Proceedings e report

||4

SIS 2017 Statistics and Data Science: new challenges, new generations

28–30 June 2017 Florence (Italy)

Proceedings of the Conference of the Italian Statistical Society

edited by Alessandra Petrucci Rosanna Verde

FIRENZE UNIVERSITY PRESS 2017

SIS 2017. Statistics and Data Science: new challenges, new generations : 28-30 June 2017 Florence (Italy) : proceedings of the Conference of the Italian Statistical Society / edited by Alessandra Petrucci, Rosanna Verde. – Firenze : Firenze University Press, 2017. (Proceedings e report; 114)

http://digital.casalini.it/9788864535210

ISBN 978-88-6453-521-0 (online)

Peer Review Process

All publications are submitted to an external refereeing process under the responsibility of the FUP Editorial Board and the Scientific Committees of the individual series. The works published in the FUP catalogue are evaluated and approved by the Editorial Board of the publishing house. For a more detailed description of the refereeing process we refer to the official documents published on the website and in the online catalogue of the FUP (www.fupress.com).

Firenze University Press Editorial Board

A. Dolfi (Editor-in-Chief), M. Boddi, A. Bucelli, R. Casalbuoni, M. Garzaniti, M.C. Grisolia, P. Guarnieri, R. Lanfredini, A. Lenzi, P. Lo Nostro, G. Mari, A. Mariani, P.M. Mariano, S. Marinai, R. Minuti, P. Nanni, G. Nigro, A. Perulli, M.C. Torricelli.

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0: https://creativecommons.org/licenses/by/4.0/legalcode)

CC 2017 Firenze University Press Università degli Studi di Firenze Firenze University Press via Cittadella, 7, 50144 Firenze, Italy www.fupress.com

SOCIETÀ ITALIANA DI STATISTICA

Sede: Salita de' Crescenzi 26 - 00186 Roma Tel +39-06-6869845 - Fax +39-06-68806742 email: sis@caspur.it web:http://www.sis-statistica.it

La Società Italiana di Statistica (SIS), fondata nel 1939, è una società scientifica eretta ad Ente morale ed inclusa tra gli Enti di particolare rilevanza scientifica. La SIS promuove lo sviluppo delle scienze statistiche e la loro applicazione in campo economico, sociale, sanitario, demografico, produttivo ed in molti altri settori di ricerca.

Organi della società:

Presidente:

- Prof.ssa Monica Pratesi, Università di Pisa

Segretario Generale:

- Prof.ssa Filomena Racioppi, Sapienza Università di Roma

Tesoriere:

- Prof.ssa Maria Felice Arezzo, Sapienza Università di Roma

Consiglieri:

- Prof. Giuseppe Arbia, Università Cattolica del Sacro Cuore
- Prof.ssa Maria Maddalena Barbieri, Università Roma Tre
- Prof.ssa Francesca Bassi, Università di Padova
- Prof. Eugenio Brentari, Università di Brescia
- Dott. Stefano Falorsi, ISTAT
- Prof. Alessio Pollice, Università di Bari
- Prof.ssa Rosanna Verde, Seconda Università di Napoli
- Prof. Daniele Vignoli, Università di Firenze

Collegio dei Revisori dei Conti:

- Prof. Francesco Campobasso, Prof. Michele Gallo, Prof. Francesco Sanna, Prof. Umberto Salinas (supplente)

SIS2017 Committees

Scientific Program Committee:

Rosanna Verde (chair), Università della Campania "Luigi Vanvitelli" Maria Felice Arezzo, Sapienza Università di Roma Antonino Mazzeo, Università di Napoli Federico II Emanuele Baldacci, Eurostat Pierpaolo Brutti, Sapienza Università di Roma Marcello Chiodi, Università di Palermo Corrado Crocetta, Università di Foggia Giovanni De Luca, Università di Napoli Parthenope Viviana Egidi, Sapienza Università di Roma Giulio Ghellini, Università degli Studi di Siena Ippoliti Luigi, Università di Chieti-Pescara "G. D'Annunzio" Matteo Mazziotta, ISTAT Lucia Paci. Università Cattolica del Sacro Cuore Alessandra Petrucci, Università degli Studi di Firenze Filomena Racioppi. Sapienza Università di Roma Laura M. Sangalli, Politecnico di Milano Bruno Scarpa, Università degli Studi di Padova Cinzia Viroli, Università di Bologna

Local Organizing Committee:

Alessandra Petrucci (chair), Università degli Studi di Firenze Gianni Betti, Università degli Studi di Siena Fabrizio Cipollini, Università degli Studi di Firenze Emanuela Dreassi, Università degli Studi di Firenze Caterina Giusti, Università degli Studi di Firenze Alessandra Mattei, Università degli Studi di Firenze Elena Pirani, Università degli Studi di Firenze Emilia Rocco, Università degli Studi di Firenze Maria Cecilia Verri, Università degli Studi di Firenze

Supported by:

Università degli Studi di Firenze Università di Pisa Università degli Studi di Siena ISTAT Regione Toscana Comune di Firenze BITBANG srl

Index

Preface XX	ζV
Alexander Agapitov, Irina Lackman, Zoya Maksimenko Determination of basis risk multiplier of a borrower default using survival analy.	sis 1
Tommaso Agasisti, Alex J. Bowers, Mara Soncin School principals' leadership styles and students achievement: empirical resu from a three-step Latent Class Analysis	ults 7
Tommaso Agasisti, Sergio Longobardi, Felice Russo Poverty measures to analyse the educational inequality in the OECD Countries	17
Mohamed-Salem Ahmed, Laurence Broze, Sophie Dabo-Niang, Zied Gharbi Quasi–Maximum Likelihood Estimators For Functional Spatial Autoregressive Mo els	od- 23
Giacomo Aletti, Alessandra Micheletti A clustering algorithm for multivariate big data with correlated components	31
Emanuele Aliverti	

