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BP 46870, 21078 Dijon, France

fabio.baronio@ing.unibs.it

Abstract: We predict that parametric sum-frequency generation of
an ultra-short pulse may result from the mixing of an ultra-short optical
pulse with a quasi-continuous wave control. We analytically show that the
intensity, time duration and group velocity of the generated idler pulse
may be controlled in a stable manner by adjusting the intensity level of the
background pump.
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1. Introduction

Optical parametric amplification in quadratic nonlinear crystals has been studied since the in-
vention of the laser, as it provides a versatile means of achieving widely tunable frequency
conversion [1]. In parametric processes, the effective interaction length of short optical pulses
is limited by temporal walk-off owing to chromatic dispersion, or group velocity mismatch
(GVM) [2, 3]. Compression and amplification of ultra-short laser pulses in second harmonic
and sum-frequency (SF) generation in the presence of GVM was theoretically predicted [4, 5]
and observed in several experiments [6, 7]. The conversion efficiency of generated SF pulses
may be optimised [8, 9, 10, 11, 12] by operating in the soliton regime [13, 14]. In fact, the
temporal collision of two short soliton pulses in a quadratic nonlinear crystal may efficiently
generate a short, time-compressed SF pulse [8]. However this SF pulse is unstable: its energy
decays back into the two incident pulses after a relatively short distance.

In this Paper we consider the parametric SF conversion from the mixing of an ultra-short sig-
nal pulse with a quasi-continuous wave (CW) or background pump, in the presence of GVM.
Quite surprisingly we find that parametric mixing of these waves may lead to highly efficient
generation of stable and ultra-short idler pulses. Indeed, we predict that the interaction of an
ultra-short signal with a CW pump may generate a stable three-wave resonant interaction si-
multon (TWRIS) [15, 16], consisting of a locked bright-bright-dark triplet (signal-idler-pump)
that propagates with a single nonlinear velocity [17, 18]. We analytically show that the inten-
sity, time duration and group velocity of the generated idler pulse may be controlled in a stable
manner [19] by means of simply adjusting the intensity level of the CW background. Although
we shall restrict our attention in this work to a travelling-wave interaction geometry, we may
anticipate that our results will have important ramifications in the optimization of the efficiency
of ultrashort pulse optical parametric oscillators [20, 21].

2. Three-wave-interaction equations

The equations describing the quadratic resonant interaction of three waves in a nonlinear
medium read as:

∂A1

∂ξ
+ δ1

∂A1

∂τ
= iA∗

2A3,

∂A2

∂ξ
+ δ2

∂A2

∂τ
= iA∗

1A3, (1)

∂A3

∂ξ
+ δ3

∂A3

∂τ
= iA1 A2,
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with

Aj = πχ (2)
√

n jω1ω2ω3

n1n2n3ω j
E j . (2)

Here τ = t/t0, t0 is an arbitrary time parameter; ξ = z/z0, z0 is an unit space-propagation
parameter. E j are the slowly varying electric field envelopes of the waves at frequencies ω j, n j

are the refractive indexes, χ (2) is the quadratic nonlinear susceptibility, δ j = z0/(v jt0) with v j

the linear group velocities, and j = 1,2,3. We assume that the group velocity v 3 of the wave
with the highest frequency (ω3 = ω1 +ω2) lies between the group velocities of the other waves,
i.e. v1 > v3 > v2. With no loss of generality, we shall write the Eqs. (1) in a coordinate system
such that δ1 = 0, which implies 0 < δ3 < δ2. Eqs. (1) exhibit the conserved quantities

U13 = U1 +U3 =
1
2

∫ +∞

−∞
(|A1|2 + |A3|2)dτ, (3)

U23 = U2 +U3 =
1
2

∫ +∞

−∞
(|A2|2 + |A3|2)dτ, (4)

U = U1 +U2 + 2U3 =
1
2

∫ +∞

−∞
(|A1|2 + |A2|2 + 2|A3|2)dτ. (5)

where U1, U2 and 2U3 represent the energies at the frequencies ω1, ω2 and ω3.

3. Soliton-based parametric sum-frequency conversion

Figure 1 illustrates a typical example of the efficient SF parametric interaction of two short
optical pulses in the soliton regime [8].
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Fig. 1. Sum-frequency parametric interaction of two short optical signals at ω1 and ω2. The
characteristic delays are δ1 = 0,δ2 = 2,δ3 = 1.

