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Abstract: Natural Killer (NK) cells play a pivotal role in the immunosurveillance of Multiple Myeloma
(MM), but it is still undefined whether the NK cell functional properties underlying their protective
activity against MM are confined to distinct NK cell populations. Interestingly, herein we report that
the CD56lowCD16low NK cell subset displayed higher cytolytic activity compared to the other NK cell
subsets (i.e., CD56highCD16+/−, CD56lowCD16high) against MM cells and its activity was impaired in
MM patients. Decreased DNAM-1 expression levels were observed on the CD56lowCD16low NK cells
during MM progression. Evaluating NK cell subset frequency after autologous hematopoietic stem
cell transplantation, we found that CD56lowCD16low NK cells recovered earlier after transplantation.
Overall, our data denote a key role of CD56lowCD16low subpopulation in the killing of MM cells
and suggest that the reconstitution of CD56lowCD16low subpopulation after HSCT could be a useful
approach of adoptive immunotherapy in the treatment of relapsed/refractory MM patients.
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1. Introduction

Natural Killer (NK) cells are innate immune effector lymphocytes with a pivotal role in the
immune response against cancer cells. NK cell killing of cancer cells depends on the integration
of intracellular signaling cascades initiated by the engagement of different cell-surface inhibitory
and activating receptors [1]. Multiple myeloma (MM) is a clonal B cell malignancy characterized by
expansion of plasma cells (PCs) in the bone marrow (BM) [2]. At present, it is still an incurable
disease with a median survival not exceeding five years, and its prognosis has been recently
meliorated by the use of autologous hematopoietic stem cell transplantation (HSCT) and by new
immunochemotherapeutic approaches [3,4]. Among immune cells that play a role in the surveillance
of MM, NK cells have been considered important since they are able to recognize and kill tumor
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cells. In this regard, among the activating receptors expressed by NK cells, NKG2D, DNAM-1
(CD226) and NKp30 are emerging as key receptors for the recognition of MM cells, being engaged
by their ligands expressed by tumor cells [5–7] and thus triggering NK cell cytotoxicity [5,7,8].
Due to their anti-myeloma properties, recent interest in the use of NK cells in seeking novel
immunotherapeutic approaches for this malignancy has emerged [9–12]. To this regard, the usage
of anti-SLAMF7/CD319 monoclonal antibody elotuzumab exerts its anti-MM activity mainly via
NK cell-mediated antibody dependent cellular cytotoxicity (ADCC) through the CD16 receptor and
the triggering of CD319/SLAMF7 on NK cells [13,14]. However, it is still undefined whether the
functional properties underlying NK cell protective activity against MM are confined to distinct NK
cell populations. In this regard, in humans, two major NK cell subsets have been described based on
the cell surface density of the low-affinity Fc-receptor γ IIIA (CD16) involved in the NK cell-mediated
antibody-dependent cellular cytotoxicity (ADCC), and the neural cell adhesion molecule (NCAM,
CD56); CD56lowCD16high cells represent 90% of circulating peripheral blood (PB) NK cells and are
able to mediate natural cytotoxicity and ADCC while, CD56highCD16+/− NK cells constituting 10% of
PB NK cells and are the main cytokine producers. Although it is still debated whether these subsets
represent terminally differentiated NK cells or NK cells at a different stage of maturation, several
evidences show that CD56high NK cells represent a more immature stage of differentiation able to
generate CD56lowCD16high in in vitro experiments and humanized mouse models [15–17].

Recently, a subset of NK cells with low expression levels of both CD56 and CD16 (CD56lowCD16low)
has been described in the BM and PB of pediatric healthy donors and leukemic transplanted patients [18–20].
This subset is more abundant in BM with respect to PB and even if, according to the receptor surface
phenotype, could represent an intermediate stage of differentiation between CD56highCD16+/− and
CD56lowCD16high, CD56lowCD16low NK cells are a multifunctional subset endowed with a potent
cytotoxic ability against human HLA class-I-deficient K562 erytroleukemia target cells and leukemia blasts
and with a higher ability to produce IFNγ [18,19,21]. Herein we analyzed during MM progression:
(i) the distribution of distinct NK cell subsets (i.e., CD56highCD16+/−, CD56lowCD16low and
CD56lowCD16high) in the BM and PB from MM patients at different disease states and the expression
levels of NKG2D, DNAM-1 and NKp30 on these populations; (ii) the functional capability of these
distinct NK cell subsets to recognize and kill MM cells and their activity in the course of MM
progression; (iii) the distribution and the functionality of these three subsets after autologous HSCT.

