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Abstract: Driving fatigue has been identified as one of the main factors affecting drivers’ 

safety. The aim of this study was to analyze drivers’ different mental states, such as 

alertness and drowsiness, and find out a neurometric indicator able to detect drivers’ 

fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to 

take part in a driver fatigue experiment under different simulated driving conditions. The 

Electroencephalogram (EEG) signals of the subjects were recorded during the whole 

experiment and analyzed by using Granger-Causality-based brain effective networks. It 

was that the topology of the brain networks and the brain’s ability to integrate information 

changed when subjects shifted from the alert to the drowsy stage. In particular, there was a 

significant difference in terms of strength of Granger causality (GC) in the frequency 

domain and the properties of the brain effective network i.e., causal flow, global efficiency 

and characteristic path length between such conditions. Also, some changes were more 

significant over the frontal brain lobes for the alpha frequency band. These findings might 

be used to detect drivers’ fatigue levels, and as reference work for future studies. 
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1. Introduction 

Driver fatigue has been identified worldwide as one of the main reasons for traffic accidents. 

According to the information from NHTSA (National Highway Traffic Safety Administration) of the 

United States (US), there are about 100,000 crashes caused by driver drowsiness or fatigue annually, 

and these accidents cause more than 1500 fatalities and 71,000 injuries [1–4]. In Europe, driver fatigue 

causes about 6000 deaths every year [5] and many studies claim that the main cause of the 15%–20% 

of all traffic accidents is driver fatigue [3,6,7]. In 2010, the Ministry of Public Security of the People’s 

Republic of China reported about 4,000,000 traffic accidents, and the number is still increasing. 

Mental fatigue accidents do not only exist in ordinary road traffic, but also in airline and railway 

industries. In these industries, a great part of accidents is due to drivers’ wrong operations caused by 

fatigue. In 1996, Morris and Miller did an experiment using a flight simulator, and found that pilots 

would fall into a drowsy status after about four and a half hours, then the possibility they would 

undertake incorrect operations would significantly increase [8]. Compared with the normal civil field, 

accidents in these industries would cause much worse outcomes, even a disaster. It would be very 

helpful to detect drivers’ fatigue levels and provide an alert before it is too late to avoid or at least 

reduce these accidents. 

Driver fatigue is caused by lots of factors, such as stress, long time driving, lack of rest or 

continuous sleep, and monotonous driving environments [9–11], which seriously affect driving 

performance. It is a very complex mechanism, which is still not fully understood. Driver fatigue is also 

reflected in many ways, such as increase of a driver’s reaction time, worse vehicle control 

performance, changes in brain activity, frequency of eye blink/movement, and heart rate. Current 

related researches could be divided roughly into two classes. The first class is based on a driver’s 

vehicle control behaviors. For this kind, it is necessary to determine which part of these behavioral 

changes is caused by driver fatigue and which is caused by traffic conditions and other environmental 

factors [5]. The second class is based on driver’s physiological signals, such as changes of chemical 

components in blood and heart rate, and electrical or magnetic signals from brain activity, which could 

be collected from blood samples, electrocardiogram (ECG), electroencephalogram (EEG) and 

magnetoencephalography (MEG), respectively [1]. Since methods to collect chemical signals are 

usually intrusive and equipment to collect magnetic signals is usually huge and expensive, the EEG 

signal offers high temporal-resolution and the procedure to collect it is quite fast and non-intrusive. As 

the EEG equipment is cheap and portable, it has been widely used to study many mental and driver 

fatigue states in real environments, and numerous results reported [4,5,12–15] showed how the EEG 

may be one of the most predictive and reliable physiological indicators [16,17]. 

In the latest 20 years, many researchers have started to study the human brain in terms of 

interactions among the different brain areas [18,19]. In particular, in the last few years, some 

researchers have proposed the concept of the Brain Network. In a brain network, regions of the human 

brain (or EEG channels) are treated as Nodes, while the link between two nodes are called Edges.  
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By the Graph Theory, specific indices are defined to calculate and quantify the connectivity strength 

between each pair of nodes. Threshold procedures are used with the aim of eliminating spurious 

connections due to the presence of no-physiological signals (noise). The nodes and the relative edges 

form network structures, which are called Brain Networks. There are two kinds of connectivity that are 

possible to estimate: Functional Connectivity and Effective Connectivity [20,21]. These networks are 

called brain functional networks and brain effective networks, respectively. Functional connectivity is 

a statistical measure of the temporal correlations between spatially separated neurophysiologic events 

