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METASTABILITY FOR NONLINEAR PARABOLIC
EQUATIONS WITH APPLICATION TO SCALAR

VISCOUS CONSERVATION LAWS∗

CORRADO MASCIA† AND MARTA STRANI‡

Abstract. The aim of this paper is to contribute to the definition of a versatile language for
metastability in the context of partial differential equations of evolutive type. A general framework
suited for parabolic equations in one-dimensional bounded domains is proposed, based on choosing
a family of approximate steady states {Uε(·; ξ)}ξ∈J and on the spectral properties of the linearized
operators at such states. The slow motion for solutions belonging to a cylindrical neighborhood of
the family {Uε} is analyzed by means of a system of an ODE for the parameter ξ = ξ(t), coupled
with a PDE describing the evolution of the perturbation v := u − Uε(·; ξ). We state and prove a
general result concerning the reduced system for the couple (ξ, v), called quasi-linearized system,
obtained by disregarding the nonlinear term in v, and we show how such an approach suits to the
prototypical example of scalar viscous conservation laws with Dirichlet boundary conditions in a
bounded one-dimensional interval with convex flux.
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1. Introduction. Metastability is a broad term describing the existence of a
very sensitive equilibrium possessing a weak form of stability/instability. Usually,
such behavior is related to the presence of a small first eigenvalue for the linearized
operator at the given equilibrium state, revealed at dynamical level by the appearance
of slowly moving structures. Such a circumstance comes into view in the analysis of
different classes of evolutive PDEs, and it has been the object of a wide amount of
studies, covering many different areas. Among others, we emphasize the explorations
on the Allen–Cahn equation, started in [5, 10], and the investigations on the Cahn–
Hilliard equation, with the fundamental contributions [26, 1]. The analysis has been
continued by many other scholars by means of a broad spectrum of techniques and
extended to a number of different models such as the Gierer–Meinhardt and Gray–
Scott systems (see [31]), Keller–Segel chemotaxis system (see [9, 27]), general gradient
flows (see [25]), and many others. The number of references is so vast that it would
be impossible to mention all the contributions given in the area.

A pioneering paper in the analysis of slow dynamics for parabolic equations has
been authored by Kreiss and Kreiss [14] and concerns with the scalar viscous conser-
vation law

(1.1) ∂tu+ ∂xf(u) = ε ∂2xu, u(x, 0) = u0(x),
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with the space variable x belonging to a one-dimensional interval I = (−�, �), � > 0,
and ε > 0. The primary prototype for the flux function f is given by the classi-
cal quadratic formula f(u) = 1

2 u
2, so that the PDE in (1.1) becomes the so-called

(viscous) Burgers equation. Problem (1.1) is complemented with Dirichlet boundary
conditions

(1.2) u(−�, t) = u− and u(�, t) = u+

for given data u± to be discussed in detail.
Burgers equation is considered as a (simplified) archetype of more complicated

systems of partial differential equations arising in different fields of applied mathe-
matics. Inspired by the equations of fluid-dynamics, the parameter ε is interpreted
as a viscosity coefficient and the main problem is to identify and quantify its role in
the emergence and/or disappearance of structures.

In the limit ε → 0+, the initial value problem (1.1) formally reduces to a first-
order quasi-linear equation of hyperbolic type

(1.3) ∂tu+ ∂xf(u) = 0, u(x, 0) = u0(x)

whose standard setting is given by the entropy formulation: solutions may have dis-
continuities, which propagate with speed s such that

s�u� = �f(u)�, (Rankine–Hugoniot relation)

(where �·� denotes the jump) and an appropriate entropy condition is satisfied. In
addition, the treatment of the boundary conditions (1.2) is more delicate with respect
to the parabolic case, because of the eventual appearance of boundary layers [2].

Concerning the flux function f , let us assume that

(1.4) inf
u∈R

f ′′(u) > 0, f ′(u+) < 0 < f ′(u−), f(u+) = f(u−),

where u± are the boundary data prescribed in (1.2). The last two assumptions guaran-
tee that a jump with left value u− and right value u+ satisfies the entropy condition
and has speed of propagation equal to zero, as dictated by the Rankine–Hugoniot
relation. Therefore, the one-parameter family of functions {U

hyp
(·; ξ)} defined by

U
hyp

(x; ξ) := u−χ(−�,ξ)
(x) + u+χ(ξ,�)

(x), x, ξ ∈ (−�, �)
(where χ

I
denotes the characteristic function of the set I) is composed by stationary

solutions of (1.3) satisfying the boundary conditions (1.2). The dynamics determined
by the boundary-initial value problem (1.3)–(1.2) is simple: for any datum u0 with
bounded variation, the solution converges in finite time to an element of {U

hyp
(·; ξ)}

(see section 3). Hence, at the level ε = 0, there are infinitely many stationary solutions,
generating a “finite-time” attracting manifold for the dynamics.

For ε > 0, the situation is different. In addition to the well-known smoothing
effect, the presence of the Laplace operator in (1.1) has the effect of a drastic reduction
of the number of stationary solutions satisfying (1.2): from infinitely many to a single
stationary state (see section 3). Such a solution, denoted here by Ūε

par
= Ūε

par
(x),

converges in the limit ε→ 0+ to a specific element U
hyp

(·; ξ̄) of the family {U
hyp

(·; ξ)}.
The dynamical properties of (1.1)–(1.2) for initial data close to the equilibrium

configuration Ūε
par

can be analyzed linearizing at the state Ūε
par

,

∂tu = Lε u := ε ∂2xu+ ∂x
(
a(x)u

)
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with a(x) := −f ′(Ūε
par

(x)). In [14] it is shown that, in the case of the Burgers flux

f(u) = 1
2 u

2, the eigenvalues λεk of Lε with homogeneous Dirichlet boundary conditions
are real and negative. Moreover, as a consequence of the requirement f(u+) = f(u−),
there hold as ε→ 0

λε1 = O(e−1/ε) and λεk < −c0
ε
< 0 ∀ k ≥ 2,

for some c0 > 0 independent on ε. Negativity of the eigenvalues implies that the
steady state Ūε

par
is asymptotically stable with exponential rate. In addition, the

precise description of the eigenvalues distribution shows that the large time behavior
is described by terms of the order eλ

ε
1 t and thus the convergence is very slow when ε

is small. To quantify the reduction order of the mapping ε → e−1/ε, note that e−1/ε

has order 10−5 for ε = 10−1 and order 10−44 for ε = 10−2.
Next, let us consider the dynamics generated by an initial datum presenting a

sharp transition from u− to u+ localized far from the position of the steady state
Ūε

par
. Figure 1.1 represents a numerical simulation of the solution to the initial value

problem (1.1) with boundary conditions (1.2), relative to the initial condition u0(x) =
(x2 − 2x− 1)/2. Starting with a decreasing initial datum, a shock layer is formed in
a short time scale, so that the solution is approximately given by a translation of the
(unique) stationary solution of the problem. Once such a layer is formed, on a longer
time scale, it moves towards the location corresponding to the equilibrium solution.
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Fig. 1.1. The solution to (1.1)–(1.2) with ε = 0.07, u± = ∓1 and u0(x) = (x2 − 2x− 1)/2.

This paper deals with the dynamics after the shock layer formation for ε small and
we intend to provide a detailed description of such regime, with special attention to
the relation between the unviscid and the low-viscosity behavior. Guided by this aim,
we build up a one-parameter family of functions {Uε

par
(·; ξ)} such that Uε

par
(·; ξ) →

U
hyp

(·; ξ) as ε → 0 in an appropriate sense, and we describe the dynamics of the
solution to the initial-boundary value problem (1.1)–(1.2) in a tubular neighborhood
of the family {Uε

par
(·; ξ)}.

A specific element Uε
par

(·; ξ̄) of the manifold {Uε
par

} corresponds to the steady state

Ūε
par

of (1.1)–(1.2) and the dynamics will asymptotically lead to such configuration.
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Before describing in detail the contribution of this paper, let us recast the state
of the art on the topic. Among others, the problem of slow dynamics for the Burg-
ers equation has been examined in [28] and in [16], where different approaches have
been considered. The former is based either on projection method or on WKB expan-
sions; the latter stands on an adapted version of the method of matched asymptotics
expansion. The common aim is to determine an expression and/or an equation for
the parameter ξ, considered as a function of time, describing the movement of the
transition from a generic point of the interval (−�, �) toward the equilibrium location
ξ̄. In both contributions, the analysis is conducted at a formal level and validated
numerically by means of comparison with significant computations. A rigorous anal-
ysis has been performed in [7] (and generalized to the case of nonconvex flux in [8]),
where a one-parameter family of reference functions is chosen as a family of traveling
wave solutions to the viscous equation satisfying the boundary conditions and with
nonzero (but small) velocity. The approach is based on the use of such traveling waves
to obtain upper and lower estimates by the maximum principle, from which rigorous
asymptotic formulae for the slow velocity are obtained.

Slow motion for the viscous Burgers equation in unbounded domains has also
been considered in literature. In [29], the case of the half-line (0,+∞) is analyzed
for the space variable x, with constant initial and boundary data chosen so that the
speed of the shock generated at x = 0 is stationary for the corresponding hyperbolic
equation. The presence of the viscosity generates a motion of the transition layer,
which is precisely identified by means of Lambert’s W function. Later, the (slow)
motion of a shock wave, with zero hyperbolic speed, for the Burgers equation in the
quarter plane has been considered in [19], where it is shown that the location of the
wave front is of order ln(1 + t); the same result has been generalized in [24] in the
case of general fluxes (for other contributions to the same problem, we also refer to
[17, 32]).

The case of the whole real line has been examined in [13] with emphasis on the
generation of N -wave like structures and their evolution towards nonlinear diffusion
waves. The analysis is based on the use of self-similar variables, suggested by the
invariance of the Burgers equation under the group of transformations (x, t, u) �→
(cx, c2 t, u/c) (for subsequent contributions in the same direction, see [12]). More
recently, it has been shown in [4] that the slow motion is determined by the presence
of a one-dimensional center manifold of steady states for the equation in the self-
similar variables (corresponding to the diffusion waves) and a relative family of one-
dimensional global attractive invariant manifold. In a short-time scale, the solution
approaches one of the attractive manifolds and remains close to it in a long-time scale.

