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Adversity in childhood and depression: linked through SIRT1
L Lo Iacono1,5, F Visco-Comandini2,5, A Valzania1, MT Viscomi1, M Coviello3, A Giampà3, L Roscini4, E Bisicchia1, A Siracusano3, A Troisi3,
S Puglisi-Allegra1,4 and V Carola1

Experiencing an adverse childhood and parental neglect is a risk factor for depression in the adult population. Patients with a
history of traumatic childhood develop a subtype of depression that is characterized by earlier onset, poor treatment response and
more severe symptoms. The long-lasting molecular mechanisms that are engaged during early traumatic events and determine the
risk for depression are poorly understood. In this study, we altered adult depression-like behavior in mice by applying juvenile
isolation stress. We found that this behavioral phenotype was associated with a reduction in the levels of the deacetylase sirtuin1
(SIRT1) in the brain and in peripheral blood mononuclear cells. Notably, peripheral blood mRNA expression of SIRT1 predicted the
extent of behavioral despair only when depression-like behavior was induced by juvenile—but not adult—stress, implicating SIRT1
in the regulation of adult behavior at early ages. Consistent with this hypothesis, pharmacological modulation of SIRT1 during
juvenile age altered the depression-like behavior in naive mice. We also performed a pilot study in humans, in which the blood
levels of SIRT1 correlated significantly with the severity of symptoms in major depression patients, especially in those who received
less parental care during childhood. On the basis of these novel findings, we propose the involvement of SIRT1 in the long-term
consequences of adverse childhood experiences.
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INTRODUCTION
Exposure to traumatic events and receiving little parental care in
early life are risk factors for mood disorders in adulthood.1

Childhood adversity is associated with significant differences in
the clinical picture of depressive illnesses, including earlier onset, a
more sustained course of disease, more severe symptoms and
worse treatment outcomes.2–4

On the basis of these findings, Teicher and Samson5 hypothe-
sized that depressed patients who have experienced childhood
maltreatment constitute a distinct clinical ‘ecophenotype’ (per
Teicher and Samson’s terminology) that is likely characterized by
specific etiological pathways.6–8 Consistent with this hypothesis,
recent studies have shown that depression and inflammation
cluster in individuals who have had traumatic childhoods.9 Further,
downregulation of glucocorticoid-related genes and greater proin-
flammatory gene expression have been observed in the blood of
depressed individuals with early traumatic experiences.6,10

Thus, current research is examining low-grade inflammation as
a biological residue of adverse childhood experiences that might
affect neurobehavioral changes that lead to depressive
symptoms.11–13 However, this hypothesis remains highly debated,
and the mechanisms of the long-term maladaptive effects of early
stress are unknown.
During early life, epigenetic mechanisms are actively engaged

to modify gene expression and function in response to environ-
mental inputs.14–16 Among epigenetic factors, the family of
sirtuins (SIRTs, class III histone deacetylases) has garnered interest
with regard to long-term modifications because of early stress.
SIRTs are NAD+-dependent deacylases that act on histones and
other substrates to regulate many cellular processes, including

aging, inflammation and stress resistance.17–19 SIRTs have many
important functions during development, influencing brain struc-
ture through axon elongation, neurite outgrowth and dendritic
branching.20

Further, SIRTs have recently been implicated in mood disorders
in mice21,22 and humans,23 wherein reduced peripheral blood
levels of SIRT1, SIRT2 and SIRT6 have been linked to depressive
disorders. However, their function in major depression (MD) is
largely unknown, and the contribution of SIRTs to the long-term
effects of traumatic childhood has never been examined.
On the basis of the function of SIRTs as regulators of neuronal

development and stress responses, we determined the contribu-
tion of SIRTs to the progression of depressive disorders following
early-life stress. In humans, the diversity of traumatic events and
the necessity for a longitudinal approach have created a major
obstacle in examining the biological links between an adverse
childhood and depression in adulthood, necessitating the use of
validated preclinical models.
We applied an environmental manipulation protocol (early

social isolation (ESI))24 during the third postnatal week to induce
depression-like behavior in adult mice. During ESI, juvenile pups
simultaneously received less maternal care and had less social
contacts with conspecifics. The third postnatal week is character-
ized by the maturation of several functions—visual, motor and
social abilities—that are critical for the interaction of a mouse with
its environment.25–27 Moreover, large-scale reconfiguration of the
neuronal epigenome and extensive synaptogenesis occur in the
mouse brain during this time.28,29 Despite its relevance, the impact
of stressful experiences during juvenile age on adult depression-
like behavior has not been studied sufficiently.
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Using our model, we observed that ESI-induced stress is
associated with a significant decline in SIRT1 protein and mRNA
in the brain and peripheral blood mononuclear cells (PBMCs) in
adulthood, when lower peripheral blood mRNA levels predict
greater depression-like behavior. Consistent with these findings,
the blood levels of SIRT1 in MD patients correlated with their
symptoms and adverse childhood experiences in this group
strengthened this relationship. Notably, using a pharmacological
strategy, we demonstrated a critical function of SIRT1 during
postnatal development in the long-term regulation of depression-
like behavior.