(undirected relationship). Generally, the indexes used to quantify the functional connectivity are the 

Pearson correlation, partial correlation, partial coherence, mutual information and synchronization 

likelihood. The effective connectivity is instead a measure of causal influence from one neural unit to 

another (directed relationship) and it is normally estimated by Granger causality model, dynamic 

causality model and structural equation model. In the presented study, the brain effective networks, 

based on spectral Granger causality (GC), have been used to study driver fatigue. Driving accidents 

caused by fatigue are directly induced by long reaction time, lethargy or other symptoms. It has been 

reported that consciousness depends on the brain’s ability to integrate information [22,23] and integration is 

usually better understood with effective connectivity [21]. For example, during non-rapid eye  

movement sleep, one possible reason for losing consciousness is the breakdown of cortical effective 

connectivity [24]. Current EEG-based methods to study fatigue detection could not describe the 

interactions between different brain regions and measure the brain’s ability to integrate information. 

The Granger-Geweke causality is able to measure the strength of effective connectivity and it has been 

widely applied to investigate the dynamic relationship between different brain regions [25,26]. The 

basic idea has been first proposed by Wiener [27], it was successively formalized by Granger using 

autoregressive model and then Geweke proposed the first spectral decomposition of Granger’s  

time-domain causality [28–30]. Since EEG data contains many different frequency components, 

Granger-Geweke model has been chosen here to calculate the causality strength of connectivity 

estimated from the gathered EEG data. In order to figure out the feasibility of using spectral Granger 

causality to investigate the driver fatigue, and to reduce the complexity of the analysis, only pair-wise 

spectral Granger causality has been considered in this work. 

This study has two main goals: (1) try to find out the differences in terms of EEG pattern between 

the alert status, at the beginning of a long time driving and the pattern of the drowsy status at the end 

of the driving experiment by using brain effective network method. These differences could be used as 

indicators for fatigue detection; (2) try to find out which part of human brain cortex most likely relate 

to driver fatigue, which could be used to decide the most appropriated EEG electrodes position scheme 

in successive experiments. The paper is organized as follow. Section 2 introduces the experiment 

design, the EEG data recording procedure, and the methodology for the estimation of the brain network 

properties and describes the analysis procedure. Section 3 presents the results and Section 4 the 

meanings of the obtained results are discussed. Section 5 provides the conclusions for the work developed. 
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2. Material and Methods 

2.1. Experiment Design 

A driving simulation experiment has been designed to make the subjects drowsy quickly. In the 

experiment, a commercial software named Need for Speed-Shift 2 Unleashed (NFS-S2U) has been 

used to simulate the driving environment, since it could provide a quite real visual effect (Figure 1). 

 

Figure 1. Experimental setup. Note at the bottom of the figure the wheeldrive and beside it 

the two TAV buttons needed for the execution of the additional tasks other than simple 

drive (see text for explanations). 

In order to achieve the aims of the study, the driving simulation scene was set to the night condition, 

which was consistent with the real experiment time. In fact, all the experiments were performed 

between 6 p.m. and 9 p.m., because people are more likely to become tired during this time after 

daytime work. The selected car was the Alfa Romeo—Giulietta QV (1750TBi, 4 cylinders, 235 HP) 

and the experimental circuit chosen was the Spa–Francorchamps route (Belgium). The experimental 

protocol included EEG baseline recordings (Eyes Opened—OA; Eyes Closed—OC) and eight driving 

conditions (WUP, PERF, TAV3, TAV1, TAV5, TAV2, TAV4 and DROWSY). For each condition, 

subjects were asked to drive two laps of the circuit along the selected track. In the WUP (Warm-Up) 

condition, subjects drove without any requirements, while in the PERF (Performance) condition, 

subjects were asked to reduce the total time by 2% of the previous total time without committing 

mistakes (e.g., off-road driving). In the TAVx conditions, the subjects had to keep track of the total 

time taken in the PERFO conditions and, at the same time, to execute the Task of Alert and 

Vigilance—TAV (see Section 2.2 for more details). The different levels of the TAV have been used to 

modulate the difficulty of the global task, and it consists of an alert visual stimulus and a vigilance 

acoustic stimulus. The difference among the five TAV’s levels consisted in the stimulus rate, which is 

represented by the number x, from 1 (EASY) to 5 (HARD). The sequence of TAVx conditions was 

proposed randomly to the subjects to avoid any expectation and habituation effects. In the last 

experimental condition (DROWSY), subjects were asked to drive as in urban centers, that is around a 

speed limit of 50 km/h. Such monotonous driving conditions were used to induce the drowsy state. 