At the crystal input, two isolated pulses A1 and A2 with frequencies ω1 and ω2 propagate
with speeds v1 and v2. Whenever the faster pulse overtakes the slower one, an idler pulse A 3
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Fig. 2. Sum-frequency parametric interaction of a short pulse at ω2 and a quasi-CW control
at ω1. The characteristic delays are δ1 = 0,δ2 = 2,δ3 = 1.

at the SF ω1 + ω2 is generated and propagates with the linear speed v3. Depending on the time
widths and intensities of the input pulses, the duration of the SF pulse is reduced with respect to
the input pulse widths. Correspondingly, the SF pulse peak intensity grows larger than the input
pulse intensities. Figure 1 shows that, eventually, the SF idler pulse decays back into the two
original isolated pulses at frequencies ω1 and ω2. Note that the shapes, intensities and widths
of the input pulses are left unchanged in spite of their interaction. As shown in Ref. [8], the
above discussed SF pulse generation process may be analytically described in terms of soliton
solutions of Eqs. (1) [13, 14]. The decay of the SF pulse which is shown in Fig. 1 may be
a significant drawback in practical applications, since it implies that a given nonlinear crystal
length yields efficient conversion for a limited range of input pulse intensities and time widths
only.

Here we demonstrate that the parametric sum-frequency conversion of an ultra-short sig-
nal and a quasi-CW background pump-control may be exploited as a means to reduce or even
eliminate the decay of the generated idler wave. In the presence of GVM, the parametric SF
conversion of an ultra-short optical signal and a quasi-CW pump typically leads to the gener-
ation of a low-intensity and relatively long idler pulse, whose duration is associated with the
interaction distance in the crystal. This scenario changes dramatically in the soliton regime.
Figure 2 illustrates the efficient generation of a stable, ultra-short SF idler pulse from the para-
metric SF conversion of a properly prepared ultra-short signal and an arbitrary intensity level
CW background control.

In Fig. 2 we injected in the quadratic nonlinear crystal the short signal at frequency ω 2,
along with a delayed and relatively long pump-control pulse at frequency ω 1. Initially, the two
pulses propagate uncoupled; as soon as the faster pulse starts to overlap in time with the slower
quasi-CW control, their nonlinear mixing generates a short SF idler pulse. The sum-frequency
process displayed in Fig. 2 can be analytically explained and explored in terms of stable TWRIS
solutions [18]. In the notation of Eqs. (1), the TWRIS solution reads as
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A1 = {1+
2pb∗

|b|2 +a2 [1− tanh[B(−τ + δξ )]]} iag1 exp(iq1τ1)
g(δ2 − δ3)

A2 =
2pa√
|b|2 +a2

g2

g(δ2 − δ3)
exp[i(q2τ2 + χτ + ωξ )]

cosh[B(−τ + δξ )]
,

A3 =
−2pb∗√|b|2 +a2

g3

g(δ2 − δ3)
exp[−i(q3τ3 − χτ −ωξ )]

cosh[B(−τ + δξ )]
, (6)

where

b = (Q−1)(p+ ik/Q), r = p2 − k2 −|a|2,

Q =
1
p

√
1
2
[ r +

√
r2 + 4k2p2 ],

B = p[δ2 + δ3 −Q(δ2 − δ3) ]/(δ2 − δ3),
δ = 2δ2δ3/[δ2 + δ3 −Q(δ2 − δ3) ],
χ = k[δ2 + δ3 − (δ2 − δ3)/Q ]/(δ2 − δ3),
ω = −2kδ2δ3/(δ2 − δ3),τn = −τ + δnξ
qn = q(δn+1 − δn+2), gn = |(δn − δn+1)(δn − δn+2)|−1/2

g = g1 g2 g3 , n = 1,2,3 mod (3). (7)

For a given choice of the characteristic linear group velocities, we are left with the four real
independent parameters p,a,k,q. The parameter p is associated with the re-scaling of the wave
amplitudes, and of the coordinates τ and ξ . Whereas a measures the amplitude of the CW
background in wave A1 (namely a

√
δ2δ3). The value of k is related to the soliton wavenumber.

The parameter q simply adds a phase shift which is linear in both τ and ξ (see [18] for parameter
details).