Presently, results relative to metastability in the case of systems appear to be
rare. Slow dynamics analysis for systems of conservation laws have been considered
in [11], basic model examples being the Navier–Stokes equations of compressible vis-
cous heat conductive fluid and the Keyfitz–Kranzer system, arising in elasticity. The
approach is based on asymptotic expansions and consists of deriving appropriate lim-
iting equations for the leading-order terms, in the case of periodic data. In [15], the
problem of proving convergence to a stationary solution for a system of conservation
laws with viscosity is addressed, with an approach based on a detailed analysis of the
linearized operator at the steady state. A recent contribution is [3], where the authors
consider the Saint–Venant equations for shallow water and, precisely, the phenomenon
of formation of roll-waves. The approach merges together analytical techniques and
numerical results to present some intriguing properties relative to the dynamics of
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solitary wave pulses.

Summing up, apart from the formal expansions methods, the rigorous approaches
used in the literature are largely based on typical scalar equations features. The first
of these properties is the direct link between the scalar Burgers equation and the heat
equation given by the Hopf–Cole transformation: u = −2ε φ−1∂xφ, and the conse-
quent invariance of the Burgers equation under the group of scaling transformations
(x, t, u) �→ (cx, c2 t, u/c). On the one hand, the presence of such a connection is an
evident advantage, since it permits determining optimal descriptions for the behavior
under study (see [13, 19, 29]); on the other hand, to use such exceptional property
makes the approach very stiff and difficult to apply to more general cases. A different
“scalar hallmark” is the base of the approach considered in [7], where the authors
make wide use of maximum principle and comparison arguments, taking benefit from
the fact that the equation is second-order parabolic.

In order to extend the results to more general settings and, specifically, for systems
of PDEs, it is useful to determine strategies and techniques that are more flexible,
paying, if necessary, the price of a less accurate description of the dynamics. A
contribution in this direction has been given in [24], where the location of the shock
transition for a scalar conservation law in the quarter plane has been proved by
means of weighted energy estimates, extending the result proved in [19], that used
an explicit formula—determined by means of the Hopf–Cole transformation—for the
Green function of the linearization at the shock profile of the Burgers equation.

The present paper intends to contribute to the definition of a versatile language for
metastability, suitable for a general class of partial differential equations of evolutive
type. With this direction in mind, we follow an approach that is directly related with
the projection method considered in [5, 28] and we go behind the philosophy tracked
in the analysis of stability of viscous shock waves by Zumbrun and co-authors (see
[33, 23, 22]). Precisely, we separate three distinct phases:

i. to choose a family of functions {Uε(·; ξ)}, considered as approximate solutions,
and to measure how far they are from being exact solutions;

ii. to investigate spectral properties of the linearized operators at such states;
iii. to find appropriate assumptions on the approximate solutions (step i) and

on the spectrum of the linearized operators (step ii) that imply the appearance of a
metastable behavior.

The approach is applied to the case of scalar conservation laws with convex fluxes
where all of the assumptions needed to apply the theory can be verified. In perspective,
the same strategy can be used to tackle the case of systems and initial contributions
in this direction can be found in [20] for isentropic Navier–Stokes equations and in
[30] for the relaxation Jin–Xin model.

With respect to the framework of shock waves stability analysis, there are two
main differences. First of all, we concentrate on the case of bounded domains and,
therefore, the spectrum of the linearized operators is discrete. Additionally, since
the reference states Uε are approximate solutions, the perturbations of such states
satisfy at first order a nonhomogeneous linear equation, with forcing term negligible as
ε→ 0+. The defect of working in a neighborhood of a manifold that is not invariant
has the counterpart of a wider flexibility in its construction that leads, in particular,
to (more or less) explicit representations. Thus, it should be possible in principle to
obtain numerical evidence of special spectral properties even in cases where analytical
results appear not to be achievable.

This paper is organized as follows. To start, in section 2, we consider a general
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framework containing scalar viscous conservation laws as a very specific case. Given
a family of approximate solutions {Uε}, our approach consists of representing the
solution to the initial-boundary value problem as the sum of an element Uε(·; ξ(t))
moving along the family {Uε} plus a perturbation term v. The equation for the
unknown ξ = ξ(t) is chosen in such a way that the slower decaying terms in the
perturbation v are canceled out. In order to state a general result, we consider an
approximation of the complete nonlinear equations for the couple (ξ, v), obtained
by disregarding quadratic terms in v and keeping the nonlinear dependence on ξ,
in order to keep track of the nonlinear evolution along the manifold {Uε}. Such a
reduced system for (v, ξ) is called a quasi-linearized system and it is the concern of
Theorem 2.1, the main contribution of this paper. Under appropriate assumptions on
the manifold Uε, the linearized operators at such states, and the coupling between
the two objects, such a result gives an explicit representation for the solution to the
evolutive problem together with an estimate on the remainder, vanishing in the limit
ε → 0. This gives a sound justification to the reduced equation for the unknown
ξ = ξ(t), obtainable by neglecting also the linear terms in v.

Dealing with the complete system for the couple (v, ξ) also brings into the analysis
the specific form of the quadratic terms. As a consequence, in the case of parabolic
systems of reaction-diffusion type, we expect that results analogous to Theorem 2.1
could be proved, under the assumption of an a priori L∞ bound on the solution.
Differently, when a nonlinear first-order space derivative term is present (as is the
case of viscous conservation laws), the quadratic term involves a dependence on the
space derivative of the solution and a rigorous result needs an additional bound, which
we are not presently able to achieve.

In section 3, we consider the application of the general framework to the case of
viscous scalar conservation laws. First, we present the dynamics of the hyperbolic
equation obtained in the vanishing viscosity limit, proving a result on finite-time
convergence to the one-parameter manifold of steady states (Theorem 3.1). Then, we
pass to consider the parabolic equation in (1.1) under assumption (1.4) and we build
up a specific family {Uε} by matching continuously stationary solutions at a given
point ξ. To apply the general result of section 2, we need to measure how far are the
states Uε from being stationary solutions, and this amounts to estimating the jump
of the space derivative at the matching point. Such a task is completed, showing that
the residual has order Ce−C/ε, hence it is exponentially small in the limit ε→ 0+. As
a by-product, we deduce a formal equation for the motion of the shock layer, which
generalizes the one known for the case of the Burgers flux f(s) = 1

2s
2.

In section 4, we analyze spectral properties of the diffusion-transport linear op-
erator, arising from the linearization at the state Uε(·; ξ). We show that, under
appropriate assumptions on the limiting behavior of Uε as ε → 0+, the spectrum
can be decomposed into two parts: the first eigenvalue is of order O(e−C/ε); all of
the remaining eigenvalues are less than −C/ε (where C denotes a generic positive
constant independent on ε). Additionally, precise asymptotics for the first eigenvalue
are achieved by considering the linear operator with piecewise constant coefficients,
obtained by taking the limit of function Uε(·; ξ) as ε → 0+. This analysis is needed
to give evidence of the validity of the coupling assumption required in Theorem 2.1.

2. Metastable behavior for nonlinear parabolic systems. Given � > 0,
I := (−�, �), and n ∈ N, we consider the space X := L2(I)n endowed with

〈u, v〉 :=
∫ �

−�

u(x) · v(x) dx, u, v ∈ X,
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where · denotes the usual scalar product in R
n. Given T > 0, we consider the evolutive

Cauchy problem for the unknown u : [0, T ) → X ,

(2.1) ∂tu = Fε[u], u
∣∣
t=0

= u0,

where Fε denotes a nonlinear differential operator, complemented with appropriate
boundary conditions. We are interested in describing the dynamical behavior of uε,
solution to (2.1), in the regime ε ∼ 0. In particular, we have in mind the case of
a singular dependence of Fε with respect to ε, in the sense that the operator F0

is of lower order with respect to Fε. The specific example, considered in detail in
the subsequent sections, is the one-dimensional scalar viscous conservation law with
Dirichlet boundary conditions; at the same time, the usual Allen–Cahn parabolic
equation also fits into the framework. The cases of special systems has been explored
in [20] (isentropic Navier–Stokes equations) and in [30] (relaxation Jin–Xin model).

Given a one-dimensional open interval J , let {Uε(·; ξ) : ξ ∈ J} be a one-
parameter family in X , whose elements can be considered as approximate stationary
solutions to the problem in the sense that Fε[Uε(·; ξ)] depends smoothly on ε and
tends to 0 as ε → 0. Precisely, we assume that the term Fε[Uε] belongs to the dual
space of the continuous functions space C(I)n and there exists a family of smooth
positive functions Ωε = Ωε(ξ), uniformly convergent to zero as ε → 0, such that, for
any ξ ∈ J , there holds

(2.2) |〈ψ(·),Fε[Uε(·, ξ)]〉| ≤ Ωε(ξ) |ψ|∞ ∀ψ ∈ C(I)n.

The family {Uε(·; ξ)} will be referred to as an approximate invariant manifold with
respect to the flow determined by (2.1) in X . Generically, since an element Uε(·; ξ) is
not a steady state for (2.1), the dynamics walk away from the manifold with a speed
dictated by Ωε. The dependence of Ωε on ε plays a relevant role, since it drives the
departure from the approximate invariant manifold.