After each condition, subjects had to fill out the NASA-Task Load Index (NASA-TLX) and the 
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Karolinska Sleepiness Scale (KSS) form to collect subjective evaluations of the task workload and 

driver’s sleepiness [31]. 

2.2. Task of Alert and Vigilance 

The Task of Alert and Vigilance (TAV) was the second task to pay attention at while the subject 

was performing the driving simulation in the TAVx (x ranges from 1 to 5) conditions.  

The Alert task (Figure 2) consisted in pressing a button every time an “X” was shown on the screen.  

It was used to simulate possible obstacles and other cars on real roads. Since the target was presented 

in the center of the screen, placed 70 (cm) from the user, the subject had 1500 (ms) for pressing the 

correct button (button number 2) as soon as possible, and the possible reaction times should be 

“Anticipation”, “Correct”, “Late” and “Omission”. 

 

Figure 2. Alert task: The TARGET is the stimulus shown on the screen and the subject has 

to answer to it as soon as possible. The possible reaction times could be: early, correctly, 

late or no answer. 

Anticipation means that the subject pressed the button before the presentation of the stimulus plus a 

∆ time estimated around 350–500 ms. Correct corresponds to a reaction in the time interval from the 

presentation of the “X” to 1500 ms after it, otherwise the answer was classified as Late and, if the 

reaction time exceed 2000 ms, it was classified as Omission. In case of “not correct answer”, in the log 

performance file there was a −1, −2 or −3, respectively, or 0 in case of “correct answer”.  

In Figure 2, the time definitions of the different answers are shown. At the same time, the subjects had 

to face the Vigilance task (Figure 3) which was the identification of the same acoustical frequency of 

consecutive acoustic tones (low and high frequency) by pressing the corresponding button (button 

number 1) before the next tone impulse, with an inter-stimulus time of 2000 (ms). A response after this 

time interval was named as Late, while Omission was recorded if there were no answers and Error if 

the response did not coincide with the tone impulses. In Figure 3 is shown an example of a tone 

sequence and the different types of errors of reaction time. Therefore, one of the tones was used to 

simulate traffic horns, phone rings, or other occasional sounds which drivers needed to respond to. 
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Figure 3. Vigilance task: The target is the identification of the same acoustic tone during 

the sound sequence, and only after the second identical tone does the subject have to 

answer by pressing the correct button. If the response is not appropriate, different kinds of 

errors are provided: early, late, or no answer. 

2.3. EEG Signal Recording 

During the entire experiment, scalp EEG signals were recorded by using a 16-channels digital 

system (g.tech USBamp). Fifteen electrodes were placed on the brain according to the 10–20 

international system, including Fz, Pz, Oz, Fp1, Fp2, F7, F3, F4, F8, C3, C4, P7, P3, P4, P8. The 16th 

electrode, placed on the subject’s chest, was used to collect the ECG signal. The ear-lobes were used 

as reference channels, while the left mastoid as ground channel. The neuro-physiological signals were 

gathered by a sample rate 256 (Hz). The impedances of the electrodes were kept below 5 kΩ. After 

each experiment, the recorded signals were checked and EEG data of three subjects were eliminated 

because of the artifacts. EEG dataset of the WUP and of the DROWSY conditions were selected in 

line with the aims of the study. 

2.4. Experimental Subjects 

Twelve volunteers students, aged from 23 to 25 (Mean = 23.7; standard deviation = 0.78),  

right-handed, with regular driving license and no history of neurological diseases, have taken part in 

the experiment. They had been told to not consume alcohol, tea, coffee or medicine before the 

experiment. All the subjects were well trained in order to familiarize them with the driving task and the 

related software interface. 

