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Morphing of Geometric Composites via Residual
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Understanding and controlling the shape of thin, soft objects has been the focus of significant
research efforts among physicists, biologists, and engineers in the last decade. These studies
aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators
or mimicking living tissues. Here, we present the controlled growth–like morphing of 2D sheets
into 3D shapes by introducing a new class of geometric composite structures that deform by
residual swelling. The morphing of these geometric composites is dictated by both swelling and
geometry, with diffusion controlling the swelling–induced actuation, and geometric confinement
dictating the structure’s deformed shape. Building on a simple mechanical analog, we develop
an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin
disk are affected by the interplay among geometry, mechanics, and swelling. This model is in
excellent agreement with our experiments and numerics. We show that the dynamics of residual
swelling is dictated by a competition between two characteristic diffusive length scales governed
by geometry. Our results provide the first 2D analog of Timoshenko’s classical formula for the
thermal bending of bimetallic beams – our generalization explains how the Gaussian curvature of
a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by
these results suggests that the controlled shaping of geometric composites may provide a simple
complement to traditional manufacturing techniques.

The continuous shape change during the growth and decay of bio-
logical structures is a constant presence within the natural world.
These structures morph to accommodate an influx of new ma-
terial, either growing due to an increase of mass to the system
from an external source, or swelling from the absorption of ex-
cess fluid, such as water, caused by a change in humidity. Often,
these morphological changes from swelling or growth result in ge-
ometries that enhance the biological structure’s functionality1,2,
for instance the Venus flytrap’s leaves snap closed after osmoti-
cally swelling, and this structural reconfiguration is essential for
its nutrition3. Some of the most dramatic growth–induced defor-
mations occur with slender structures, such as growing leaves4,
wrinkling skin5, and the writhing of tendril–bearing climbers6.
Thin structures like these significantly deform to adopt nontrivial
three dimensional shapes because they must bend to release their
stretching energy7. The coupling between growth and large de-
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formations presents an interesting opportunity for the morphing
of synthetic structures, whereby if specific regions within a thin
material can be prescribed to stretch the overall structure will
adopt a new shape. Here, we demonstrate the controlled morph-
ing of a thin structure by locally altering its intrinsic geometry;
introducing a new class of geometric composite structures. While
composite materials combine constituents to enhance physical or
chemical properties, geometric composites combine different in-
trinsic geometries to produce shapes that differ from the individ-
ual components. Shape change in these geometric composites is
triggered by the growth–like swelling of one region due to resid-
ual fluid in the surrounding material. By tuning the underlying
materials and geometry, we present a novel and straightforward
means to directly morph elastic materials into various 3D shapes.
This growth–actuated manufacturing provides a natural comple-
ment to traditional reductive8 and additive manufacturing tech-
niques9,10.

Understanding the interplay between geometry, mechanics,
and swelling is essential for the controlled morphing of thin struc-
tures. Geometrically, Gauss’s Theorema Egregium states that the
Gaussian curvature of a sheet is dictated by the local distances be-
tween points, and this intrinsic geometry is conserved by isome-
tries. Therefore, if a stimulus changes these local distances,
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thereby changing the sheet’s Gaussian curvature, the disk will
most likely bend into a three dimensional shape. The underlying
geometry of a sheet may be programmed mechanically through
confinement, or it can be altered chemically by locally swelling
regions of the material. For swelling to induce an out–of–plane
deformation it must stretch the sheet in a non–homogenous man-
ner, either via selective surface wetting11 or anisotropic material
properties12. To describe the shape of the resulting deformed
structures, the Föppl–von Kármán equations were generalized to
account for growth13, and employed to study the morphogenesis
of a blooming lily14, leaves15 and the buckling of swelling gels16.
Building on these ideas of elasticity and growth, the theory of
non–Euclidean plates7,17 was developed without any a priori as-
sumptions regarding the structure’s displacements. This approach
provided a powerful way to design and study the morphing of
thin structures such as the buckling of sheets18 and ribbons19

and the three dimensional transformations of hydrogels into he-
lices20. Dias et al. presented an elegant study of the inverse
buckling problem, where the growth patterns corresponding to
some desired axisymmetric shapes were found explicitly21. In
both models, an analytical prediction of a morphing structure’s
shape is often elusive, even for simple geometries and symmetric
shapes. These concepts of differential growth have been inves-
tigated in the 1D case of morphoelastic rods, where instabilities
such as the circumferential buckling of a growing cylinder oc-
cur22. This work will build upon the contributions from differen-
tial geometry and elasticity to analytically predict the shape of 2D
geometric composites that change shape in response to residual
swelling.