A Bayesian semiparametric model for terrorist networks

37

essandra Petrucci. Rosanna Verde (edited by). SIS 2017. Statistics and Data Science: new challenges, new generatio

Alessandra Petrucci, Rosanna Verde (edited by), SIS 2017. Statistics and Data Science: new challenges, new generations. 28-30 June 2017 Florence (Italy). Proceedings of the Conference of the Italian Statistical Society ISBN (online) 978-88-6453-521-0 (online), CC BY 4.0, 2017 Firenze University Press

Giorgio Alleva Emerging challenges in official statistics: new sources, methods and skills 43
Rémi André, Xavier Luciani and Eric Moreau A fast algorithm for the canonical polyadic decomposition of large tensors 45
Maria Simona Andreano, Roberto Benedetti, Paolo Postiglione, Giovanni Savio On the use of Google Trend data as covariates in nowcasting: Sampling and mod- eling issues
53 Francesco Andreoli, Mauro Mussini A spatial decomposition of the change in urban poverty concentration
59 Margaret Antonicelli, Vito Flavio Covella How green advertising can impact on gender different approach towards sustain-
ability 65
Rosa Arboretti, Eleonora Carrozzo, Luigi Salmaso Stratified data: a permutation approach for hypotheses testing 71
Marika Arena, Anna Calissano, Simone Vantini Crowd and Minorities: Is it possible to listen to both? Monitoring Rare Sentiment and Opinion Categories about Expo Milano 2015 79
Maria Felice Arezzo, Giuseppina Guagnano Using administrative data for statistical modeling: an application to tax evasion 83
Monica Bailot, Rina Camporese, Silvia Da Valle, Sara Letardi, Susi Osti Are Numbers too Large for Kids? Possible Answers in Probable Stories 89

Index IX
Simona Balbi, Michelangelo Misuraca, Germana Scepi A polarity-based strategy for ranking social media reviews
95
A. Balzanella, S.A. Gattone, T. Di Battista, E. Romano, R. Verde Monitoring the spatial correlation among functional data streams through Moran's Index
103
Oumayma Banouar, Said Raghay
matrix completion method
109
Giulia Barbati, Francesca Ieva, Francesca Gasperoni, Annamaria Iorio, Gianfranco Sinagra, Andrea Di Lenarda
The Trieste Observatory of cardiovascular disease: an experience of administrative and clinical data integration at a regional level
115
Francesco Bartolucci, Stefano Peluso, Antonietta Mira
Marginal modeling of multilateral relational events 123
Francesca Bassi, Leonardo Grilli, Omar Paccagnella, Carla Rampichini, Roberta
New Insights on Students Evaluation of Teaching in Italy 129
Mauro Bernardi Marco Bottone Lea Petrella
Bayesian Quantile Regression using the Skew Exponential Power Distribution 135
Mauro Bernardi
Bayesian Factor–Augmented Dynamic Quantile Vector Autoregression 141

Index

Bruno Bertaccini, Giulia Biagi, Antonio Giusti, Laura Grassini Does data structure reflect monuments structure? Symbolic data analysis on a	Flo-
rence Brunelleschi Dome	149
Gaia Bertarelli and Franca Crippa, Fulvia Mecatti A latent markov model approach for measuring national gender inequality	157
Agne Bikauskaite, Dario Buono Eurostat's methodological network: Skills mapping for a collaborative statist office	tical
	101
Francesco C. Billari, Emilio Zagheni Big Data and Population Processes: A Revolution?	167
Monica Billio, Roberto Casarin, Matteo Iacopini Bayesian Tensor Regression models	179
Monica Billio, Roberto Casarin, Luca Rossini Bayesian nonparametric sparse Vector Autoregressive models	187
Chiara Bocci, Daniele Fadda, Lorenzo Gabrielli, Mirco Nanni, Leonardo Piccir Using GPS Data to Understand Urban Mobility Patterns: An Application to Florence Metropolitan Area	1i <i>the</i> 193
Michele Boreale, Fabio Corradi Relative privacy risks and learning from anonymized data	199
Giacomo Bormetti, Roberto Casarin, Fulvio Corsi, Giulia Livieri A stochastic volatility framework with analytical filtering	205

Х

Index	XI
Alessandro Brunetti, Stefania Fatello, Federico Polidoro Estimating Italian inflation using scanner data: results and perspectives	211
Guénael Cabanes, Younès Bennani, Rosanna Verde, Antonio Irpino Clustering of histogram data : a topological learning approach	219
Renza Campagni, Lorenzo Gabrielli, Fosca Giannotti, Riccardo Guidotti, Filor Maggino, Dino Pedreschi	nena
Measuring Wellbeing by extracting Social Indicators from Big Data	227
Maria Gabriella Campolo, Antonino Di Pino Assessing Selectivity in the Estimation of the Causal Effects of Retirement of Labour Division in the Italian Couples	n the
	235
Stefania Capecchi, Rosaria Simone Composite indicators for ordinal data: the impact of uncertainty	241
Stefania Capecchi, Domenico Piccolo The distribution of Net Promoter Score in socio–economic surveys	247
Massimiliano Caporin, Francesco Poli News, Volatility and Price Jumps	253
Carmela Cappelli, Rosaria Simone, Francesca di Iorio Growing happiness: a model-based tree	261
Paolo Emilio Cardone Inequalities in access to job-related learning among workers in Italy: evidence Adult Education Survey (AES)	from
	267

