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Abstract

We study the approximation properties of the class of nonstationary refinable
ripplets introduced in [20]. These functions are the solution of an infinite set of
nonstationary refinable equations and are defined through sequences of scaling
masks that have an explicit expression. Moreover, they are variation-diminishing
and highly localized in the scale-time plane, properties that make them particularly
attractive in applications. Here, we prove that they enjoy Strang-Fix conditions,
convolution and differentiation rules and that they are bell-shaped. Then, we con-
struct the corresponding minimally supported nonstationary prewavelets and give
an iterative algorithm to evaluate the prewavelet masks. Finally, we give a proce-
dure to construct the associated nonstationary biorthogonal bases and filters to be
used in efficient decomposition and reconstruction algorithms.

As an example, we calculate the prewavelet masks and the nonstationary bior-
thogonal filter pairs corresponding to the C> nonstationary scaling functions in the
class and construct the corresponding prewavelets and biorthogonal bases. A sim-
ple test showing their good performances in the analysis of a spike-like signal is
also presented.

Keywords: total positivity, variation-dimishing, refinable ripplet, bell-shaped func-
tion, nonstationary prewavelet, nonstationary biorthogonal basis
MSC: 41A30 - 42C40 - 65T60

1 Introduction

A ripplet is a function f whose integer translates are fotally positive [27], i.e., for any
ordered real numbers x; < --- < x,, and any ordered integers o < --- < o, r > 1, it
holds

det(f(xifag))lgijgrzo. (1.1

Total positivity implies that the integer translates of f are variation diminishing, i.e.,
for any finite sequence ¢ = {cq }

ST(Y caf(-—a)) <S5 (¢), (1.2)
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where S~ denotes the number of strict sign changes of its argument. The inequality
(1.2) in turn implies that the system { f(- — o) } has shape-preserving properties, which
are known to play a crucial role in several applications, from approximation of data to
CAGD [12, 29].

The concept of a ripplet was first introduced by Goodman and Micchelli in [16],
where the authors focused their interest on two-scale refinable ripplets, i.e., ripplets
that are solution of a two-scale refinable equation

0=Y agp(2-—a), (1.3)

where the scaling mask a = {ay } is a suitable real sequence. Well known examples of
refinable ripplets are the cardinal B-splines, i.e., the polynomial B-splines on integer
nodes. Starting from the seminal paper of Goodman and Micchelli, many families
of two-scale refinable ripplets were constructed (see, for instance, [2], [18]). More
recently, M-scale refinable ripplets, with dilation M greater than 2, were addressed in
[17] and refinable ripplets with dilation 3 were constructed in [21] (see also [22]).

The interest in refinable ripplets lies in the fact that they give rise to convergent sub-
division algorithms for the reconstruction of curves and the limit curves they generate
preserve the shape of the initial data [14, 29]. Refinable ripplets can also be proved to
solve the cardinal interpolation problem [29]. For instance, the construction of cardinal
interpolants by means of the refinable ripplets introduced in [18] was addressed in [31].

Refinable ripplets have good properties not only in the context of geometric model-
ing and function approximation but they also enjoy some optimality properties useful in
signal processing. In fact, refinable ripplets induce a multiresolution analysis in Ly (R)
that allows us to generate a nested sequence of wavelet spaces. Actually, it is always
possible to construct compactly supported semiorthogonal wavelet bases starting from
a refinable ripplet [28]. Moreover, refinable ripplets have asymptotically, i.e., when
their smoothness tends to infinity, the same optimal time-frequency window achieved
by the Gaussian function [2]. Since the rate of convergence can be proved to be very
fast for a large class of ripplets, including, for instance, the refinable ripplets introduced
in [18], refinable ripplets can approximate the Gaussian with high accuracy giving rise
to efficient algorithms for signal analysis [1]. Finally, a ripplet can be seen as a dis-
crete kernel satisfying a causality property so making the refinable ripplets particularly
attractive in the scale-time analysis of signals [13].

All the refinable ripplets quoted above are stationary in the sense that they satisfy
the functional equation (1.3) with the same mask sequence at each dyadic scale. For
this reason usually (1.3) is referred to as a stationary two-scale equation. From the
point of view of signal processing this means that the same analysis and synthesis filters
are used at all dyadic scales [32]. Nevertheless, the use of the same set of filters at each
scale does not give great flexibility in applications, especially when some preprocessing
steps with different filters are required. From the functional point of view, the use of
different filters at different scales gives rise to a nonstationary multiresolution analysis
(see, for instance, [9], [15], [23], [30]). A nonstationary multiresolution analysis can be
generated by a set of nonstationary refinable functions, i.e., an infinite set of functions



{@™ : m € Z, } satisfying an infinite set of nonstationary two-scale equations

" =Y are"(—27"Va), mezZ,, (1.4)

oEZ

for some infinite sequence of masks {a” : m € Z, }, each mask a” = {af} } being dif-
ferent at each dyadic scale. Here, Z denotes the set of all non negative integers.