In Fig. 1 we show a geometric composite that morphs from
a flat plate into a negatively curved surface from the residual
swelling of the annulus (green) by free polymer chains present
in the disk (pink). To predict this structure’s shape change, we
first constructed a mechanical analog based on the geometry of
the geometric composite shown in figure 1. In our mechanical
analog, the sheet is made of a disk and an annulus that share
the same material properties, but are geometrically incompatible:
the inner radius of the annulus is slightly bigger or smaller than
the radius of the disk so that the annulus has to be mechanically
strained for the composite to be bonded together. The resulting
geometrical frustration caused the disk to bend into positively or
negatively curved surfaces. This mechanical analog enforces the
importance of geometry, and poses a common problem in elas-
ticity usually cited as a prototypical example for frustrated struc-
tures, but has never been fully investigated23. In this work, we
present an analytical model based on a membrane approximation
that quantitatively captures the Gaussian curvature of the disks,
and underscores the strong connection between the Gaussian cur-
vature and the metric. The agreement among numerics, experi-
ments, and analytics is excellent. Consequently, we apply our
model to explain residual swelling, and study how the Gaussian
curvature of the disk varies with the geometry of the composite.
We show how the coupling between swelling and geometry dic-
tates the main feature of structural morphing, and we provide the
first 2D extension of Timoshenko’s formula for the thermal bend-
ing of bimetallic beams24. Finally, we describe the dynamics of
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Fig. 1 (a) An initially flat, elastic plate morphs into a negatively curved
shell, or saddle, in response to swelling of the annulus from residual free
chains present in the inner disk. (b) A schematic representation of 2D
plate morphing into a 3D shell.
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Fig. 1 (a) An initially flat, elastic plate morphs into a negatively curved
shell, or saddle, in response to swelling of the annulus from residual free
chains present in the inner disk. (b) A schematic representation of 2D
plate morphing into a 3D shell.

residual swelling, which exhibits a transition between two charac-
teristic diffusive length scales depending on the geometry of the
composite.

Intrinsic & Extrinsic Geometry
In thin structures, the effect of mechanical or chemical stimuli
can be represented mathematically by a target metric a – a ten-
sor that describes what the local distances between points should
be in response to the applied stimuli. The actual distances be-
tween points across a surface are represented by the realized met-
ric a and uniquely determine its Gaussian curvature, which in its
simplest form describes the product of the surface’s two princi-
pal curvatures, κ1 and κ2. If the Gaussian curvature imposed by
the stimuli is not zero, the target metric cannot be realized in a
flat disk, and the disk will bend to minimize the in–plane strains.
Since the ratio of the bending to stretching energies scales like
Ub/U∫ ∼ h2, the disk will bend to minimize the in–plane strains
if the thickness h is small. Therefore, for thin disks, a reasonable
approximation is to determine the structure’s shape by minimiz-
ing the stretching energy, and allowing the disk to bend in what-
ever way necessary to accommodate the target metric. We write
the bending energy density as 4H2 −K, where H = (κ1 + κ2)/2
is the mean curvature of the mid–surface of the sheet, an extrin-
sic geometry property that depends on the embedding space, and
K = κ1κ2 is the Gaussian curvature, an intrinsic geometric prop-
erty of the surface. Then, considering an incompressible material
(ν = 0.5), the stretching energy may be written as17

Us ' h
∫

E[tr 2(a−a)+ tr (a−a)2]
√
|a| dA , (1)
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where E is the Young modulus of the sheet.