279

285

293

301

Signal	detection	in high	energy	physics	via a	semisupervised	nonparametric	ap-
proach								
								273

Claudio Ceccarelli, Silvia Montagna, Francesca Petrarca
Employment study methodologies of Italian graduates through the data linkage of
administrative archives and sample surveys

Ikram Chairi, Amina El Gonnouni, Sarah Zouinina, Abdelouahid Lyhyaoui Prediction of Firm's Creditworthiness Risk using Feature Selection and Support Vector Machine

Sana Chakri, Said Raghay, Salah El Hadaj

Contribution of extracting meaningful patterns from semantic trajectories

Chieppa A., Ferrara R., Gallo G., Tomeo V. Towards The Register-Based Statistical System: A New Valuable Source for Population Studies

Shirley Coleman

Consulting, knowledge transfer and impact case studies of statistics in practice 305

Michele Costa The evaluation of the inequality between population subgroups 313

Michele Costola Bayesian Non–Negative l₁–Regularised Regression

319

Lisa Crosato, Caterina Liberati, Paolo Mariani, Biancamaria Zavanella Industrial Production Index and the Web: an explorative cointegration analysis

327

Index	XIII
Francesca Romana Crucinio, Roberto Fontana Comparison of conditional tests on Poisson data	333
Riccardo D'Alberto, Meri Raggi Non-parametric micro Statistical Matching techniques: some developments	339
Stefano De Cantis, Mauro Ferrante, Anna Maria Parroco Measuring tourism from demand side	345
Lucio De Capitani, Daniele De Martini Optimal Ethical Balance for Phase III Trials Planning	351
Claudia De Vitiis, Alessio Guandalini, Francesca Inglese, Marco D. Terribili Sampling schemes using scanner data for the consumer price index	357
Ermelinda Della Valle, Elena Scardovi, Andrea Iacobucci, Edoardo Tignone Interactive machine learning prediction for budget allocation in digital marke scenarios	eting
	365
Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor Nonparametric classification for directional data	371
Edwin Diday Introduction to Symbolic Data Analysis and application to post clustering for com- paring and improving clustering methods by the Symbolic Data Table that they in-	
	379
Carlo Drago Identifying Meta Communities on Large Networks	387

Neska El F Jaidane	aouij, Jean-Michel Poggi, Raja Ghozi, Sylvie Sevestre Gl	nalila, Mériem
Random For	rest–Based Approach for Physiological Functional Vari Stress Level Classification	able Selection
jor Brivers		393
Silvia Facc A risk inde	hinetti, Silvia A. Osmetti a to evaluate the criticality of a product defectiveness	399
Federico F Exponentic	erraccioli, Livio Finos l family graphical models and penalizations	405
Mauro Fer tore Scond	ante, Giovanna Fantaci, Anna Maria Parroco, Anna Maria otto	Milito, Salva-
Key–indica	tors for maternity hospitals and newborn readmission in S	Sicily 411
Ferretti Ca Change of	nilla, Ganugi Piero, Zammori Francesco Variables theorem to fit Bimodal Distributions	417
Francesco Space-time	Finazzi, Lucia Paci clustering for identifying population patterns from smart	phone data 423
Annunziata IT Solution	Fiore, Antonella Simone, Antonino Virgillito s for Analyzing Large-Scale Statistical Datasets: Scanner	Data for CPI 429
Michael Fo Model–bas	p, Thomas Brendan Murphy, Luca Scrucca ed Clustering with Sparse Covariance Matrices	437
Maria Fran <i>Quantile R</i>	co-Villoria, Marian Scott egression for Functional Data	441

XIV

Gallo M., Simonacci V., Di Palma M.A. Three–way compositional data: a multi–stage trilinear decomposition algorithm 445
Francesca Gasperoni, Francesca Ieva, Anna Maria Paganoni, Chris Jackson, Linda Sharples Nonparametric shared frailty model for classification of survival data 451
Stefano A. Gattone, Angela De Sanctis Clustering landmark–based shapes using Information Geometry tools 457
Alan E. Gelfand, Shinichiro Shirota Space and circular time log Gaussian Cox processes with application to crime event data 461
Abdelghani Ghazdali Blind source separation 469
Massimiliano Giacalone, Antonio Ruoto, Davide Liga, Maria Pilato, Vito Santar- cangelo An innovative approach for Opinion Mining : the Plutchick analysis 479
Massimiliano Giacalone, Demetrio Panarello A G.E.D. method for market risk evaluation using a modified Gaussian Copula 485
Chiara Gigliarano, Francesco Maria Chelli Labour market dynamics and recent economic changes: the case of Italy 491
Giuseppe Giordano, Giancarlo Ragozini, Maria Prosperina Vitale On the use of DISTATIS to handle multiplex networks 499