2. Results and Discussion

2.1. Patient Characteristics

A cohort of 72 MM patients at different states of the disease with age ranged between 41 and 87 years,
and a percentage of malignant plasma cells (PCs) between 4% and 67% were enrolled. In this cohort of
patients, 19 displayed a monoclonal gammopathy of undetermined significance (MGUS), 18 were classified
as Smoldering, and 35 had symptomatic MM (18 at onset and 17 at relapse) (Table 1 and Table S1).

Table 1. Clinical characteristics of the studied MM patient.

State Disease Gender
Age Tumor Burden (% PCs)

Range Mean SD Range Mean SD

MGUS
Male 12

41–79 63.37 11.54 5–52 5.22 3.61
Female 7

Smoldering Male 4
49–87 70.61 10.05 4–60 19.89 13.97

Female 14

Onset
Male 8

41–79 63.35 11.11 6–67 31.56 18.53
Female 10

Relapse Male 9
55–84 70.06 8.47 5–52 32.7 17.51

Female 8

PCs: plasma cells; MGUS: monoclonal gammopathy of undetermined significance.
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2.2. CD56lowCD16low NK Cell Subset Is Enriched in BM from MM Patients

We first analyzed the distribution of the three distinct NK cell subsets: CD56highCD16+/−,
CD56lowCD16low and CD56lowCD16high in the BM and PB of MM patients (Figure 1A). Our findings
show no significant differences between total NK cells from the BM and PB samples of MM patients at
different disease stages. However, we found a significant reduction of the CD56lowCD16high NK cell
subset accompanied by a corresponding increase of the CD56lowCD16low NK cells in the BM when
compared to PB in all MM states (Figure 1B). The higher expression level of CXCR4 chemokine receptor
shown by CD56lowCD16low NK cell subset may account for their preferential retention in the BM [21].
In addition, we have previously shown that CXCR4 expression does not change on NK cells from MM
patients at different disease stages, even though its ligand, the stromal cell derived factor-1 (SDF-1),
decreased during MM progression [22]. Furthermore, assuming that the distinct NK cell subsets (i.e.,
CD56lowCD16low, CD56highCD16+/−, CD56lowCD16high) represent different maturation stages of NK
cells, it is conceivable to hypothesize that higher frequency of the CD56lowCD16low NK cells in the BM
paralleled by increased frequency of CD56lowCD16high NK cells in the PB is the result of an impaired
NK cell differentiation in the tumor microenvironment, as previously observed in patients affected by
acute myeloid leukemia (AML) [19]. We also found a different distribution of CD56highCD16+/− NK
cell subset between BM and PB in relapsed patients with a significant increase in the BM (Figure 1B).
Interestingly, we have previously shown that relapsed patients showed the highest level of soluble
IL-15 in vivo [23]. This cytokine is important in the BM tumor microenvironment by exerting opposite
effects: Promoting an autocrine loop for myeloma cell survival and sustaining NK cell proliferation
through its direct or exosome-mediated trans-presentation [23]. The ability of IL-15 to preferentially
promote the expansion of CD56highCD16+/− NK subset may in part explain the increased percentage
of this subset in the BM of relapsed patients [24].
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Figure 1. Natural Killer (NK) cell subset distribution in bone marrow (BM) and peripheral blood
(PB) of multiple myeloma (MM) patients at different states of the disease. Representative dot plots
of NK cells derived from PB and BM of MM patient after CD138+ cell gate exclusion, by gating on
CD45+CD56+CD3− cells were shown. NK cell subsets were analyzed considering the expression
levels of CD56 and CD16 (A). Percentage of total NK cells and NK cell subsets in PB (white circle)
and BM (black circle) of MM patients at different states of the disease was shown (B) (MGUS, n = 19;
Smoldering, n = 18; Onset, n = 18; Relapse, n = 17) **** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05.
The most significant differences in the NK cell distribution between PB e BM were mainly observed for
the CD56low CD16low subset in the monoclonal gammopathy of undetermined significance (MGUS)
and Smoldering states.
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2.3. BM CD56lowCD16low NK Cells from MM Patients Show a Decreased Expression of DNAM-1 and NKp30