1 Geometric Composites
1.1 Membrane Approximation
Before we consider the dynamic problem of a swelling–induced
changing metric, we construct as a proof of concept a mechanical
analog of the geometric composite and consider the static case
of a mechanically prescribed hyperbolic or elliptic metric over a
disk. In the simplest case, when homothetic transformation radi-
ally stretches a circular disk, the radial and azimuthal distances
all expand uniformly, and the disk stays flat since the surface’s
metric remains Euclidean (Fig. 2a). If we consider, instead, a cir-
cular disk of radius R and an annulus of inner radius Ri and outer
radius Re (Fig. 2b), we can then impose a homothetic transforma-
tion independently on either the disk or the annulus. By defining
α ≡ Ri/R as the mismatch between disk and the annulus, it is
immediately apparent that if α 6= 1 the two structures are incom-
patible and the annulus must be stretched (α < 1) or compressed
(α > 1) to fit the circular disk (Fig. 2c). When the inner radius of
the annulus is bonded to the edge of the circular disk, the result-
ing disk is a geometric composite that may be roughly modeled
as a body having the following target metric in polar coordinates

a = f 2(r)

(
1 0
0 r2

)
, f 2(r) =

{
1, r ≤ R
α2, r > R

. (2)

This metric is flat within each of the two domains, but the metric
of the geometric composite is not flat, i.e. there does not exist
any parabola that fits aθθ (r). As in 25, we approximate all the
strains to zero but aθθ − aθθ ; therefore, if the disk and the an-
nulus are made of the same material, the stretching energy from
equation (1) reads (see Appendix)

Us ' Eh
∫ R

0

(aθθ − r2)2

r3 dr+Eh
∫ Re/α

R

(aθθ −α2r2)2

α2r3 dr . (3)

Physical intuition tells that when the annulus is stretched
(compressed), the disk will bend into a dome–like (saddle–like)
shape. This statement may be mathematically represented as
sgn K = sgn (1− α). To describe the resulting shape, we use
Gaussian normal coordinates (ρ, θ) to express the realized met-
ric26, where ρ(r) =

∫ r
0
√

arr(r′)dr′ measures the arc length along
radial geodesics while θ is the azimuthal angle. In these co-
ordinates, the first fundamental form is written as ds2 = dρ2 +

aθθ (ρ)dθ 2, and by the Gauss theorem, the Gaussian curvature is
−∂ρρ

√
aθθ/

√
aθθ , where ∂ρρ is the second order partial deriva-

tive with respect to ρ. We minimize the stretching energy by
looking for metrics with constant Gaussian curvature, that is
aθθ (ρ) = (sin(

√
Kρ)/

√
K)2. ∗ As long as |K| < 1/R2

e
†, we can

Taylor expand aθθ (ρ) to linearize the metric in K as

aθθ (ρ) = ρ2− K
3

ρ4 +O(ρ5) . (4)

∗Notice that when the Gaussian curvature is negative, i.e. K < 0, the metric may be
rewritten as aθθ (ρ) = (sinh(

√
−Kρ)/

√
−K)2.

†This upper bound means that each principal direction cannot have a curvature that
exceeds 1/Re.

Note that the first order term corresponds to a flat metric whereas
the second one dictates the kind of non–Euclidean geometry that
the disk will develop depending on the sign of K. The energy is
quadratic in K and therefore can be minimized analytically; no-
tice that, if the annulus is neither deformed (α = 1) nor present
(Ri = Re), the energy is a simple parabola in K with the minimum
at K = 0 since the disk is not constrained, and does not need to
bend. Similarly, when the disk is not considered (R = 0), the an-
nulus does not need to bend either, and stays flat (K = 0) with
a radial stretch equal to α. Once the stretching energy is min-
imized, we observe that the bending energy density is equal to
3H2 for dome–like shapes (K = H2) and to 4H2−K for saddle–
like shapes. In the latter case, since K < 0, the disk tries to morph
into a minimal surface (H = 0).

When the target metric is elliptic, the resulting shape is
unique19. On the other hand, when the target metric is hyper-
bolic, the embedding is not unique, and shapes that are more
complex then a saddle may develop when the thickness is very
small27. In our case, both experimental and numerical evidence
indicate that the thickness to radius ratio (' 0.16) is sufficiently
high to avoid the development of complex shapes other than the
saddle, yet small enough for the structure to be considered thin.

