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High-throughput analysis has improved the knowledge of medulloblastoma (MB), the
leading cause of cancer related death in children, allowing a better comprehension of the
key molecular pathways in MB pathogenesis. However, despite these advances, 30%
of patients still die from the disease and survivors face severe long-term side effects.
Cancer stem cells (CSCs) represent a subset of cells that not only drive tumorigenesis,
but are also one of the main determinants of chemoresistance. Epithelial mesenchymal
transition (EMT) is a hallmark of cancer and up to now few data is available in MB. To give
insight into the role of the EMT process in maintaining the mesenchymal phenotype of
CSCs, we analyzed the expression of EMT related transcripts and microRNAs in these
cells. We firstly isolated CSCs from Sonic Hedgehog (SHH) MB derived from Ptch1
heterozygous mice and compared their expression level of EMT-related transcripts and
microRNAs with cerebellar NSCs. We identified two molecules linked to SHH and EMT,
Vegfa and its receptor Nrp2, over-expressed in SHH MB CSCs. Inhibition of Vegfa
showed impairment of cell proliferation and self-renewal ability of CSCs concurrent with
an increase of the expression of the EMT gene, E-cadherin, and a decrease of the EMT
marker, Vimentin. Moreover, among deregulated microRNAs, we identified miR-466f-3p,
a validated inhibitor of both Vegfa and Nrp2. These results allowed us to describe a new
EMT molecular network, involving the down-regulation of miR-466f-3p together with the
concordant up-regulation of Vegfa and Nrp2, that sustains the mesenchymal phenotype
of SHH MB CSCs.

Keywords: medulloblastoma, sonic hedgehog medulloblastoma cancer stem cells, epithelial to mesenchymal
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INTRODUCTION

Medulloblastoma (MB) is the most common malignant brain
tumor of the pediatric age and a leading cause of cancer
related morbidity and mortality (Northcott et al., 2012). Despite
the fact that multimodal aggressive therapy has improved
MB outcome, 30% of patients still die of disease and about
40% face tumor recurrence. Moreover, survivors frequently
develop long-term severe side effects (Wang et al., 2018). In
recent years, high-throughput studies have been conducted
to better understand MB biology and key signaling pathways
that could be addressed to reach a better management of
MB patients. These studies allowed the recent WHO 2016
subgrouping of MB (Louis et al., 2016), identifying five
subgroups: WNT activated, SHH activated P53 wild-type, SHH
activated P53 mutant, non-WNT/non-SHH Group 3, non-
WNT/non-SHH Group 4 (Louis et al., 2016) and more recently
12 molecular subtypes (Cavalli et al., 2017; Northcott et al.,
2017). In this context, SHH subgroups account for about
30% of cases (Cavalli et al., 2017) and they are the most
common MB subtypes in infants and adults (Kool et al.,
2012).

Cancer stem cells (CSCs) have been described in MB
(Lee et al., 2005; Po et al., 2010; Manoranjan et al., 2013;
Mastronuzzi et al., 2014). CSCs may arise from the malignant
transformation of neural stem cells (NSCs) and represent a
reservoir for cancer maintenance and progression (Northcott
et al., 2012). We isolated CSCs from Ptch heterozygous
mice, a model of the SHH MB subgroup (Goodrich et al.,
1997; Po et al., 2010; Wu et al., 2011; Ronci et al., 2015),
and performed transcriptome analysis of both SHH MB
CSCs and NSCs isolated from postnatal murine cerebellum
for comparison. Among the identified transcripts that
characterize SHH MB CSCs, genes involved in the epithelial-
mesenchymal transition (EMT) were highly represented and
some of them resulted significantly differentially expressed
between SHH MB CSCs and NSCs. EMT is characterized
by the loss of epithelial characteristics and the acquisition of
mesenchymal properties and previous studies linked a shift
toward mesenchymal properties to metastatic progression
and acquisition of stemness features (Taube et al., 2010).
Among deregulated markers of EMT in SHH MB CSCs, we
focused on Vegfa and Nrp2 that have been described as pivotal
players in tumorigenesis and in maintaining stemness and
proliferation (Prud’homme and Glinka, 2012; Fantozzi et al.,
2014). We show that both Vegfa and Nrp2 correlate with
stemness features in SHH MB CSCs and that Vegfa inhibition
determines an increase in the expression of the epithelial
marker E-cadherin, a reduction of the mesenchymal marker
Vimentin and an impairment of self-renewal. Moreover, since
accumulating evidence indicate a crucial role of microRNAs
in the regulation of a variety of biological processes, including
EMT (Markopoulos et al., 2017), we also focused our attention
on the microRNAs differentially expressed between NSCs and
SHH MB CSCs and involved in EMT identifying an epigenetic
circuitry that sustains the mesenchymal phenotype of SHH
MB CSCs.

