CDGAHEO)I. Then there is a chain of natural isomorphisms of

functors of Artin rings
Defsx = DefR = DR = DSX = DefX = DefDeru*( (R,R)
where:

1 Defg, (A), respectively Defr(A), is the set of deformations associated to the map ¢(K) — Sx,
respectively ¢(K) — R, in the sense of Definition 2.3 for every A € Arty ;

2 Dg, (A), respectively Dr(A), is the set of strict deformations associated to the morphism ¢(K) —
Sx, respectively ¢(K) — R, in the sense of Definition 2.23 for every A € Artg ;

3 Defx is the geometric deformation functor introduced in Definition 5.33;
4 Defper: (r,r) is the deformation functor associated to the DG-Lie algebra Dery (R, R) € DGLA .

Proof. The existence of the natural isomorphisms in the statement is proven in Remark 5.43, The-
orem 2.28, Theorem 5.45, Theorem 5.42 and Theorem 5.46 respectively. O

5.5.1 Example: deformations of the projective cuspidal cubic in PZ

The aim of this section is to provide an explicit example in which Theorem 5.46 applies, so that
we explicitly describe the DG-Lie algebra controlling infinitesimal deformations of the projective
cuspidal cubic. In particular, we recover the well-known fact that the deformation functor Def x
associated to the projective cuspidal cubic is unobstructed, see Remark 5.51; we conclude the section
with an explicit computation of the tangent space of Def x, see Proposition 5.53.

In the complex projective space P% consider the cubic

X ={[z,y,2] € P¢|2® —y’2 =0} CP¢

and notice that X has a singularity in [0, 0,1]. Then the deformation problem associated to X is
described by a functor of Artin rings Defx : Artc — Set, see Definition 5.33. In order to understand
how Theorem 5.46 works, the first step is to choose an open affine cover of X:

Up=XnNn{y #0} Up=XnNn{z#0}.

Notice that

1%

Uy = Spec < Clr.y >

T = w
z — w?

} ~ Spec(Clu])

73 — 42
o C[t, w]
Uy N Uy = Spec ((tw—l))

where the open immersions of the span Uy < Uy N U; — U; are explicitly given in terms of
C-algebras by the morphisms of the cospan:

Clz,
W w Clt,w] /H 2
(tw—1) Y — 3
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5. Deformations of separated schemes

Define I to be the nerve of the chosen affine cover, i.e. I = {0,1,01} with deg(0) = deg(1) = 0 and
deg(01) = 1. We denote by Sx € ¥Sch;(M) the Palamodov pseudo-scheme associated to X, see
Example 3.32, which can be represented by the cospan above. Namely,

(C[.Z‘,Z] (C[t,w]

SX,O = C[w] > SX,l = W s SX,Ol = m .

Our next goal is to explicitly describe a cofibrant replacement 7: R 2%, Sx in (CDGAEO)I . To
this aim we need the following preliminary results.

Proposition 5.50. The natural inclusion of C-algebras

L C[t, w] Clz,y, h, t, w] ~ Clz,y, h, t, w]
" (tw —1) (tw— 1,23 —y2 hoe — Ltz —y)  (tw— 1,2 — 2,y — 3, hx — 1)

~

is an isomorphism. In particular tw — 1,23 — y2, hx — 1, tx — y is a reqular sequence since it defines

an affine subscheme of dimension 1.

Proof. We first prove that

(C[x7 y, h7t’ w] ~ (C[x’ y, h7t’ w]
(tw— 1,23 —y2 he — L,te —y) (tw— 1,2 —t2,y—t3, hx —1)

~

In the ring Clx, y, h,t,w] consider the ideals defined by
I=(2®—y*te—y he—1tw—1), J=(x -1ty —t3 he—1,tw—1).
We begin by showing that I C J. Notice that
2’ -yt = (z - )@ ot +th) = (y = )y +17) €,
tr—y=tlx—1t*) - (y—t3)eJ
whence the thesis. For the converse it is sufficient to observe that
t22? — 23 = (tx —y)(tx +y) + (y* — 2°) € I, Rz (1 —x) € I,
r—t? = (he — 1)(ha + 1)(t* —z) — h?2*(t* —x) € I,
y—t3=tlx —t*) - (tr —y) €I

so that J C I.
Now notice that modulo the ideal I = J = (tw — 1,2 — t?,y — t3, hx — 1) we have

xztg, yzts, h=w*,

so that the morphism ¢ is surjective. Moreover, ¢ admits the left inverse defined by

z—t2, y—=t3, hew? tet wew

and therefore it is injective. The statement follows. O

Proposition 5.50 implies that the Koszul complex of the sequence tw — 1,23 —y? hx — 1,tx —y
is exact. In particular, we have the following cofibrant resolutions in CDGAéO.