XVI	Index
Michela Gnaldi, Silvia Bacci, Samuel Greiff, Thiemo Kunze Profiles of students on account of complex problem solving (CPS) strategie ploited via log-data	es ex-
protect the tog talk	505
Michela Gnaldi, Simone Del Sarto Characterising Italian municipalities according to the annual report of the prev of-corruption supervisor: a Latent Class approach	ention– 513
Silvia Golia A proposal of a discretization method applicable to Rasch measures	519
Anna Gottard Tree–based Non–linear Graphical Models	525
Sara Hbali, Youssef Hbali, Mohamed Sadgal, Abdelaziz El Fazziki Sentiment Analysis for micro-blogging using LSTM Recurrent Neural Network	ks 531
Stefano Maria Iacus, Giuseppe Porro, Silvia Salini, Elena Siletti How to Exploit Big Data from Social Networks: a Subjective Well-being Indi- via Twitter	cator
	537
Francesca Ieva Network Analysis of Comorbidity Patterns in Heart Failure Patients using Adn trative Data	ninis-
	543
Antonio Irpino, Francisco de A.T. De Carvalho, Rosanna Verde Automatic variable and components weighting systems for Fuzzy cmeans of a butional data	listri-
	549
Michael Jauch, Paolo Giordani, David Dunson A Bayesian oblique factor model with extension to tensor data	
	553

ndex XVII
ohan Koskinen, Chiara Broccatelli, Peng Wang, Garry Robins Statistical analysis for partially observed multilayered networks 561
Francesco Lagona Copula–based segmentation of environmental time series with linear and circular components 569
Alessandro Lanteri, Mauro Maggioni A Multiscale Approach to Manifold Estimation 575
Tiziana Laureti, Carlo Ferrante, Barbara Dramis Using scanner and CPI data to estimate Italian sub–national PPPs 581
Antonio Lepore Graphical approximation of Best Linear Unbiased Estimators for Extreme Value Distribution Parameters 589
Antonio Lepore, Biagio Palumbo, Christian Capezza Monitoring ship performance via multi–way partial least–squares analysis of func- ional data 595
Caterina Liberati, Lisa Crosato, Paolo Mariani, Biancamaria Zavanella Dynamic profiling of banking customers: a pseudo–panel study 601
Giovanni L. Lo Magno, Mauro Ferrante, Stefano De Cantis A comparison between seasonality indices deployed in evaluating unimodal and bimodal patterns 607
Rosaria Lombardo, Eric J Beh <i>Phree–way Correspondence Analysis for Ordinal–Nominal Variables</i> 613

XVIII	Index
Monia Lupparelli, Alessandra Mattei Log-mean linear models for causal inference	621
	021
Badiaa Lyoussi, Zineb Selihi, Mohamed Berraho, Karima El Rhazi, Achhab, Adiba El Marrakchi, Chakib Nejjari <i>Research on the Risk Factors accountable for the occurrence of degene</i>	Youness El
plications of type 2 diabetes in Morocco: a prospective study	627
Valentina Mameli, Debora Slanzi, Irene Poli Bootstrap group penalty for high-dimensional regression models	
	633
Stefano Marchetti, Monica Pratesi, Caterina Giusti Improving small area estimates of households' share of food consumption	ion expendi-
ture in Italy by means of Twitter data	639
Paolo Mariani, Andrea Marletta, Mariangela Zenga Gross Annual Salary of a new graduate: is it a question of profile?	
	647
Maria Francesca Marino, Marco Alto Dynamic random coefficient based drop-out models for longitudinal res	ponses 653
Antonello Maruotti, Jan Bulla	
Hidden Markov models: dimensionality reduction, atypical observation rithms	is and algo- 659
Chiara Masci, Geraint Johnes, Tommaso Agasisti	
A flexible analysis of PISA 2015 data across countries, by means of mu and boosting	ltilevel trees
	007

Index	XIX
Lucio Masserini, Matilde Bini Impact of the 2008 and 2012 financial crises on the unemployment rate in Ital interrupted time series approach	ly: an 673
Angelo Mazza, Antonio Punzo, Salvatore Ingrassia An R Package for Cluster–Weighted Models	681
Antonino Mazzeo, Flora Amato Methods and applications for the treatment of Big Data in strategic fields	687
Letizia Mencarini, Viviana Patti, Mirko Lai, Emilio Sulis Happy parents' tweets	693
Rodolfo Metulini, Marica Manisera, Paola Zuccolotto Space–Time Analysis of Movements in Basketball using Sensor Data	701
Giorgio E. Montanari, Marco Doretti, Francesco Bartolucci An ordinal Latent Markov model for the evaluation of health care services	707
Isabella Morlini, Maristella Scorza New fuzzy composite indicators for dyslexia	713
Fionn Murtagh Big Textual Data: Lessons and Challenges for Statistics	719
Gaetano Musella, Gennaro Punzo Workers' skills and wage inequality: A time-space comparison across Euro Mediterranean countries	opean

731

XX I	Index
Marta Nai Ruscone Exploratory factor analysis of ordinal variables: a copula approach	737
Fausta Ongaro, Silvana Salvini IPUMS Data for describing family and household structures in the world	743
Tullia Padellini, Pierpaolo Brutti Topological Summaries for Time–Varying Data	747
Sally Paganin Modeling of Complex Network Data for Targeted Marketing	753
Francesco Palumbo, Giancarlo Ragozini Statistical categorization through archetypal analysis	759
Michela Eugenia Pasetto, Umberto Noè, Alessandra Luati, Dirk Husmeier Inference with the Unscented Kalman Filter and optimization of sigma points	767
Xanthi Pedeli, Cristiano Varin Pairwise Likelihood Inference for Parameter–Driven Models	773
Felicia Pelagalli, Francesca Greco, Enrico De Santis Social emotional data analysis. The map of Europe	779
Alessia Pini, Lorenzo Spreafico, Simone Vantini, Alessandro Vietti Differential Interval–Wise Testing for the Inferential Analysis of Tongue Profile	s 785
Alessia Pini, Aymeric Stamm, Simone Vantini Hotelling meets Hilbert: inference on the mean in functional Hilbert spaces	791