MATERIALS AND METHODS
Animals
Three-week-old DBA/2J@Ico (DBA), CD 1 (CD1; used for Social stimulus,
Figure 1a), C57BL/6J@Ico (C57, used for correlation experiment) male and
female mice were purchased from Charles River Laboratories (Calco, Italy).
Mice were group-housed on a 12:12 light:dark cycle with lights on at
0700 hours. For the production of pups, DBA mice were mated at 12 weeks
of age, and only litters with a number of pups variable between four and
eight were included. All procedures were carried out in accordance with
European legislation (EEC no. 86/609) and Italian national legislation
(DL no. 116/92) governing the use of animals for research. Behavioral,

gene/protein expression, correlation and pharmacological experiments
were performed in separate groups of animals, resulting in a total number
of 133 mice. The experimental sample size was determined with the aid of
an online available software (http://www.stat.ubc.ca/ ~ rollin/stats/ssize).
Previous experiments that were performed in our laboratory provided the
values (for example, means and common s.d.) that are required for the
calculation. The investigators were blinded to the group allocation during
the experiments and data analysis.

Social isolation procedure
Mouse pups were randomly assigned to control or ESI group at postnatal
day (PD) 14. In the control group mothers and offspring were left
undisturbed without cage cleaning until weaning. In the ESI group each
pup was singly housed in a novel clean bedding cage for 30min per day
from PD14 to 21. All pups were weaned at PD22 and were tested for either
behavioral phenotype or analysis of gene or protein expression at 8–
10 weeks of age. Social isolation during adulthood (adult social isolation,
ASI) was applied as previously described30 by individually housing mice for
20 days at 10 weeks of age.

Behavioral testing
Mice were exposed to behavioral testing starting at 8 weeks of age (PD60).
In order to avoid the effect of prior tests on the mouse behavioral
performance, tests were separated by 3-week intervals31 and performed in
the following order: social isolation test (SIT), forced swimming test (FST)
and sucrose preference test (SPT), from the least to the most invasive.
Behavior was recorded and monitored by videotracking (SIT and FST;

Ethovision, Noldus Information Technology, Wageningen, the Netherlands)
and direct observation (SPT). For the SIRT1-behavior correlation study, the
behavior in the FST was evaluated in naive groups of mice (ESI, ASI or C57)
72 h after the blood collection. For the drug-treatment study in early age,
the behavior in the FST was evaluated at PD60.
The SIT was carried out according to the method of Sankoorikal et al.32

Briefly, each mouse was allowed to habituate to the three-chambered
plexiglass apparatus containing two-holed cylinders for 10min. After the
habituation, a 4-week-old CD1 stimulus mouse (same sex as the test
mouse) was placed in one cylinder and the test mouse could explore the
apparatus and the stimulus mouse for the next 10min. Behavioral data
were analyzed by the ‘EthoVision’ videotracking system. The ‘time spent’
(s) in the three chambers was the parameter used to estimate the mouse
preference for the different environments (social versus no social).
The FST was performed as previously described.33 Mice were individually

introduced in a glass cylinder (25 cm diameter), containing 20 cm of water
at 28+2 °C for 10min, and the amount of immobility (absence of
movement or small movements of one of the posterior paws that do
not produce displacement) and activity (vigorous attempts at climbing the
walls of the cylinder and active swimming around) was scored for each
mouse. Videos were scored blind by highly trained observers (inter-rater
reliabilities ⩾ 0.9; Pearson correlations) using the Ethovision software.
In the SPT, mice were first submitted to 4 days of continuous exposure

to water and 5% sucrose solution in their home cage. During the six testing
days, each mouse (previously deprived of the sucrose/water bottle for 1 h)
was placed in a novel cage equipped with two pipettes (10ml volume)
filled with either water or 5% sucrose solution for 2 h per day. Sucrose
consumption per gram of body weight was calculated for each day. The
behavioral data were obtained by means of two replications of the
experiment.