The use of different scaling masks at different scales allows us to construct refinable
functions endowed with properties that cannot be achieved in the stationary setting. For
instance, the nonstationary process generated by the B-spline masks of increasing sup-
port gives rise to a refinable function that is compactly supported while belonging to
C=(R) [11, 30]. Other families of C*(R) nonstationary refinable functions based on
pseudo-spline masks were constructed in [25]. Exponential splines too can be associ-
ated to a nonstationary process [9, 10]. They reproduce exponential polynomials and
the associated wavelet bases can be successfully used in the analysis of signals with ex-
ponential behavior [33]. Families of nonstationary refinable ripplets were introduced
in [5] and [20]. In particular, the latter are highly localized in the scale-time plane, a
property that is crucial in many applications. For this reason, in the present paper we
focus our interest in this family of nonstationary refinable ripplets and prove that these
ripplets enjoy several properties, which are relevant in the context of both geometric
modeling and signal processing. In particular, we prove that the refinable ripplets in
[20] can be generated by a convolution law, satisfy suitable Strang-Fix conditions and
are bell-shaped. Moreover, to make the nonstationary ripplets an accessible tool in the
field of signal processing we construct the associated wavelet bases. We notice that,
since the refinable ripplets we are considering have non orthogonal shifts, compactly
supported orthogonal wavelets belonging to the space generated by their translates do
not exist. Indeed, one of the main results of the paper concerns the construction of
nonstationary semiorthogonal prewavelets, i.e., wavelets that retain orthogonality just
across scales. In fact, giving up the orthogonality condition at the same scale, we can
build wavelet bases with compact support. Moreover, we give a procedure to construct
the nonstationary compactly supported biorthogonal bases associated with the nonsta-
tionary refinable ripplets we are considering. Since we are interested in implementing
efficient nonstationary decomposition and reconstruction algorithms for signal process-
ing, we construct also the corresponding pairs of nonstationary filters to be used in the
analysis and synthesis of a given discrete signal.

The paper is organized as follows. In Section 2 we give some basic definition con-
cerning nonstationary multiresolution analysis and wavelet spaces and recall some re-
sults about the existence of solutions of the nonstationary refinable equations (1.4). The
class of nonstationary refinable functions we are interested in is described in Section 3,
while in Section 4 we prove some approximation properties that were not addressed in
[20]. In Section 5 we construct the nonstationary prewavelet bases associated with the
nonstationary refinable ripplets in the class and give an efficient algorithm to evaluate
nonstationary prewavelet masks. The construction of compactly supported biorthog-
onal bases and filters, which give rise to efficient decomposition and reconstruction
formulas for discrete signals, is addressed in Section 6. Finally, in Section 7 some
examples of nonstationary masks and refinable bases are given and the corresponding



nonstationary filters are constructed. A simple test on the analysis of a spike-like signal
is also shown.

2 Nonstationary Multiresolution Analysis and Wavelet
Spaces

Wavelet spaces are usually constructed starting from a multiresolution analysis that is a
sequence {V"} of nested subspaces which are dense in L,(R) and enjoy the separation
property. Thus, the corresponding wavelet space W C V"1 is defined as the orthog-
onal complement of V" in V"*! [8]. In the stationary case all the spaces {V"} are
generated by the dilates and translates of a unique refinable function ¢ € V°, solution
of the stationary two-scale equation (1.3), while the spaces W™ are generated by the
dilates and translates of a unique wavelet y € WO C V1,

In contrast, in the nonstationary setting any space V™ (resp. W) is generated by
the 27"-shifts of a different refinable function @™ (resp. wavelet y), which are not
dilates of one another. As a consequence, the spaces {V"} and {W"} are not scaled
versions of the spaces V° and W0, respectively.

Nonstationary multiresolution analysis are addressed in several papers in the lit-
erature (see, for instance, [9], [4], [10], [15], [23], [24], [30] and references therein).
Here, following [9] and [30], we say that a space sequence {V™ :m € Z, } forms a
nonstationary multiresolution analysis of Ly (R) if

OVrCVmrtmeZy;, (i) Unez, V™ = La(R); (i) Nmez, V" = {0};

(iv) for any m € Z ., there exists a L, (R)-stable basis ¢ in V" such that
v =3pan {¢"(-—27"a),a €Z} .

Property (i) implies that the refinable functions {¢™ : m € Z.} satisfy a set of
nonstationary refinable equations, i.e.,

" =Y ago"'(—2""Va), meZ,, @.1)

aEL

for some sequence of scaling masks {a™ :m € Z. }, where a” = {a} : « € Z} € £2(Z)
and

Y ai=1. 2.2)

aEL

Properties (ii) and (iii) are always true if any ¢™ is compactly supported. As for (iv),
the function system {@™(- —27"a) : a € Z}, m € Z, is Lp(R)-stable if and only if
the Fourier transform of ¢ has no omtl m-periodic real zeros (cf. [9]). We notice that
property (iv) is equivalent to say that {¢™ (- —27™"a) : o € Z} is a Riesz basis so that
it can be also checked by verifying the inequalities

O<Am Szm Z |¢m(w+2m+lna)|2 SBm<°°- (23)
ac



for each function ¢™ [32].

Stability is a weaker condition than orthogonality, which requires A,, = B,, = 1, and
comprises the case of semiorthogonal basis, i.e., basis that have non orthogonal integer
translates but retains orthogonality across scales, which is the case we are interested in.

The existence of a unique set of functions {¢™ : m € Z. } solution to (2.1), as well
as their properties, are related to the properties of the mask sequence {a™ : m € Z, }.
Since we are interested in the case of compactly supported masks, we assume that any
mask a™ is compactly supported with

supp(a™) CQ CZ, meZy, 2.4)

and there exists a fundamental mask a = {aq : o0 € Q} satisfying the sum rules

Y auiy=1, YEZL, (2.5
ac’Z
such that
Y lah—agl <o, acQ, (2.6)
m€Z+

(cf. [15]). Even if the assumption above excludes the mask sequence associated with
the up function and the nonstationary mask sequence considered in [23], nevertheless it
covers many nonstationary scaling masks, such as those ones associated with the expo-
nential splines [10], [33] and the mask families associated with the ripplets introduced
in [5], [20]. For the case of mask sequences with growing support we refer the reader
to [4], [30].