Index	XXI
Silvia Polettini, Serena Arima Accounting for measurement error in small area models: a study on generosity	795
Gennaro Punzo, Mariateresa Ciommi Structural changes in the employment composition and wage inequality: A com- ison across European countries	<i>par-</i> 801
Walter J. Radermacher Official Statistics 4.0 – learning from history for the challenges of the future	809
Fabio Rapallo Comparison of contingency tables under quasi-symmetry	821
Valentina Raponi, Cesare Robotti, Paolo Zaffaroni Testing Beta–Pricing Models Using Large Cross–Sections	827
Marco Seabra dos Reis, Biagio Palumbo, Antonio Lepore, Ricardo Rendall, Cl tian Capezza On the use of predictive methods for ship fuel consumption analysis from mas on-board operational data	nris- <i>sive</i> 833
Alessandra Righi, Mauro Mario Gentile Twitter as a Statistical Data Source: an Attempt of Profiling Italian Users Ba ground Characteristics	ack- 841
Paolo Righi, Giulio Barcaroli, Natalia Golini Quality issues when using Big Data in Official Statistics	847
Emilia Rocco Indicators for the representativeness of survey response as well as convenience s ples	am- 855

XXII I	index
Emilia Rocco, Bruno Bertaccini, Giulia Biagi, Andrea Giommi A sampling design for the evaluation of earthquakes vulnerability of the residen buildings in Florence	ntial
0	861
Elvira Romano, Jorge Mateu A local regression technique for spatially dependent functional data: an heterosk tic GWR model	kedas-
	867
Eduardo Rossi, Paolo Santucci de Magistris Models for jumps in trading volume	
mouels for jumps in maning volume	873
Renata Rotondi, Elisa Varini On a failure process driven by a self–correcting model in seismic hazard assessr	nent 879
M. Ruggieri, F. Di Salvo and A. Plaia Functional principal component analysis of quantile curves	887
Massimiliano Russo Detecting group differences in multivariate categorical data	893
Michele Scagliarini A Sequential Test for the C_{pk} Index	899
Steven L. Scott Industrial Applications of Bayesian Structural Time Series	905
Catia Scricciolo Asymptotically Efficient Estimation in Measurement Error Models	913

Index	XXIII
Angela Serra, Pietro Coretto, Roberto Tagliaferri On the noisy high-dimensional gene expression data analysis	919
Mirko Signorelli Variable selection for (realistic) stochastic blockmodels	927
Marianna Siino, Francisco J. Rodriguez-Cortés, Jorge Mateu, Giad Detection of spatio-temporal local structure on seismic data	la Adelfio 935
A. Sottosanti, D. Bastieri, A. R. Brazzale Bayesian Mixture Models for the Detection of High-Energy Astron	omical Sources 943
Federico Mattia Stefanini Causal analysis of Cell Transformation Assays	949
Paola Stolfi, Mauro Bernardi, Lea Petrella Estimation and Inference of SkewStable distributions using the Mul of Simulated Quantiles	ltivariate Method 955
Paola Stolfi, Mauro Bernardi, Lea Petrella Sparse Indirect Inference	961

Emilio Sulis	
Social Sensing and Official Statistics: call data records and social media sen analysis	timent
	985
Matilde Trevisani, Arjuna Tuzzi Knowledge mapping by a functional data analysis of scientific articles databa	ases 993
Amalia Vanacore, Maria Sole Pellegrino Characterizing the extent of rater agreement via a non-parametric benchma	arking
procedure	999
Maarten Vanhoof, Stephanie Combes, Marie-Pierre de Bellefon Mining Mobile Phone Data to Detect Urban Areas	
	1005
Viktoriya Voytsekhovska, Olivier Butzbach Statistical methods in assessing the equality of income distribution, case st Poland	udy of
i otana	1013
Ernst C. Wit Network inference in Genomics	
	1019
Dilek Yildiz, Jo Munson, Agnese Vitali, Ramine Tinati, Jennifer Holland Using Twitter data for Population Estimates	
Marco Seabra dos Rei	1025
Structured Approaches for High-Dimensional Predictive Modeling	1033

Preface

The 2017 SIS Conference aims to highlight the crucial role of the Statistics in Data Science. In this new domain of "meaning" extracted from the data, the increasing amount of produced and available data in databases, nowadays, has brought new challenges. That involves different fields of statistics, machine learning, information and computer science, optimization, pattern recognition. These afford together a considerable contribute in the analysis of "Big data", open data, relational and complex data, structured and no-structured. The interest is to collect the contributes which provide from the different domains of Statistics, in the high dimensional data quality validation, sampling extraction, dimensional reduction, pattern selection, data modelling, testing hypotheses and confirming conclusions drawn from the data. In the mention that statistics is the "grammar of data science", statistics has become a basic skill in data science: it gives right meaning to the data. Still, it isn't replaced by newer techniques from machine learning and other disciplines but it complements them. The Conference is also addressed to the new challenges of the new generations: the native digital generations, who are called to develop professional skills as "data analyst", one of the more request professionality of the 21st Century, crossing the rigid disciplinary domains of competence. In this perspective, all the traditional statistical topics are admitted with an extension to the related machine learning and computer science ones. The present volume includes the short papers of the contributions that will be presented in the 4 invited speaker sessions; in the 19 specialized sessions; in the 11 solicited sessions; in the 6 foreign societies sessions and in the 17 contributed sessions as well as, in the panel session.