Tissue isolation and RNA preparation
For the analysis of brain and PBMC mRNA, mice were killed by decapitation
while trunk blood was collected in EDTA tubes. Brains were subsequently
dissected, deprived of cerebellum and pons-medulla, and stored at − 80 °C.
For correlation analysis, blood (200 µl) was instead collected via
submandibular puncture. PBMCs were extracted from whole blood using
RBC lysis buffer according to the manufacturer’s protocol and RNA was
subsequently isolated using the Total RNA purification Plus Kit (Norgen
Biotek, Thorold, Ontario, Canada). Brain total RNA was isolated using
standard Trizol (Invitrogen, Carlsbad, CA, USA) protocol and subsequently
purified with DNAse treatment. RNA quantity was determined by
absorbance at 260 nm using a NanoDrop UV-VIS spectrophotometer and
the quality of RNA was controlled in random samples by running
bioanalyzer assays (Agilent Technologies, Palo Alto, CA, USA).
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Figure 1. Increased depression-like phenotype in adult early social
isolation (ESI)-treated mice. (a) Unlike Control mice, adult ESI-treated
mice did not prefer the social stimulus (social side) in the social
interaction test. (b) In the forced swimming test, ESI-treated mice
experienced a significant increase in immobility and a decline in
activity compared with control mice. ESI, n= 18 (male (M)= 10,
female (F)= 8); Control, n= 16 (M= 10, F= 6). (c) ESI-treated mice did
not develop sucrose preference (SP) in the SP test. ESI, n= 12 (M= 8,
F= 4); Control, n= 13 (M= 7, F= 6). ***Po0.001; *Po0.05.
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Quantitative real-time RT-PCR and gene expression analysis
Complementary DNA was obtained using the High Capacity Reverse
Transcription Kit (Applied Biosystems, Branchburg, NJ, USA). Complemen-
tary DNA templates (10 ng) were processed with quantitative PCR using
the 7900HT thermal cycler apparatus equipped with the SDS software
version 2.3 (Applied Biosystems) for data collection. Taqman primer sets
(Applied Biosystems, see Supplementary Table S1) were used to amplify
mouse SIRT1–7, as well as human SIRT1 and Ct values were normalized to
measures of TBP (Tata Binding Protein) and Pgk1 (Phosphoglycerate
kinase1) mRNAs for mouse tissues, or Tata Binding Protein and GUSB
(Glucuronidase beta) mRNA for human PBMC. All data were run in triplicate
and analyzed using the ΔΔC(t) method.34

Histology and immunohistochemistry
Mice were perfused transcardially and brain slices were processed as
previously described.35 The sections were incubated overnight at 4 °C in
phosphate-buffered saline containing 1% bovine serum albumin, 0.3%
Triton X-100 as blocking solution, and then in a cocktail of primary
antibodies including mouse anti-SIRT1 (NBP1-51641, 1:1000; Novus
Biological, Cambridge, UK) and rabbit anti-NeuN (1:400; ABN78, Merck
Millipore, Darmstadt, Germany). The specificity of immunohistochemical
labeling (SIRT1) was confirmed by omission of primary antibodies and use
of normal serum instead (negative controls).
After three washes in phosphate-buffered saline, the sections were

incubated in the solution described above for 2 h at room temperature
with a cocktail of secondary antibodies including Alexa Fluor 488-
conjugated donkey anti-mouse (A-21202) and Alexa Fluor 543-
conjugated donkey anti-rabbit (A-31572, 1:200; Invitrogen). In order to
avoid staining variability, brain sections of ESI and control mice were
concomitantly incubated with the same cocktail of primary and secondary
antibodies. Sections were rinsed, 4,6-diamidino-2-phenylindole-counter-
stained, mounted, coverslipped and then examined using a confocal laser
scanning microscope (Zeiss LSM700, Oberkochen, Germany). The confocal
image acquisitions were performed using consistent settings for laser
power and detector gain.

Densitometric analyses of fluorescence images
Quantification of the SIRT1 immunoreactivity in the different brain regions
(motor cortex, striatum, dentate gyrus and basolateral complex of the
amygdala) was performed by densitometric analysis. All quantitative
analyses were conducted blind to the animal's experimental group. After
confocal acquisition, images were exported in TIFF and analyzed with the
ImageJ software (http://rsb.info.nih.gov/ij/; National Institutes of Health,
Bethesda, MD, USA).
The background signal was determined in a non-stained area. The

threshold was adjusted according to the background signal and kept
constant between sections. SIRT1-associated signal was quantified by
manually outlining the areas of interest. For striatum, the mean signal
intensity (F) of SIRT1 was performed on two squared frames (100 μm per
side) pseudorandomly distributed dorsoventrally on six sections sampled
to cover the rostrocaudal extent of the striatum (12 samples per mouse).
For motor cortex (M1), the F of SIRT1 was performed on two squared
frames (100 μm per side) pseudorandomly distributed mediolaterally on six
sections sampled to cover the M1 rostrocaudal extent entirely (n=12
samples per mouse). For the dentate gyrus, the F of SIRT1 was performed
on one squared frame pseudorandomly distributed mediolaterally on
12 sections sampled to cover the rostrocaudal extent of the area. Finally,
for the basolateral complex of the amygdala mean signal intensity (F) of
SIRT1 was performed on one squared frame per section, always distributed
at the same position, on six sections sampled to cover the rostrocaudal
extent of the nucleus. The F/A ratio defines the mean fluorescence of
individual samples (F) normalized to total cellular surface (A).35 Accord-
ingly, quantification was performed on five mice per group.