Next, we decompose the solution to the initial value problem (2.1) as

u(·, t) = Uε(·; ξ(t)) + v(·, t),
with ξ = ξ(t) ∈ J and v = v(·, t) ∈ L2(I)n to be determined. Substituting, we obtain

(2.3) ∂tv = Lε
ξv + Fε[Uε(·; ξ)]− ∂ξU

ε(·; ξ) dξ
dt

+Qε[v, ξ],

where

Lε
ξv := dFε[Uε(·; ξ)] v,

Qε[v, ξ] := Fε[Uε(·; ξ) + v]−Fε[Uε(·; ξ)]− dFε[Uε(·; ξ)] v.
Next, we assume that the linear operator Lε

ξ has a discrete spectrum composed by
semi-simple eigenvalues λεk = λεk(ξ) with corresponding right eigenfunctions φεk =
φεk(·; ξ). Denoting by ψε

k = ψε
k(·; ξ) the eigenfunctions of the adjoint operator Lε,∗

ξ

and setting

vk = vk(ξ; t) := 〈ψε
k(·; ξ), v(·, t)〉,

we can use the degree of freedom we still have in the choice of the couple (v, ξ) in
such a way that the component v1 is identically zero; that is,

d

dt
〈ψε

1(·; ξ(t)), v(·, t)〉 = 0 and v1(ξ0, 0) = 〈ψε
1(·; ξ0), v0(·)〉 = 0.
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Using (2.3), we infer

〈ψε
1(·, ξ),Lε

ξv + F [Uε(·; ξ)]− ∂ξU
ε(·; ξ)dξ

dt
+Qε[v, ξ]〉+

〈
∂ξψ

ε
1(·, ξ)

dξ

dt
, v

〉
= 0.

Since 〈ψε
1,Lε

ξv〉 = λε1〈ψε
1, v〉, we obtain a scalar differential equation for the variable

ξ, describing the reduced dynamics along the approximate manifold; that is,

(2.4) αε(ξ, v)
dξ

dt
= 〈ψε

1(·; ξ),F [Uε(·; ξ)] +Qε[v, ξ]〉,

where

αε
0(ξ) := 〈ψε

1(·; ξ), ∂ξUε(·; ξ)〉 and αε(ξ, v) := αε
0(ξ) − 〈∂ξψε

1(·; ξ), v〉,
together with the condition on the initial datum ξ0,

〈ψε
1(·; ξ0), v0(·)〉 = 0.

To rewrite (2.4) in normal form in the regime of small v, we assume

|αε
0(ξ)| = |〈ψε

1(·; ξ), ∂ξUε(·; ξ)〉| ≥ c0 > 0

for some c0 > 0 independent on ξ. Such an assumption gives a (weak) restriction
on the choice of the members of the family {Uε} asking for the manifold to be never
transversal to the first eigenfunction of the corresponding linearized operator. From
now on, we can renormalize the eigenfunction ψε

1 so that

αε
0(ξ) = 〈ψε

1(·; ξ), ∂ξUε(·; ξ)〉 = 1

for any ε > 0 and for any ξ ∈ J . In the regime v → 0, we may expand 1/αε as

1

αε(ξ, v)
=

1

αε
0(ξ)

(
1 +

〈∂ξψε
1, v〉

αε
0(ξ)

)
+ o(|v|) = 1 + 〈∂ξψε

1, v〉+ o(|v|).

Inserting in (2.4), we may rewrite the nonlinear equation for ξ as

(2.5)
dξ

dt
= θε(ξ)

(
1 + 〈∂ξψε

1, v〉
)
+ ρε[ξ, v],

where

θε(ξ) := 〈ψε
1,F [Uε]〉 and ρε[ξ, v] :=

1

αε(ξ, v)

(〈ψε
1,Qε〉+ 〈∂ξψε

1, v〉2
)
.

Using (2.5), equation (2.3) can be rephrased as

(2.6) ∂tv = Hε(x; ξ) + (Lε
ξ +Mε

ξ)v +Rε[v, ξ],

where

Hε(·; ξ) := Fε[Uε(·; ξ)]− ∂ξU
ε(·; ξ) θε(ξ),

Mε
ξv := −∂ξUε(·; ξ) θε(ξ) 〈∂ξψε

1, v〉,
Rε[v, ξ] := Qε[v, ξ]− ∂ξU

ε(·; ξ) ρε[ξ, v].
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Let us stress that, by definition, there holds

〈ψε
1(·; ξ), Hε(·; ξ)〉 = 0,

so that Hε(·; ξ) is the projection of Fε[Uε(·; ξ)] onto the space orthogonal to φε1(·; ξ).
Summarizing, the couple (v, ξ) solves the differential system (2.5)–(2.6) where the

initial condition ξ0 for ξ is such that

〈ψε
1(·; ξ0), u0 − U(·; ξ0)〉 = 0,

and the initial condition v0 for v is given by u0 − Uε(·; ξ0).
Neglecting the o(v) order terms, we obtain the system

(2.7)

⎧⎨
⎩

dζ

dt
= θε(ζ)

(
1 + 〈∂ζψε

1, w〉
)
,

∂tw = Hε(ζ) + (Lε
ζ +Mε

ζ)w

with initial conditions

(2.8) ζ(0) = ζ0 ∈ (−�, �) and w(x, 0) = w0(x) ∈ X.

From now on, we will refer to this system as the quasi-linearization of (2.5)–(2.6).
Our aim is to describe the behavior of the solution to (2.7) in the regime of small ε.

In short, the quasi-linearized system is determined by an appropriate combination
of the term Fε[Uε], measuring how far the function Uε is from being a stationary
solution, and the linear operator Lε

ξ, controlling at first order how solutions to (2.1)
depart from Uε when the latter is taken as initial datum. To state our first result, we
need to precise the assumptions on such terms.

H1. The family {Uε(·, ξ)} is such that Fε[Uε] belongs to the dual space of C(I)n

and there exists functions Ωε such that, denoting again with 〈·, ·〉 the duality relation,

|〈ψ(·),Fε[Uε(·, ξ)]〉| ≤ Ωε(ξ) |ψ|∞ ∀ψ ∈ C(I)n,

with Ωε converging to zero as ε→ 0, uniformly with respect to ξ ∈ J .
H2. The eigenvalues {λεk(ξ)}k∈N

of Lε
ξ are semi-simple, λε1(ξ) is simple, real, and

negative, and

Reλεk(ξ) ≤ min{λε1(ξ)− C,−C k2} for k ≥ 2,

for some constant C > 0 independent on k ∈ N, ε > 0, and ξ ∈ J .
H3. The eigenfunctions φεk(·; ξ) and ψε

k(·; ξ) of Lε
ξ and Lε,∗

ξ , normalized so that

〈ψε
1(·; ξ), ∂ξUε(·; ξ)〉 = 1 and 〈ψε

j , φ
ε
k〉 = δjk,

where δjk is the usual Kronecker symbol, are such that

(2.9)
∑
j

〈∂ξψε
k, φ

ε
j〉2 =

∑
j

〈ψε
k, ∂ξφ

ε
j〉2 ≤ C ∀ k

for some constant C independent on ε > 0 and ξ ∈ J .
The last assumption we require relates the term Ωε(ξ) to the first eigenvalue λε1(ξ)

of the linearized operator Lε
ξ at Uε(·; ξ). Formally, if Uε(·; ξ̄) is an exact stationary

solution, then

F [Uε(·; ξ)] = F [Uε(·; ξ)] −F [Uε(·; ξ̄)] ≈ Lε
ξ∂ξU

ε(·; ξ̄)(ξ̄ − ξ).
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If ∂ξU
ε is chosen to be approximately close to the first eigenfunction of Lε

ξ, then

〈ψ(·),F [Uε(·; ξ)]〉 = F [Uε(·; ξ)]−F [Uε(·; ξ̄)] ≈ λε1(ξ)〈ψ(·), ∂ξUε(·; ξ̄)〉(ξ̄ − ξ),

so that, heuristically, there exists a constant C > 0 such that

|〈ψ(·),F [U ε(·; ξ)]〉| ≤ C|λε1(ξ)||ψ|∞ ,

which gives the final form of our ultimate assumption.
Theorem 2.1. Let hypotheses H1–3 be satisfied. Additionally, assume that

(2.10) Ωε(ξ) ≤ C|λε1(ξ)|

for some constant C > 0 independent on ε > 0 and ξ ∈ J .
Then, denoted by (ζ, w) the solution to the initial-value problem (2.7)–(2.8), for

any ε sufficiently small, there exists a time T ε such that for any t ≤ T ε the solution
w can be decomposed as the sum w = z +R, where z is defined by

z(x, t) :=
∑
k≥2

wk(0) exp

(∫ t

0

λεk(ζ(σ)) dσ

)
φεk(x; ζ(t))

and the remainder R satisfies the estimate

(2.11) |R|
L2 ≤ C |Ωε|∞

{
exp

(
2

∫ t

0

λε1(ζ(σ))dσ

)
|w0|2

L2
+ 1

}

for some constant C > 0 independent on ε, T ε > 0.
Moreover, for initial data w0 sufficiently small in L2, the final time T ε can be

chosen of order |ln |Ωε|∞ | /|Ωε|∞ .
The proof of Theorem 2.1 is based on the following version of a standard nonlinear

iteration argument.
Lemma 2.2. Let f = f(t), g = g(t), and h = h(s, t) be continuous functions for

t ∈ [0, T ] for some T > 0, such that

f(t) ≥ 0, g(t) > 0, g decreasing, h(s, t) ≥ 0.

Let y = y(t) be a nonnegative function satisfying the estimate

y(t) ≤
∫ t

0

{
f(s) g(t) y2(s) + h(s, t)

}
ds

for any t ≤ T . If there holds

(2.12) sup
t∈[0,T ]

∫ t

0

g2(s) f(s) ds · sup
t∈[0,T ]

1

g(t)

∫ t

0

h(s, t) ds <
1

4

for any t ∈ [0, T ], then

y(t) ≤ 2 sup
τ∈[0,t]

∫ τ

0

h(s, τ) ds

for any t ∈ [0, T ].
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Proof of Lemma 2.2. The auxiliary function w(t) := g−1(t) y(t) enjoys the esti-
mate

w(t) ≤
∫ t

0

{
α(s)w2(s) + β(s, t)

}
ds,

where α(t) := f(t) g2(t) and β(s, t) = g−1(t)h(s, t). The quantity

N(t) := sup
τ∈[0,t]

w(τ)

is such that for any t ∈ [0, T ] there holds

N(t) ≤ AN2(t) +B,

where

A = A(T ) := sup
t∈[0,T ]

∫ t

0

α(s) ds, B = B(T ) := sup
t∈[0,T ]

∫ t

0

β(s, t) ds.

Since N(0) = 0, if 1− 4AB > 0, then

N <
1−√

1− 4AB

2A
=

2B

1 +
√
1− 4AB

≤ 2B.

