
50% of unselected patients with acute pulmonary embo­
lism, and has a sensitivity of 50–60% and specificity of 
80–90%77. Therefore, other investigations are used to 
confirm the diagnosis, with echocardiography used as 
a complementary imaging technique19. The principal 
indirect echocardiographic findings are nonspecific, 
and include right heart dilatation, right ventricular (RV) 
hypokinesis (with or without apical sparing), abnormal 
septal motion, and inferior vena cava dilatation78 (FIG. 3a). 
Secondary tricuspid regurgitation might be present, 
allowing estimation of pulmonary arterial systolic pres­
sure using the simplified Bernoulli equation79 (FIG. 3b). 
Given that the right ventricle can generate a pulmo­
nary artery systolic pressure of only ≤60 mmHg acutely, 
a higher pressure suggests a more chronic process 
(either multiple repeated episodes or chronic pulmo­
nary parenchymal disease, with or without pulmonary 
embolism)80. Although the peak tricuspid regurgitation 
gradient is the most commonly used parameter to assess 
pulmonary artery systolic pressure in clinical practice, 
difficulties in the detection of good tricuspid regurgita­
tion envelope might occur. Pulsed Doppler recordings 
of pulmonary valve flow acceleration time, pre-ejection 
period, and ejection time at the RV outflow tract can 
also be used to estimate pulmonary artery pressure  
and resistance81,82.

Pericardial collection and tamponade
Echocardiography is pivotal for recognition of the haemo­
dynamic consequences of a pericardial collection (FIG. 3c), 
allowing demonstration of features of tamponade includ­
ing right atrial and/or RV diastolic collapse, in addition 
to guiding pericardiocentesis83. A number of potential 
pitfalls exist when interpreting the echocardiographic 
features of tamponade in the acute setting. These pitfalls 
include the effects of positive pressure ventilation (reversal 
of changes in transvalvular flows) and localized collec­
tions, in particular after cardiac surgery when substantial 
haemodynamic compromise might be present, even in the 
absence of echocardiographic features of tamponade84.

Monitoring of therapy
Echocardiography is not recommended for the monitor­
ing of therapy in patients with AHF in the absence of 
cardiogenic shock4,9,11, given the complexity of LAP 
estimation using echocardiography, its lack of associ­
ation with pulmonary congestion and symptoms, and 
superiority of natriuretic peptide levels in monitoring 
response to therapy. An emerging area in which echo­
cardiography might be of use is in risk stratification 
before discharge from hospital. In patients with AHF 
with dyspnoea, persistent pulmonary congestion before 
discharge (demonstrated on LUS) has been shown to be 
an independent predictor of rehospitalization for AHF at 
6 months after discharge36.

Cardiogenic shock
Cardiogenic shock is the most severe manifestation of 
AHF. Although relatively uncommon, the published 
prevalence (5% of patients with AHF) varies according 
to the point of initial contact and management (1–2% 
of patients with AHF in the prehospital or emergency 
setting versus 29% in intensive care)4,9,10,16. Precise defin­
itions of cardiogenic shock can vary; however, the syn­
drome generally results from inadequate cardiac output 
for peripheral organ requirements85,86. Cardiogenic 
shock can manifest as hypotension despite adequate fill­
ing (with or without vasopressors), altered mentation, 
cool peripheries, oliguria, hyperlactataemia, metabolic 
acidaemia, and low mixed venous oxygen saturation86. 
In addition to standard evaluation of critically ill patients 
in parallel with resuscitation, echocardiography is man­
dated immediately in patients with cardiogenic shock, 
because without identification and treatment of the 
underlying cause, the outcome is usually fatal9,85 (FIG. 3d). 
Additional information that should be obtained from 
echocardiography includes estimation of stroke volume 
and cardiac output levels, because these data can provide 
guidance on how to maximize the cardiac output at the 
lowest filling pressures (see Supplementary information 
S2 (table)). These measurements should be taken during 
the echocardiogram, and should be performed repeatedly 
to monitor the response to therapeutic interventions and 
minimize potentially injurious treatment. Every study 
must be interpreted in the context of the level of ino­
tropic and ventilatory support, as well as metabolic and 
arterial blood gas status, because these variables might 
have profound effects on echocardiographic findings.
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Figure 6 | The haemodynamic effects of thrombosis (coronary and pulmonary) 
as demonstrated by echocardiography. a | Early features of myocardial ischaemia 
can be demonstrated by the presence of prolonged long-axis shortening, measured 
by M‑mode echocardiography across the base of the left ventricle (post-ejection 
shortening; arrow). b | Prolonged left ventricular wall tension suppresses early 
transmitral filling, resulting in an isolated late-diastolic transmitral A wave. 
c | Increased right ventricular afterload leads to a reduction in right ventricular systolic 
function, as demonstrated by tricuspid annular plane systolic excursion on M‑mode 
echocardiography across the tricuspid annulus. d | A substantial increase in pulmonary 
vascular resistance might be associated with a midsystolic notch (arrows) on 
pulmonary valve pulsed-wave Doppler ejection wave and a short pulmonary valve 
acceleration time (78 ms; red lines).
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Assessment of volume status. The physiological basis 
of providing ‘optimal’ filling in cardiogenic shock is 
that a critical decrease in intravascular-stressed volume 
reduces the difference between mean systemic venous 
and right atrial pressure, thereby limiting stroke vol­
ume. Although frequently used, invasive static pressure 
monitoring is not helpful for determining whether an 
individual patient is volume-responsive87,88. Static echo­
cardiographic parameters are widely used to predict 
volume responsiveness in critically ill patients (FIG. 4); 
however, their use requires that a number of strict criteria  
(relating to the patient, their underlying pathology, 