The nonstationary refinable equations (2.1) can be associated to a nonstationary
cascade algorithm [15], which generates at any iteration k € Z the sequence of func-
tions {A}' :m € Z } by

=Y arnrti(—27may, keZ,, meZ,. 2.7)
acQ
Without loss of generality, we assume that the starting function /A is the same for all
m € Zy, i.e., hi = ho, where hy is a given L, (R)-stable function with EO(O) =1, so that
ﬁ?(O) =1forany k,meZ,.
The convergence of the cascade algorithm is related to the spectral properties of the
Sfundamental transition operator T : Ly(Z) — Ly(Z), defined as

(TANa=2Y) topls, €L, 2.8)
BeZ
where
A= {dy: €}, do =Y, agag_q., acz, (2.9)
BEZ

is the autocorrelation of the fundamental mask a. The cascade sequence {4} : k €
Z. } converges strongly to @™ in Ly(R) as k — oo, uniformly in m, if and only if the
fundamental transition operator has unit spectral radius, 1 is the unique eigenvalue



on the unit circle and is simple [15, Th. 1.3]. Under these hypotheses the sequence
{@™ :m € Z, } converges strongly to the solution of the stationary refinable equation

0=2) ay 02 —0). (2.10)

acQ

We notice that any nonstationary mask sequence {a” : m € Z } having a B-spline mask
as fundamental mask, gives rise to a convergent cascade algorithm [10, 15].

The nonstationary refinable equations in the Fourier space read
() =A" (e T T) g™ (0),  meZ,, 2.11)
where the Laurent polynomials

A"z) =Y dyz*, meZ,, zeC, (2.12)
acQ

are the mask symbols. We notice that any refinable function ¢™ is normalized so that
@™ (0) = 1. In case the nonstationary cascade algorithm converges, the Fourier trans-
form of ¢™ is given by

§"(0) = [[ A7), weR. 2.13)
k=m

Given a nonstationary multiresolution analysis {V" :m € Z, }, at any level m € Z,
the wavelet space W™ is defined as the orthogonal complement of V" in V"+! j.e.,

wm =ymtlgym me7Z,. (2.14)
Any wavelet space is generated by the 27" -shifts of a wavelet function Y™, i.e.,
W™ =span {y"(-—2"a),a € L} , (2.15)

any Y™ being different at any scale m. The existence of a set of generating wavelets
{y™ ,m € Z,} is always assured when all the refinable functions {¢™,m € Z, } are
compactly supported. Moreover, it is always possible to construct compactly sup-
ported Ly (R)-stable wave-lets associated with compactly supported L, (R)-stable re-
finable functions [9, §4].

3 A Class of Bell-shaped Nonstationary Refinable Rip-
plets

The class of univariate compactly supported nonstationary masks and refinable func-
tions we are interested in was introduced in [20]. Let us denote the masks in the class
by

(@t mez.}y, At =(a" L d"y mezy, (3.1)



where n is an integer > 2, related to the support of the mask a").
The explicit expression of a™™) is as follows. For any n, the starting mask a%) has
entries

(n0) _ (n0) _ 1
G =4 =7
(3.2)
asf’o) =0, otherwise,
while the entries of the higher level masks a(”=’”), m > 1, have expression
(nm) 1 n+1 - n—1
Qo = Snrima [( a +42" 1) oa—1/)| O<asn+l,
(3.3)
ag: m 0, otherwise .

(We assume (g) =0when o <0ora>n.)

We notice that it > 1 is a real parameter that acts as a tension parameter. In fact, the
larger u the faster the factor 2" in the nonstationary mask coefficients goes to 1 when
m — oo, This means that the nonstationary process behaves in practice as a stationary
one if we choose large values of . Thus, the more interesting cases are obtained for
values of u that are close to 1.

For any n and u, the mask alm) jg compactly supported on [0,n+ 1] and is bell-shaped,
i.e., its entries are positive, centrally symmetric and strictly increasing on [O, [%H
We notice that for any n > 2 the 0-level scaling mask a(™?) is the mask of the charac-
teristic function of the interval [0,1], while the m-level scaling masks a(”*’">, m > 0, are
related to the class of stationary masks introduced in [18].

Any mask sequence {a(”*m) :m € Z4} can be associated with the set of nonstationary
refinable equations

ot = Y g™t —2 ey, mezi, (4
aco™
where 0.1
(nm) _ (nm)\ _ 0,1], m=0,
oq"" = supp (a"") = { 0,n+1], m>0. 3.5)

From [20] it follows that for any n > 2 and u > 1, (p(”v'"), m € Z, is compactly sup-
ported with

[0,2+1], m=0,
supp @™ = [0,L(, ] = (3.6)
[0,27"(n+1)], m>0,

and belongs to C"~!(R). Moreover, any system
o) = {e"M) (. —27Ma) : € L}, (3.7)

is a Riesz basis, forms a partition of unity, is totally positive, and enjoys the variation
diminishing property.



For any n > 2 and u > 1, the mask sequence {a<”7’") :m € Z, } has the sequence

, w1 1
a(n):{ &),o§a§n+1}, afx>2n+]<njx_ ), (3.8)

as fundamental mask [20]. Since a) is the mask of the B-spline of degree n having
integer knots on [0,n + 1], the sequence of functions {h,(("‘m) 1k € Z,}, generated by

the cascade algorithm

= Yy (2 ey ez, (3.9)

aco™

converges strongly to (p(”’m) € Ly(R). The convergence of the cascade algorithm im-
plies that the Fourier transform of ¢ (") is

=

a(n,m)(w) _ H Alnk) (e_izk%) ’ wEeR, (3.10)
k=m
where
Ay = Y al™ 2 G.11)
aec‘gnm)

A straightforward computation gives

A0 = L(1+2),
n,m 1 n—1(2 mH
Alm) () = W(HZ) (Z+20"" 7 —1)z+1) = (3.12)

= J(1+2A (), m>o0.

It is worthwhile to observe that any symbol A (z) is a Hurwitz polynomial [18],
i.e., it has only zeros with negative real part. Moreover, the fundamental symbol of
A (7 is the B-spline symbol

n+1 l
AN () =Y ) 2% = S (142 (3.13)
a=0

4 Properties of the nonstationary refinable ripplets (p(”v’")

In this section we analyze some properties of the refinable ripplets (p(””") that are useful
in both geometric modeling and signal processing applications.