In term of y, if (2.12) holds, then

y(t) < 2 g(t) sup
τ∈[0,T ]

1

g(τ)

∫ τ

0

h(s, τ) ds.

The final estimate follows from the monotonicity of the function g.
Proof of Theorem 2.1. Setting

w(x, t) =
∑
j

wj(t)φ
ε
j(x, ζ(t)),

we obtain an infinite-dimensional differential system for the coefficients wj

(2.13)
dwk

dt
= λεk(ζ)wk + 〈ψε

k, F 〉,

where, omitting the dependencies for shortness,

F := Hε +
∑
j

wj

{
Mε

ζ φ
ε
j − ∂ξφ

ε
j

dζ

dt

}
= Hε − θε

∑
j

(
aj +

∑
�

bj� w�

)
wj

and the coefficients aj, bjk are given by

aj := 〈∂ξψε
1, φ

ε
j〉 ∂ξUε + ∂ξφ

ε
j , bj� := 〈∂ξψε

1, φ
ε
�〉 ∂ξφεj .

Convergence of the series is guaranteed by assumption (2.9).
Differentiating the normalization condition on the eigenfunctions, we infer

〈∂ξψε
j , φ

ε
k〉+ 〈ψε

j , ∂ξφ
ε
k〉 = 0.
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Thus, for the coefficients aj there hold

〈ψε
k, aj〉 = 〈∂ξψε

1, φ
ε
j〉
(〈ψε

k, ∂ξU
ε〉 − 1

)
,

so that, in particular, 〈ψε
1, aj〉 = 0 for any j. Thus, (2.13) for k = 1 becomes

(2.14)
dw1

dt
= λε1(ζ)w1 − θε(ζ)

∑
�,j

〈ψε
1, bj�〉w� wj .

Now let us set

Ek(s, t) := exp

(∫ t

s

λεk(ζ(σ))dσ

)
.

As a consequence of hypothesis H2, there exists C > 0 such that Reλk(ξ) ≤ λ1(ξ)−
Ck2 for any k ≥ 2. Thus, the absolute value of Ek, k ≥ 2, can be estimated by

|Ek|(s, t) ≤ exp

(∫ t

s

Reλεk(ζ(σ))dσ

)
≤ E1(s, t) e

−Ck2(t−s).

From equalities (2.14) and (2.13), choosing w1(0) = 0, there follow

w1(t) = −
∫ t

0

θε(ζ)
∑
�,j

〈ψε
1, bj�〉w� wj E1(s, t) ds

wk(t) = wk(0)Ek(0, t)

+

∫ t

0

{
〈ψε

k, H
ε〉 − θε(ζ)

∑
j

(
〈ψε

k, aj〉+
∑
�

〈ψε
k, bj�〉w�

)
wj

}
Ek(s, t) ds

for k ≥ 2. Such expressions suggest introducing the function

z(x, t) :=
∑
k≥2

wk(0)Ek(0, t)φ
ε
k(x; ζ(t)).

From the representation formulas for the coefficients wk, since

|θε(ζ)| ≤ C Ωε(ζ) and |〈ψε
k, H

ε〉| ≤ C Ωε(ζ) {1 + |〈ψε
k, ∂ξU

ε〉|}

for some constant C > 0 depending on the L∞-norm of ψε
k, there holds

|w − z|2
L2

≤ C

(∫ t

0

Ωε(ζ)
∑
j

|〈ψε
1, ∂ξφ

ε
j〉| |wj |

∑
�

|〈∂ξψε
1, φ

ε
�〉| |w�|E1(s, t) ds

)2

+ C
∑
k≥2

(∫ t

0

Ωε(ζ)

(
1 + |〈ψε

k, ∂ξU
ε〉|+ |〈ψε

k, ∂ξU
ε〉|
∑
j

|〈∂ξψε
1, φ

ε
j〉||wj |

+
∑
j

|〈∂ξψε
k, φ

ε
j〉||wj |+

∑
j

|〈ψε
k, ∂ξφ

ε
j〉| |wj |

∑
�

|〈∂ξψε
1, φ

ε
�〉| |w�|

)
|Ek|(s, t)

)2

≤ C

(∫ t

0

Ωε(ζ)|w|2
L2
E1(s, t) ds

)2

+ C
∑
k≥2

(∫ t

0

Ωε(ζ)
(
1 + |w|2

L2

)|Ek|(s, t) ds
)2

.
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Since
√
a+ b ≤ √

a+
√
b, we infer

|w − z|
L2 ≤ C

∫ t

0

Ωε(ζ)|w|2
L2
E1(s, t) ds+ C

∑
k≥2

∫ t

0

Ωε(ζ)
(
1 + |w|2

L2

)|Ek|(s, t) ds

≤ C

∫ t

0

Ωε(ζ)

{
|w|2

L2
E1(s, t) +

(
1 + |w|2

L2

) ∑
k≥2

|Ek|(s, t)
}
ds.

The assumption on the asymptotic behavior of the eigenvalues λk can now be used
to bound the series. Indeed, there holds for some C > 0∑

k≥2

|Ek(s, t)| ≤
∑
k≥2

E1(s, t) e
−Ck2(t−s) ≤ C E1(s, t) (t− s)−1/2 e−C(t−s).

As a consequence, for the unknown w such that |w|
L2 ≤M for some M > 0, we infer

E1(t, 0)|w − z|
L2 ≤ C

∫ t

0

Ωε(ζ)
{
|w − z|2

L2
+ |z|2

L2
+ (t− s)−1/2 e−C(t−s)

}
E1(s, 0) ds.

Let us set

N(t) := sup
s∈[0,t]

|w − z|
L2 E1(s, 0).

Then, since |z|
L2 ≤ e−2C tE1(0, t)|w0|L2 , we infer

E1(t, 0)|w − z|
L2 ≤ C

∫ t

0

Ωε(ζ)N2(s)E1(0, s) ds

+ C

∫ t

0

Ωε(ζ)
{
e−4C(t−s)E1(0, t)

2|w0|2
L2

+ (t− s)−1/2 e−C(t−s)
}
E1(s, 0) ds

≤ C

∫ t

0

Ωε(ζ)N2(s)E1(0, s) ds+ C|Ωε|∞
(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)
since λ1 is negative. By assumption (2.10), λε1 ≤ −CΩε for some C > 0, hence∫ t

0

Ωε(ζ)N2(s)E1(0, s) ds ≤
∫ t

0

Ωε(ζ)N2(s) exp

(
−C

∫ s

0

Ωε(ζ) dσ

)
ds

≤ N2(t)

{
1− exp

(
−C

∫ t

0

Ωε(ζ) dσ

)}
,

so that we obtain the inequality

E1(t, 0)|w − z|
L2 ≤ CN2(t)

{
1− exp

(
−C

∫ t

0

Ωε(ζ) dσ

)}

+ C|Ωε|∞
(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)
.

Taking the supremum, we end up with the estimate

N(t) ≤ AN2(t) +B with

⎧⎪⎪⎨
⎪⎪⎩
A := C

{
1− exp

(
−C

∫ t

0

Ωε(ζ) dσ

)}
,

B := C|Ωε|∞
(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)
.
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Hence, as soon as
(2.15)

4AB = 4C2|Ωε|∞
(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)(
1− exp

(
−C

∫ t

0

Ωε(ζ) dσ

))
< 1,

there holds

N(t) ≤ 2B

1 +
√
4AB

≤ 2B = C|Ωε|∞
(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)
,

that means, in term of the difference w − z,

|w − z|
L2 ≤ C|Ωε|∞

(
E1(0, t)

2|w0|2
L2

+ 1
)
.

Condition (2.15) gives a constraint on the final time T ε. Since 1− e−C
∫ t
0
Ωε(ζ) dσ ≤ 1

and E1(0, t) ≤ 1, it is enough to require

4C2 |Ωε|∞
(
|w0|2

L2
+ E1(t, 0)

)
< 1

to assure condition (2.15) is satisfied. The latter constraint can be rewritten as

C exp

(
−
∫ t

0

Ωε(ζ) dσ

)
≤ exp

(
−
∫ t

0

λε1(ζ) dσ

)
= E1(t, 0) ≤ C

|Ωε|∞
− |w0|2

L2
,

so that we can choose T ε of the form

T ε :=
1

|Ωε|∞
ln

(
C

|Ωε|∞
− |w0|2

L2

)
∼ −C |Ωε|−1

∞ ln |Ωε|∞

for w0 sufficiently small.
As a consequence of the estimate (2.11), for |w0|L2 < M for some M > 0, the

function ζ satisfies

(2.16)
dζ

dt
= θε(ζ)

(
1 + r

)
with |r| ≤ C

(|w0|L2 e
−C t + |Ωε|∞

)
,

where the constant C depends also on M . In particular, if ε and |w0|L2 are small,
the function ζ = ζ(t) has similar decay properties of the function η, solution to the
reduced Cauchy problem

dη

dt
= θε(η), η(0) = ζ0.

This preludes to the following consequence of Theorem 2.1.
Corollary 2.3. Let hypotheses H1–3 and (2.10) be satisfied. Assume also

(2.17) s θε(s) < 0 for any s ∈ I, s �= 0 and θε′(ζ̄) < 0.

Then, for ε and |w0|L2 sufficiently small, the estimate (2.11) holds globally in time

and the solution (ζ, w) converges exponentially fast to (ζ̄, 0) as t→ +∞.
Proof. Thanks to assumption H1, for ε and |w0|L2 sufficiently small, estimate

(2.11) holds. Hence, for any initial datum ζ0, the variable ζ = ζ(t) satisfies (2.16)
and, as a consequence, it converges exponentially fast to ζ̄ as t → +∞, i.e., there
exists βε > 0 such that |ζ − ζ̄| ≤ |ζ0|e−βεt for any t under consideration.



3098 CORRADO MASCIA AND MARTA STRANI

Furthermore, from (2.13), we deduce

wk(t) = wk(0) exp

(∫ t

0

λεk dσ

)
+

∫ t

0

〈ψε
k, F 〉(s) exp

(∫ t

s

λεk dσ

)
ds.