and medical interventions) are met, otherwise the 
investigation becomes invalid (see Supplementary 
information S3 (table)). Similarly, although thought to 
be superior, dynamic echocardiographic parameters 
to predict volume responsiveness are valid only in fully 
mechanically ventilated patients in sinus rhythm and 
without chronic heart disease89. In the presence of car­
diac disease (either left-sided and/or right-sided), these 
measurements can be misleading and should not be 
used. Conversely, tolerance to volume loading among 
different patients is variable. The conventional teaching 
to increase volume in RV failure has not been upheld by 

Table 2 | Echocardiography for acute mechanical circulatory support

Type of 
mechanical 
support

Indications Contraindications Role of echo

VA ECMO •	Cardiogenic shock
•	Inability to wean from 

cardiopulmonary bypass after 
cardiac surgery

•	Arrhythmic storm
•	Pulmonary embolism
•	Isolated cardiac trauma
•	Acute anaphylaxis
•	Periprocedural support for high risk 

percutaneous intervention

•	Nonrecoverable disease 
and not suitable for 
transplantation or VAD

•	Severe neurologic injury or 
intracerebral bleeding

•	Unrepaired aortic dissection
•	Severe aortic regurgitation

•	Validation of the underlying cause
•	Biventricular function assessment
•	Guidewire position during cannulation
•	Optimal cannula positioning

Postinsertion:
•	Effective LV offloading during ECMO (LV size, LVEDV 

monitoring if aortic regurgitation is present, aortic valve 
opening during systole, mitral or aortic regurgitation 
worsening, biphasic backflow across MV during diastole, 
retrograde systolic pulmonary flow)

•	Detection of complications (thrombosis, cannula migration, 
tamponade, intraventricular gradient as per excessive 
offloading)

•	Weaning from ECMO: assessment of dynamic changes 
during reduction of ECMO flow (LV and RV systolic 
function, RV and LV TDI of Sʹ, LV size, LV VTI on aortic valve, 
mitral and aortic regurgitation, LAP assessment)

Impella 
(Abiomed, 
USA)

•	Additional support for VA ECMO 
for inadequate offload

•	High-risk PCI and acute MI
•	AMI complicated by cardiogenic 

shock
•	Acute decompensated ischaemic 

cardiomyopathy
•	Myocarditis with cardiogenic shock
•	Acute RV dysfunction
•	Bridge to VAD or transplantation
•	Acute ablation of VT (where 

otherwise nontolerated 
haemodynamically)

•	Support for BAV (experimental)

•	Nonrecoverable disease 
and not suitable for 
transplantation or VAD

•	Severe neurologic injury or 
intracerebral bleeding

•	LV thrombus present
•	Ventricular septal defect, 

or interatrial defect, severe 
aortic stenosis, and severe 
aortic regurgitation

•	Mechanical aortic valve
•	Sepsis
•	Bleeding diathesis
•	Severe peripheral vascular 

disease (left-sided device)

•	Validation of underlying cause
•	Biventricular function assessment
•	Adequate device position
•	Positioning of inlet and outlet of device

Postinsertion:
•	Exclusion of right‑to‑left atrial shunting
•	Optimization of biventricular filling
•	Detection of complication (cannula thrombus, 

displacement, inadequate cardiac output, inadequate 
offloading, failure of the nonsupported ventricle in face 
of increased forward flow from the supported ventricle)

Tandem 
Heart 
(Cardiac 
Assist, USA)