First of all, let us denote by B"") the 2"-dilates of the B-spline of degree n with
knots on 277, normalized so that Blnm) (0)=1,n>1, m € Z,. In the Fourier space
B satisfies the refinable equation

B\(n,m)(w) — A (e*izm%) §(n,m+1)(w)_ “4.1)



Its Fourier transform is given by

Pyo) n+1
~ ° ) 1 —etom
(nm) () — () (71T | =
B (w) k|:’|nA (e 2 ) ( P > . 4.2)

The refinable functions @) are generated by a convolution law involving the B-
spline Bmm),
Theorem 4.1. Forn >3, ") m € Z,, satisfies the convolution property

(P(n.O) — B(071) * (p(’“lvo) ,
4.3)
(p(n,m) — gOm) (p(”*l-,m) , m>0.

Proof. From (3.10), (3.12) and (4.2) it follows

[TA© (e75%) [Tat 95 =
k=m k=m

(/ﬁ(n,m) ((D)

— BOM(0)50 (@)

for m > 0, and 9% (w) = BOD (@) "9 (w), for m = 0. The claim follows by
applying the inverse Fourier transform to the relations above. [ U

As a first consequence of the theorem above, we can prove that (p(”*’”) satisfies suitable
Strang-Fix conditions.

Corollary 4.2. For any n > 2 and m > 0, (ﬁ("”’” has a zero of order n — 1 for o =
2" o, a € Z\{0}. @0 vanishes for = 2na, o € Z\{0}, and the zero is simple
for © =220+ 1)x, a € Z, while has order n— 1 for ® = 4an, a € 7.

Proof. By repeated application of Th. 4.1 we get

§1 ) (©) = B 2)() 91 (@),
4.4
(ﬁ(n.o)(w) — B(n72,1)(w) (p(l,O)(w) )

Since the symbols A1) (z) have the hat function symbol A())(z) as fundamental sym-
bol, the infinite product converges [15]. Moreover, for m > 0 the symbol Allm) (2) has
no zeros on the unit circle, so that (p(l’m) () has no zeros, too. Thus, (/ﬁ(n*’") (w), m> 0,
has zeros of the same order as B("~2™) does, and the first part of the claim follows.
For m =0,

900 (@) =B">D(@) A% (%) o (w).

A0 (¢1%) has a simple zero for @ = 2(2a+ 1), a € Z, while B2 has a zero
of order n— 1 for @ = 4an, a € Z\{0}. Thus, (¥ (w) has a zero for ® = 2ar,
o € Z\{0}, which is simple when @ =2(20+ 1)x, o € Z, and has order n — 1 when
o =4omx, o € Z\{0}. This concludes the proof. O O



The Strang-Fix conditions allow us to conclude that polynomials of suitable degree
are contained in the space generated by the 27" -translates of (p<”’m), i.e., the space

ym) — W{w"vm)(- 2 M) iae Z} . meZ,. (4.5)

Theorem 4.3. Let I1; be the space of polynomials up to degree d. For any n > 2 and
m > 0, the space V"™ contains I1,_», i.e., for any polynomial p € I1,_, there exists

Jiae Z} such that

p=Y 15m em(.—2 g, (4.6)

acl

n,m
a sequence of real numbers {}/((x ’

(n,0)

The space V contains the space of the constants I1.

Note. The roots of the nonstationary symbols (3.12) cannot fulfill the hypotheses of
Th. 1 in [33]. Thus, the refinable functions (p(’””) cannot generate exponential poly-
nomials. Actually, we are interested in the construction of efficient decomposition and
reconstruction formulas for general (possibly non exponential) signals. To this end
high algebraic polynomial generation is more effective since it induces a high number
of vanishing moments in the analyzing wavelet.

From the results above it follows the approximation order of the system &) [26].

Corollary 4.4. For any n > 2 and m > 0, the system &) pgs approximation order
n—1, i.e, for any f € L(R) there exists a constant Cy, independent from m, such that

inf = If = full2 < Cp2m=h) (4.7)

fmev(mm

The system @) pas approximation order 1.

Note. Even if the system ®0) reproduces just the constants, polynomials of higher de-
gree can be represented by suitable integer translates of (%) (2-1.). In fact, "9 (2-1.) €
C"~!(R) and its Fourier transform has a zero of order n— 1 for ® = 2ax, a € Z\{0}.
Thus, polynomials of degree n — 2 can be represented by the integer shifts of the dilate
@9 (271.) and the system {9 (27! —a) : & € Z} has approximation order n — 1
(cf. [7]).

Interestingly enough, the convolution property (4.3) allows us to prove a differentiation
rule for the functions @),

Theorem 4.5. Let V|, be the backward finite difference operator defined recursively as

1 r r—
Vif =3 (f=fC=m).  Vif=f, Vif=Va(Vi )f, r=1.
For n > 2, the derivatives of (p<"”") are given by

D" (p(n,O) _ ng] (p(n—r,O)’ r<n— 1 ’
4.8)
D’ @(nm) =V, @ln=rm), r<m-—1, m>0.

10



Proof. We will prove (4.8) just for m > 0; the case m = 0 can be proved in a similar
way.
From (4.2) and the first equation of (4.4) it follows

—

(Do) (o) = io§"m (@) =io B'>") (@) ¢ (@) =

—e 270N\ 3, m
(Hrim) B( 3, )(CO)(P(I )(a)):

=)

The inverse Fourier transform gives
D (p(mm) - Vz—m (p(n717m),

which is the derivation rule for » = 1. Repeated applications of this rule give the deriva-
tion rules of higher order. U

From (4.8) and the variation diminishing property, we can infer that the derivative
D’ (p("vm), m € Z , has the same behavior of the finite difference

1 < r
Viel =2y (-7 (a> "M (—ha),  meELi, (49
a=0

with h=2"1form=0and h=2" for m > 0. In particular, the number of strict
sign changes of D" (p("”") is not greater than the number of strict sign changes of the
sequence

c’:{cgzogagr}z{(—l)“(;) 0<a<r),
so that we can infer the shape of @) from S~ (¢’).