Setting Λε
1 := sup{λε1(ζ) : ζ ∈ J}, by Jensen’s inequality, we infer the estimate

|w|2
L2
(t) ≤ C

{
|w0|2

L2
e2Λ

ε
1 t +

∑
k

(∫ t

0

〈ψε
k, F 〉(s) eΛ

ε
1(t−s) ds

)2
}

≤ C

{
|w0|2

L2
e2Λ

ε
1 t + t

∫ t

0

|F |2
L2
(s) e2Λ

ε
1(t−s) ds

}
.

Let νε > 0 be such that |F |
L2 (t) ≤ C e−νε t; then, if νε �= |Λε

1|, there holds

|w|2
L2
(t) ≤ C

{
|w0|2

L2
e2Λ

ε
1 t + t

(
e−2νε t + e2Λ

ε
1 t
)}

,

showing the exponential convergence to 0 of the component w.
Let us also stress that in the regime (ζ, w) ∼ (ζ̄ , 0), a linearization at the equi-

librium solution Uε(x; ζ̄) would furnish a more detailed description of the dynamics,
since the source term due to the approximation at an approximate steady state would
not be present. In fact, the description given by the quasi-linearization is meaningful
in the regime far from equilibrium and its aim is to describe the slow motion around
a manifold of approximate solutions.

3. Application to scalar viscous conservation laws. Next, our aim is to
show how the general approach just presented applies to the case of scalar conservation
laws with viscosity. Specifically, given � > 0, we consider the nonlinear equation

(3.1) ∂tu+ ∂xf(u) = ε ∂2xu x ∈ I := (−�, �)
with initial and boundary conditions given by

(3.2) u(x, 0) = u0(x), x ∈ I and u(±�, t) = u±, t > 0

for some ε > 0, u± ∈ R. We assume that the flux f and the data u± satisfy the
conditions

(3.3) f ′′(u) ≥ c0 > 0, f ′(u+) < 0 < f ′(u−), f(u+) = f(u−).

The single value u ∈ (u+, u−) such that f ′(u) = 0 is denoted by u∗. Without loss of
generality, we assume f(u∗) = 0.

To clarify the relevance of the requirements (3.3) and to justify the subsequent
choice for the manifold {Uε(·; ξ) : ξ ∈ J}, we propose a digression on the dynamics
determined by the problem (3.1)–(3.2) in the vanishing viscosity limit.

The hyperbolic dynamics. Setting ε = 0, (3.1) reduces to the first-order equa-
tion of hyperbolic type

(3.4) ∂tu+ ∂xf(u) = 0,

to be considered together with (3.2). The boundary conditions are understood in
the sense of Bardos–Le Roux–Nédélec [2], meaning that the trace of the solution
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at the boundary is requested to take values in appropriate sets. To be precise, let
u∗ ∈ (u+, u−) be such that f ′(u∗) = 0 and set

Ru :=

{
w if ∃w �= u such that f(w) = f(u),

u∗ if u = u∗.

Then, skipping the details (see [21]), the conditions u(±�, t) = u± translate into

u(−�+ 0, t) ∈ (−∞,Ru−)] ∪ {u−}, u(�− 0, t) ∈ {u+} ∪ [Ru+,+∞).

Since f(u+) = f(u−), there holds Ru± = u∓, and the conditions can be rewritten as

u(−�+ 0, t) ∈ (−∞, u+] ∪ {u−}, u(�− 0, t) ∈ {u+} ∪ [u−,+∞).

From the boundary conditions, it follows that characteristic curves entering in the
domain from the left side x = −�, respectively, from the right x = �, possess speed
f ′(u−), respectively, speed f ′(u+).

For (3.4) with conditions (3.2) a finite-time stabilization phenomenon holds, sim-
ilar to the one shown for the first time in [18] in the case of the Cauchy problem.

Theorem 3.1. Let u+ < 0 < u− and f be such that (3.3) holds. Then, for any
u0 ∈ BV(−�, �), the solution u to the initial-boundary value problem (3.4)–(3.2) is
such that for some T > 0 and ξ ∈ [−�, �], there holds

u(x, T ) = U
hyp
(x; ξ) := u−χ(−�,ξ)

(x) + u+χ(ξ,�)
(x)

for almost any x in I.
The proof of the statement relies on the theory of generalized characteristics,

introduced in [6]. The convexity assumption on the flux function f guarantees that
for any point (x, t) ∈ (−�, �) × (0,+∞) there exist minimal, respectively maximal,
backward characteristics, which are classical characteristic curves, hence straight lines
with slope f ′(u(x− 0, t)), respectively, f ′(u(x+ 0, t)).

By means of such a technique it is possible to follow the evolution of the curves

ζ−(t) := sup I−(t), ζ+(t) := inf I+(t),

where

I−(t) := {x ∈ I : u(y, t) = u− for any y ∈ (−�, x)} ∪ {−�},
I+(t) := {x ∈ I : u(y, t) = u+ for any y ∈ (x, �)} ∪ {�}.

As an illustrative example, let us first consider the case of a nonincreasing initial da-
tum u0. Then, for any t > 0, u(·, t) is nonincreasing. If ζ± are classical characteristics,
the difference between their speeds of propagation satisfies

dζ+
dt

− dζ−
dt

= f ′(u+)− f ′(u−)

≤ f(u)− f(u+)

u− u+
− f(u−)− f(u)

u− − u
=

f(u±)− f(u)

(u− − u)(u− u+)
�u� =: −Φ(u)

for any u ∈ (u+, u−). Since A := inf{Φ(u) : u ∈ (u+, u−)} is strictly positive, the
two curves intersect at a time T that is smaller than 2�/A.

The complete rigorous proof of Theorem 3.1 requires more technicalities and it is
reported here for completeness.
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Proof. Let u = u(x, t) be the solution to the initial-boundary value problem under
consideration with initial datum u0. From the definition, it follows that ζ− ≤ ζ+. We
are going to show that ζ−(T ) = ζ+(T ) for some T > 0.

1. There exists T0 > 0 such that u(x, t) ∈ [u+, u−] for any x ∈ (−�, �).
Indeed, let u be the solution to the Riemann problem for (3.4) with datum

ū0(x) =

{
u−, x < −�,
max{u−, supu0}, x > −�.

Hence, the restriction of ū to (−�, �)×(0,∞) is a supersolution to the initial boundary
value problem under consideration and, by comparison principle for entropy solutions,
we infer u(x, t) ≤ ū(x, t). Since ū(x, t) = u− for any x < f ′(u−) t− �, there holds

u(x, t) ≤ u− for x ∈ (−�, �) and t ≥ 2�/f ′(u−).

A similar estimate from below can be obtained by considering as a subsolution the
restriction of u to (−�, �)× (0,∞), where u is the solution to (3.4) with initial datum

ū0(x) =

{
min{u+, inf u0}, x < �,

u+, x > �.

From now on, we assume that the solution u takes values in the interval [u−, u+].
2. Assume that −� < ζ−(t) ≤ ζ+(t) < � for any t; then there exists T1 > 0 such

that u(ζ−(t) + 0, t) < u− and u+ < u(ζ+(t)− 0, t) for any t > T1.
If u is continuous at (ζ−(τ), τ) for some τ > 0, then u(ζ−(τ) + 0, t) = u−.

Therefore, the maximal backward characteristic from (ζ−(τ), τ) is the straight line
x = ζ−(τ) + f ′(u−)(t− τ). For τ > 2L/f ′(u−), such a curve intersects the boundary
x = −� at some σ ∈ (0, τ). By continuity, all of the maximal backward characteris-
tics from (ξ, τ) with ξ > ζ−(t) and sufficiently close to ζ−(τ) intersect the boundary
x = −� at some time σ∗(ξ) smaller than σ and close to it. Because of the boundary
conditions, this may happen if and only if u(ξ, τ) = u−. Hence, u(x, τ) = u− for
x ∈ (ζ−(τ), ζ−(τ) + ε) for some ε > 0, in contradiction with the definition of ζ−.
Thus, continuity of u at (ζ−(τ), τ) may happen only for τ ≤ 2L/f ′(u−). A similar
assertion holds for ζ+.

3. There exist T > 0 and ξ ∈ [−�, �] such that u(x, t) = U
hyp
(·; ξ) for any t ≥ T .

Given θ > 0, let Tθ := 2�/θ be such that

uθ− := u(ζ−(Tθ) + 0, Tθ) < u− and u+ < uθ− := u(ζ+(Tθ)− 0, Tθ).

Let xθ− be the maximal backward characteristic from (ζ−(Tθ), Tθ), whose equation is
x = ζ−(Tθ) + f ′(uθ−)(t − Tθ). If xθ− hits the right boundary x = � at some positive
time, the solution u coincides with U

hyp
(x; ζ−(Tθ)). Otherwise, there holds ζ−(Tθ)−

f ′(uθ−)Tθ < �, which gives

f ′(uθ−) >
ζ−(Tθ)− �

Tθ
≥ − 2�

Tθ
= −θ.

Similarly, let xθ+ be the maximal backward characteristic from (ζ+(Tθ), Tθ), whose
equation is x = ζ+(Tθ) + f ′(uθ+)(t − Tθ). If xθ+ does not intersect the left boundary
x = −� at some positive time, there holds f ′(uθ+) < θ.
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Hence, for any ε > 0, we can choose θ sufficiently large so that uθ− > u∗ − ε and
uθ+ < u∗ + ε. Thus, we have

dζ+
dt

− dζ−
dt

<
f(u+)− f(u∗ + ε)

u+ − u∗ − ε
− f(u−)− f(u∗ − ε)

u− − u∗ + ε
,

which is uniformly negative for ε sufficiently small. Hence, the curves ζ+ and ζ−
intersect at some finite positive time T > 0.

Adding viscosity. As soon as the viscosity term is switched on, i.e., for ε > 0,
the number of steady states for (3.1)–(3.2) drastically reduces with respect to the
corresponding hyperbolic case. Indeed, integrating by separation of variables the
ordinary differential equation for time-independent solutions to (3.1), it can be seen
that the stationary states of the problem are implicitly determined by the relation∫ u−

u(x)

ds

κ− f(s)
=
�+ x

ε
,

where κ ∈ (f(u±),+∞) is such that

Φ(κ) :=

∫ u−

u+

ds

κ− f(s)
=

2�

ε
.