•	High-risk PCI and acute MI
•	AMI complicated by cardiogenic 

shock

•	Bleeding diathesis
•	Nonrecoverable disease 

and not suitable for 
transplantation or VAD

•	Severe peripheral vascular 
disease

•	Validation of underlying cause
•	Biventricular function assessment
•	Transeptal puncture
•	Adequate cannula position

Postinsertion:
•	Detection of complications (cannula thrombus, 

displacement, inadequate cardiac output, failure of the 
nonsupported ventricle in the face of increased forward 
flow from the supported ventricle)

IABP •	Mechanical complication and 
cardiogenic shock complicating AMI

•	Additional offloading of LV during 
peripheral VA ECMO

•	Severe MR

•	Severe peripheral vascular 
disease

•	Aortic regurgitation

•	Optimal positioning (TOE, when fluoroscopy not available)

BAV, balloon aortic valvuloplasty; Echo, echocardiography; IABP, intra-aortic balloon pump; LAP, left atrial pressure; LV, left ventricular; LVEDV, left ventricular 
end-diastolic volume; MI, myocardial infarction; MR, mitral regurgitation; MV, mitral valve; PCI, percutaneous coronary intervention; RV, right ventricular;  
Sʹ, peak systolic annular velocity; TDI, tissue Doppler imaging; TOE, transoesophageal echocardiography; VAD, ventricular assist device; VT, ventricular tachycardia; 
VTI, velocity time integral; VA ECMO, venoarterial extracorporeal membrane oxygenation.
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findings published in the past 3 years90,91. Physiological 
models suggest that in some patients, progressive fluid 
loading leads to a plateauing of cardiac output, with a 
progressive increase in pulmonary artery occlusion pres­
sure. In addition, higher volume is associated with worse 
outcome in critically ill patients92–94.

Inotropes and vasoactive agents. Although inotropes 
and vasopressors are commonly used to improve car­
diac output and blood pressure in patients with cardio­
genic shock, there is currently insufficient evidence 
to support the use of any particular agent in this con­
text9,95,96. Dobutamine is generally the first-line inotrope 
of choice in the clinic9,95,96. The detrimental effects of 
positive inotropic agents have been extensively described 
in the literature97,98, and their use should, therefore, be 
restricted to the shortest possible duration and the low­
est dose, both individualized to the patient. Although 
little guidance exists on how inotrope treatment should 
be individualized, echocardiography might be helpful in 
certain scenarios.

First, not all patients with cardiac disease respond 
to escalating doses of dobutamine by increasing their 
stroke volume; in some patients, dobutamine can result 
in an increase in the total isovolumic time (tIVT)99. 

Echocardiographic identification of an abnormally 
prolonged tIVT with dobutamine use, or an increase in 
tIVT in response to escalating inotropic support might 
indicate that inotropes are directly impairing myo­
cardial performance, thereby prompting a reduction 
in dose or a change in treatment strategy99–101 (FIG. 5). 
Second, the combination of LV end-diastolic pressure 
(LVEDP) and low aortic root pressure might result in a 
mismatch of coronary perfusion and myocardial oxygen 
demand. If untreated, this mismatch can result in type 2 
myocardial infarction102 (FIG. 3d). Echocardiographic 
demonstration of a dominant or isolated A wave on 
transmitral Doppler in combination with postejection 
shortening can also be diagnostic (FIG. 6a,b), and indi­
cates that aortic root pressure should be increased 
and/or LVEDP reduced103,104. Third, physiological 
studies have demonstrated that the combination of 
RV ischaemia and increased RV afterload is particu­
larly injurious to RV performance, resulting in a fall in 
systemic blood pressure and cardiac output levels105. 
Echocardiography can be used to estimate pulmo­
nary artery systolic pressure and pulmonary vascular 
resistance, as well as measure RV dimensions and per­
formance106. Echocardiographic identification of high 
pulmonary vascular resistance with or without pulmo­
nary hypertension in combination with RV dysfunction 
in cardiogenic shock might necessitate the introduction 
of a pressor agent plus treatment to reduce RV after­
load90,107 (FIG. 6c,d). Finally, in a patient with falling car­
diac output levels despite escalating inotropic support, 
echocardiography can help to diagnose LV outflow tract 
obstruction (with or without associated mitral regurgi­
tation)27,108. Treatment in this context involves reduction 
or cessation of positive inotropic agents, in combination 
with volume and pressor support.