Drugs and pharmacological treatments
Selisistat (EX-527, Selleckchem, Munich, Germany, S1541) and Resveratrol
(Sigma, St Louis, MO, USA) were used for SIRT1 inhibition and activation,
respectively. Selisistat (6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxa-
mide) is one of few SIRT1 inhibitor compounds for which mechanistic data
are available36 and that combine high potency with significant isoform
selectivity.37 It inhibits SIRT1 with an IC50 value of 0.1 µM, ∼ 100-fold more
potently than SIRT2 and Sirt3 and has no effect on SIRT5′s deacetylation

activity.36,38 The compound has low clearance and complete oral
bioavailability as well as a 2:1 brain:plasma ratio in mice and absence of
overt toxicity in the mouse at dose levels up to 100mg kg− 1.39 The chronic
administration (8 weeks of treatment) of selisistat at the oral dose of
20mg kg− 1 has been recently demonstrated to be effective in improving
survival in the R6/2 transgenic mouse model of Huntigton disease. No
previous research has ever employed selisistat in young mice.
Resveratrol (trans-3,4′,5-trihydroxystilbene) is a natural polyphenolic

compound shown to significantly increase SIRT1 activity through an
allosteric interaction, resulting in the increase in SIRT1 affinity for both NAD
+ and the acetylated substrate.40 Together with SIRT1, Resveratrol has
been shown to modulate a number of targets, including Cyclooxygenase 1
and 2, cAMP-specific phosphodiesterase (phosphodiesterases 1, 3 and 4),
PPARγ and δ, Phosphokinases (PKCα, βI and PKD1).41 The specificity of
SIRT1 activation by Resveratrol has been recently debated; however, its
oral bioavailability, permeability to the brain–blood barrier and commercial
availability justify its common use for the experimental activation of
SIRT1.42 Control and ESI-treated mice received daily oral gavage (10 -
ml kg− 1) of resveratrol (50 mg kg− 1), selisistat (EX-527, Selleckchem, S1541,
20mg kg− 1) or vehicle (0.5% hydroxylpropylmethyl cellulose, Sigma, in
sterile water) from PD14 to PD25. Suspensions were prepared weekly and
aliquoted for daily dosing. Vigorous agitation of the vial preceded each
administration. For ESI-treated mice, drug was administered 30min before
the stress application.

Human studies
The clinical sample referred to the psychiatric clinic at the University of
Rome ‘Tor Vergata’ and consisted of 27 patients having received a DSM-IV-
TR diagnosis of MD, under current depressive state. Control group included
19 healthy volunteers recruited among researchers of the IRCSS
Fondazione Santa Lucia (Supplementary Table S2). Inclusion criteria were
as follows: age over 30 years old and history of depression (more than two
episodes throughout their life) for MD patients or absence of current or
past psychiatric disorders for controls, as confirmed by diagnostic
interview. Biomarkers of inflammation were not assessed in the two
groups. However, none of the participants had a clinical diagnosis of
chronic inflammatory disease (for example, celiac disease, vasculitis, lupus,
chronic obstructive pulmonary disease, irritable bowel disease, arthritis or
psoriasis).
Before clinical assessment, all participants were given a complete

description of the study. All data were obtained under informed consent
and using procedures approved by the University of Rome ‘Tor Vergata’
Intramural Ethics Committee and Fondazione Santa Lucia Ethics Commit-
tee. The experimental sample size was determined with the aid of the
online available software (http://www.stat.ubc.ca/ ~ rollin/stats/ssize). To
perform this calculation, we used values (for example, means and common
s.d.) obtained from similar experiments previously performed in the
laboratory of our collaborator (AT).

Clinical assessment
The severity of depressive symptoms was measured with the Beck
Depression Inventory (BDI) and the 17-item Hamilton Depression Rating
Scale (HAMD). The combined use of a clinician-rating scale (HAMD) with a
self-rating scale (BDI) allowed us to integrate psychiatrist’s assessment of
the intensity of depression with patients’ evaluation of their emotional
distress.43 However, the BDI scale was used to decide whether the patient
was in remission (BDI total score o10) or not (BDI total score 410). Cutoff
scores were applied as previously described.44