Assumption (3.3) on the flux f imply that Φ is strictly decreasing and such that

lim
κ→f(u±)+

Φ(κ) = +∞, lim
κ→+∞Φ(κ) = 0.

Therefore, for any � > 0, there exists a unique steady state for (3.1)–(3.2).

Example 3.2. For the Burgers equation, i.e., f(u) = u2/2, the value u+ coincides
with −u− and Φ has the explicit form

√
2 tanh−1(u−/

√
2κ)/

√
κ, so that the value κ

determining the stationary solution is uniquely determined by the relation
√
2κ tanh(

√
2κ �/ε) = u−.

Given κ, the steady state is given by Uε
par

(x) :=
√
2κ tanh(−√

2κx/ε).

Following the general approach introduced in the previous section, we build a
one-parameter family of functions Uε = Uε(·; ξ) with ξ ∈ J converging to U

hyp
(·; ξ) as

ε → 0. There are many meaningful choices for Uε (see the traveling wave approach
in [7]); here, for J = I, we choose to match at a given point ξ ∈ I the two stationary
solutions of (3.1) in (−�, ξ) and (ξ, �), denoted by Uε− and Uε

+, satisfying the boundary
conditions

Uε
−(−�; ξ) = u−, Uε

−(ξ; ξ) = u∗ and Uε
+(ξ; ξ) = u∗, Uε

+(�; ξ) = u+,

where u∗ is such that f ′(u∗) = 0. Hence, we set

Uε(x; ξ) =

{
Uε
−(x; ξ), − � < x < ξ < �,

Uε
+(x; ξ), − � < ξ < x < �.

Given κ ∈ (f(u±),+∞) and u ∈ (u+, u−), let us define

Ψ∗(κ, u) =
∫ u

u∗

ds

κ− f(s)
.
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Similarly to the case of stationary states, the function Ψ∗ is such that

Ψ∗(·, u−) decreasing, Ψ∗(f(u−), u−) = +∞, Ψ∗(+∞, u−) = 0,

Ψ∗(·, u+) increasing, Ψ∗(f(u+), u+) = −∞, Ψ∗(+∞, u+) = 0,

so that for any ξ ∈ (−�, �) there are (unique) κε± = κε±(ξ) ∈ (f(u±),+∞) such that

(3.5) εΨ∗(κε±, u±)± � = ξ.

Correspondingly, functions Uε
± are implicitly given by

εΨ∗(κε±, U
ε
±(x; ξ)) + x = ξ.

By substitution, denoting by δx=ξ Dirac’s delta distribution concentrated at x = ξ,
there holds in the sense of distributions

(3.6) Fε[Uε(·; ξ)] = �∂xU
ε�

x=ξ
δ
x=ξ

=
1

ε

(
κε−(ξ)− κε+(ξ)

)
δ
x=ξ

,

with κε± implicitly defined by (3.5). As a consequence of the properties of the function
Ψ∗, the difference function ξ �→ κε−(ξ)− κε+(ξ) is monotone decreasing and such that

lim
ξ→±�∓

(
κε−(ξ) − κε+(ξ)

)
= ∓∞.

Then, there exists unique ξ∗ ∈ (−�, �) such that (κε− − κε+)(ξ∗) = 0 and such a value
is such that Uε(·; ξ∗) is the unique steady state of the problem.

From the bounds

f(u±) + f ′(u+)(u− u+) ≤ f(u) ≤ f(u±)
u∗ − u+

(u∗ − u), u ∈ [u+, u∗],

f(u±)− f ′(u−)(u− − u) ≤ f(u) ≤ f(u±)
u− − u∗

(u− u∗), u ∈ [u∗, u−],

we locate, approximately, the differences κε±(ξ)− f(u±),

−f ′(u+)(u∗ − u+)

exp{−f ′(u+)(� − ξ)/ε} − 1
≤ κε+(ξ)− f(u±) ≤ f(u±)

exp{f(u±)(� − ξ)/ε(u∗ − u+)} − 1

f ′(u−)(u− − u∗)
exp{f ′(u−)(� + ξ)/ε} − 1

≤ κε−(ξ)− f(u±) ≤ f(u±)
exp{f(u±)(� + ξ)/ε(u− − u∗)} − 1

.

Such bounds show that |κε− − κε+| is exponentially small as ε → 0+, uniformly in
any compact subset of (−�, �); therefore, for any δ ∈ (0, �), there exist C1, C2 > 0,
independent of ε, such that

(3.7)
∣∣�∂xUε�

x=ξ

∣∣ ≤ C1 e
−C2/ε ∀ ξ ∈ (−�+ δ, �− δ).

In particular, hypothesis H1, stated in section 2, is satisfied.
Going further, retracing the definitions previously introduced and setting aε :=

f ′(Uε), we consider the operators

Lε
ξv := εv′′ − (aε(·; ξ) v)′ Lε,∗

ξ v := εv′′ + aε(·; ξ) v′,

where the adjoint operator Lε,∗
ξ is considered with Dirichlet boundary conditions.
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For small ε and v, the dynamics of the parameter ξ is approximately given by

dξ

dt
≈ θε(ξ) := 〈ψε

1,F [Uε]〉,

where ψε
1 is the first eigenfunction of the adjoint operator Lε,∗

ξ satisfying the normal-
ization condition

(3.8) 〈ψε
1(·; ξ), ∂ξUε(·; ξ)〉 = 1.

For ε ∼ 0, the eigenfunction ψε
1 is close to the eigenfunction of L0,∗

ξ relative to the
eigenvalue λ = 0, with

a0(x; ξ) := f ′(u−)χ(−�,ξ)
(x) + f ′(u+)χ(ξ,�)

(x).

Hence, we obtain the representation formula

(3.9) ψε
1(x) ≈ C ψ0

1(x),

where

ψ0
1(x) :=

{
(1− eu+(�−ξ)/ε)(1− e−u−(�+x)/ε), x < ξ,

(1− e−u−(�+ξ)/ε)(1− eu+(�−x)/ε), x > ξ

for some C ∈ R. In the limit ε → 0, we obtain ψε
1 ≈ C, provided ξ is bounded away

from the boundaries ±�. With the approximation

Uε(x; ξ) ≈ U
hyp

(x; ξ) := u−χ(−�,ξ)
(x) + u+χ(ξ,�)

(x),

we infer

Uε(x; ξ + h)− Uε(x; ξ)

h
≈ − 1

h
�u�χ

(ξ,ξ+h)
(x),

so that we expect ∂ξU
ε to converge to −�u� δξ as ε → 0 in the sense of distribu-

tions. Hence, the normalization condition (3.8) gives the choice C = −1/�u� in (3.9).
Therefore, we deduce an approximate expression for the function θε,

θε(ξ) ≈ − 1

�u�
〈1,F [Uε]〉 = 1

ε �u�

(
κε+(ξ) − κε−(ξ)

)
.

Estimate (3.7) shows that the the function θε has order of magnitude e−C/ε.
Example 3.3. In the very special case f(u) = |u|, with u∗ = 0 and u+ = −u−,

the earlier estimates on κε± are exact, so that

κε+(ξ)

u−
= 1 +

e−(�−ξ)/ε

1− e−(�−ξ)/ε

κε−(ξ)
u−

= 1 +
e−(�+ξ)/ε

1− e−(�+ξ)/ε
.

In this case, the function θε is approximated by

θε(ξ) ≈ 1

2ε

(
e−(�+ξ)/ε

1− e−(�+ξ)/ε
− e−(�−ξ)/ε

1− e−(�−ξ)/ε

)
,

which gives θε(ξ) ≈ −ε−1 e−�/ε sinh(ξ/ε) in the regime ε→ 0+.
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Example 3.4. For the Burgers equation, i.e., f(u) = u2/2, there holds

Ψ∗(κ, u) = 2

∫ u

u∗

ds

2κ− s2
=

√
2√
κ

tanh−1

(
u√
2κ

)
.

Given ξ ∈ (−�, �), the values κε± can be approximated by κ̃ε± determined by

2ε

u−
tanh−1

(
−u−√
2κ̃ε+

)
+ � = ξ,

2ε

u−
tanh−1

(
u−√
2κ̃ε−

)
− � = ξ,

obtained by substituting the multiplicative term
√
2/
√
κε± with

√
2/
√
f(u±) = 2/u−.

By computation, we obtain the explicit expressions

κ̃ε+ =
u2−
2

1

tanh2 {u−(�− ξ)/2ε} , κ̃ε− =
u2−
2

1

tanh2 {u−(�+ ξ)/2ε} .

Since, for x, y > 0, there holds

1

tanh2(x/ε)
− 1

tanh2(y/ε)
=

4
(
e(y−x)/ε − e(x−y)/ε

)(
e(x+y)/ε − e−(x+y)/ε

)
(ex/ε − e−x/ε)2(ey/ε − e−y/ε)2

≈ 4
(
e−2x/ε − e−2y/ε

)
as ε→ 0+,

the function θε approaches

θε(ξ) ≈ 1

2ε u−

(
κ̃ε−(ξ) − κ̃ε+(ξ)

) ≈ 1

ε
u−
(
e−u−(�+ξ)/ε − e−u−(�−ξ)/ε

)
,

which corresponds to the formula determined in [28].
A corresponding formula describing the slow motion along the approximate in-

variant manifold in the case of isentropic Navier–Stokes equation has been derived in
[20].

4. Spectral analysis for scalar diffusion-transport operators. Our con-
cern in the present section is to establish a precise description on the location of the
eigenvalues of the linearized operator, in order to show that the general procedure
developed in section 2 is indeed applicable in the case of scalar conservation laws with
convex flux.

The problem of determining the limiting structure of the spectrum of the type
of second-order differential operators we deal with has been widely considered in the
literature. Among others, let us quote the approach, based on the use of Prüfer trans-
form, used in [5], in the context of metastability analysis for the Allen–Cahn equation.
Here, we prefer to follow the strategy implemented in [14], for the linearization at the
steady state of the Burgers equation. In what follows, we show that the same kind of
eigenvalues distribution holds in a much more general situation, the main ingredient
being the resemblance of the coefficient aε to a step function a0, jumping from a
positive to a negative value, as ε→ 0+.