MATERIALS AND METHODS

Unless otherwise indicated, media and supplements were
purchased from Gibco/Invitrogen (Carlsbad, CA) and chemicals
from Sigma-Aldrich (St. Louis, MO). Animal experiments
were approved by local ethic authorities and conducted in
accordance with Italian Governing Law (D.lgs 26/2014; Prot. no.
03/2013).

Cell Culture, Treatments, Proliferation
and Oncosphere-Forming Assays
SHH MB CSCs were derived from spontaneous tumours arisen
in Ptch1 + /− mice and maintained as previously described
(Po et al., 2010). To induce differentiation, cells were plated on
D-poly-lysine coated supports and treated for 48 h with 2 µM
retinoic acid (Ronci et al., 2015). BrdU incorporation was used
to evaluate SHH MB CSCs proliferation before (CSC) and after
differentiation (CSC-diff) (Miele et al., 2017a). Pharmacological
inhibition of Vegfa was induced by treating SHH MB CSC
cells for 72 h with 10, 20, 40 and 60 ng/ml anti-Vegf (MAB
293, R&D Systems). Synthetic miR-466f-3p (4464066, Thermo
Fisher Scientific) or negative control (miRIDIAN CN-001000-
01; Dharmacon) were used as previously described (Catanzaro
et al., 2018). Cell proliferation was evaluated by trypan blue
exclusion assay (Catanzaro et al., 2018). Oncosphere-forming
assay of SHH MB CSC was performed as previously described (Po
et al., 2010). Unpaired t-test of three independent experiments
was performed using GraphPad Prism Software version 6.0 (CA,
United States), p–values < 0.05 were considered statistically
significant.

RNA Extraction, miRNA and mRNA
Sequencing
Three biological replicates of SHH MB CSCs were subjected
to miRNA-sequencing or mRNA sequencing, quality control,
mapping, quantification and differential expression analysis was
performed between SHH MB CSCs and NSCs (Besharat et al.,
2018; Po et al., 2018).

Immunofluorescence
Immunofluorescence studies were performed according
to standard procedures (Catanzaro et al., 2011) using
the following primary antibodies: anti-Vegfa Clone VG1
(05-1117, Millipore), anti-Nrp2 H-300 (sc-5542), anti-
Nanog (8600S, Cell Signaling), anti-NeuN (MAB377,
Millipore).

Immunochemical Analysis
Western blotting was performed as previously described (Miele
et al., 2017b) using the following primary antibodies: anti-
E-cadherin (610181, BD Biosciences), anti-Vimentin (92547,
Abcam), anti-Vegfa Clone VG1 (05-1117, Millipore), anti-
Nrp2 (ab 185710, Abcam), anti-β-actin I-19 (sc-1616, Santa
Cruz).
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FIGURE 1 | EMT-related characterization of SHH MB CSC. (A,B) Statistically significant up-regulated (A) and down-regulated (B) EMT-related genes in SHH MB
CSC vs. NSC. (C) Bromodeoxyuridine (BrdU) uptake in SHH MB CSC before (CSC) and after differentiation (CSC-diff). ∗∗ indicates p < 0.01 vs. CSC-diff. (D,E)
Immunofluorescence staining of the stemness marker Nanog and the neuronal marker NeuN, and of the EMT-related markers, Vegfa and Nrp2, in SHH MB CSC
before (D) and after 48 h differentiation with 2 µM RA (E). SHH MB CSCs express higher levels of Vegfa and Nrp2 than SHH MB CSC-diff. The differentiated status
of SHH MB CSC was confirmed by the down-regulation of Nanog and the up-regulation of NeuN in SHH MB CSC after 48 h of differentiation. Bars, 10 µm.