2 Mechanical Analog

2.1 Experiments and Numerics

To test our model, we prepared geometrically frustrated struc-
tures to realize dome–like and saddle–like disks, and measured
their Gaussian curvatures. Circular molds were laser cut out of
acrylic sheets, and used to cast samples with polyvinylsiloxane
(PVS – Zhermack Elite Double 32). In these model experiments,
we use an elastomer with a Young modulus E = 0.96 MPa and a
Poisson ratio ν = 0.5. The molds had a thickness h = 1.6 mm with
the radii of the disks varying between 5 and 12 mm. We designed
the geometry so that the outer radius of the stretched disks was
equal to 10 mm. Bonding between the stretched annulus and the
disk was accomplished by a small amount of uncrosslinked PVS.
To measure their Gaussian curvature, we projected a laser sheet
normal to the disk, and captured images of the reflected light with
a Edmund–Optics GigE camera with a Nikkor lens (35 mm f: 1-
1.4) at 24 equally spaced points along the disk’s diameter. Image
analysis was performed using Matlab to reconstruct the deformed
shape. The annuli of polyvinylsiloxane elastomer were stretched
homothetically and bonded to the inner disk. Upon release from
the molds, the disks spontaneously morphed into domes or sad-
dles. The annuli may be thought of as springs that want to release
the energy by recovering their original shapes: for example, fig-
ure 2 (c) shows how the annulus must be compressed to get a
saddle. We measured the shape of the deformed disks to deter-
mine the two principal radii of curvature, and plotted the Gaus-
sian curvature in figure 2. These measurements confirmed the
assumption used in our analysis that K is approximately constant
across the disk. We also carried out numerical simulations to solve
the problem within the context of finite incompressible tridimen-
sional elasticity with large distortions using a Neo–Hookean28

implemented in the commercial software COMSOL Multiphysics.
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The stimulus in the numerical model is represented by a unimod-
ular distortion field Fo = f (r)(I−e3⊗e3)+ f (r)−2e3⊗e3, where e3
is the unit vector field orthogonal to the undeformed mid–surface
of the disk. In this way, the tridimensional model is consistent
with the 2D model since FT

o Fo · eγ ⊗ eµ = āγµ , where eγ is
the γ–th vector of the covariant basis spanning the undeformed
mid–surface of the disk. The numerical results are also plotted in
figure 2.

2.2 Analysis

The main plot in figure 2 refers to the case when R/Reα = 0.7. The
blue curves show the azimuthal component of the target metric
of the mid–surface aθθ as a function of r. As long as r < R, aθθ
is equal to ρ2 since the inner disk has not been stretched; on the
contrary, within the annulus (r > R), the azimuthal component is
equal to α2ρ2 with α < 1 (α > 1) if the annulus has been stretched
(compressed). Notice that the parabola in the inner disk is repre-
sented also for r > R (dashed blue curve) to show how the metric
should look like if the disk were flat and not stretched. By the Tay-
lor approximation of the metric, it is evident that if K > 0 (K < 0),
aθθ stays below (above) the parabola. Solid black lines are the an-
alytical solutions of (3) for elliptic and hyperbolic target metrics.
By looking at equation (3), we notice that for the energy to be
minimized, the analytical solution should be as close as possible
(in a L2 sense ‡) to the target metric with weight functions that
are r−3 and α−2r−3 in the disk and in the annulus, respectively.
This explains why the realized metric stays in between the target
metrics, and closer to the target metric in the disk. Circles and tri-
angles in the main plot show the experimental result (we measure
K and compute aθθ from equation (4)). Dashed red curves rep-
resent the numerical solutions and show that the assumption of
homogenous Gaussian curvature accurately describes the metric
in this case apart from slight deviations near the edges. The ex-
perimental and numerical results are in excellent agreement with
our closed form analytical solution. The numerics also shows that
H '

√
K for domes and H ' 0 for saddles, as predicted analyti-

cally. It is interesting to note that the capability of estimating an
extrinsic geometric quantity, i.e. the mean curvature H, from a
model built around intrinsic geometries allows us to determine
the displacement field, i.e. the embedding of the structure, up
to rigid motions. This indetermination does not affect the pre-
dictability of axisymmetric shapes like domes, but it does affect
the one of saddles that have an axisymmetric metric but a not ax-
isymmetric embedding. While we can predict the magnitude of
the principal curvatures, the principal directions of curvature are
dictated by imperfections in both experiments and numerics.