2.5. EEG Data Preprocessing and Analysis 

In order to improve the signal-to-noise ratio and to remove artifacts (e.g., network frequency 

interference, muscular artifacts, etc.), a preprocessing procedure was applied to the raw EEG data by 

using the NPX Lab [32] software and some ad-hoc Matlab scripts. Raw scalp EEG data were  

band-filtered within 1–40 Hz and then the Independent Component Analysis (ICA) was used to remove 

the eye-blinks artefacts. 
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Then, the EEG dataset of each experimental condition was divided into 1 s epochs.  

The Kwiatkowski-Phillips-Schmidt and Shin (KPSS) test was run for each epoch to check if the data 

was stationary [33]. Stationary EEG data were used to calculate pair-wise spectral Granger Causality 

(GC) values in delta band (1–4 Hz), theta band (4–8 Hz), alpha band (8–13 Hz) and beta band  

(13–30 Hz), for each EEG channel. 

The GC values of each epoch were saved into asymmetric matrices. Then, a threshold procedure 

was applied to the original GC matrixes to eliminate the spurious connections which were likely 

caused by no-physiological signals that still remained after the preprocessing. 

There are, at least, two methods to set the threshold value: One way is by defining a fixed causality 

strength, the second one is defining a fixed edge percentage, which is also called Sparsity. The last method 

is defined as the ratio between the number of existing edges and the maximum edge number that the brain 

networks could have. As the GC values are quite different among subjects by the first threshold selection 

method, it would be quite hard to set a proper threshold value or decide one rule to set different values for 

all of them. For this reason, the second method has been widely used to explore small-world topology of 

brain networks [34–36] and the edge percentages normally used are 15%–25%, 12.2%–26.7% and  

11%–25%. In this study, we have chosen the range of edge percentage (EdgeP) from 0.05 to 0.6, with a 

step of 0.05, which is enough to cover the significant small-world property range [35,37]. 

Two Matlab toolboxes, Granger Causal Connectivity Analysis (GCCA) and Brain Smart 

(BSMART), were used to estimate the Granger causality [38,39]. The Brain Connectivity Toolbox 

(BCT) toolbox was then used to calculate the network properties [40]. See the Appendix for the details 

on how the Granger Causality was estimated from EEG data. 

2.6. GC Network Analysis 

After the threshold procedure, an N × N (N is number of the nodes in the brain network, N = 15 in 

this paper) directed weighted network wG  could be constructed from one GC matrix. Each node of wG  

represents an EEG channel and every directed edge represents an effective connection between two 

EEG channels. Properties of the GC matrix were calculated according to the formulas described in the 

following, where V represents the set of all the nodes of the network wG . 

2.6.1. Weighted Degree 

In a binary network, the degree of a node describes how many edges are connected to such node, or 

how many neighbors the node has. For the i-th node (node i) of a binary directed brain network, its 

out-degree tells how many edges of the brain network start from node i to other nodes, and its  

in-degree tells how many edges of the network start from other nodes to the node i [40]. For weighted 

brain networks, weighted degree represents the sum of the edges’ strength and the degree of 

importance of a node; the larger the node’s degree, the more important the node is. Weighted in-degree 
and out-degree for the i-th node of a weighted directed network are written as w,in

ik , w,out
ik  respectively, 

and the formulas to calculate them are as follow: 

w

j , j i

w,in
ik j,i( )

∈ ≠

= 
V

G


 (1)
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w

j , j i

w,out
ik i, j( )

∈ ≠

= 
V

G


 (2)

In Equations (1) and (2), j ,i


 means strength of the direct effective connectivity from node j to node 

i, and i, j


 means from node i to node j. 

2.6.2. Characteristic Path Length 

Characteristic path length (L) is a global property to measure the typical separation between two 

nodes [41], and is one measure of functional integration in brain networks. L is defined as the average 

of all the shortest absolute path lengths [35,40,42]. In a weighted GC network wG , it means the 

average strength of the effective connectivity of all the shortest absolute paths. The formula to calculate 

the L is: 

1

1
j , j i i , j

i

L
L

N N
∈ ≠

∈

=
−

 V

V
 (3)

where i , jL  is the summarized causality strength of the shortest path between node i and node j. 
wG  could be binary (by setting all non-zero weighted values to 1) and transformed to a binary 

network Gb . Based on the procedure, it is easy to know that wG  and Gb  are only different at the 

weight values, besides that they have exactly the same node-set V and the same edge distribution. 