Furthermore, parental care experienced in childhood was measured
using the Parental Bonding Inventory (PBI).45,46 The questionnaire is
retrospective, meaning that adults (over 16 years) complete the measure
for how they remember their parents during their first 16 years. The PBI
includes two subscales assessing maternal and paternal care. These scales
consist of items querying the quality of subjects’ relationship with their
parents during childhood (for example, ‘My mother spoke to me in a warm
and friendly voice’). Participants report on a four-point scale how true each
statement was of their own experiences. The participants of this study
were assigned to low-care or high-care groups on the basis of their
maternal and paternal care scores, using the suggested cutoff scores by
Parker and Lipscombe.45 Patients who reported scores lower than 27 on
PBI maternal care scale and 24 on PBI paternal care scale were classified as
low-care patients, whereas the others were considered high-care patients
(Supplementary Table S3). The requirement of both maternal and parental
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care lower than cutoff in the low-care group was chosen in order to
include only patients with severe lack of care.

Human RNA
Blood (5 ml) was drawn on all participants, collected in EDTA vacutainer
(BD, Toronto, Ontario, Canada), and PBMC and mRNA were isolated within
few hours from collection as described for mouse studies.

Statistics
All data obtained were initially checked for homogeneity of variance, with
measures failing Levene’s test analyzed by nonparametric Mann–Whitney
procedures. In the mouse study, all other parameters were subjected to
parametric either two-way analysis of variance (analysis of variance; SIT,
FST, FST after pharmacological treatments and SIRT1–7 RNAs) or repeated-
measure analysis of variance (SPT). Analysis of variance was followed, in
cases of significance (Po0.05), by post hoc comparisons using Duncan’s
test. In the human study, comparisons between groups were performed
using the Χ2-test on categorical measure (Gender ratio). Parametric
Student's t-test was used to analyze continuous measures (Age, SIRT1
RNA, BDI and HAMD scores). Regression and Pearson correlation analyses
were performed to evaluate the correlation between SIRT1 expression
levels and immobility in the FST/depressive symptoms. Statistical analyses
were carried out with the help of Statistica software Version 12.0 (StatSoft,
Tulsa, OK, USA).

RESULTS
ESI increases depression-like behavior in adult mice
As in humans, the quality of the early postnatal environment
shapes adult behaviors in rodents.24 To test the possibility that
juvenile stress has an impact on adult behavior in mice, we
administered ESI stress to DBA mouse pups during the third
postnatal week and evaluated the adult behavioral phenotype.
Three behavioral tests—social interaction, forced swimming and
sucrose consumption—were used to measure various compo-
nents of depression-like behavior—that is, social phobia, hope-
lessness and anhedonia, respectively.
In the SIT, ESI-treated mice did not show any preference for the

social compartment, whereas control mice spent significantly
more time in the social chamber (Figure 1a; time x environment:
F[2,60] = 14.00, P= 0.001). In the absence of the stimulus mouse,
no preference for compartments was noted in either group
(Supplementary Figure S1). In FST, ESI-treated mice experienced a
significant increase in immobility and a decline in activity
(Figure 1b; environment: F[1,30] = 49.58, Po0.001 and
F[1,30] = 49.70, Po0.001) behaviors compared with control mice.
In the SPT, ESI-treated mice did not develop a preference for the
sucrose solution (Figure 1c, Supplementary Figure S2; time x
environment: F[5,105] = 3.59, P= 0.005).
No gender effect was observed (SIT, gender: F[1,30] = 0.05,

P = 0.829; FST immobility, gender: F[1,30] = 0.04, P = 0.852;
FST activity, gender: F[1,30] = 0.04, P= 0.842; SPT, gender:
F[1,21] = 1.58, P= 0.223).

ESI induces long-term changes in sirtuins mRNA expression in the
mouse brain and PBMCs
Increasing evidence has demonstrated the involvement of SIRTs in
the regulation of mood disorders. Recent human studies have
shown that a reduction in peripheral SIRT1, 2 and 6 expressions is
associated with depressive disorders.23 These findings prompted
us to measure the mRNA levels of SIRTs (SIRT1–7) in the brain and
in PBMCs of adult ESI-treated and control mice (Figure 2a and b).
We observed significantly less SIRT1 and SIRT6 mRNA in total brain
lysates of ESI-treated versus control mice (Figure 2a; environment:
F[1,12] = 20.59, P= 0.001 and F[1,12] = 4.80, P= 0.049).
Consistent with previous findings and our results in the brain,

SIRT1 mRNA levels were downregulated in PBMCs of ESI-treated
versus control mice (Figure 2b; environment: F[1,12] = 42.78,

P= 0.003). When we corrected for multiple comparisons, the
significant difference in SIRT1 expression in the brain and PBMCs
remained between ESI-treated and control animals.
No gender effect was observed (SIRT1, gender: F[1,12] = 0.272,

P= 0.6118; and SIRT6, gender: F[1,12] = 1.09, P= 0.318; blood SIRT1,
gender: F[1,12] = 0.125, P= 0.729).