At the input, the properly prepared short pulse at frequency ω 2 and with a speed v2 is a stable
single component TWRIS (6) with parameters p > 0,k,q,a = 0. The background control in
the interaction region can be modeled with A1(τ) =Ce−iγτ . When this faster pulse, pre-delayed
with respect to the slower quasi-CW pump at frequency ω1, overtakes the background (at τ = 0,
in Fig. 2), their collision leads to the generation of a short idler pulse at the SF ω 3. Additionally,
a dip appears in the quasi CW-control; whereas the intensity, duration and propagation speed
of the input wave at frequency ω2 are modified. Indeed, the signal-pump interaction generates
a new stable TWRIS (6), with parameters p,k,q,a, moving with the locked nonlinear velocity
v = z0/(t0δ ), where δ is given in (7). It is remarkable that we may analytically predict the
parameters p,k,q,a of the generated TWRIS from the corresponding parameters of the input
single wave TWRIS and the complex amplitude of the pump control. This can be achieved by
supposing that the input TWRIS adiabatically (i.e., without emission of radiation) reshapes into
a new TWRI simulton after its collision with the quasi-CW pump at a given point in time (say,
at τ = 0). Under this basic hypothesis, the conservative nature of the three-wave interaction
permits us to suppose that: i) the energy U23 (4) of the input TWRI soliton is conserved in the
generated TWRI simulton; ii) the phase of the ω2 frequency components of the input TWRI
soliton and of the generated TWRI simulton is continuous across their time interface (i.e.,
at τ = 0); iii) the amplitude and phase of the control pump coincide with the corresponding
values of the asymptotic plateau of the generated TWRI simulton component at frequency ω 1.
By imposing the above three conditions, after some straightforward calculations we obtain the
following relations that relate the parameters of the incident and of the transmitted TWRIS

p = p, a = |C|/
√

δ2δ3, q = γ, k = k +(q−q)(δ2 − δ3)/2. (8)
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As an example, in Fig. 2 the input TWRI soliton at frequency ω 2 is described by Eqs. (6)
with p = 1.3,k = 0,q = 0,a = 0, and the background control amplitude with C = 1.7,γ = 0.
After the collision with the CW background, the above equations predict that the generated
TWRIS is again described by Eqs. (6), with p = 1.3,k = 0,q = 0, and a = 1.2. The accuracy of
this prediction is well confirmed by its comparison with the numerical solutions of the TWRI
Eqs. (1). Indeed, Fig. 3 compares the numerical with the analytical evolutions (along the crys-
tal length ξ ) of the energy, the pulse duration and the velocity of the idler and signal pulses
which correspond to the case shown in Fig. 2. We performed further extensive numerical simu-
lations, which confirmed the general validity of the above described adiabatic transition model
for TWRIS generation upon collision with a CW background.
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Fig. 3. Numerical evolution (lines) and theoretical predictions (circles) of energy, pulse
duration and velocity of idler (red) and signal (blue) waves reported in Fig.2.

Indeed, by increasing or decreasing the CW background amplitude |C| in the range
[0, p

√
δ2δ3], we observed that stable TWRISs with different velocity, duration and energy dis-

tributions may be adiabatically shaped. The important consequence of this result is that, by
means of Eqs. (6)–(8), we may analytically predict and control the characteristics of the gen-
erated idler pulse (namely, its velocity, time duration and energy) simply as a function of the
intensity level of the CW pump. Moreover, we would like to emphasize that the stability of the
whole conversion process is ensured by the underlying stability of the generated TWRIS [19].

We would like to point out that the observation of the above described sum–frequency short
pulse generation phenomena appears to be readily achievable in nonlinear optical experiments.
For instance, let us consider the eee interaction of three-waves with carrier wavelengths of
λ1 = 1.55μm, λ2 = 3.4μm, λ3 = 1.064μm in a 2cm (8cm) long periodically poled bulk Lithium
Niobate crystal with 28μm periodicity. In this case, the parametric mixing of a 100 f s (1ps)
incident pulse with a quasi–CW (say, with a 3ps (30ps) time duration) control pulse leads to
the generation of an ultrashort sum-frequency pulse of approximately the same time width of
the incident short pulse whenever the field intensities of the two input pulses are of the order of
a few hundreds of MW/cm2 (or a few MW/cm2, respectively).

4. Conclusions

In conclusion, we demonstrated the parametric SF conversion of an ultra-short pulse from the
mixing of an ultra-short optical pulse with a quasi-continuous wave control in quadratic non-
linear crystals in the presence of GVM. We analytically showed that the intensity, time duration
and group velocity of the generated pulses may be controlled in a stable manner by simply
adjusting the intensity level of the background pump.
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