Characteristic path length of the corresponding binary network provides the average length of all 

shortest paths between pairs of nodes. 

2.6.3. Global Efficiency 

Global efficiency (Eg) of a brain network is defined as the harmonic mean of the inverse of the 

shortest path length of all pairs of nodes in the network [40,43,44]. It measures the communication 

efficiency of a network, and is one of the properties which could measure the network’s ability to 

integrate information [40]: 

1 1

1g
i , j ;i j i , j

E
N( N ) L∈ ≠

=
− 

V
 (4)

2.6.4. Causal Flow 

Causal flow (CF) of a node is defined as the difference between its out-degree and its  

in-degree [38,45,46]. For weighted network wG , CF of node i is calculated as follows: 
w,outw w,i

i
n

i iC k kF −=  (5)

If a node has a highly positive CF value, it means granger causal influence from this node to others 

is much bigger than other nodes to this one. This kind of node is more likely to be the “causal source” 

of a network. If a node has a quite small negative value, it means this node is largely affected by other 

nodes. This kind of node is called Causal Sink of the brain network [38]. 
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2.6.5. Causal Density 

Causal density (CD) is a novel measure of causal interactivity, which could reflect the overall 

causal interactivity and the dynamical “complexity” of a system [46–49]. CD of a network has been 

defined as the fraction of interactions between different neuronal elements, electrodes or brain regions 

that are causally significant. For a weighted network wG , CD of node i is calculated as: 

1 w,inw
i

w,out
i iCD ( )

N
k k= +  (6)

2.7. Statistical Analysis 

Repeated measures ANOVA (Confidence Interval, CI = 0.95) and t-tests, with a significant level of 

α = 0.05, have been used for the statistical validation of the results by using the STATISTICA software 

(Statsoft). In particular, we have performed two one-way repeated-measures ANOVAs, with the factor 

CONDITION at eight levels (WUP, PERFO, TAV1 ÷ 5, and DROW), performed separately for the 

NASA-TLX and the KSS, as independent variables. In addition, we have performed 12 two-tailed 

paired t-tests to investigate the differences between the WUP and DROW conditions in terms of 

Granger Causality (GC), Global Efficiency (Eg), Path Length (L), Percentage of Unconnected Nodes 

(PUN), Casual Flow (CF) and Casual Density (CD). In each test, Bonferroni correction has been used 

for multiple comparisons to avoid the risk of occurrence of Type I errors. 

3. Results 

3.1. NASA-TLX and KSS 

The results for the NASA-TLX and of the KSS tests are shown in Figures 4 and 5, respectively. It is 

possible to note that the DROW condition showed a significantly lower (p < 0.05) NASA-TLX score 

than the WUP condition. In fact, because of the monotonous driving conditions and absence of extra 

tasks (TAV), the subjects perceived the DROW condition as easier when compared to the other ones. 

In the same way, since the subjects had a stronger feeling of sleepiness in DROW condition, KSS 

showed a significantly higher (p < 0.05) value with respect to the WUP one. 

 

Figure 4. NASA-TLX total score related to the different experimental conditions. 
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Since the DROW occurred at the end of the driving protocol and the subjects had to perform many 

conditions before it, those results were expected. Also, since the WUP and DROW conditions had no 

additional tasks, they could be considered closer to real driving conditions and with less interference 

caused by extra tasks. This consideration led us to use the WUP and DROW conditions in the 

successive EEG analyses. 

 

Figure 5. KSS scores related to the different experimental conditions. 

3.2. Granger Causality 

In order to check the differences between the WUP and DROW, average values of the GC have 

been estimated by the spectral GC matrices, and, successively, the four EEG bands in the two 

conditions were statistically compared. From the t-tests analyses, significant results have been found in 

the theta and alpha bands (Figure 6). In both the bands, the GC estimated for the DROW (blue bar) 

was significantly higher than the GC in the WUP (red bar). 

 

Figure 6. Mean Granger Causality (GC) in the theta and alpha bands. Note that  

the GC estimated for the DROWSY condition was significantly (p < 0.05) higher than the 

GC in WUP. 
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3.3. Global Efficiency 

After the properties of the brain networks were estimated from the threshold spectral GC matrices, 

session averages of global efficiency (Eg) for the selected conditions were calculated. Results are 

shown in Figure 7. Eg of the DROWSY (blue bar) condition was found to be significantly lower  

(p < 0.05) than the Eg of the WUP (red bar) condition in the delta and theta bands. 