1 m: Ry = Clw] N Sx,0 = Clw].

2 m: Ry =Clz,y,e1] = Sx1 = (gi’g]z), where the deg{e;} = —1 and the differential is defined by

dey = 23 — 9% .
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5. Deformations of separated schemes

ClLt,
3 mo1: Ro1 = Clz,y, h,t,w,e1,ea,e3,e4] = Sx 01 = (tifif”]

1) where

deg{e1} = deg{es} = deg{es} = deg{es} = —1
and
deq = 23 —y?%, dey = ha—1, des = toz—y, des = tw—1, mo1(z) = 2, mo1(y) = 3, mo1(h) = w? .

Observe that the natural morphism
Clz,y,e1] ®c Clw] = Clz,y,w, e1] = Clz,y, h,t,w, e, e, e3, €4]

is a semifree extension (hence a cofibration) in CDGAEO, see Definition 1.64 and Remark 1.65.

It follows by Remark 3.6 that R € (CDGAEO)I is Reedy cofibrant; therefore 7: R — Sx is a
cofibrant replacement as required. Notice that since Sx € ¥Sch;(M), then Remark 3.28 implies
that R € USch;(M).

Theorem 5.46 implies the DG-Lie algebra Derg (R, R) controls infinitesimal deformations of X;
i.e. there exists a natural isomorphism of functors of Artin rings

DefDerE(R’R) = DefX .

Remark 5.51 (Smoothness of Def x ). Recall that by Remark 5.47 there exists an obstruction theory
for Def x with values in H? (Derg:(R, R)). Moreover,

H? (Derj; (R, R)) = [Corollary 4.60] = H? (Derj (R, Sx)) .

Therefore, since Sy € (CDGAH%O)I is concentrated in degree 0 and R is concentrated in degrees —1
and 0, we obtain Der% (R, Sx) = 0. In particular, H? (Derj (R, R)) = 0, so that Defx is smooth.

In order to compute the tangent space for Def x we first prove the following (well-known) result.

Lemma 5.52. Let K be a field of characteristic 0, let f(xq1,...,x,) € K[z1,...,2,] and consider
the affine scheme Y = Spec (K [z1, - ’x”]/(f)). Then there exists an isomorphism of K -vector

spaces
K[xlv"'vmn]

1 —
T Defy— f of of y
7 0x1? """ Oy

and Y is unobstructed.

Proof. Define R € CDG:AH%0 to be the DG-algebra
s—f
= 0= Kz, on]s —= Kz, o2, 20— -+

concentrated in degrees —1 and 0. Clearly the projection

>0 ——=>K|zy,...,x,]s Klz1,...,2p] ——=0—>---

T

is a quasi-isomorphism in CDGA%O, so that R = Sy is a cofibrant replacement.

Now, notice that there exist isomorphisms of K-vector spaces
T' Defy = H' (Derj; (R, R)) = [Corollary 4.60] = H' (Derk (R, Sy))

and
H? (Deri (R, R)) = [Corollary 4.60] = H? (Derj (R, Sy)).
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Moreover, since Sy € (CDGA]I%O)I is concentrated in degree 0 and R is concentrated in degrees
—1 and 0, we obtain Derg (R, Sy ) = 0. In particular, by Theorem 5.46 there exists an obstruction
theory with values in H? (Derj (R, R)) = 0, so that Defy is smooth.