Rosanna Verde President of the Scientific Programme Committee

Alessandra Petrucci President of the Local Organizing Committee

Accounting for measurement error in small area models: a study on generosity.

Modelli per piccola area con errore di misurazione: uno studio sulla generosità

Silvia Polettini and Serena Arima

Abstract In this paper we focus on a recently documented effect of economic inequality, namely that higher income individuals tend to be less generous than poorer individuals, *but only in contexts where macro-level economic inequality is high*, or is perceived as high. We consider data from the Measuring Morality study, a nationally representative survey of United States residents, that contains a validated behavioural measure of generosity (the dictator game) along with the household income of respondents. We fit a small area model to this data with the aim of investigating the role of economic inequality on generosity in the US. We observe that model covariates (reported income and Gini index) are subject to measurement error and investigate the effect of introducing the measurement error in this model.

Abstract Il lavoro considera il ruolo della disuguaglianza economica sulla generosità, a partire da uno studio recente secondo cui gli individui con redditi più elevati tendono ad essere meno generosi degli individui meno abbienti, ma solo in contesti di grande disuguaglianza economica. I dati analizzati provengono dal Measuring Morality study, un'indagine effettuata negli USA in cui viene rilevato il reddito e una misura validata di generosità (dictator game). Per ogni area di residenza è stato anche ricavato l'indice di Gini, come misura di disuguaglianza economica. In questo lavoro si stima la generosità mediante un modello per piccole aree con reddito e disuguaglianza come variabili ausiliarie. Il modello viene esteso al fine di considerare l'errore di misurazione nelle variabili ausiliarie, sia continue che discrete.

Key words: small area estimation, measurement error, misclassification, Bayesian inference.

Serena Arima

Silvia Polettini

Dip. di Metodi e Modelli per l'Economia, il Territorio e la Finanza, Sapienza Università di Roma, via del Castro Laurenziano, 9, e-mail: silvia.polettini@uniroma1.it

Dip. di Metodi e Modelli per l'Economia, il Territorio e la Finanza, Sapienza Università di Roma, via del Castro Laurenziano, 9, e-mail: serena.arima@uniroma1.it

1 Introduction

There is an increasing interest in understanding the implications of income for behaviour, in particular generosity toward others. Well grounded literature on this topic has portrayed a picture of higher-income individuals as consistently more selfish than poorer individuals [13]. A different perspective is reported in a recent paper [6], where the relationship between economic inequality, income, and generosity is tested. Analysing data from the Measuring Morality study (a nationally representative survey of United States residents), as well as a follow-up experiment, the authors identify a previously undocumented effect of economic inequality, namely that higher income individuals in the US tend to be less generous than poorer individuals, but only in contexts where macro-level economic inequality is high, or is perceived as high. The Authors comment that the results obtained challenge the prevailing view in the literature that higher income individuals are necessarily less generous and conclude that "inequitable resource distributions undermine collective welfare" and that redistributive policies may "attenuate, or even reverse, the negative relationship between income and generosity, in turn increasing the generosity of those individuals who have the most to give".

The Measuring Morality study data contain a validated behavioural measure of generosity (the dictator game) along with the household income of respondents; moreover, Gini indices were available from the American Community Survey. The authors fit a mixed effects model to these data, where significant, negative, interaction between income and inequality is found. Using a Bayesian approach, we consider the same model, in a small area context and speculate on the fact that both income and the Gini index are subject to measurement error for different reasons: indeed income is self reported and the Gini index is estimated from another survey. As stressed in the literature, ignoring the measurement error in the covariates may lead to inconsistent estimates and can severely invalidate inferences.

The paper is organized as follows: in Section 2 we introduce the problem of measurement error in small area estimation and propose a small area model accounting for measurement error in covariates and present. In Section 3 we present and discuss the results obtained when the model is applied to the generosity data.

2 A measurement error small area model for generosity data

In this paper, we focus on unit level small area models, whithin a Bayesian framework. Unit level small area models relate the unit values of the study variable to unit-specific auxiliary variables with known area means. See [11] for an up-to-date review.

Suppose there are *m* areas and let N_i be the known population size of area *i*. We denote by Y_{ij} the response of the *j*-th unit in the *i*-th area ($i = 1, ..., m; j = 1, ..., N_i$). A random sample of size n_i is drawn from the *i*-th area. The goal is to predict the small area means $\bar{Y}_i = \frac{1}{N_i} \sum_{i=1}^{N_i} y_{ij}$, i = 1, ..., m, based on the available

data. To develop reliable estimates, auxiliary information is introduced as covariates and usually a mixed effects model is specified as

$$Y_{ij} = \alpha + \beta w_{ij} + u_i + \varepsilon_{ij}$$
 $i = 1, ..., m; \quad j = 1, ..., N_i$ (1)

with ε_{ij} and u_i independent, $\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma_e^2)$ and $u_i \stackrel{iid}{\sim} N(0, \sigma_u^2)$. [8] and [9] were the first to consider the problem of measurement error in small area models for unitlevel data. They assume that the true, area-level, covariate, w_i , is measured with error as

$$S_{ij} = w_i + \eta_{ij}, \qquad \eta_{ij} \stackrel{iid}{\sim} N(0, \sigma_\eta^2) \qquad i = 1, ..., m; \quad j = 1, ..., n_i$$
 (2)