RESULTS

EMT Related Transcripts Characterize
SHH MB CSC
We recently conducted small RNA and trascriptome sequencing
on SHH MB CSCs and NSCs (Besharat et al., 2018; Po et al.,
2018). In this study, we focused on the EMT related RNAs
that characterize SHH MB CSCs compared to NSCs, querying
the differentially expressed transcripts listed in the EMT gene
database dbEMT (Zhao et al., 2015). Deregulated transcripts
are shown in Figure 1, specifically, 17 mRNA resulted down-
regulated and 15 up-regulated in SHH MB CSCs when compared
with NSCs (Figures 1A,B). Since we were interested in the
mechanisms that could regulate EMT in SHH MB CSCs, we used
qPCR to validate the up-regulated transcripts (data not shown).
Among them, we focused on Nrp2 and Vegfa, whose role in
maintaining stemness and proliferation in lung cancer stem cells
we recently demonstrated (Po et al., 2017). To investigate whether
they correlate with stemness features in the context of SHH MB,

the protein expression of Vegfa and Nrp2 in SHH MB CSCs
was evaluated before (CSC) and after differentiation (CSC-diff).
Differentiated cells are characterized by a lower proliferative rate,
as shown by the reduction in BrdU incorporation (Figure 1C),
and less aggressive behavior in comparison with SHH MB CSCs
(Morelli et al., 2012). We observed a reduction in the protein level
of Vegfa and Nrp2 in SHH MB CSC after 48h of Retinoic Acid
(RA)-induced differentiation (Figures 1D,E). The differentiated
status of SHH MB CSCs was confirmed by the decrease of the
stemness marker Nanog and the increase of the neuronal marker
NeuN (Preusser et al., 2006) after differentiation (Figure 1E).

EMT-Related Circuitry Activation in SHH
MB CSCs
To unravel the role of Vegfa in SHH MB CSCs, we performed
pharmacological modulation by using a blocking antibody. We
focused on Vegfa since it acts as a ligand for Nrp2, therefore its
inhibition likely determines an inhibition of the Nrp2-mediated
signaling. After 72h, Vegfa inhibition induced an impairment
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FIGURE 2 | Pharmacologic inhibition of Vegfa signaling and EMT-related microRNA/mRNA network in SHH MB CSC. (A–C) After 72 h of Vegfa inhibition cell
proliferation (A) and self-renewal (B) were impaired. Western blot analysis was performed with the more effective anti-Vegfa concentration (60 ng/mL) and showed
an increase in the expression of the epithelial marker E-cadherin and a reduction in the level of the mesenchymal marker Vimentin in respect to untreated SHH MB
CSC (Ctrl) (C). ∗ indicates p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001 vs. Ctrl (D) Statistically significant deregulated EMT-related microRNAs in SHH
MB CSC vs. NSC that target the previously identified deregulated transcripts. (E) Western blot analysis was performed after over-expression of 20 nM of
miR-466f-3p for 48 h and demonstrated a reduction of Vegfa and Nrp2 expression in respect to untreated SHH MB CSCs (Ctrl) (F) The miR-466f-3p/Vegfa/Nrp2
circuitry sustaining the mesenchymal phenotype of SHH MB CSC.

of both cell proliferation (Figure 2A) and clonogenic ability
(Figure 2B) of SHH MB CSCs. Concordantly, we observed an
increase in the epithelial marker E-cadherin and a reduction
in the mesenchymal marker Vimentin (Figure 2C), indicating
that Vegfa is involved in the induction of EMT in SHH MB
CSCs. Subsequently, we investigated an EMT-related network
involving both mRNAs and microRNAs that could characterize
SHH MB CSCs. With this aim, we compared the miRnome of
SHH MB CSC and NSC (Besharat et al., 2018) focusing on the
differentially expressed microRNAs that target the previously
identified deregulated transcripts (Figures 1A,B) as reported
in miRTarBase (Chou et al., 2017). Specifically, we observed
six down-regulated and three up-regulated microRNAs in SHH
MB CSCs (Figure 2D), that we validated by using qPCR (data
not shown). Among them, miR-106a targeted only Vegfa, while
miR-3082 and miR-5122 targeted only Nrp2. Interestingly, miR-
466f-3p targeted both Vegfa and Nrp2. To confirm the regulation
of Vegfa and Nrp2 by miR-466f-3p in SHH MB CSCs, we
overexpressed this microRNA obtaining a reduction of Vegfa
and Nrp2 levels (Figure 2E). These results indicate the existence
of a functional circuitry between these molecules (Figure 2F)
involved in the induction of EMT in SHH MB CSCs.