 

Figure 7. Mean Global Efficiency (Eg) in the delta and theta bands. Note that the Eg 

estimated for the DROWSY condition was significantly (p < 0.05) lower than the Eg in WUP. 

3.4. Characteristic Path Length and Percentage of Unconnected Nodes 

According to the definition of Eg, characteristic path length (L) and the percentage of unconnected 

nodes (PUN) were further analyzed and compared between WUP and DROWSY conditions in the four 

EEG bands. Figures 8 and 9 show the results of the bands in which significant differences were found. 

In particular, Figure 8 reports the results of t-tests performed on the L data. The plots show that the L 

value estimated in the DROWSY condition was significantly (p < 0.05) lower than the L value in the 

WUP both in the delta and theta bands. 

 

Figure 8. Mean Path Length (L) values in the delta and theta bands. Note that the L 

estimated for the DROWSY condition was significantly (p < 0.05) lower than the L in WUP. 

In Figure 9, the results of the t-tests performed on the PUN values of the two considered conditions 

are reported. Significant (p < 0.05) differences were found in the delta, theta and alpha bands.  
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In particular, in such EEG bands, the PUN estimated in the DROW (blue color) condition was 

significantly (p < 0.05) higher than the PUN calculated in the WUP (red color) condition. 

 

Figure 9. Mean Percentage of Unconnected Nodes (PUN) values in the delta, theta and 

alpha bands. Note that the PUN estimated for the DROWSY condition was significantly  

(p < 0.05) higher than the PUN in WUP. 

3.5. Causal Flow and Causal Density 

Figure 10 shows the difference between the WUP and DROW conditions in terms of Casual Flow 

(CF) over the different EEG channels. In particular, on the right side of the figure, the mean CF values 

in the theta band are reported as representative of the other bands. In fact, significant differences  

(p < 0.05) have been found in all the considered EEG bands. The results show that from WUP to 

DROW condition, a significant reduction of the CF was found over the prefrontal (Fp1 and Fp2) and 

parietal (P3, P4, P7 and P8) lobes and in the posterior midline (Pz and Oz). On the contrary, significant 

CF increases were found on the frontal (Fz, F3, F4 and F8) and central (C3 and C4) lobes. 

 

Figure 10. Differences of Causal Flow (CF) between the WUP and DROWSY conditions. 

Significant differences were found in all considered EEG bands. On the right side of the 

figure, the mean CF values in the theta band are reported as representative of the others. 

Note that CF significantly (p < 0.05) decreased, especially over the prefrontal, parietal 

lobes and posterior midline, while significant (p < 0.05) increases were found over the 

frontal and central lobes. 
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In Figure 11, the results of the statistical analyses on the Casual Density (CD) data are shown.  

On the right side of the figure, the mean CD values of the WUP and DROW conditions in the theta 

band are reported as representative of the others. The difference between the considered experimental 

conditions provided significant (p < 0.05) differences in the delta, theta and alpha bands. In particular, 

from WUP to DROW, the CD increased significantly over almost all EEG channels. 

 

Figure 11. Differences of Causal Density (CD) between the WUP and DROWSY 

conditions. Significant differences were found in almost all EEG channels for the delta, 

theta and alpha bands. On the right side of the figure, the mean CD values in the theta band 

are reported as representative of the others. Note that, from WUP to DROWSY condition, 

CD significantly (p < 0.05) increased over almost all EEG channels. 

4. Discussion 

The main results of this study could be summarized as follows: From the WUP to the DROWSY 

condition, (1) pair-wise Granger causalities (GC) in theta and alpha band increased significantly; (2) in 

the delta and theta bands, the global efficiency (Eg) and Path Length (L) decreased significantly, and 

meanwhile the percentage of unconnected nodes increased significantly in delta, theta and alpha bands; 

(3) CF decreased over the prefrontal, parietal and posterior midline and increased over the frontal and 

central lobes of the brain cortex in delta, theta, alpha and beta bands, while CD increased almost over 

the entire brain in the delta, theta and alpha bands. 