where ε_{ij} , u_i and η_{ij} are taken mutually independent. [8] also assumed that $w_i \stackrel{iid}{\sim}$ $N(\mu_w, \sigma_w^2)$, defining the structural measurement error model. They considered both an empirical Bayes and a hierarchical Bayes approach to derive predictors of small area means θ_i . [12] extended the approach in [8] including sample information on the covariate values. [8] also proposed a fully Bayesian approach, by specifying a hierarchical model, with vague prior distributions for all the model parameters, whose posterior distributions are estimated via Gibbs sampling. [1, 3] extended the above approach, proposing to use the Jeffreys' prior on the model parameters. The aforementioned literature considers the case in which the measurement error only affects continuous variables, according to the measurement error model of equation (1). For discrete covariates, measurement error means misclassification. To allow for auxiliary discrete covariates measured with error, [4] propose to model the misclassification mechanism through an unknown transition matrix P and estimate all the unknown parameters in a fully Bayesian framework. Following [4], for each unit in each area, we consider the following covariates: t_{ij} – the vector of p continuous or discrete covariates measured without error, w_i and x_{ij} – respectively, a vector of q continuous covariates and h discrete variables (with a total of K categories), both measured with error. Denote by s_{ij} and z_{ij} the observed values of the latent w_i and x_{ii} , respectively. Without loss of generality, in what follows we assume h = 1.

Following the notation in [8], the proposed measurement error model can be written in the usual multi-stage way: for $j = 1, ..., n_i, i = 1, ..., m$ and for k, k' = 1, ..., K

- Stage 1. $y_{ij} = \theta_{ij} + e_{ij}$ $e_{ij} \stackrel{iid}{\sim} N(0, \sigma_e^2)$
- Stage 2. $\theta_{ij} = t'_{ij}\delta + w'_i\gamma + \sum_{k=1}^K I(x_{ij} = k)\beta_k + u_i \quad u_i^{iid} \sim N(0, \sigma_u^2)$
- Stage 3. $S_{ij}|w_i^{iid} N(w_i, \Sigma_s = diag(\sigma_{s_1}^2, ..., \sigma_{s_a}^2)) \quad W_i^{iid} N(0, \Sigma_w = diag(\sigma_{w_1}^2, ..., \sigma_{w_a}^2))$ $Pr(Z_{ij} = k | X_{ij} = k') = p_{k'k}, \quad p_{k'} \sim Dir(\alpha_{k',1}, \dots, \alpha_{k',K}) Pr(X_{ij} = k') = \frac{1}{K}$ • Stage 4. $\beta, \delta, \gamma, \sigma_e^2, \sigma_u^2, \sigma_{s_1}^2, \dots, \sigma_{s_p}^2$ are, loosely speaking, a-priori mutually inde-
- pendent.

Stage 3 defines the measurement error model for both continuous and discrete covariates. For the discrete covariates, the misclassification mechanism is specified according to the $K \times K$ matrix P, whose (k', k) element, $p_{k'k}$, denotes the probability that the observable variable Z_{ij} takes the k-th category when the true unobservable variable X_{ij} takes the k'-th category. We also assume that the misclassification probabilities are the same across subjects and that all the categories have the same prior probability $\frac{1}{K}$ to occur. Over each row of P, we place a Dirichlet $Dir(\alpha_{k',1}, \ldots, \alpha_{k',K})$ prior distribution, with known $\alpha_{k',1}, \ldots, \alpha_{k',K}$. In Stage 4 we assume Normal priors for β , δ , and γ and inverse gamma distributions for σ_e^2 and σ_u^2 and σ_s^2 . Hyperparameters have been chosen to have flat priors. Finally, we fix Σ_w and $(\alpha_{k',1}, \ldots, \alpha_{k',K})$. According to the above assumptions, we can estimate the transition matrix P and the measurement error variance σ_s^2 jointly with all the other model parameters. As the posterior distribution cannot be derived analytically in closed form, we obtain samples from the posterior distribution using Gibbs sampling.