Fixed ε > 0 and linearizing the scalar conservation law (3.1) at a given reference
profile Uε = Uε(x), satisfying the boundary conditions Uε(±�) = u±, we end up with
the differential linear diffusion-transport operator

(4.1) Lε
ξu := u′′ − (aε(x)u)′, u(±�) = 0,
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where aε = aε(x) := f ′(Uε(x)). The aim of this section is to describe the structure
of the spectrum σ(Lε

ξ) of the operator Lε
ξ for ε sufficiently small.

Given the function aε, let us introduce the self-adjoint operator

Mε
ξv := ε2 v′′ − bεv, v(±�) = 0,

where

(4.2) bε :=

(
1

2
aε
)2

+
1

2
ε
daε

dx
.

A straightforward calculation shows that if u is an eigenfunction of (4.1) relative to
the eigenvalue λ, then the function v(x) defined by

v(x) = exp

(
− 1

2ε

∫ x

x0

aε(y) dy

)
u(x)

(with x0 arbitrarily chosen) is an eigenfunction of the operator Mε
ξ relative to the

eigenvalue μ := ελ. Since Mε
ξ is self-adjoint, we can state that the spectrum of the

operator Lε
ξ is composed by real eigenvalues. Moreover, if u is an eigenfunction of

(4.1) relative to the first eigenvalue λε1, integrating in (−�, �) the relation Lε
ξu = λε1 u,

we deduce the identity

0 =

∫ �

−�

(Lε
ξ − λε1

)
u dx = ε

(
u′(�)− u′(−�))− λε1

∫ �

−�

u(x) dx.

Assuming, without loss of generality, u to be strictly positive in (−�, �) and normalized
so that its integral in (−�, �) is equal to 1, we get

λε1 = ε
(
u′(�)− u′(−�)) < 0.

Hence, for any choice of the function aε, there holds

σ(Lε
ξ) ⊂ (−∞, 0).

Our next aim is to show that under appropriate assumptions on the behavior of the
family of functions aε as ε→ 0+, it is possible to furnish a detailed representation of
the eigenvalues distributions for small ε. Specifically, we are interested in coefficients
aε behaving, in the limit ε→ 0+, as a step function of the form

a0(x) :=

{
a−, x ∈ (−�, ξ),
a+, x ∈ (ξ, �)

for some ξ ∈ (−�, �) and a+ < 0 < a−. We will show that, under appropriate
assumptions making precise in which sense aε “resemble” a0 for ε small, the first
eigenvalue λε1 turns to be “very close” to 0 for ε small, and all of the others eigenvalues
λεk, with k ≥ 2, are such that ελεk = O(1) as ε→ 0+.

Estimate from below for the first eigenvalue. We estimate the first eigen-
value με

1 of the operator Mε
ξ by means of the inequality

|με
1| ≤

|Mε
ξ ψ|L2

|ψ|
L2
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for smooth test function ψ such that ψ(±�) = 0. Let us consider as a test function
ψε(x) := ψε

0(x)−Kε(x), where

ψε
0(x) := exp

(
1

2ε

∫ x

ξ

aε(y) dy

)
and Kε(x) :=

1

2�

{
ψε
0(−�)(�− x) + ψε

0(�)(� + x)
}
.

A direct calculation shows that Mε
ξψ := bεK and, assuming the family bε to be

uniformly bounded, we infer

|με
1| ≤

|bεKε|
L2

|ψε
0 −Kε|

L2

≤ C
|Kε|

L2

|ψε
0|L2 − |Kε|

L2

=
C

|Kε|−1
L2

|ψε
0|L2 − 1

as soon as |ψε
0|L2 > |Kε|

L2 .

The opposite case being similar, let us assume ψ0(−�) ≥ ψ0(�). From the defini-
tion of Kε, it follows that

|Kε|2
L2

=
2�

3

{
ψ2
0(�) + ψ0(�)ψ0(−�) + ψ2

0(−�)
} ≤ 2� ψ2

0(−�).

Therefore, we deduce

|Kε|−2

L2
|ψε

0|2L2
≥ 2� ψ−2

0 (−�)
∫ �

−�

|ψε
0(x)|2 dx = 2� Iε,

where

Iε :=

∫ �

−�

exp

(
1

ε

∫ x

−�

aε(y) dy

)
dx.

Since aε converges to the step function a0 as ε→ 0+, it is natural to approximate the
latter integral in term of the corresponding one for a0:

Iε =

∫ �

−�

exp

(
1

ε

∫ x

−�

(aε − a0)(y) dy

)
exp

(
1

ε

∫ x

−�

a0(y) dy

)
dx ≥ e

−|aε−a0|
L1

/ε
I0.

Since, for ε small,

I0 =

∫ ξ

−�

ea−(x+�)/ε dx+ ea−(ξ+�)/ε

∫ �

ξ

ea+(x−ξ)/ε dx

= ε ea−(ξ+�)/ε
{ 1

a−

(
1− e−a−(ξ+�)/ε

)− 1

a+

(
1− ea+(�−ξ)/ε

)} ∼ [a]

a−a+
ε ea−(ξ+�)/ε,

the subsequent estimate holds

|Kε|−2

L2
|ψε

0|2L2
≥ 2 � e

−|aε−a0|
L1

/ε
I0 ≥ C1 e

C2/ε,

whenever |aε−a0|
L1 ≤ c0ε for some c0 > 0. Thus, we deduce for the first eigenvalue με

1

of the self-adjoint operatorMε
ξ the estimate |με

1| ≤ C1 e
C2/ε for some positive constant

C1, C2. As a consequence, since the spectrum σ(Lε
ξ) coincides with ε−1σ(Mε

ξ), the
next result holds.
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Proposition 4.1. Let aε be a family of functions satisfying the following as-
sumption:

A0. There exists C > 0, independent of ε > 0, such that

|aε|∞ + ε

∣∣∣∣daεdx
∣∣∣∣
∞

≤ C.

If there exist ξ ∈ (−�, �), a+ < 0 < a−, and C > 0 for which |aε − a0|
L1 ≤ Cε, then

there exist constants C, c > 0, such that −C e−c/ε ≤ λε1 < 0.
Let us stress that the request a+ < 0 < a− is essential, even if hidden in the proof.

If this is not the case, the term Kε would not be small as ε → 0+ and its L2 norm
would not be bounded by the L2-norm of ψε

0. In fact, the statement in Proposition
4.1 may not hold when a± have the same sign, the easiest example being the case
aε ≡ a+ = a− > 0.

The next example gives an heuristic estimate for the first eigenvalue λε1.
Example 4.2. Given −α < 0 < β and a± ∈ R, let us set I = (−α, β), [a] :=

a+ − a− and

a(x) = a−χ(−α,0)
(x) + a+χ(0,β)

(x).

Given λ > 0, let us look for functions u ∈ C(I), such that

(L − λ)u = ε u′′ − (a(x)u)
′ − λu = 0, u(−α) = u(β) = 0,

in the sense of distributions. Since a′ = [a] δ0, this amounts to finding two functions
u± such that

(L± − λ)u = ε u′′± − a± u′± + λu = 0, u−(−α) = u+(β) = 0,

and the following transmission conditions are satisfied:

u+(0)− u−(0) = 0 and ε
(
u′+(0)− u′−(0)

)− [a]u±(0) = 0.

The characteristic polynomial of L± is p±(μ;λ) := ε μ2 − a± μ− λ, with roots

μ±
− :=

a− ±Δ−
2ε

, μ±
+ :=

a+ ±Δ+

2ε
, where Δ± :=

√
a2± + 4 ε λ.

Assume λ > −(a±)2/4 ε. Choosing u± in the form

u−(x) = A−(eμ
+
−(α+x) − eμ

−
−(α+x)) and u+(x) = A+(e

−μ+
+(β−x) − e−μ−

+(β−x)),

and setting θ±− := eμ
±
−α, θ±+ := e−μ±

+β , there hold

u−(0) = A−(θ+− − θ−−), u′−(0) = A−(μ+
−θ

+
− − μ−

−θ
−
−),

u+(0) = A+(θ
+
+ − θ−+), u′+(0) = A+(μ

+
+θ

+
+ − μ−

+θ
−
+).

Therefore, the transmission conditions take the form of a linear system in A±⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(θ++ − θ−+)A+ − (θ+− − θ−−)A− = 0,{(
2ε μ+

+ − [a]
)
θ++ − (2ε μ−

+ − [a]
)
θ−+
}
A+

+
{
− (2ε μ+

− + [a]
)
θ+− +

(
2ε μ−

− + [a]
)
θ−−
}
A− = 0.
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After some manipulations, the determinant D = D(λ, ε) of system can be written as

D = − ([a]− [Δ]) θ+−θ
+
+ + ([a] + {Δ}) θ+−θ−+ + ([a]− {Δ}) θ−−θ++ − ([a] + [Δ]) θ−−θ

−
+ ,

where [Δ] := Δ+ −Δ− and {Δ} := Δ+ +Δ−.
Since

√
κ2 + 4 x = |κ|+ 2|κ|−1 x+ o(x), in the case a+ < 0 < a− there hold

{Δ} =
√
a2+ + 4 ελ+

√
a2− + 4 ελ = −[a]

(
1− 2 ελ

a+ a−

)
+ o(ελ),

[Δ] =
√
a2+ + 4 ε λ−

√
a2− + 4 ε λ = −{a}

(
1 +

2 ελ

a+a−

)
+ o(ελ),

as ελ→ 0, together with

ε ln(θ+−θ
+
+) =

1

2

{
(a− +Δ−)α − (a+ +Δ+)β

}
= a−α+

(
α

a−
+

β

a+

)
ελ+ o(ελ),

ε ln(θ+−θ
−
+) =

1

2

{
(a− +Δ−)α− (a+ −Δ+)β

}
= a−α− a+β +

(
α

a−
− β

a+

)
ελ+ o(ελ),

ε ln(θ−−θ
+
+) =

1

2

{
(a− −Δ−)α− (a+ +Δ+)β

}
= −

(
α

a−
− β

a+

)
ελε + o(ελ),

ε ln(θ−−θ
−
+) =

1

2

{
(a− −Δ−)α− (a+ −Δ+)β

}
= −a+β −

(
α

a−
+

β

a+

)
ελε + o(ελ).