In order to compute H' (Derg (R, Sy)) we need to point out whether a derivation g factors

through A in the following diagram

>0 ——>Kzy,..., 2, Klzy,...,2p] —>=0—>+-

\ :Ul, .. $\ ..
To this aim, observe that to give g is equivalent to assign g(s) € Kz, ... 795”]/( ) Furthermore,
since h is a K-derivation we have

h(z}) = jal " h(ar)
for every j > 1 and for every k € {1,...,n}. Therefore, by induction on k, it is immediate to prove
that
- f c Klz1,. .. 2]
h(dgrs) = h(f kz_: a— Yy

This proves that g € Z'(Derf (R, Sy)) is exact if and only if there exists h € Dery (R, Sy) such
that g(s) = Yp_, 2L ~h(zy) in K[xl’“"m”]/(f), whence the statement. O

Proposition 5.53 (Computation of T Defx). In the compler projective space IP’(% consider the
cubic
X ={[z,y,2] € PE|2® —y’z = 0} C PE

together with its deformation functor Def x : Artc — Set, see Definition 5.33. Then there exists an

isomorphism of C-vector spaces
T' Defyx = C?.

Proof. Let I be the nerve of the affine open cover
Up=Xn{y #0} U =Xn{z+#0},

and let Sx € USch;(M) be the Palamodov pseudo-scheme associated to X, see Example 3.32.
Moreover, consider the cofibrant replacement R = Sx in (CDGAEO)I defined above. By Theo-

rem 5.46 and Remark 5.47 there exists an isomorphism of C-vector spaces
T' Defx = H'(Deri (R, R))
and by Corollary 4.60 the induced map
H'(Derg.(R, R)) — H'(Der¢ (R, Sx))

is an isomorphism. Therefore we are only left with the computation of H*(Derf (R, Sx)).
First notice that since my: Ry — Sx 0 is a map between DG-algebras concentrated in degree 0,
then ¢ € Derg(R, Sx) consists of

1)[)01 S Der(lc(R()l, SX701) and 1/)1 c Del‘é(Rl, SX,l)
satisfying the relation

a Yo1(e1) = so,01(¢1(e1))
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In fact, the same argument used in the proof of Lemma 5.52 shows that the 17 is uniquely determined
by its value on ej.
Secondly, observe that ¢ € Der%(R, Sx) consists of

wo € Def%(Ro, SX,O) s ©Yo1 € Der%(Rm, SX,Ol) and Y1 € DeI‘%(Rh SXJ)

satisfying the relations

b o1 (w) = s0,01(¢o(w)) = ¢o(w) in 7755,

¢ po1(2) = s1,01(¢1(2)) in ((fl[utﬂ])’

d »o1(y) = s1,01(¢1(y)) in ((i[utii}l])'

Again, the same argument used in the proof of Lemma 5.52 shows that ¢; is uniquely determined
by its value on z and y, while ¢q is uniquely determined by o (w).

For every i = 1,...,4 define f; = de;. Hence, 1 € Derg:(R, Sx) is exact if and only if there exists
¢ € Derg (R, Sx) such that the following conditions hold:

3];1 wo1(h) + a]; wor(t) + 8{1} wo(w)

1 o1(es) = wor(dei) = o1 (fi) = For (x) + o (y) +
for every i =1,...,4,

2 Yu(er) = p1(der) = p1(f1) = For(@) + Hoi(y).

Notice that condition b has been already considered in condition 1. Therefore, in order to obtain
the statement we only need to understand conditions a, c, d, 1, and 2. To begin with, observe that
condition ¢, d and 2 are equivalent to assume (up to polynomial combination of % and %ﬁ) that

Yy
P1(e1) = a + Bz for some a, f € C because

Clz, y]

(m3 —y2, % = 322, %—J;l = —2y>

2CeoCx

is an isomorphism of C-vector spaces. In particular, condition a becomes o1 (e1) = a + Bt2, so that

condition 1 can be rephrased as the following conditions:

0 0 0
a+ Bt* = poi(e1) = poi(der) = por(f1) = 871111%1(}0 + %@01@) + 67{;%(10) =0
afi ofi ofi afi dfi .
Ny 9% —2.3.4.
Yo1(e;) o wo1(x) + By wo1(y) + oh wo1(h) + 5 wo1(t) + Em wo(w) i =2,3,
Now observe that the last equation above can be always satisfied by an element ¢ € Der%(R, Sx)
since
Clt, w] ~ Clt, w] -~
(tw — 17 W01%7 WOl%{j, 7T01%, 71'01%, To1 %) (tw - 1a WOl(h)a 7T01(33))
-~ C[t, w] ~
C(tw —1,w2,#2)
Clt, w] Clt, w]