Theorem 4.6. For anyn>2andm € Z,, "™ is bell-shaped, i.e., ™) is centrally
symmetric, strictly increasing on [0, |supp @™ /2], and its second derivative has just
2 sign changes.

Proof. Since any mask a" is centrally symmetric, any ¢ is centrally symmetric,
too. As a consequence D(p(’””) is centrally antisymmetric and D? go(”=’”) is centrally
symmetric. For m > 0 (4.8) and (4.9) give

Dotnm — % ((p(n—lm — pln=tm) (. h)) 7

(4.10)

D2 (p(mm) 1 ((p(nfl,m) _ z(p(nfl,m)(. _ /’l) + (p(nfl.m)(_ _ 2/’!)) 7

®

11



where h = 27", while for m = 0 (4.8)-(4.9) together with (3.4) yield

Do) = %(%cp“’”’”(x)—%fp‘”*"”(x—Zh))7
D200 = (Lol (x)— L ln-l(x—h)— @.11)

Tt (x —2h) + L =11 (x—31)),
where h =2~"'. Since @' is positive in (0,|supp @”~')|) and vanishes for
x <0, DO"™™ and D?@™™) are positive for 0 < x < h. Now, by the variation di-
minishing property from the first relations in (4.10) and (4.11) it follows that D¢ (")
has just one sign change which has to be in |supp (p<"*’")| /2; thus, D™ > 0 in
(0, |supp @™ |/2) and D™ < 0'in (|supp @™|/2,|supp @™)|). As for the sec-
ond derivative, a direct computation shows that Dz(p<""”) is negative in |supp (p<”v’"> [/2
so that Dz(p(”””> has at least two sign changes; but from the variation diminishing prop-
erty and the second relations in (4.10) and (4.11) it follows that Dz(p(’”"> cannot have
more than two sign changes, so proving the claim. O

5 Nonstationary Prewavelets

From the results in the previous sections it follows that, for any n > 2 held fix, the
spaces V") m € 7, generate a nonstationary multiresolution analysis as defined in
Section 2.

We notice that, since @M is a Riesz basis, the symbol of the autocorrelation of
(p(”’m), i.e., the polynomial

p((pn,m)(w) _ Z </ (p(n,m) (p(n,m)(.+2—ma)) e—in’moc _
acz \/R
6.1
2
— m Z (’ﬁ(n.m)(w+2m+lﬂa) ’
acZ

is non vanishing for any € R (cf. 2.3). The vector *" = [, where n{"" =

Jr go(”=m) go(”=’”) (-+27™a)), is the eigenvector corresponding to the eigenvalue 1 of the
transition operator

(T AYg=2 Y dg’;’j)ﬁ Ay, a€Z, A€l(Z), (5.2)
BeZ

where &M = {gi"™) = o ag"m) a%’f'g, a € Z}, is the autocorrelation of the

mask a"™) . The sequence {n((x"’m)} is positive, compactly supported with

o) e e

(n,m)

=supp{Ne "} =

o_f(]n,m)

[-n—1,n+1], m>0,

12



and centrally symmetric. As a consequence p") € R with

0< py ) (2"m) < pg™ (@) < pg™ (0) =2 (53)
Since

pe (2" 1) = Taer(-D* (Ja 0 @ (-+2"a)) ) =
5.4

= Lacz (=D (@"™ % @) (L ) +27" 1),

at any level m the basis &) is a non orthogonal basis.

The nonstationary multiresolution analysis {V("v’") :m € Z, } allows us to define a
wavelet space sequence {W("’m) :m € Z. }, where each space W () s the orthogonal
complement of V") in v (»m+1) "Since "™ is non orthogonal, orthogonal wavelets
with compact support do not exists. On the other hand, due to the L,(R)-stability
and the compact support of each (p("*'”), it is always possible to construct compactly
supported semiorthogonal wavelets, usually called prewavelets [9, Th. 3.12].

The explicit expression of the prewavelet of minimal support, i.e., the semiorthog-
onal wavelet belonging to V1) and having least support, can be obtained general-
izing to the nonstationary case the results in [28] (see also [19]).

Theorem 5.1. For any n > 2, the functions

0 S (n,0) 1 1
y(0) = Z (—1)* g "V (- —27"a),
a=-—n
(5.5)
o & (nm) (nm+1) —(m+1)
yr = Y (D)% o= 27 ey, m >0,
a=—2n
where
ggl,m) _ /R(P(n,m) (p(n,m-ﬁ-l)(. +2—(m+1)a), acZ, (5.6)
are the prewavelets generating the wavelet spaces
W nm — span {w(”~’">(. 2 Mg) e Z} . meZ.. (5.7)
Any system
pinm — fyom (x 27" ;o € 7} (5.8)

is Ly (R)-stable and linearly independent.
Moreover, any function 1[/("”"), m > 0, is compactly supported and has n — 1 vanishing
moments.

13



Proof. A straightforward computation yields

/ an nm( _ mﬁ)
:Z(il (n,m) / (pnm+1 _ (m+1)a) (p(nm ( mB)

=L (1% 855", =0,
o

for any B € Z, i.e., "™ is orthogonal to the space V™). Since ®("™) is a Riesz
basis, it follows that at any level m, the system W) generating the wavelet space
W(”*’”), is a Riesz basis, too. Moreover, l//(”v’") has non orthogonal integer translates.
In fact,

Lwm e 2me) = P (-0P g e,
B

where {gi""} = {¥,8y (n,m) gy_ ) is the autocorrelation of the sequence {g\""}.
Due to the support of (p( ™) it follows
[-n—1,n], m=0,

O_égn,m) — supp {g n,m) }

[-2n—1,n], m>0,
so that 1//(”*’") is compactly supported with
supp ym = (5.9)
[-27"n,27"(n+1)], m>0.