2.3 Variation of Geometric Composition

We then tested the models (analytical and numerical) for other
values of R/Reα. When this ratio is between 0 and 0.5, the Gaus-
sian curvature cannot be approximated as homogenous through-
out the disk but attains two constant values in the inner disk and

‡L2 is the Lebesgue space of squared integrable functions.
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Fig. 2 (a) A schematic of the metric of a circular disk in polar
coordinates changing by a as the disk is stretched homothetically. (b) A
schematic of the relevant radii. (c) Schematics of the metrics of an
annular ring and a circular disk stretched independently, along with
images of the resulting shell denoting the principal directions of
curvature and Gaussian normal coordinates. (d) A plot of of the realized
metric normalized by R2

ea2 vs. the normalized radial coordinate for
prescribed target metrics that result in positively and negatively curved
shells. The inset shows the normalized Gaussian curvature vs. the radii
ratios.
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Fig. 2 (a) A schematic of the metric of a circular disk in polar
coordinates changing by α as the disk is stretched homothetically. (b) A
schematic of the relevant radii. (c) Schematics of the metrics of an
annular ring and a circular disk stretched independently, along with
images of the resulting shell denoting the principal directions of
curvature and Gaussian normal coordinates. (d) A plot of of the realized
metric normalized by R2

eα2 vs. the normalized radial coordinate for
prescribed target metrics that result in positively and negatively curved
shells. The inset shows the normalized Gaussian curvature vs. the radii
ratios.

the annulus. However, the metric does not diverge much from the
constant curvature solution, and the analytical model gives a re-
sult that is in good agreement with the mean Gaussian curvature
of the disk, which is exactly what we measured experimentally.
The inset in figure 2 shows the agreement between experiments,
numerics and analytics as R/Reα varies. Notice that the analyti-
cal model always overestimates the Gaussian curvature since it is
based on a membrane approximation.
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3 Residual Swelling
3.1 Experiments
Residual swelling is a fairly more complicated phenomenon than
the geometrical confinement that dictated the shape change in
the simplified mechanical problem. Swelling–induced deforma-
tions cannot be seen as distortions, as they are related to both
the elastic properties of the gel, and the chemical conditions of
the residual free polymer chains. Moreover, in this case swelling
is driven by the concentration gradient of these chains across the
entire structure. We used the circular molds of the mechanical
analog to cast samples with polyvinylsiloxane as shown in fig-
ure 1 (PVS – Zhermack Elite Double 32 for the annulus and Zher-
mack Elite Double 8 for the inner disk). Both elastomers are in-
compressible (ν = 0.5) and their Young’s moduli were measured
as 0.96 MPa and 0.23 MPa for PVS 32 (annulus) and PVS 8 (in-
ner disk), respectively. The inner disks (radius R) and the annuli
(radii R and Re) were geometrically compatible so that they could
be bonded without pre–stretch. Once released from the molds,
the geometric composites were flat, and the plates morphed into
curved disks over time due to residual swelling – the flow of free
polymer chains from high density regions (softer gel, disk) to low
density regions (stiffer gel, annulus). To study the influence of
R/Re on the morphing process, we fixed the radius of the whole
disk to 12 mm and varied the radius of the inner disk from 5 mm
to 11 mm casting 7 disks with different R/Re. We measured the
time evolution of the Gaussian curvature of each disk with the
same procedure used for the mechanical analog, repeated every
three hours.

3.2 Residual Swelling of Geometric Composites
While this problem couples nonlinear geometric mechanics with
elastomer swelling, we can provide insight into this process by in-
corporating swelling into our mechanical analogy. The stretching
ratio α now dictates the metric that each part of the disk would
realize upon swelling if it were free (not bonded to the other).
The inner disk and the annulus would like to shrink and swell, re-
spectively, as molecules are flowing from the former to the latter.
We assume that if the annulus would like to swell by a factor α,
the inner disk would like to shrink by a factor α−1. Incorporating
the difference between the two Young’s moduli, the functional in
equation (3) is modified as

Us '
∫ R

0

(aθθ −α−2r2)2

α−2r3 dr+
Ea

Ed

∫ Re

R

(aθθ −α2r2)2

α2r3 dr . (5)

Notice that, since no pre–stretch is applied, the radius of the disk
is Re, i.e. it coincides with the outer radius of the green annulus.
The Young’s moduli of the green annulus and the pink disk are
denoted as Ea and Ed , respectively.§ To analytically determine
how α should vary with R/Re, we denoted as cd and ca the con-
centrations of the diffusive species in the disk and in the annulus,
respectively. Since molecules flowed from the disk to the annu-
lus, we fixed ca < cd and imposed the conservation of mass as

§ Their ratio is roughly equal to 4 and its variation with swelling is neglected.