) ~J

(tw — 1,7‘(’01%,770186'7],;3,71'01%,71'01%,71'01%) (tw - 1’7701(75)’71-01(_1)?71-01(1'))

~ C[t, w]
C (tw—1,t,—1,12)
Clt, w]

(tw — Lo B w1 4 mor Bt mor i mon %) (bw = 1, w01 (w), mo1 (1), mo1 ()

IR

0

C[t, w]

o~

-~ Clt, w] ~ g

(tw — 1w, —1,1)
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are isomorphisms of C-vector spaces.
We can summarize all the discussion above by saying that:
“the cohomology class [¢] € H! (Derg(R, Sx)) only depends on the value 1 (e1) = o + Bz, and
moreover [¢] = [0] if and only if 11 (e1) = 07.
In particular, this proves that there exists an isomorphism of C-vector spaces

H' (Derl:(R, Sx)) = C?,

whence the statement.
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Appendix A

Introduction to model categories

This Appendix aims to briefly recall the basic notions of the theory of model Categories. The main
references are [25] and [26].

Model categories have been introduced by Daniel Quillen in [41]. Nowadays, model categories
play a foundational role in homotopy theory. The reason why they are so important is that in
several areas of mathematics it often arises the problem to “invert” certain morphisms (called
weak equivalences) which are not isomorphisms. Certainly one can always formally invert weak
equivalences, but this formal procedure leads to a quotient category where morphisms do not admit
a useful description, and it is hard to deal with them. In order to avoid this technical difficulty, weak
equivalences should be thought as part of a model structure. If this is the case, then morphisms in
the quotient category between A and B turn out to be simply homotopy classes of maps from a
cofibrant replacement of A to a fibrant replacement of B.

Definition A.1. A model structure on a category C is three subcategories of C called weak

equivalences, cofibrations, and fibrations satisfying the following properties:

e (2-out-of-3) If f and g are morphisms of C such that gf is defined and two of f, g and gf are

weak equivalences, then so is the third.
e (Retracts) Given a commutative diagram
id A
A——sA ——= A
fi J{y lf
B——-B ——=B
idp
in C, if g is a weak equivalence (respectively: cofibration, fibration) then so is f.
e (Lifting) Consider a commutative square of solid arrows
A——B
7
7/
7/
C——D

in C where f is a cofibration and ¢ is a fibration. If either f or g is a weak equivalence, then
there exists the dashed lifting h: C' — B. We shall say that f has the left lifting property
with respect to g and similarly that g has the right lifting property with respect to f.
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e (Factorization) Define a map to be a trivial cofibration if it is both a cofibration and a weak
equivalence. Similarly, define a map to be a trivial fibration if it is both a fibration and a weak

equivalence. Then any morphism f: A — B in C admits functorial factorizations

f f
/_\ /\
AHA/HB AHB/HB
a(f) B(f) v(f) 3(f)

where a(f) is a cofibration, 5(f) is a trivial fibration, v(f) is a trivial cofibration, and J§(f)
is a fibration.

Definition A.2. A model category is a category M with all small limits and colimits together

with a model structure.

Remark A.3. We adopted the definition of model category given in [26, Definition 1.1.3], which is
slightly different from the original one given in [41].

Notice that every model category M has an initial object (the colimit of the empty diagram)
and a terminal object (the limit of the empty diagram). An object A € M is called cofibrant if the
initial map 0 — A is a cofibration; it is called fibrant if the final morphism A — 1 is a fibration. A
cofibrant replacement of an object A in C is a factorization of the initial morphism 0 — B’ — A
as a cofibration followed by a trivial fibration.

Remark A.4. In a model category M a map is a cofibration (respectively: trivial cofibration) if and
only if it has the left lifting property with respect to all trivial fibrations (respectively: fibrations).
Dually, a map is a fibration (respectively: trivial fibration) if and only if it has the right lifting
property with respect to all trivial cofibrations (respectively: cofibrations). As a consequence, cofi-
brations and trivial cofibrations are closed under pushouts. Dually, fibrations and trivial fibrations
are closed under pullbacks.