To phenotypically characterize both total NK cells and NK cell subsets in MM patients,
we evaluated the expression levels of three different activating NK cell receptors namely NKG2D,
DNAM-1 (CD226) and NKp30 involved in the recognition and killing of MM. Interestingly, we observed
a significant decrease in NKp30 expression levels on BM CD56highCD16+/− and CD56lowCD16low

NK cell subsets at all stages of the disease and also a considerable lower expression of this receptor
on the CD56lowCD16low subpopulation (Figure 2). Similarly, a reduction of NKp30 was reported in
the context of other haematological malignancies [25,26] and was ascribed to the presence of TGF-β,
a cytokine known to downregulate NKp30 expression [27]. In regard to DNAM-1, similarly to NKp30,
we observed a significant reduction of the expression of this receptor on BM CD56highCD16+/− and
CD56lowCD16low NK cell subsets at all the disease states and also a considerable lower expression
of this receptor was detected on CD56lowCD16low subpopulation (Figure 2). Interestingly, we also
noticed a significant decrease of DNAM-1 expression levels during MM progression only on the
CD56lowCD16low NK cell subset (Figure 2). A recent report has shown that in a mouse model,
DNAM-1 played an important role in the surveillance of MM and was required for optimal response
to different chemotherapeutic agents namely bortezomib and cyclophosphamide [28]. In line with
these observations, the expression of DNAM-1 ligands, CD155 and CD112, detected on human
primary malignant PCs and MM cell lines [5,7] were upregulated in response to bortezomib and other
drugs [5,9,10,29,30]. It should be taken into consideration that the reduced DNAM-1 expression levels
during MM progression could be dependent on the presence of its ligands on cancer cells [31,32] and
might be associated with an impairment of NK cell-mediated immunosurveillance, as previously
observed in myelodysplastic syndrome [33]. Interestingly, beyond MM cells, the DNAM-1/CD155
axis has been also reported to play a key role in the NK cell dependent killing of other haematological
malignancies, including acute myeloid leukemic cells [34]. Another important consideration relies on
the fact that DNAM-1 expression has been described to be associated with NK cell maturation, being
expressed at lower levels on the most immature cells and tumor microenvironment could substantially
affect this process [18]. In relation to NKG2D, its levels were almost similar on NK cells derived from
BM and PB in all the disease states and as shown in Figure 2, a very heterogeneous expression of this
receptor, especially on CD56lowCD16low, CD56highCD16+/− NK cells, was found. Previously, Fauriat
and co-workers have shown lower but very variable levels of NKG2D expression on PB NK cells from
MM patients, when compared to healthy donors [35], while in another study a preferential reduction of
NKG2D was observed only on BM NK cells [36]. These discrepancies could be related to the different
methodologies and techniques used to identify the cells and to the fact that NKG2D expression is largely
modulated by a plethora of factors, including both cytokines [37–39] and soluble ligands [40,41].