ceqπR2
e = cdπR2 + caπ(R2

e −R2), where ceq denotes the concentra-
tion at equilibrium. Then, we reasoned that the stretching ratio
α will be proportional to the mass uptake inside the annulus so
that α − 1 ∼ (ceq− ca)π(R2

e −R2). Finally, by expressing ceq from
the mass conservation, we got

α = 1+η (cd − ca)

(
R
Re

)2
(

1−
(

R
Re

)2
)

, (6)

where η is a proportionality coefficient having the dimension of
the inverse of a concentration and representing the link between
mass uptake and stretch.¶ The presence of a concentration gra-
dient of polymer chains with a polydisperse molecular weight
makes identifying this parameter difficult, and beyond the scope
of this work. Qualitatively, the bigger the free chains, the higher
η should be. Notice that α is equal to 1 when the mass uptake is
zero, that is when the structure is homogeneous (R/Re = 0 or 1).
This is the important difference with the mechanical analog, since
η is not known for swelling as it depends on the material and
chemical properties of the elastomers; we therefore used it as a
fitting parameter. Figure 3 shows the stationary values of the
Gaussian curvature of the seven disks after residual swelling as
obtained in the experiments (triangles), numerics (circles) and
analytics (solid curve). Numerical and analytical results are ob-
tained by using (6) in (5) and setting η(cd−ca) equal to 0.172 that
sets αmax = 1.043 from (6). The three linear regimes identified in
figure 3 point out that the maximum of the Gaussian curvature is
not attained for R/Re = 1/2 but for R/Re ' 0.77. A similar result
was obtained for the mechanical analog as can be seen in the in-
set in figure 2. These two observations let us conclude that both
the dimensionality of the swelling and simple geometry shift the
maximum of the Gaussian curvature to high radii ratios instead
of R/Re = 1/2. By the conservation of mass, it can be demon-
strated that if the swelling had been 1D, the maximum mass up-
take would have been attained at R/Re = 1/2; if it had been 3D,
the maximum would have been attained at R/Re = 1/21/3 ' 0.8.
In our 2D case, the maximum is attained when R/Re = 1/

√
2' 0.7

as also experiments showed. So, in general, if n is the dimen-
sionality of the swelling, the maximum mass uptake is achieved
for R/Re = 1/21/n. The agreement among experiments, numerics
and analytics is quite good, and it is remarkable that the analyti-
cal model captures the linear regimes with the same slopes. The
closed form analytical solution of the problem is cumbersome, but
it may be simplified by noticing that αmax ' 1, which allows us to
perform a Taylor expansion in terms of αmax− 1. At the leading
order, defining Ē = Ea/Ed and R̄ = R/Re, it reads

KR2
e ' 96(1−αmax)ĒR̄3

(
1− R̄2)(1− R̄3)
R̄6
(
1− Ē

)
+ Ē

, (7)

which we think can be interpreted as the 2D generalization of
Timoshenko’s formula for beams24. To the best of our knowledge,
this is the first analytical formula relating the Gaussian curvature

¶ Similar to the hydrophilicity coefficient introduced in 29 to describe stretching in-
duced by cationÕs motion in ionic polymer–metal composites.
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of a geometric composite to its material and geometrical prop-
erties, i.e. moduli and radii ratios. This simplified expression is
represented in figure 3 as a grey dashed line, and is very close to
the full solution: the linear regimes highlighted in the figure are
in excellent agreement with our Timoshenko–like formula. The
physical interpretation of our first order Taylor approximation is
that the strains are assumed to be small, which is the same limit
that Timoshenko obtained his formula within. It is worth not-
ing that, unlike thermal stretches in uniformly heated bimetallic
strips, the stretching ratio α should depend on the elastic proper-
ties of the geometric composites, as discussed in 30.
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Fig. 1 (a) Stationary Gaussian curvature vs R/Re achieved by residual
swelling. Three different regimes may be identified as the radii ratio
varies. In the first one (I) the curvature is very small. The second one (II,
linear increasing) shows a linear scaling of the Gaussian curvature with
the radii ratio up to its maximum when the third regime (III, linear
decreasing) starts with a steeper linear scaling of the curvature now
decreasing to zero. The solid black line is the analytical solution, the
dashed grey line is its Taylor approximation (eq. (??)); triangles and
circles represent experimental and numerical results, respectively. (b)
Deformed shapes for four different radii ratios.
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Fig. 3 (a) Stationary Gaussian curvature vs R/Re achieved by residual
swelling. Three different regimes may be identified as the radii ratio
varies. In the first one (I) the curvature is very small. The second one (II,
linear increasing) shows a linear scaling of the Gaussian curvature with
the radii ratio up to its maximum when the third regime (III, linear
decreasing) starts with a steeper linear scaling of the curvature now
decreasing to zero. The solid black line is the analytical solution, the
dashed grey line is its Taylor approximation (eq. (7)); triangles and
circles represent experimental and numerical results, respectively. (b)
Deformed shapes for four different radii ratios.