Finally, since W) | V(™) _from Th. 4.3 it follows that for m > 0 [ x¢ y" (x)
0,0 <d < n—2, so concluding the proof.

oo

In the next theorem we prove that y(") is uniquely determined as the function in

v (mm+1) that is orthogonal to V") and has having least support.

Theorem 5.2. For anyn>2 and m € Z, l//(”"”) is the unique minimally supported
wavelet generating the wavelet space W ™),

Proof. The wavelet equations (5.5) in the Fourier space reads
) (@) = dm) (e—izm%) o) (@),  meZy,

where

14



An explicit calculation gives
dmm) (71T ) = —e T Alnm) (gl ) plnmt D (g omtlay - (5.10)

Now, the orthogonality conditions / M (x) @ (x —27"B)dx = 0, B € Z,
R
can be proved to be equivalent to the conditions

Zd”’%% 0, BeZ. (5.11)

Let

Zdzoc %, Zdzzill )
and, similarly, for the polynomial g"") (z) = ¥, go? ) et

rz m) Z P n m) Z g2a+] 7

so that
d (@) =d"N(2) +2d ), g () = g () 428" ().

It follows that conditions (5.11) are equivalent to

di"™ (2) 88" (2) +zdS"™ (2) g™ (z) = 0. (5.12)

n,m)

Thus, y) is the minimally supported prewavelet if and only if ) is the minimally

supported polynomial satisfying (5.12), i.e., if and only if 4™ (z) and d"™ (z) have
no common zeros or, equivalently, " (z) and d""") (—z) have no common zeros for

7= ¢ 7T But this easily follows from (5.10) since any symbol A=) (z) has only

zeros with negative real part and pé," m+1) (w) is positive. O

We notice that y"" is the 2"-dilate of the prewavelet constructed in [20] and
Th. 5.1 and Th. 5.2 generalize to the nonstationary case the stationary prewavelet
constructed in [28].

Even if the prewavelet coefficients {gg"m)} do not have an explicit expression, they
can be efficiently evaluated by an iterative algorithm.

Theorem 5.3. Let M (n.m) — [g(n ) ,O0LE Gén’m)]T be the nonstationary prewavelet coef-

ficients, and let M" [ga ac 0'< T |7 be the prewavelet coefficients corresponding
to the stationary fundamenml mask a".
For any n > 2 and m € Z held fixed, consider the iterative procedure

(n,m) (n)
P =M",

5.13
{ P(”»m) ( )

n.m n,m+1
k+1 clrm) p :

k ’ k207

15



where C") = (c<"’m) ) with

20—
g™ =Y agmalntV. peot™, (5.14)
ﬁEO_lSnm)
and [ ]
(nym) _ —2,n+1], m=0,
x _{ [2(n+1),n+1], m>0. o

The sequence {Plgn’m)} converges strongly to M () \when k — . Moreover; the fol-
lowing error estimate holds

1B M| < g MO = b0 (5.16)

where Y, is a positive constant independent of k.

Proof. Using the refinable equation (3.4) in (5.6) we get g™ = Y8 C20-B gg"m),

which in matrix form can be written as M) = Ctm) p(nm+1) - Repeated applica-
tions of both algorithm (5.13) and the relation above give

AL — ptem)|

) _ H Hf:() C<"’m+1) (M(n) 7M(n.m+k+1)) H <

< HH 0Cnm-&-l ” ||M M(n,m-&-k-&-l)”.

Now, let C") = (¢ 83 ﬁ) where c(ofl) :Za;}” lezﬁ We note that p(C") = 1. Since
a" is the fundamental mask of the mask sequence {a>™}, it follows ¥,z . |Clmm) —

C"|| < oo, and

m+-k
ITT ™ Sexp( Y it —C<”)||> <
I=m meZ

(cf. [15, Prop. 2.1]). Moreover, limy_yoo MK = M®) _ thus,

lim [|P 7 — )| =0,

and the claim follows with %, , = exp (ZmEZ . [t — () ||) O

6 Nonstationary Biorthogonal Bases

The refinable functions ¢ and the prewavelets y" are linearly independent and
L, (R)-stable, but they are not orthogonal. As a consequence, the dual bases of @nm)
and y("™) in V") and W (™) | respectively, have infinite support. Nevertheless, com-
pactly supported bases giving rise to efficient reconstruction and decomposition for-
mulas of a given discrete signal, can be obtained introducing biorthogonal bases.
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The theory of biorthogonal bases in the stationary case [3] can be generalized to the
nonstationary framework (cf. [23, 25, 33]). For any multiresolution analysis {V(””") :
m € 7, } we can introduce a biorthogonal multiresolution analysis {V"") :m € Z, }
with

ylm) cylamil) = ez, 6.1)
and biorthogonal wavelet spaces {W ™) : m € 7., } and {W™) : m € Z, }, such that
foranyme Z

W(”vm) = V(”vm+l) @ V("vm) s W(Vl,m) = V("7m+1) @ ‘7(”7’”) R
(6.2)
wnm) | ylm) oy (m) |y (nm)

At each level m, the spaces V") (mm) yw(m) and WM are generated by the

2™_integer translates of the biorthogonal functions @), ¢l§’;*’”), l[/b(Z’m) and li/b(Z’m),

respectively, satisfying the following biorthogonality conditions:

(90 (- =27"a), g™ (-=27"B)) = 8up,
<%Z"’ (—27"a), WbZ”’ (-—=27"B)) = Sup,

() (-—27ma), (- = 27"B)) =0

(6.3)

(Vi =2 ) gl (2 B)) =0

We stress that all the biorthogonal functions (p(””"), ¢,§0 , ‘I’bo ) and !,l/bo ,meEZLy,
cannot be obtained each other by dilation. Thus, none of the biorthogonal spaces at
level m is a scaled versions of the spaces at level 0.

Biorthogonal bases for the exponential splines were constructed in [33] while sta-
tionary biorthogonal bases for the refinable ripplets introduced in [18] were constructed
in [6]. Here, we want to construct the biorthogonal bases associated with the nonsta-
tionary refinable functions @), m € Z, .