2.4. CD56lowCD16low NK Cell Subset Is the Major Cytolytic Population Against MM Cells and Is Impaired in
MM Patients

Next, since it has been described that the CD56lowCD16low NK cell subset represents the major
cytotoxic NK cell population against human HLA class-I-deficient K562 target or acute leukemia
blast cells [18], we further investigated the capability of these cells to recognize and kill MM cells.
To this aim, three different MM cell lines, SKO-007(J3), ARK and ARP, and primary malignant PCs
were used as targets in a degranulation assay. As shown in Figure 3A, the CD56lowCD16low NK
cell subset was endowed with the higher capability to kill not only the highly sensitive K562 cell
line but also MM cells even though at different extent, thus strongly suggesting that this subset
plays a key role in the recognition and killing of MM cells (Figure 3A and Figure S1). In order to
evaluate whether the CD56lowCD16low NK cell subset functions could be affected in MM patients,
we performed a degranulation assay using PB cells isolated from healthy donors or MM patients
at different disease states. As shown in Figure 3B, we observed a general impairment of NK cell
degranulation in MM patients when compared to total NK cells derived from the healthy donors.
Interestingly, the CD56lowCD16low NK cell subset showed a significant reduction of its degranulation
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capability at distinct disease states, including MGUS (Figure 3B). Similar levels of NK cell degranulation
were also observed in BM NK cells from MGUS and MM patients (Figures S2 and S3).Cancers 2018, 10, x 5 of 11 
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Figure 2. BM and PB NK cell subsets receptor profile of MM patients during disease progression. FACS
analysis of surface expression of NKG2D (A), NKp30 (B) and DNAM-1 (C) on total NK cells and NK cell
subsets in PB (white histograms) and BM (black histograms) of MM patients at different state disease
(MGUS, n = 19; Smoldering, n = 18; Onset, n = 18; Relapse, n = 17) was shown. Values are expressed as
mean of mean fluorescence intensity (MFI) and error bars represent SD. **** p < 0.0001; ** p < 0.01; * p < 0.05.Cancers 2018, 10, x 6 of 11 
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Figure 3. NK cell subset degranulation in MM patients. PBMCs derived from healthy donors were
incubated for two hours with distinct targets as indicated, the K562 cell line, three MM cell lines
(i.e., SKO-00(J3), ARP and ARK) and primary malignant plasma cells (PCs). Cells were harvested and
stained with anti-CD3, anti-CD56, anti-CD16 and anti-CD107 antibodies. Values corresponded to the
mean +/−SD of the percentage of CD107+ cells of at least three experiments are shown (A). Degranulation
assay performed as described in panel A using PBMCs derived from patients at different state disease
as indicated. Values are expressed as mean percentage of CD107+ cells and error bars represent SD (B).
** p < 0.01; * p < 0.05. Healthy donors, n = 6; MGUS, n = 6; Smoldering, n = 4; Onset, n = 5; Relapse, n = 4).
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2.5. CD56lowCD16low NK Cells Expanded Early After Autologous HSCT in MM Patients

High-dose melphalan followed by autologous hematopoietic stem cell transplantation (HSCT)
represents a common therapeutic approach in relapsed/refractory MM patients to prolong progression
free survival [42]. Thus, we further investigated the recovery of NK cell subsets and their functional
capability after autologous HSCT in MM patients. NK cell subsets were analysed at different times
upon transplantation. Our findings show that the frequency of the CD56lowCD16low NK cell subset
reaches a peak starting from the 2nd week from the transplant and returned to basal levels after
four weeks (Figure 4A,B). On the other side, CD56highCD16low cells expanded earlier and their
percentage remained considerably high after four weeks from the transplant in accordance with
previous studies [43]. In regard to the CD56lowCD16high NK cells, their percentage was still below
the basal values after four weeks, suggesting that this subset takes more time to develop. In terms of
functionality, a general impairment of NK cell degranulation was observed after four weeks from the
transplant [44] and as previously reported [45]. Several studies have shown that despite improved
outcomes, relapse after autologous HSCT is frequent in the majority of MM patients [42,46]. Killer
immunoglobulin-like receptor (KIR)-ligand mismatched NK cells are determinant in achieving durable
remission after haplo-HSCT for acute myeloid leukaemia (AML), exerting a potent anti-leukemia
effect [47]. Interestingly, the CD56lowCD16low NK cell subset has the most rapid and abundant
recovery in terms of functional activity with respect to the other NK cell subsets after haplo-HSCT in
leukemia patients. Indeed, these cells exhibit the highest percentage of CD107+ cells [19] and might
strongly contribute to the graft versus leukemia (GVL) effect. Emerging evidence has shown that
infusion of allogeneic KIR-mismatched NK cells should be considered in relapsed MM patients with
high-risk myeloma and in those relapsing after novel agent-based therapies or early after an autologous
HSCT [48,49]. In view of the fact that CD56lowCD16low NK cells showed the higher cytolytic activity
against MM cells, our data strongly suggest that the reconstitution of CD56lowCD16low subpopulation
after HSCT could be a useful approach of adoptive immunotherapy especially in the treatment of
relapsed MM patients.
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Figure 4. NK cell subset distribution after autologous HSCT. Analysis of NK cell subsets derived
from PB of MM patients after transplant. Representative dot plots of NK cell subset distribution on
CD45+CD56+CD3- cells derived from three patients (P1, P2 and P3) at different time after transplant
were shown (A). Percentage of CD56highCD16+/−, CD56lowCD16low and CD56lowCD16high of four
different MM patients (P1, P2, P3 and P4) after two weeks from transplantation. Each symbol represents
a patient (B).
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3. Materials and Methods

3.1. Clinical Samples

PBMCs and BM samples derived from MM patients enrolled at the Division of Hematology
(“Sapienza” University of Rome) and control PBMCs were obtained from age-matched healthy donors.
All MM patients were classified according to the disease state (Table 1 and Table S1). The BM aspirates
and the peripheral blood samples were processed as previously described [5,11]. In some experiments,
primary malignant plasma cells were purified from BM aspirates using anti-CD138 magnetic beads
(Miltenyi Biotec, Auburn, CA, USA) and more than 95% of the purified cells were CD138+CD38+.
In regard to patients undergoing autologous HSCT, they received a high-dose of melphalan (MEL)
before HSCT infusion.