DISCUSSION

MB is the most frequent malignant childhood brain tumor
and CSCs have been an important focus for researchers. On
the basis of the cancer stem cell hypothesis, CSCs represent a
subset of cells within the tumor with the ability to proliferate
and maintain tumor growth (Manoranjan et al., 2013). CSCs
have been identified in all MB subtypes and are responsible
for therapeutic resistance and invasion (Kumar et al., 2017).
The cellular origin and stage of differentiation are of pivotal
importance in determining the tumor phenotype in MB (Lin
et al., 2016). Specifically, in SHH MB the deregulated SHH
signaling works as a potent mitogen to induce the proliferation of
the granule neuron precursors, where a specific deletion of Ptch1
or Smo activation determines MB in mouse models (Schüller
et al., 2008). Some reports described the importance of EMT
in increasing the migratory and invasive abilities of MB cells
(Asuthkar et al., 2011; Gupta et al., 2011; Singh et al., 2016;
Ferrucci et al., 2018; Gao et al., 2018), however, no report has
addressed the EMT phenomenon in MB CSCs. Since CSCs
represent interesting candidates to determine MB migration and
invasion, we examined the role of EMT in CSCs belonging
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to a SHH MB model, derived from specific transgenic mice
haploinsufficient for Ptch1 (Ptch1+ /−).

Firstly, we evaluated the expression of EMT-related genes
in SHH MB CSC in comparison with NSC cells derived from
postnatal cerebellum, where medulloblastoma arises.

Among the 15 up-regulated EMT-related transcripts we
focused on Vegfa, which is one of the main mammalian HH
target genes (Kumar et al., 2017), and Nrp2, a transmembrane
protein required for HH signal transduction (Gephart et al.,
2013). Vegfa has been described in solid cancers as a crucial
determinant of the increase in tumorigenicity of cells that
undergo EMT, both inducing angiogenetic (Fantozzi et al., 2014)
and non-angiogenetic events (Gonzalez-Moreno et al., 2010).
Moreover, Vegfa has been demonstrated to increase the tumor-
initiating stem cell population, to induce EMT and metastasis
(Kim et al., 2017), suggesting a strong link between CSC and
EMT. On this basis, we inhibited Vegfa and evaluated the
proliferative and self-renewal ability of CSCs and the modulation
of two critical markers of the EMT process. Vegfa inhibition
induced a reduction in cell growth and clonogenic ability of CSCs
and an up-regulation of the cell adhesion molecule E-cadherin,
paralleled by a down-regulation of the mesenchymal marker,
Vimentin. These results indicate that Vegfa is involved both
in maintaining the stem cells niche and in promoting cancer
invasion and metastasis by controlling the EMT program. Also
Nrp2 is involved in EMT and has been reported as up-regulated
both in hepatocellular carcinoma and in lung cancer cells after
EMT induction by TGF-β1 (Nasarre et al., 2013; Wittmann
et al., 2015). Nrp2 inhibition in a cellular mouse model of SHH
MB decreased tumor growth both in vitro and in vivo and the
consequent mortality (Gephart et al., 2013). Since the importance
of microRNAs has been well documented in cancers and we were
interested in the identification of possible networks connecting
Vegfa and/or Nrp2 with the EMT phenomenon in SHH MB

CSC, we extended the analysis to the EMT related microRNAs
deregulated between SHH MB CSC and NSC. Interestingly we
identified a microRNA, miR-466f-3p, that targeted both Vegfa
and Nrp2. Knowledge about this microRNA is scarce and scant.
In 2011 Zheng demonstrated that the miR-466 group is contained
in the intron of Sfmbt2 (Zheng et al., 2011), while in 2012
Hunsberger et al. showed an increase in miR-466f expression in a
rat model of middle cerebral artery occlusion (Hunsberger et al.,
2012). The low level of miR-466f-3p in SHH MB CSCs is involved
in the more mesenchymal phenotype of these cells in respect
to NSCs. In fact the down-regulation of miR-466f-3p is related
with an increase of the Nrp2 level or of its ligand, Vegfa, with
a consequent increase in Nrp2 activation. In both cases the final
result sustains the mesenchymal phenotype of SHH MB CSCs.
In summary, our study provides novel evidence of an epigenetic
mechanism that sustains EMT related genes in SHH MB CSC,
however, future investigations and additional studies are needed
to better clarify the role of the miR-466f-3p/Vegfa/Nrp2 circuitry.
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