3 Results and conclusions

We fit a unit level small area model with measurement error in covariates, which also allows us to evaluate the relationship between economic inequality, income and generosity. We use data from the Measuring Morality study, a nationally representative survey of United States residents consisting of a sample of 1498 respondents in the US. For each respondent, income and some personal and demographic variables (such as age, gender, education, ...) have been collected. Respondents completed a validated behavioural measure of generosity: the dictator game. Respondents learned that they had been randomly assigned the role of *decider* and had received 10 tickets, each worth one entry in a raffle to win a monetary prize of either 10 or 500. They could transfer any number of tickets to the next participant, a *receiver* who did not have any tickets. By giving tickets, respondents could benefit another person at a cost to themselves in a zero-sum opportunity to win money. This measure of generosity was administered to individuals with different incomes residing in areas (US states plus the District of Columbia) that vary in levels of inequality, measured according to the Gini's coefficient. The number of respondents in each area (m = 9 divisions) ranges from 72 to 286. In the proposed model we take generosity as the response variable and income, standardized Gini coefficients and their interaction as auxiliary variables. According to the survey design, household income was collected as a 19-classes variable; for ease of interpretation in the application we recoded it into five classes (C_1 : less than 12500; C_2 : [12500, 30000), C_3 : (30000, 60000], C_4 : (60000, 125000], C_5 : over 125000). Since income is self reported and the Gini index is estimated using data from the 2012 American Community survey, we can suspect that both auxiliary variables are subject to measurement error. In order to evaluate the impact of accounting for this source of error, we fit both the standard model that ignores the measurement error and the model proposed in Section 2. Figure 1 shows the posterior distribution of the model parameters. The left panel reports the posterior distribution of the regression parameters under the proposed measurement error model: income is the only factor that significantly impacts on the response variable, since for all the other parameters the 95% credible intervals contain the zero value (CI_{Gini} : [-0.207, 0.349], $CI_{C1*Gini}$: [-0.632, 0.241], $CI_{C2*Gini}$: [-0.542, 0.217], $CI_{C3*Gini}$: [-0.533, 0.189], $CI_{C4*Gini}$: [-0.827, -0.028]). With respect to the income, it is apparent that generosity increases with income, with the exception of the last class, in which the effect on generosity is comparable to that of the second one. This actually means that the richest are less generous with respect to the others, which is line with findings in the mainstream literature on the subject. On the other hand, when one ignores the measurement error, all the covariates and their interactions seem to be significant (Figure 1, right panel). In particular, income exhibits a positive effect on generosity, with no distinctions between income classes, which contradicts the economic theories; moreover, an unexpectedly positive effect of inequality is found. With respect to the measurement error for income, the posterior distribution of $P_{1,1}$ is concentrated around 0.5 and almost uniformly distributed over the other categories. This is an empirical evidence that income is often underreported by the respondents. The distributions of the other diagonal elements of P are concentrated around 0.9 and credibile intervals do not contain 1. We conclude that measurement error has a significant impact on income. The small area estimates produced under the model with and without measurement error are reported in Table 1. As can be seen, allowing for measurement error in both continuous and categorical covariates also impacts on estimation of the small area means in both point estimates (in particular for the first division, which is one of the smallest ones) and measures of uncertainty. Also, although the posterior means are not very different for the large areas, the ranking of the divisions varies. As can be seen, allowing for measurement error in both continuous and categorical covariates also impacts on estimation of the small area means. Although the posterior means are not very different, the ranking of the divisions varies. In conclusion, our application reveals that ignoring the measurement error in covariates may drive inferences and yeld misleading conclusions.

 Table 1 Small area estimates: posterior means of the small area means obtained with the model that does not account for the measurement error (first row) and the model that accounts for it (second row). Standard deviations in brackets.

Division	1	2	3	4	5	6	7	8	9
θ_{NoErr}	4.17	4.11	4.25	4.44	4.19	4.28	4.25	4.37	4.22
	(0.27)	(0.33)	(0.18)	(0.20)	(0.24)	(0.10)	(0.14)	(0.16)	(0.23)
θ_{Err}	4.27	4.09	4.26	4.43	4.17	4.30	4.25	4.38	4.23
	(0.36)	(0.41)	(0.38)	(0.37)	(0.40)	(0.33)	(0.34)	(0.32)	(0.40)

References

1. Arima, S., Datta, G.S., Liseo, B.: Objective Bayesian analysis of a measurement error small area model. *Bayesian Analysis*, **72** (2),363–384, (2012)

Fig. 1 Posterior distribution of the model parameters. Left panel: posterior distributions obtained from the proposed model. Right panel: posterior distributions from the model that ignores the measurement error.

- Arima, S., Datta, G.S., Liseo, B.: Bayesian Estimators for Small Area Models when Auxiliary Information is Measured with Error. Scandinavian Journal of Statistics, 42 (2),518–529, (2014)
- Arima, S., Datta, G.S., Liseo, B.: Models in Small Area Estimation when Covariates are Measured with Error, in Analysis of Poverty Data by Small Area Estimation, 151–170, (2015)
- Arima, S., Polettini, S.: A unit-level small area model with misclassified covariates, arXiv:1611.02845 [stat.ME],(2016)
- Carroll, R.J., Ruppert, D., Stefanski, L., Crainiceanu, C.: Measurement error in nonlinear models: a modern perspective. 2nd edn. Chapman & Hall, CRC, (2006)
- Côtè, S., House, J., Willer, R.: High economic inequality leads higher-income individuals to be less generous. Ann. PNAS, 112, 52, 15838–15843 (2015)
- 7. Engel, C.: Dictator Games: A Meta Study. Experimental Economics 14(4), 583?-610, (2011)
- Ghosh, M., Sinha, K. and Kim, D.: Empirical and Hierarchical Bayesian estimation in finite population sampling under structural measurement error model. Scandinavian Journal of Statistics, 33(3), (2006)
- Ghosh, M., Sinha, K.: Empirical Bayes estimation in finite population sampling under functional measurement error models. Journal of Statistical Planning Inference, 137, 2759– 2773, (2007)
- Polettini, S., Arima, S.: Small area estimation with covariates perturbed for disclosure limitation. Statistica, 25 (1), 57–72, (2015)
- Rao, J.N.K. and Molina, I.: Small Area Estimation, 2nd Edition, Wiley, Hoboken, New Jersey, (2015).
- Torabi, M., Datta, G.S. and Rao, J.N.K. Empirical Bayes estimation of small area means under nested error linear regression model with measurement error in the covariates, Scandinavian Journal of Statistics, 36, 355–368, (2009).
- Trautmann, S.T., van de Kuilen, G. and Zeckhauser, R.J.: Social class and (un)ethical behavior: A framework, with evidence from a large population sample Perspectives on Psychological Science 8(5):487–497, (2013).
- Ybarra, L.M.R., Lohr, S.L.: Small area estimation when auxiliary information is measured with error. Biometrika, 95(4), 919–931, (2008).