3.3 Swelling Dynamics

Our model successfully captures the steady–state morphology
of residually swollen plates. Unlike the mechanical analog
presented earlier, the residual swelling process adds a time–
dependency to the deformation. The experimental results in fig-
ure 4 (a) show the time evolution of the Gaussian curvature of

disks with seven different R/Re, and the shape evolution contains
two notable features: 1.) there is a critical activation time, i.e. the
time it takes for the structure to start deforming that depends on
R/Re, and 2.) following actuation, the disks deform in a diffusive
manner.

We assume that the swelling dynamics may be described as a
diffusive process with a Fourier–like differential equation. The
main features of a diffusive equation are that it is of the first or-
der in time, giving rise to transients that are described by the
exponential of time up to the steady–state, and of the second
order in space (quasi–1D in our case). As we are studying the
transient by looking at a homogeneous field – the Gaussian cur-
vature K – we focus on its variation with time, and note that the
dashed lines in figure 4 (a) correspond to an exponential of time
(KsteadyR2

e(1−e−t/τ )), as expected. Figure 4 (b) shows that the ac-
tivation time varies with R/Re as ta ∼ Ae−BR/Re , where A and B are
positive real numbers equal to 21038 h and 10.862, respectively, in
our case.‖ This numerical fitting is shown in the plot as a straight
dashed grey line. Following activation, the diffusive shape change
is characterized by the time constant τ that dictates the time scale
of the transient as it is the time at which the Gaussian curvature
reaches the 63% of its stationary value. Figure 4 (a) shows that
the disk corresponding to R/Re = 11/12 is faster than the other
geometries. We found that the time constants are approximately
τ ' 90 h for all disks except R/Re = 11/12, which has τ ' 40 h as
shown in figure 4 (c). Let us rationalize these findings by simple
dimensional arguments. In a diffusive process, a scaling analy-
sis of the governing differential equation leads to a characteristic
time scale (time constant) that is found to be equal to τ = `2/D,
where ` is the characteristic length and D is the diffusivity. While
the latter is a property of the materials, the former strongly de-
pends on geometry. To understand this feature, we compared 1D
diffusion to 2D diffusion and measured the time constant of a
4 mm thick, 15 mm wide and 65 mm long bilayered beam made
of PVS 32 and PVS 8 layers of equivalent thickness fabricated us-
ing rectangular molds. In this case, a reasonable assumption for
the characteristic length is `∼ h, where h is the total thickness of
the beam as shown in the inset of figure 4 (a). The time constant
of this beam was measured to be 10 h and it is represented by
a diamond in figure 4 (c). If we focus our attention on the disk
corresponding to R/Re = 1/2, we can infer that this 2D diffusion
problem is analog to the 1D problem of a beam with two layers
having the same thicknesses. So, a reasonable assumption for
the disk is that `∼ Re. As the beam and the disks are made of the
same materials (D is the same for both of them), the time constant
of the disks is found to be equal to τdisk = (Re/h)2τbeam ' 90 h:
this analytical estimate is shown in figure 4 (c) as a square and
it excellently predicts the experimental time constant of the disk.
The experimental data show a decay of the time constant as the
radii ratio approaches 1 that we interpret as the result of a de-
caying characteristic length, which represents the portion of the
radius where swelling is actually taking place. When R/Re ' 0.5,
our approximation `∼ Re is a good estimate for the characteristic

‖Error bars correspond to ±3 h since we measured K every three hours.
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length but when R/Re → 1 the inner area of the disk is shielded
from swelling and the characteristic length is smaller than Re. We
suggest that, as R/Re → 1, the characteristic length approaches
the width of the annulus.
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radii ratios. (b) Activation times versus R/Re (triangles) and numerical
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assuming `⇠ Re.
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Fig. 4 (a) Normalized Gaussian curvature versus time for the different
radii ratios. (b) Activation times versus R/Re (triangles) and numerical
fitting (dashed curve). (c) Time constants of the disks versus R/Re
(circles), time constant of the beam (diamond) and analytical estimate of
the time constant of the disk corresponding to R/Re = 1/2 (square)
assuming `∼ Re.