As a consequence of (6. 1) and (6. 2) the wavelet y/b belongs to Vumt1) while

the biorthogonal functions l//b ™ and (pb belong to V(m+1) 5o that

w[gz,m = Yoez qo’c%m) (p(n,erl)(_ _ 27(m+1)a) ’ me7Z,,
" = Yoez ay™ @t (—2-mtg)  mez, (6.4)
V?IEO = Yaez ‘Ia (sz L) ( 2_(m+1)06), meZ,.

Moreover, perfect reconstruction at each level m is guaranteed if for any m € Z the
biorthogonal symbols

A(n,m) (Z) — Zan agl-,m) 7% , A"'(n,m) (Z) — Zan dgl,m) 7 ,
(6.5)

QM (2) = Yooz gi™ 2%, QM () = Yooz o™ 2%,
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satisfy
A(n,m) (Z)A(n,m) (Zil) _"_A(n,m)(_z)g(n.m)(_zfl) -1 , (6.6)

with 5 3
Q(n,m) (Z) _ 7A(n,m)(7z—1)7 Q(n,m) (Z) :A(n,m)(iz—l)' (67)

Identity (6.6) is a Bezout’s equation which has a unique polynomial solution A" of
a given degree [8].

Under mild conditions on the symbols A" and A biorthogonality conditions
(6.3) guarantee that the biorthogonal bases

{(p n,m ( —27"q), . € 7}, ‘Pﬁw {11/,7 ( —27"q), ¢ € Z},
hr::m {‘Pb (-—27ma), 0 e 2}, le() = bnm( —2"a),a € Z},
(6.8)
are L(R)-stable, so that, for any f € Ly(R), the following decomposition formula
holds

f=fmt+ ¥ LS 2y —2"a), (69)
m>my uEL
where
foo= Y (L. (=27 m0q)) @) (- — 2 M) (6.10)
el

is the myp-level approximation. Some examples of nonstationary biorthogonal bases
will be given in the next section.

The sequences {dq}, {da}> {qa}> {Go} are pairs of biorthogonal FIR filters that
give rise to the decomposition and reconstruction algorithms

! (
A‘m ”m lm#»l’ ”m A‘ﬂ’hLl7 (611)
o fﬁzelz 20 B 05 \/’ Z ﬁ 200 7B
m+1 1 (n,m) (n,m)
Ay = 7 Y aglop Mg+ Z Ta-2p 55 | (6.12)

BeZ

which can be efficiently used for the analysis and synthe51s of a given data sequence
A ={A%: ac}.

7 A case study

In this section we give some examples of both nonstationary prewavelets and biorthog-
onal basis in the case when n = 3. In this case the nonstationary refinable func-
tions (p(37m>, m > 0, belong to C? (R), i.e., they have the same smoothness as the cu-
bic B-spline. Interestingly enough, any (p<3vm) with m > 0 has the same support as
BG™ e, [0,4-27™], while (p(370) is more localized in the scale-time plane having
supp (p(3*0) =[0,5/2], a property that appears very useful in applications (see the ex-
ample below). In order to obtain refinable besis and nonstationary filters significantly
different from those ones generated by the cubic B-spline, we choose 1 = 1.1 as a

18



Table 1: Numerical values (rounded to the forth digit) of the mask coefficients agf’m),
a§3’m), aéim) form=0,...,8. Here u = 1.1

m 0 1 2 3 4 5 6 7 8
a(()3’m) 0.5 0.0313 0.0452 0.0508 0.0537 0.0555 0.0567 0.0576 0.0583
a(13’m) 0.5 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
a(23’m) 0 04375 04095 0.3984 0.3925 0.3889 0.3865 0.3848 0.3835

(3m) (3m)
a3

(3.m) 3m) m) 0
ao a N a2

(3.
2

Figure 1: Left panel: The nonstationary mask coefficients {aff’m) ,a=0,...,4} for
m = 0 (black dots), and m = 1,...,8 (colored dots) (cf. Tab. 1). The stationary mask
of the cubic B-spline is also displayed (red dots). Right panel: (p(3*0) (black line) and
the cubic B-spline BB (red dashed line)

value for the tension parameter.

The coefficients of the mask a0) = {083,0)’053,0)} are a(gS’()) = a(13’0) = 1, while the

coefficients of the mask aG®”) = {aé3"") , a?’m),af’m),a?’m),af‘lm) } for m > 0 are
aé?»,m) _ af,m) g a$3,m) _ agam) _ %, (23,m) _ % _p3emH

The numerical values (rounded to the forth digit) of the mask coefficients are listed
in Tab. 1, while their behavior is shown in Fig. 1 (left). The behavior of ¢ in
comparison with B3%) is displayed in Fig. 1 (right). The nonstationary prewavelets
l//(37’”) are given by:

4
v = ¥ (0% o (-2 ),

a=—

4
1I/(3,m) _ Z (_1)agfx3-,_”{) (p(3,m+1)(' _ 2—(}'n+1)(x)7 m>0,

a=—6

where the prewavelet coefficients { ggf "")} can be evaluated by the algorithm in Th. 5.3.
From (5.9) it follows that supp w9 = [-3/2,4], while for m > 0 supp yG™ =
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Figure 2: Left panel: The prewavelet mask coefficients {g$’°>, o =—4,...,3} (black
dots) as a function of o. Right panel: the prewavelet y(3:0)

[—2773,27™4]. We notice that w30 is more localized in the scale-time plane than
both l//<3”"), m > 0, and the B-spline prewavelet. The prewavelet mask coefficients,
rounded to the forth digit, are

gB0 = B0 = _0.0015, g%0 = —¢{* = 0.0259,
g% = g0 = —0.1479, g% = {0 = 0.3244.

In Fig. 2 the behavior of {gé‘;i ’O)} and Y9 are displayed.