Cardiac arrest. The most extreme presentation of cardio­
genic shock is cardiac arrest. International evidence- 
based guidelines recommend the use of echocardio­
graphy to diagnose or exclude some of the causes of 
arrest109. However, echocardiography should not affect 
the delivery of high-quality cardiopulmonary resuscita­
tion, and specific training in advanced cardiovascular 
life support is required, even for experienced practition­
ers. As images are obtained and recorded only dur­
ing the pulse/rhythm check, studies performed during 
cardiac arrest are strictly time-limited, and therefore 
are dissimilar to comprehensive studies that use only 
focused 2D imaging aimed at diagnosis or exclusion of 
potentially reversible causes in a simple, binary manner. 
The pathology leading to arrest is likely to be extreme 
(tamponade, massive pulmonary embolism, severe 
LV and/or RV dysfunction, myocardial infarction/
ischaemia, hypovolaemia, or tension pneumothorax) 
and fairly easy to diagnose without more sophisti­
cated echocardiographic techniques. Whether the use 
of echocardiography in cardiac arrest (and as part of 
care after resuscitation) can improve outcomes is 
unknown, but its application in the prehospital setting 
has been found to change management strategies in up 
to 60% of patients110,111.

Figure 7 | Echocardiographic features in patients receiving extracorporeal support. 
Transthoracic echocardiography in a patient with severe respiratory failure receiving 
venovenous extracorporeal membrane oxygenation (ECMO). a | Parasternal long axis 
M‑mode echocardiography across the mitral valve showing systolic anterior motion of 
the mitral valve leaflets (arrow). b | This motion was associated with substantial left 
ventricular intracavity gradient of 125 mmHg (asterisk). c | A complication of ST‑segment 
elevation myocardial infarction requiring peripheral ECMO is revealed on M‑mode 
echocardiography; papillary muscle rupture had resulted in a flail anterior mitral valve 
leaflet (white arrow) with associated torrential mitral regurgitation. The increase in left 
ventricular afterload from ECMO has resulted in failure of the left ventricle (LV) to eject, 
with a persistently closed aortic valve (AV; red arrow) and stasis of blood in the aortic 
root. d | Reversal of systolic pulmonary venous flow (arrows) in a patient receiving 
peripheral venovenous ECMO, suggesting inadequate offloading of the LV.
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Acute mechanical circulatory support. The indications 
for mechanical circulatory support (MCS) in the acute 
setting are constantly changing112,113. Intra-aortic balloon 
pumps are no longer routinely recommended for cardio­
genic shock114. A range of new percutaneous ventricular 
assist devices are available, in addition to extracorporeal 
membrane oxygenation (ECMO). These techniques can 
be used as a bridge to recovery or for longer-term support, 
and differ not only in terms of their technical aspects, 
but the degree and type of support provided (LV and/or 
RV support, with or without the addition of respiratory 
support)115–120. Echocardiography is critical for successful 
implementation of acute MCS121,122 (TABLE 2). MCS is not 
a treatment per se, but instead a supportive therapy for 
patients awaiting treatment or resolution of the under­
lying pathological process. As in all cases of AHF, the 
most important role of echocardiography is to diagnose 
the underlying cardiac cause. When the decision to 
institute MCS is made, echocardiography is then used 
to corroborate the decision regarding the type and level 
of support required. Although clear echocardiography 
parameters have been used to guide longer-term MCS 

for both the left and right heart123,124, these parameters 
are not yet available for devices designed for short-term 
use. Furthermore, clear contraindications to MCS exist 
that can be diagnosed only using echocardiography. 
Echocardiography is used in the initiation of MCS, 
including the use of vascular ultrasonography to guide 
safe vessel cannulation and steer device or cannula 
placement. Echocardiography is subsequently used to 
monitor MCS by ensuring the goals of support are met, 
and for detecting complications and assessing tolerance 
to assistance121. Unfortunately, peripheral ECMO can 
paradoxically worsen cardiac function by increasing 
LV afterload. Although a number of echocardiographic 
parameters exist that might indicate this complica­
tion (including lack of aortic valve opening, biphasic 
retrograde flow across the mitral valve in diastole, and 
retrograde systolic pulmonary venous flow; FIG. 7), the 
inherent limitations of echocardiography in estimating 
LAP and LVEDP, especially when the heart is partially 
bypassed, makes this strategy particularly challenging122. 
Echocardiography can be used, however, to guide inter­
ventions to ensure that the heart is adequately offloaded. 

Table 3 | Proposed initial focused cardiac and lung ultrasonography assessment for patients with suspected AHF in acute care setting

Clinical question Structural and 
functional 
assessment

Views (2D imaging) Comments Evidence

Focused echocardiography131,132

Alternative 
diagnoses for 
patient’s signs and 
symptoms?