Remark A.5 (Ken Brown’s Lemma). Let M be a model category and let C be a category with
a subcategory of weak equivalences satisfying the 2 out of & axiom. Assume F': M — C to be
a functor which takes trivial cofibrations between cofibrant objects to weak equivalences. Then F
takes all weak equivalences between cofibrant objects to weak equivalences. Dually, if F' takes trivial
fibrations between fibrant objects to weak equivalences, then F' takes all weak equivalences between

fibrant objects to weak equivalences.

For the proofs of Remark A.4 and Remark A.5 we refer to [26]. As already outlined above,
the main advantage of the theory of model categories is the description of the homotopy category.
This is denoted by Ho(M) and it is defined to be the localization M[W~1]. In general, the formal
localization procedure do not give back a category; in fact morphisms between two fixed objects
may not be a set. However, if the subcategory W is part of a model structure than the fundamental
theorem of model categories ensures that Ho(M) is in fact a category, without moving to a higher
universe. The key idea is that if we denote by M.y the full subcategory of objects that are both
fibrant and cofibrant, then the inclusion functor M.y — M induces an equivalence of categories
Ho(M.;) ~ Ho(M). Our next goal is to recall the construction of Ho(My), for the proofs we refer
to [26].

From now on we shall adopt the labels W, C, F on maps to denote weak equivalences, cofibrations
and fibrations respectively.

Let f,g: B — X be two morphisms in M. We shall say that f and g are left homotopic,

written f ~; g, if there exists a factorization B 1l B 5 B 2 B of the fold map V: BIIB —- B
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together with a map H: B — X such that the diagram

f
B

BII B B H X
/ i1
B
g

commutes in M. Dually, we shall say that f and g are right homotopic, written f ~,. g, if there

exists a factorization X Y. X L X x X of the diagonal map A: X — X x X together with a
map K: B — X such that the diagram

f
X
\ Po
X xX K B
/ p1
X

commutes in M.

We say that f and g are homotopic, written f ~ g, if they are both left and right homotopic.
Moreover, f is called a homotopy equivalence if there exists a map h: X — B such that hf ~idp
and fh ~ idx. This gives an equivalence relation on the morphisms of M.; which is compatible

with composition; hence the category MCf/z is well defined.
Remark A.6 (Fundamental theorem of model categories). Let M be a model category. Then

a morphism in M.y is a weak equivalence if and only if it is a homotopy equivalence. Therefore
Meg/. — Ho(M.;) = Ho(M) .

In particular, Ho(M) is a category without passing to a higher universe.

Moreover, for any pair of objects A, B € Ho(M) there is a natural isomorphism
!/ /
HomHo(M) (A, B) o~ HOHlM(A ,B )/’:

where A’ and B’ are fibrant-cofibrant replacements of A and B respectively.
Finally, a map is a weak equivalence in M if and only if it is an isomorphism in Ho(M).

A very useful tool in the theory of model categories is represented by Quillen adjunctions.
Suppose M and M’ are model categories, and let F': M <: G be an adjunction. Then F is called
left Quillen functor if it preserves cofibrations and trivial cofibrations; similarly G is called right
Quillen functor if it preserves fibrations and trivial fibrations. In this case, F' 4 G is called Quillen
pair.

Notice that a left adjoint F': M — M’ is a left Quillen functor if and only if its right adjoint is
a right Quillen functor.

Remark A.7. By Ken Brown’s Lemma it immediately follows that a left Quillen functor preserves
weak equivalences between cofibrant objects. Dually, a right Quillen functor preserves weak equiv-
alences between fibrant objects.

The relevance of Quillen pairs in homotopy theory is due to the fact that they induce total
derived functors between homotopy categories

LF: Ho(M) = Ho(M'): RG
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defined b
Y LF(A) = F(A) R(B) = R(B')

for every object A € M and B € M/, where A’ — A (respectively: B — B’) is any cofibrant
replacement of A in M (respectively: is any fibrant replacement of A in M’').
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