ESI effects a long-term reduction in SIRT1 protein levels in the
mouse brain
Our findings suggested that lower SIRT1 content is a long-lasting
biological residue of ESI-induced stress. We hypothesized that if
SIRT1 mediates the behavioral alterations in ESI-treated mice, then
the resulting transcriptional changes should reflect a decrease in
SIRT1 protein levels in the brain. Thus, we analyzed the brains of
adult ESI-treated and control mice using confocal microscopy to
measure the differences in SIRT1 protein level and distribution.
Consistent with the mRNA data, using densitometric analysis of

SIRT1 immunostaining, SIRT1 was downregulated in ESI-treated
versus control mice in various regions of the brain, including the
motor cortex, striatum, hippocampus and amygdala (Figure 2c
and e; U= 0.00, Po0.001, r= 0.86; U= 31.00, Po0.001, r= 0.84;
U= 0.00, Po0.001, r= 0.86; U= 25.00, Po0.001, r= 0.84).

SIRT1 mRNA expression in PBMCs correlates with despair-like
behavior in ESI mice
The behavioral activity in the FST was widely distributed in ESI-
treated mice compared with control animals, as shown by the
frequency distribution histograms for immobility (Supplementary
Figure S3). This finding suggests that ESI-treated mice embed a
disparate susceptibility to the ‘adverse’ juvenile experience, which
is in turn translated into different levels of behavioral ‘despair’;
thus, we hypothesized that a reduction in SIRT1 linked the
susceptibility to juvenile stress. If this model was true, we would
expect variations in SIRT1 levels to correlate significantly with
depression-related measures in ESI-treated mice but not in
animals in which a depression-like phenotype was induced by
similar isolation stress during adulthood.
To test this possibility, based on the peripheral changes in

SIRT1, we first measured SIRT1 mRNA levels in PBMCs in a new
group of ESI-treated mice several days before their behavioral
performance in the FST was evaluated. We noted a significant
negative correlation between peripheral SIRT1 mRNA expression
and the level of immobility in the FST, meaning that lower SIRT1
levels are associated with a more extensive depression-like
phenotype in ESI-treated mice (Figure 3a; r= 0.65, Po0.001). No
significant link was observed between SIRT1 expression and
immobility in the FST in a model of ASI-induced depression30

(Figure 3b; r=− 0.24, not significant).
To exclude the possibility that the downregulation in SIRT1 is

directly associated with depressive-like behavior—independent of
a stress response—we performed Pearson correlation analysis
between SIRT1 mRNA levels in PBMCs and immobility in the FST in
a naive inbred mouse line (C57) that shows high levels of
behavioral despair in the FST.33 Again, no correlation was found
between these parameters (Figure 3c; r=− 0.22, not significant).
ESI-treated, ASI-treated and C57 mice showed increased levels of
immobility compared with control mice (Figure 3d; environment: F
[3,56] = 48.84, Po0.001; gender: F[3,56] = 0.05, P= 0.832).

Pharmacological modulation of SIRT1 during postnatal
development alters depression-like behavior in adult mice
Our findings indicate that downregulation of SIRT1 correlates in
the long term with the susceptibility to experiencing depression
following early-life adversities. To determine the contribution of
SIRT1 to the development of depression, we pharmacologically
activated or inhibited SIRT1 function with resveratrol and selisistat
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(EX-527), respectively, during juvenile age and measured the
effects on depression-related behavior in adulthood. We adminis-
tered vehicle, resveratrol (50 mg kg− 1) or selisistat (20 mg kg− 1) to
control and ESI-treated mice by daily oral gavage from PD14 to
PD25 and measured the levels of behavioral despair in adulthood.

Whereas resveratrol had no significant effect on control mice in
the FST, it reduced immobility (Figure 4a; environment x
treatment: F[1,22] = 4.52, P= 0.049) and increased activity
(Figure 4b; environment x treatment: F[1,22] = 4.53, P= 0.049) in
ESI-treated animals compared with vehicle. In contrast, control
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mice that were given selisistat showed significantly greater
immobility (Figure 4c; environment x treatment: F[1,20] = 5.05,
P= 0.036) and lower activity (Figure 4d; environment x treatment:
F[1,20] = 5.05, P= 0.036) in the FST versus vehicle. These behavioral
changes mirrored the increased behavioral despair in vehicle-
treated ESI mice. Moreover, selisistat treatment in ESI mice failed
to alter immobility in the FST compared with vehicle.