•	Pericardial effusion
•	RV dilatation/

systolic function

Subxiphoid, parasternal 
long-axis and 
short-axis views, apical 
four-chamber view

Absence of RV 
dilatation/dysfunction 
cannot exclude the 
presence of pulmonary 
emboli

•	Pericardial effusion: sensitivity up to 100%, 
specificity 95% for detection of pericardial 
effusion133,134

•	RV dysfunction (various criteria): sensitivity 74%, 
specificity 54% for diagnosis of acute PE19

Evidence of 
impaired systolic 
function?

Global LV systolic 
function

Subxiphoid, parasternal 
long-axis and 
short-axis views, apical 
four‑chamber view

Might be useful in 
new-onset HF for 
identification of 
reduced EF

Sensitivity and specificity for diagnosis of AHF 
depending on prevalence of HFrEF38,135

Is there (additional) 
evidence of 
volume overload?

IVC assessment IVC (subxiphoid) IVC collapsibility <50% Sensitivity 83%, specificity 81% for diagnosis 
of AHF in patients with dyspnoea in the ED135

Gross structural 
abnormality as 
AHF aetiology?

•	Gross valvular 
abnormality*

•	Intracardiac mass‡

Subxiphoid, parasternal 
long-axis and 
short-axis views, apical 
four-chamber view

AHF aetiology might be 
identified in rare cases

NA 

Lung and pleural ultrasonography37,38

Alternative 
diagnoses for 
patient’s signs and 
symptoms?

Pneumothorax 
assessment

Anterior, upper chest on 
each hemithorax

Presence of lung sliding 
along pleural line rules 
out pneumothorax 
in the scanned 
chest zones

Sensitivity 91%, specificity 98% for detection 
of pneumothorax136

Evidence of 
pulmonary 
oedema?

Pulmonary oedema 
detection

Three or four anterior/
lateral chest zones on 
each hemithorax

Three or more B‑lines 
in two or more zones 
on each hemithorax 
considered diagnostic 
for AHF

Sensitivity 94%, specificity 92% for diagnosis 
of AHF in patients with dyspnoea in the ED33,38

Evidence of pleural 
effusions?

Pleural effusion 
detection

Posterior axillary line on 
both hemithoraces

Echo-free space above 
the diaphragm

Sensitivity 79–84%, specificity 83–98% for 
diagnosis of AHF in patients with dyspnoea 
in the ED44,45

*Valvular abnormalities recognizable with focused echocardiography (without the use of Doppler-based techniques) entail leaflet or cusp massive disruption or 
marked thickening, flail, or anatomical gaps. ‡Refers to large valve vegetations or visible intracardiac or IVC thrombi. AHF, acute heart failure; Echo, echocardiography; 
ED, emergency department; EF, ejection fraction; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; IVC, inferior vena cava; LV, left ventricular; 
NA, not available; PE, pulmonary embolism; RV, right ventricular.
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Finally, a number of echocardiographic parameters 
are used in conjunction with clinical and haemo­
dynamic assessment to predict which patients might be 
successfully weaned off MCS125,126.

Other indications
Transoesophageal echocardiograpy can also be used in 
the acute setting in patients with dynamic mitral regurgi­
tation (see Supplementary information S4 (figure)). 
Furthermore, features of infective endocarditis caused by 
aortic prostheses or a device can be demonstrated using 
transoesophageal echocardiography (see Supplementary 
information S5 (figure)). 

Quality assurance
A detailed overview of the necessary organizational 
structure and processes for use of ultrasonography 
and echocardiography in the acute setting is beyond 
the scope of this Review, and has been published pre­
viously26,127–130. However, when used in routine clinical 

care, training, education, protocols, and ongoing certifi­
cation of practitioners are required, which should all be 
performed within existing governance structures.

Conclusions
Echocardiography and LUS can assist in the rapid assess­
ment of patients with acute dyspnoea and hypotension, 
and have the potential to transform the way in which 
clinicians assess and manage critically ill patients with 
AHF and cardiogenic shock (TABLE 3). The current AHF 
guidelines are cautious in recommendations for the 
widespread use of advanced echocardiography tech­
niques in the acute care setting because robust applica­
bility data are lacking, interpretation of findings requires 
highly specialized, in‑depth knowledge of cardiac patho­
physiology, and there is potential for harm by injudicious 
application in this patient population. The opportuni­
ties to improve diagnostic accuracy, reduce delays in 
treatment, and improve outcomes through the use of 
advanced echocardiography need to be further explored.
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