4 Conclusions
We have introduced a new class of structures that can program-
matically morph from flat plates into curved, three–dimensional
shapes. The geometric composites morph by residual swelling,
a phenomenon that we gained insight into by considering a me-
chanical analog that copies their geometry and morphs by geo-
metrical confinement. The morphing problem of the mechani-
cal analog is purely geometrical, and we developed an analytical
model that quantitatively describes how the Gaussian curvature
is dictated by geometry. The strength of the model is indeed its
analytical tractability that results from the assumption of a homo-
geneous Gaussian curvature throughout the disk. The agreement
among experiments, numerics, and analytics is excellent even
when the Gaussian curvature is not homogeneous because the

analytical model provides a mean Gaussian curvature as a result,
which is important for the design of actuators.

We then employed the analytical model of the mechanical ana-
log to study the morphing of geometric composites by approxi-
mating the swelling as a distortion. By using the conservation
of mass, we analytically determined how the mass uptake should
vary with the radii ratio, and assumed a linear proportionality be-
tween the mass uptake and the stretch. The agreement among
experiments, numerics and analytics is quite good and each ap-
proach identified three regimes for the Gaussian curvature as a
function of the radii ratio: it is remarkable that the model catches
these regimes and their linear features. Then, by assuming small
stretches (α ' 1), we simplified the cumbersome analytical so-
lution and provided the first 2D extension of the Timoshenko’s
formula for beams. Finally, we studied the swelling dynamics and
identified two different characteristic lengths depending on ge-
ometry.

We think that the proposed model improved the understand-
ing of the complex interplay among geometry, mechanics, and
swelling. Additionally, the experiments demonstrate a robust and
scalable means for the growth–actuated manufacturing of elas-
tic shells – a material that is traditionally difficult to prepare
via additive and reductive manufacturing techniques. It is im-
portant to note that while residual fluid within the crosslinked
elastomer drives the diffusion and swelling of the structure, the
material behaves like an elastic solid, rather than a swollen gel.
We expect this experimental procedure to translate to any com-
bination of material–compatible elastomers where a gradient of
small molecules can be programmatically prescribed. This may
provide the foundation for an inkjet–like approach to 3D print-
ing whereby small molecule fluids can be locally applied to a flat
elastic sheet, allowing controlled diffusion to dictate the result-
ing growth pattern. Careful selection of the initial geometry will
allow this technique to be used for generating regions of high cur-
vature – or folds – which may form the basic building blocks for
the growth of origami structures.
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A Derivation of the stretching energy of the
mechanical analog

Equation (3) is derived from (1) by computing the traces of the
tensors a− ā and (a− ā)2 using their polar coordinates. By def-
inition, the trace of a tensor is the result of the inner product
between the tensor and the metric tensor. As an example, the
trace of a− ā may be computed in polar coordinates as

tr (a− ā) = āαβ (aαβ − āαβ ) ,
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where āαβ denotes the contravariant components of the target
metric tensor that may be thought as the entries of the inverse of
the matrix [āαβ ]. So, ārr = f−2(r), ārθ = 0 and āθθ = f−2(r)r−2.
Simple algebra yields:

tr (a− ā) = āαβ aαβ −2 = f−2(r)arr + f−2(r)r−2aθθ −2 .

Then, if arr = ārr, we get

tr 2(a− ā) = ( f−2(r)r−2aθθ −1)2 =

(
aθθ
āθθ
−1
)2

.

In our case, the trace of (a− ā)2 turns out to be equal to tr 2(a− ā)
so that

tr 2(a− ā)+ tr (a− ā)2 = 2
(

aθθ
āθθ
−1
)2

.

Finally, to compute the stretching energy, we have to evalu-
ate

√
|ā|, that is √

|ā|= f 2(r)r .

By using the last two formulas, equation (3) is recovered after
some rearrangements, discarding a factor 2 since we are just in-
terested in the minimization of the energy.

A.1 Gaussian normal coordinates
As arr ' ārr, the Gaussian normal coordinate ρ is computed as

ρ(r)'
∫ r

0

√
ārr(r′)dr′ =

{
r, r ≤ R
R+α(r−R), r > R

.
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