Similar chronic treatment (10 days) with selisistat or resveratrol
in adulthood did not induce changes in depression-like behavior
(Supplementary Figure S4A and B; selisistat immobility, treatment
F[1,9] = 0.59, P= 0.470; resveratrol immobility, time x treatment:
F[1,8] = 0.36, P= 0.560) or locomotion (Supplementary Figure S5;
resveratrol total locomotion, U= 8.00, P= 0.710, r= 0.122). No
gender effect was observed (selisistat immobility, gender:
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F[1,20] = 2.14, P=0.158; resveratrol immobility, gender: F[1,22]= 0.01,
P=0.916). Overall, these findings are consistent with SIRT1 having
a critical function in establishing the ESI-induced depression-like
phenotype.

SIRT1 mRNA expression in PBMCs correlates with the severity of
depressive symptoms in humans
On the basis of our results, we designed a pilot study to determine
whether SIRT1 is modulated in a clinical population. We measured
SIRT1 transcript levels in the PBMCs of MD patients in a current
depressive state and healthy control subjects (Supplementary
Table S2). We first determined whether SIRT1 was a marker of
depression; as per this hypothesis, patients had significantly lower
SIRT1 levels than control subjects (Figure 5a; clinical state:
t[44] = 2.15, P= 0.037).
We then tested whether SIRT1 expression in PBMCs correlated

with depressive symptoms. We noted a significant correlation
between SIRT1 expression and BDI (Figure 5b; r= 0.45; R2 = 0.197,
P= 0.040) and HAMD scores (Figure 5c; r= 0.82; R2 = 0.700,
Po0.001) in MD patients. SIRT1 mRNA expression and BDI scores
were not associated in healthy controls (Supplementary Figure
S6). Then, we examined whether the quality of the environment
during childhood contributed to this relationship. The selection of
low-care patients in the entire clinical sample strengthened the
correlation between SIRT1 mRNA expression and the severity of
depressive symptoms (Figure 5d and e; BDI, r= 0.52; R2 = 0.263,
P= 0.045; HAMD r= 0.92; R2 = 0.840, Po0.001), whereas in high-
care patients, this connection was absent (Figure 5d and e; BDI
r=− 0.25; R2 = 0.125, P40.050; HAMD r= 0.41; R2 = 0.205,
P40.050). These results also implicate SIRT1 in MD—specifically
when associated with an adverse childhood.

DISCUSSION
The link between adverse childhood and depression in adulthood
has been widely described.1 In preclinical models, environmental
manipulation at an early age alters adult behavioral
phenotype.24,47 Research in this field has concentrated primarily
on modulating maternal care during the first 2 weeks of life.48–50

Nevertheless, the third postnatal week is a critical period in the
development of adult behavior.51

Our findings show that exposure of mice to social stress during
the third postnatal week increases depression-like behavior in
adulthood, characterized by lower sociability, greater despair
behavior and anhedonia. In the ESI protocol, social contacts are
limited during a particularly sensitive developmental time, in
which the maturation of visual and motor abilities accompanies
the initial elements of sociability among siblings.25–27 These new
environmental inputs are translated into long-lasting changes in
brain function, attributed to strong neuronal plasticity, extensive
synaptogenesis and active epigenetic processes,28,29,52 all of which
cooperate during this age. As a result, we reason that mild
environmental interference during physiological growth, such as
ESI, affects chronic behavioral and biochemical changes.
The advantage of preclinical models is that they allow one to

perform parallel molecular studies in the brain and blood. The ESI
model permits us to observe the downregulation of SIRT1 mRNA
in mouse PBMCs, similar to what has been seen in depressive
patients.23 Moreover, it extends our investigation to the brain, in
which we noted similar alterations in SIRT1 mRNA and protein.
Recent studies have shown that electroconvulsive shock, an
antidepressant treatment, increases SIRT1 immunoreactivity in the
mouse hippocampus and hypothalamus,22 whereas social defeat
downregulates SIRT1 in the ventral hippocampus in rats.53

These findings are consistent, with SIRT1 activity in the brain
being lower in depression-like behavior; however, the function of
SIRT1 in mood disorders remains unknown. Libert et al.21 reported

that mice that lacked the SIRT1 gene were more resistant to the
depression-like phenotype than their wild-type littermates in the
FST and in social defeat-induced sucrose anhedonia. This
phenotype was associated with a decrease in monoamine oxidase
A expression in SIRT1 KO mice—in contrast to our findings.
Nevertheless, the absence of the SIRT1 gene from conception to
throughout life, as in a genetic deletion model, can hardly be
compared with physiological modulation of SIRT1 protein, as in
ESI-treated mice. In our study, the decrease in SIRT1 by ESI-
induced stress was insufficient to alter monoamine oxidase A
expression in the blood and brain of adult ESI mice (data not
shown). Thus, we hypothesize that in the ESI model, SIRT1
changes specific mechanisms during postnatal development that
regulate the depression-like phenotype. The absence of an effect
of SIRT1 modulation on depression-like behavior in adults is
consistent with this hypothesis. The extensive epigenomic
remodeling that occurs in the third week of life in mice28