Pair-wise granger causalities (GC) are the strength of paths between nodes connected directly, their 

increase meant that these short connections have been enhanced. Global efficiency (Eg) is one measure 

of brain’s ability to integrate information. Its decrease indicates that the ability has been weakened 

from WUP to DROWSY condition. The increase of percentage of unconnected nodes meant that there 

were significant connection breakdowns from WUP to DROW. This indicates that the topology of the 

brain network changed, which probably made it harder to transmit information between different brain 

regions. This could be the reason for the global efficiency reduction observed. 

The general increment of the CD index over the brain lobes, in particular over the frontal and central 

lobes, and the simultaneous reduction of CF index over the prefrontal, parietal and posterior midline, from 
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the WUP to DROW conditions indicated that there was much more information converging to the 

prefrontal lobes when drivers had fallen into a fatigued state. Therefore, these results might indicate 

that the information processing speed across such brain regions was affected by driver fatigue. 

These phenomena were found to be occurring significantly across different frequency bands, such 

as delta, theta and alpha, especially over the prefrontal, frontal and parietal lobes. It has been reported 

that the human brain’s attention and memory performance are related with brain activities in the theta 

and alpha bands, and the brain’s ability to encode information is correlated with activities in the theta  

band [50,51]. Reduced ability to concentrate and react on time is common when drivers become 

drowsy, and it should be reflected by changes in the brain activities in the theta and alpha bands. 

5. Conclusions 

In this paper, differences between alert and drowsy conditions were analyzed in terms of brain 

networks. Granger-Geweke Causality model in the frequency domain was applied to calculate the 

effective connections between each pair of EEG channels (nodes). Different brain network properties 

were determined and compared according to the two considered experimental conditions.  

Results showed that fatigue causes a reduction in the human brain’s ability to integrate information, 

which is reflected by a decrease in global efficiency, and that the topology of the whole brain networks 

also changed, including a variation of the characteristic path length and number of unconnected nodes, 

which may make it harder to transmit information. 
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Appendix 

Granger-Geweke Causality 

Granger causality is based on autoregressive models. Assuming that there are two stochastic 

processes X and Y, which are assumed to be jointly stationary, the p-order autoregressive (AR) model 

of X and Y could be expressed as: 

1 1
1

p

t i t -i t
i

X a X u
=

= +  (A1)

1 1
1

p

t i t-i t
i

Y b Y v
=

= +  (A2)

and the p-order joint-regressive (JR) model of X and Y is described as:  

2 2 2
1 1

p

t i t i i t i t
i i

p

X X Ya c u− −
= =

= + +   (A3)

2 2 2
1 1

p

t i t i i t i t
i i

p

Y X Yb d v− −
= =

= + +   (A4)

where t = 0, 1, …, N; 1a , 1b , 2a , 2b , 2c , 2d  are the coefficients of the AR model and the JR model, 

and 1u , 1v , 2u , 2v  are the zero-mean noises terms. They are uncorrelated with the time and their 

variances are 1Σ , 1T , 2Σ , 2T , respectively. According to Granger’s definition, if 2 1Σ < Σ , then Y is 

considered to have a causal influence on X; otherwise if 2 1Σ = Σ , Y is said to have no causal influence 

on X because it doesn’t make the equation more accurate by adding Y. Such causal influence is called 

Granger Causality, and is defined as: 

1
Y X

2

F =l
Σ

n
Σ→  (A5)

Similarly, if 2 1T <T , X is said to have a Granger causal influence on Y, and the causality is defined as: 

1
X Y

2

T
F =ln

T→  (A6)

If Fourier transformation is applied on both sides of the AR and JR model, we can calculate the 

causality in frequency domain. The causal influence from Y to X at frequency ω  is defined as: 

XX
Y X *

XX 2 XX

S (ω)
F (ω)=ln

H (ω) H )Σ (ω→    (A7)

where XXS ( )ω  is the auto spectrum of X, XXH ( )ω  is the element at position (X,X) of the normalized 

form of the transfer matrix H( )ω  [29], the star “*” denotes the complex conjugate and matrix 

transpose. In a similar way, the causal influence from X to Y should be expressed as: 

YY
X Y *

YY 2 YY

S (ω)
F (ω)=ln

H (ω)T H (ω)→    (A8)
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After this step, a series of spectral GC matrixes should contain many spurious connections due to 

different kinds of noise, which need to be eliminated by the threshold procedure. According to the 

graph theory, every GC matrix represents a weighted directed brain network. 
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