Finally, we give the explicit expression of the biorthogonal masks a®), m > 0. It is
well known that the biorthogonal mask of a(>%) js a®:0) = {szf’o) o = {,-1}.In
order to fulfill conditions ensuring the existence of the biorthogonal refinable function
(ﬁ;i’m), for m > 0 we construct the biorthogonal mask a®®”) with support [0,14]. Its
explicit expression is given by
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Table 2: Numerical values (rounded to the forth digit) of the mask coefficients Esz ’m),

foroo=0,...,7,and m=0,...,8

m 0 1 2 3 4 5 6 7 8
43 ) 0.5 0.0011 0.0021 0.0026 0.0030 0.0064 0.0034 0.0035 0.0036
"(3 ) -0.5 -0.0085 -0.0114 -0.0129 -0.0138 -0.0288 -0.0148 -0.0151 -0.0154
"? ) 0 0.0066 0.0028 0.0005 -0.0010  -0.0039  -0.0027 -0.0032  -0.0036
Zl? ) 0 0.0574 0.0760 0.0857 0.0914 0.1905 0.0979 0.0999 0.1014
aff ) 0 -0.0810  -0.0790  -0.0768  -0.0752  -0.1480 -0.0732 -0.0725 -0.0720
Zlé} ) 0 -0.1998  -0.5108 -0.2834  -0.2998 -0.6211 -0.3180 -0.3236  -0.3278
?123 ) 0 0.3233 0.3241 0.3237 0.3232 0.6456 0.3225 0.3222 0.3220
a™ | 0 08019 08816 09212 09443 19187 09698 09776 09835

31
a®m =g = B (128 126t 1541+ 15 gh)
0 A = 7
412
—5—h
~(3 m) A@m) __4 128 426+ 4 5. 41+h | 5. gh
(128427 +5-81
8737h
5(23,m) _ Ei{l'}z»m) == . (640+7 .6+h 133 glth +29. gh _5. 16h)
412
2—9—2-/1
A" =ay" = S (12843257 4 17410 117 8%
412
—3—h
~3m) _ ~(3m) _ 8 6+h 1+h h h
a " =" = = (115241525 4133417 1898 39 16)
—5—h
a0 =g = L7 (10 126t 123410 _ 123}
as’ =ag " = 7 (128 + )
—412
8~ 3—h
@™ —adm — - 2 (64049207 81214 4 10541+ 4 577.8")
—412
ay = —ﬂ(128+3.2"’+”+81 RS VAR D)
—4 20

where i = 3+ m™*. The biorthogonal mask coefficients {?1{; ’m)} (rounded to the forth
digit) are listed in Tab. 2. In Fig. 3 the behavior of {5&3 7m)} and (ﬁ,()i’o) are displayed. The
(3m) and ™ can be obtained by g&™ =

In Fig. 4 the behavior of l;/b ’ ) and 117;(3)’0) is

biorthogonal wavelet mask coefficients q

3,m 3.m
El Ba%aaﬁl’ Zl{a )= —(=1)%a (oc-zl
isplaye

Just to show how the properties of the constructed nonstationary biorthogonal filters
can affect the analysis of a given signal, we evaluate the wavelet coefficients obtained
during three steps of the decomposition algorithm (6.11), when the starting sequence
is a spike-like signal. The coefficients are plotted in Fig. 5 in comparison with the
coefficients obtained when using the stationary cubic spline biorthogonal filters. The
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Figure 3: Left panel: The nonstationary biorthogonal mask coefficients {&{0,3 ‘m), o=

0,...,14} as a function of & for m = 1,...,8 (colored dots) (cf. Tab. 2). Right panel:
The biorthogonal dual refinable function @S«O)

Figure 4: Left panel: The biorthogonal wavelet 1;/152’())

dual wavelet 117153’0)

. Right panel: The biorthogonal

figure shows that the nonstationary decomposition algorithm has higher compression
properties: actually the number of nonzero coefficients are 26 in the nonstationary
case, while they are 39 in the B-spline case. The higher compressibility rate of the
nonstationary filters is a consequence of the higher localization of the ripplet in the
scale-time plane, i.e., the refinable ripplets having the same smoothness of the B-splines
have indeed a small support making them more suitable to catch the features of a given
signal.

8 Conclusion

We studied the properties of a class of refinable ripplets associated with sequences of
nonstationary scaling masks. One of the most interesting property of these functions is
in that they have a smaller support than the stationary refinable ripplets with the same
smoothness. This localization property is crucial in several applications, from geomet-
ric modeling to signal processing.

After proving some approximation properties, such as Strang—Fix conditions, polyno-

22



1 n |

02 I

08 0 50 100 150 200 250 300 350 400
o

|

o i

0 100 200 300 400 500 600 700 800
o

Figure 5: The spike-like signal (left) and the wavelet coefficients (right) obtained in
3 steps of the nonstationary decomposition algorithm (blue bars). The wavelet coeffi-
cients obtained by the stationary cubic biorthogonal filters are also shown (red bars)

mial reproduction and approximation order, we proved also that any refinable func-
tion in the family is bell-shaped, so that they can efficiently approximate a Gaussian.
Moreover, since these refinable functions generate nonstationary multiresolution anal-
yses, we constructed the minimally supported nonstationary prewavelets and proved
that their 2"-shifts form a Riesz basis. We note that this construction can be gener-
alized to other classes of nonstationary refinable functions, like exponential splines.
Moreover, we constructed nonstationary biorthogonal bases and filters to be used in
efficient decomposition and reconstruction algorithms.

The localization property of the refinable ripplets we studied implies that the corre-
sponding nonstationary wavelets have a small support too, a property which is very
desirable in the case when the relevant information of a function to be approximated
or of a signal to be analyzed are focused in small regions of the scale-time plane. The
preliminary test in Section 7 shows the good performances of the constructed non-
stationary wavelets in a simple compression test. More tests will be the subject of a
forthcoming paper.
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