implicates SIRT1 histone deacylase activity and its function in
epigenetic regulation54 as critical mechanisms that underlie its
long-lasting impact on behavioral phenotypes.
This hypothesis is consistent with the results of our correlation

experiments, in which peripheral SIRT1 mRNA levels in adult ESI
mice predicted the level of behavioral despair in the FST, thus
linking SIRT1 downregulation to the susceptibility to ESI-induced
stress. The lack of a correlation between SIRT1 levels and
performance in the FST in mice that experienced similar isolation
stress in adulthood (ASI) or those with a naturally high level of
depression-like phenotype (C57) strengthens the hypothesis that
only stress at an early age interferes with SIRT1 function and
confirms that in mice, similar to what happens in humans, distinct
etiological pathways characterize the early stress-induced depres-
sion-like phenotype.
As in our mouse study and consistent with the findings of Abe

et al.,23 we found that SIRT1 mRNA expression in PBMCs declined
in MD patients, correlating negatively with the severity of
symptoms. Notably, early adverse experiences influenced the
relationship between SIRT1 mRNA levels and symptom severity,
again suggesting that SIRT1 is linked to the pathological
symptoms and that it mediates the pathogenesis that is triggered
by early adversity. The translation of these findings from mouse to
humans has improved the construct validity of the ESI model.
Conversely, our study raises the possibility of using SIRT1 as a
peripheral biomarker in diagnosing and stratifying MD patients.55

Nevertheless, our clinical data should be interpreted in light of the
low number of subjects in the two groups, necessitating
replication of this study in larger samples.
Our pharmacological experiment was critical to demonstrate

the involvement of SIRT1 in the ESI-induced stress response and
regulation of adult behavior. However, some limitations of this
study should be acknowledged: first, whereas SIRT1 activation by
resveratrol during ESI-induced stress was sufficient to prevent
behavioral alterations in adults, resveratrol effects on SIRT1 may
be indirect; thus, other substrates may have been involved (see
Materials and methods section). For example, through the
inhibition of cAMP-specific phosphodiesterase, resveratrol acti-
vates cAMP signaling pathway, which then leads to activation of
SIRT1.56 In the future, this study could be implemented with a
more specific approach such as viral-mediated overexpression of
SIRT1 for the identification of critical brain areas involved. Second,
we showed that the selective inhibition of SIRT1 via selisistat in
juvenile control mice exacerbated adult behavioral despair in the
FST. However, we cannot exclude that this effect on immobility
could be dependent of changes in general locomotor activity
induced by the drug. To address this issue, the effects of this
treatment on other aspects of the depression-like behavior
independent from locomotion (for example, sucrose consump-
tion) should be investigated in the future.
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SIRT1 function in maladaptive responses to traumatic child-
hoods has never been described. Through its NAD-dependent
deacylase activity, SIRT1 governs several genetic programs to cope
with changes in the cell status (for example, inflammatory,
metabolic or oxidative stress), generally orchestrating prosurvival

mechanisms.57–61 Its protective function has been described
extensively in aging and cardiovascular disease,62,63 and a
growing body of evidence is demonstrating many important
functions of SIRT1 in regulating brain development, through
axonal elongation, neurite outgrowth and dendritic branching.64–66
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We hypothesize that the ESI-induced stress, by interfering with
normal SIRT1 expression and function, affects neurobehavioral
adjustments during postnatal development that manifest in the
long term as a depression-like phenotype.
We propose that SIRT1 is a developmental component of the

response to childhood adversity that increases the susceptibility to
depression. Future studies should evaluate the responsiveness of
ESI-treated mice to antidepressants and examine specific treat-
ment responses on the depression-like phenotype that is
associated with early-life adversities. Moreover, to determine the
contribution of SIRT1 activity in the pathophysiology of early
stress-associated depression, the ‘developmental dynamics’ of
ESI-induced changes in SIRT1 expression throughout life in mice
must be followed, and SIRT1-dependent alterations in biological
mechanisms during ESI should be identified, guiding the
identification of pharmacological targets for preventive and
therapeutic interventions.
Increasing evidence is implicating low-grade inflammation in

childhood trauma-associated depression.9–12 Considering the anti-
inflammatory function of SIRT1,58,59 examining the crosstalk
between SIRT1 and inflammation in the ESI model of depression
would advance our understanding of these mechanisms. More-
over, recent studies have observed that traumatic childhood and
depression often forecast one’s vulnerability to such conditions as
cardiovascular and aging diseases.67,68 The protective function of
SIRT1 in this context should improve our understanding of the
underlying mechanisms.
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