Hence, for λ < 0 and ελ → 0, disregarding the exponentially small term θ−−θ
+
+ and

keeping only the principal term in the expansions, we infer

1

2
D ≈ −a+ea−α/ε +

[a] ελ

a+ a−
e(a−α−a+β)/ε + a−e−a+β/ε.

Therefore, D ≈ 0 for

(4.3) λε1 ≈ − a+a−
a+ − a−

1

ε

(
−a+ea+β/ε + a−e−a−α/ε

)

in the regime ελ small.
Asymptotic representation (4.3) permits verifying the relation between the first

eigenvalue of the linearized operator and the term Ωε, controlling the size of F [Uε]
(see (2.2)). Specifically, for the Burgers equation, (4.3) becomes

λ ≈ −1

ε
u2−e

−u−�/ε cosh(u−ξ/ε).

The term F [Uε] given in (3.6) for the Burgers equation (Example 3.4) is such that

Ωε(ξ) ≈ 2

ε
u2−
∣∣∣e−u−(�+ξ)/ε − e−u−(�−ξ)/ε

∣∣∣ = 4

ε
u2−| sinh(u− ξ/ε)| e−u−�/ε.

Therefore, the estimate

0 ≤ Ωε

|λε| ≈ 4| tanh(u− ξ/ε)| ≤ 4

holds and hypothesis (2.10) is verified.
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For general scalar conservation laws, it is still possible to obtain an analogous
bound. Indeed, for a± = f ′(u±), α = �+ ξ, and β = �− ξ, expression (4.3) becomes

λε1 ≈ −
(

1

f ′(u−)
− 1

f ′(u+)

)−1
1

ε

(
−f ′(u+)ef

′(u+)(�−ξ)/ε + f ′(u−)e−f ′(u−)(�+ξ)/ε
)

(compare with Lemma 3.2 in [7]). The bound for Ωε can be obtained by proceeding
as in section 2, by means of a more detailed estimate on the functions κε±, starting
from the inequalities

f(u) ≤ f(u+) + f ′(u+)(u− u+) +
1

2
c0(u− u+)

2, u ∈ [u+, u∗],

f(u) ≤ f(u−) + f ′(u−)(u − u−) +
1

2
c0(u− u−)2, u ∈ [u∗, u−].

A careful (and tedious) computation of the integrals in the corresponding approxi-
mated form for the implicit relation (3.5) leads to the bound

Ωε ≤ 1

ε

(
C+e

f ′(u+)(�−ξ)/ε + C−e−f ′(u−)(�+ξ)/ε
)
,

which, together with the asymptotic representation for λε1, guarantees the key require-
ment (2.10) in Theorem 2.1.

Estimate from above for the second eigenvalue. Controlling the location
of the second (and subsequent) eigenvalue needs much more care and, also, a number
of additional assumptions on the limiting behavior of the function aε as ε → 0+.
Precisely, we suppose that aε ∈ C0([−�, �]) satisfies the following hypotheses:

A1. The function aε is twice differentiable at any x �= ξ and

daε

dx
,
d2aε

dx2
< 0 < aε in (−�, ξ), and aε,

daε

dx
< 0 <

d2aε

dx2
in (ξ, �).

A2. For any C > 0 there exists c
0
> 0 such that, for any x satisfying |x−ξ| ≥ c

0
ε,

there hold

|aε − a0| ≤ C ε and ε

∣∣∣∣daεdx
∣∣∣∣ ≤ C.

A3. There exist the left/right first order derivatives of aε at ξ and

lim inf
ε→0+

ε

∣∣∣∣daεdx (ξ±)

∣∣∣∣ > 0.

As a consequence, the function bε+ελε satisfies a number of corresponding properties,
listed in the next statement.

Lemma 4.3. Let the family aε be such that hypotheses A1–3 are satisfied, and let
λε < 0 be such that

inf
ε>0

ελε > −1

4
α2

0
, where α

0
:= min{|a−|, |a+|}.

Then there exist ε
0
> 0 such that, for ε < ε

0
, the functions bε + ελε, with bε defined

in (4.2), enjoy the following properties:
B1. The function bε + ελε is decreasing in (−�, ξ) and increasing in (ξ, �).
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B2. There exist C, c > 0, such that, for any x with |x − ξ| ≥ c ε, there holds
bε + ελε ≥ C > 0.

B3. There exist the left/right limits of bε + ελε at ξ and

β := lim sup
ε→0+

(
bε(ξ±) + ελε

)
< 0.

Proof. Property B1. is an immediate consequence of assumption A1, since

d

dx
(bε + ελε) =

1

4
aε
daε

dx
+

1

2
ε
d2aε

dx2
.

From A2, given C > 0, for x ≤ ξ − c
0
ε, there holds

bε + ελε ≥ 1

4
(aε + a0)(aε − a0)− 1

2
ε

∣∣∣∣daεdx
∣∣∣∣+ ελε +

1

4
a2−

≥ ελε +
1

4
α2

0
− 1

2

(
1 + |a0| ε+ 1

2
C ε2

)
C.

From such an inequality, by choosing C > 0 sufficiently small, and combining with an
analogous estimate on (ξ + c ε, �), property B2 follows.

For what concerns B3, we observe that, since aε(ξ) = 0 and λ ≤ 0, there holds

lim sup
ε→0+

(
bε(ξ±) + ελε

) ≤ lim sup
ε→0+

1

2
ε
daε

dx
(ξ) = − lim inf

ε→0+
ε

∣∣∣∣daεdx (ξ±)

∣∣∣∣ < 0,

thanks to A3.
For later reference, we denote by yε± the zeros of bε + ελε, with −� < yε− < ξ <

yε+ < �. Since property B2 holds, we deduce that |yε± − ξ| ≤ c
0
ε.

Assume the hypothesis of Lemma 4.3 to hold, and let λε2 and με
2 = ε λε2 be the

second eigenvalues of the operators Lε
ξ and Mε

ξ, respectively, with corresponding
eigenfunctions φε2 and ψε

2. Such eigenfunctions are linked together by the relation

(4.4) ψε
2(x) = A exp

(
− 1

2ε

∫ x

x∗
aε(y) dy

)
φε2(x)

for some constants A and x∗. Since λε2 is the second eigenvalue, the functions φε2 and
ψε
2 possess a single root located at some point xε0 ∈ (−�, �). The sign properties of
bε +με

2 described in Lemma 4.3 imply that xε0 ∈ (yε−, yε+). Then, φε2 and ψε
2 restricted

to the intervals (−�, xε0) and (xε0, �) are eigenfunctions relative to the first eigenvalue
of the same operator considered in the corresponding intervals and with Dirichlet
boundary conditions.

From now on, we drop, for shortness, the dependence on ε of λ2, φ2, ψ2, x0. We
assume, without loss of generality, x0 ≥ ξ and we restrict our attention to the interval
J = (x0, �). Integrating on J , we deduce

λ2

∫ �

x0

φ2 dx = ε
(
φ′2(�)− φ′2(x0)

)
< −ε φ′2(x0),

having chosen φ2 positive in J . Assuming ψ2 to be given as in (4.4) with A = 1 and
x∗ = x0, and normalized so that maxψ2 = 1, from the latter inequality we infer the
inequality

(4.5) |λ2| > ε I−1
ε ψ′

2(x0),
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where

I :=

∫ �

x0

exp

(
1

2ε

∫ x

x0

aε(y) dy

)
dx.

Our next aim is to deduce an estimate from above on Iε and an estimate from below
for ψ′

2(x0), in order to get control on the size of the second eigenvalue λ2.
From the definition of Iε, since x0 ≥ ξ, it follows that

Iε ≤ e
|aε−a0|

L1
/2ε
∫ �

x0

ea+(x−x0)/2ε dx =
2ε

|a+| e
|aε−a0|

L1
/2ε(

1− ea+(�−x0)/2ε
)

≤ 2ε

|a+| e
|aε−a0|

L1
/2ε ≤ C ε,

whenever |aε − a0|
L1 ≤ C ε. Thus, estimate (4.5) provisionally becomes

(4.6) |λ2| > C ψ′
2(x0)

for some positive constant C, independent on ε.
Let the value xM be such that ψ2(xM ) = 1, minimum with such property. From

the assumptions on the function bε + ε λε, it follows that xM ∈ (x0, y+). Then there
exists xL ∈ (x0, xM ) such that

ψ′
2(xL) =

1

xM − x0
≥ 1

y+ − ξ
≥ 1

c0ε
.

Since the function ψ2 is concave in the interval (x0, y+), we deduce

ψ′
2(x0) ≥ ψ′

2(xL) ≥
1

c
0
ε
.

Plugging into (4.6), we end up with |λ2| ≥ C/ε for some C independent on ε.
As a consequence, we can state a result relative to the second eigenvalue λ2.
Proposition 4.4. Let aε be a family of functions sastisfying A1–3. Then there

exists C > 0 such that λε2 ≤ −C/ε for any ε sufficiently small.

Spectral estimates. Collecting the results of Propositions 4.1 and 4.4 gives a
complete description for the spectrum of operator Lε

ξ for small ε, under assumptions
A0-1–3 on the family aε.

Corollary 4.5. Let aε be a family of functions satisfying the assumptions A0-
1–3 for some ξ ∈ (−�, �), a+ < 0 < a−. Then there exists C > 0 such that

λεk ≤ −C/ε and − Ce−C/ε ≤ λε1 < 0

for any k ≥ 2.
Hypotheses A0-1–3 are satisfied in the case of a family of function aε that is a

(small) perturbation of a function āε with the form

āε(x) = A−

(
x− ξ

ε

)
χ

(−L,ξ)
(x) +A+

(
x− ξ

ε

)
χ

(ξ,L)
(x)

for some decreasing smooth bounded functions A±, bounded together with their first-
and second-order derivatives, and such that A±(±∞) = a± and A′

±(±∞) = 0.
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