3.2. Cell Lines

The human MM cell lines SKO-007(J3), ARK and ARP were provided by P.Trivedi (“Sapienza”
University of Rome). The MM cell lines and the human chronic myeloid leukemia cell line K562
were maintained at 37 ◦C and 5% CO2 in RPMI 1640 (Life Technologies, Gaithersburg, MD, USA)
supplemented with 10% FCS. All cell lines were mycoplasma free (EZ-PCR Mycoplasma test kit;
Biological Industries, Cromwell, CT, USA).

3.3. Ethics Statement

Informed and written consent in accordance with the Declaration of Helsinki was obtained from
all patients, and approval was obtained from the Ethics Committee of the Sapienza University of Rome
(Rif.3373/250914).

3.4. Immunofluorescence and FACS Analysis

Analysis of activating receptors on NK cells were performed on PB and BM samples using a
gating strategy on CD138-CD45+CD56+CD3-CD16+/− cell after CD138+ cell (corresponding to PCs)
gate exclusion (Figure 1A). The samples were stained with anti-CD138/FITC, anti-CD3/APC-H7,
anti-CD56/PE, anti-CD45/PE-Cy7, anti-CD16/PerCP, anti-NKG2D/APC, anti-DNAM-1/FITC (BD
Biosciences, San Jose, CA, USA) and anti-NKp30/APC (BioLegend, San Diego, CA, USA) for 25 min at
4 ◦C [50]. Expression levels of NK cell receptors on NK cell subsets derived from healthy PB donors
are shown in Figure S4.

All the samples were acquired using a FACSCanto II (BD Biosciences, San Jose, CA) and data
analysis was performed using the FlowJo 9.3.2 program (TreeStar, Ashland, OR, USA).

3.5. Ex-vivo Degranulation Assay

As the source of effector cells, we used both PBMCs and BM samples derived from MM patients
at different state disease and PBMCs from healthy donors. K562 were used as target cells that were
co-incubated with effector cells in complete medium at 2.5:1 effector/target (E/T) ratio for 2 h at 37 ◦C
and 5% CO2 [11]. In some experiments, different human cell lines such as SKO-007(J3), ARK and
ARP and primary malignant plasma cells were used as targets. Thereafter, cells were washed with
PBS/2% FCS and stained with the lysosomal marker CD107a/APC (BD Biosciences, San Jose, CA) and
anti-CD3/APC-H7, anti-CD56/PE, anti-CD45/PE-Cy7, anti-CD16/PerCP for 45 min at 4 ◦C. All the
samples were acquired using a FACSCanto II (BD Biosciences, San Jose, CA) and data analysis was
performed using the FlowJo 9.3.2 program (TreeStar, Ashland, OR, USA).

3.6. Statistical Analysis

In all the experiments, statistic was performed using the unpaired Student t-test to compare the
different states of MM, while paired Student t-test were used to compare PB and BM, * < 0.05; ** < 0.01;
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*** < 0.001; **** < 0.0001. Statistical analyses were performed using PRISM 7.0a (GraphPad, La Jolla,
CA, USA).

4. Conclusions

Recent interest in the use of NK cells for novel immunotherapeutic approaches for multiple
myeloma has emerged. However, it is still undefined whether the functional properties underlying
NK cell protective activity against MM are confined to distinct NK cell populations. Our findings
denote a key role of CD56lowCD16low subpopulation in the killing of MM cells and suggest that the
reconstitution of CD56lowCD16low subpopulation after HSCT could be a useful approach of adoptive
immunotherapy in the treatment of relapsed/refractory MM patients. The CD56lowCD16low NK cells
can be isolated and ex vivo expanded to promote their functional activity in order to ameliorate the
outcome of transplants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/12/473/
s1; Figure S1. PB derived cells from two representative healthy donors were incubated for two hours without
target or with distinct target cells including K562 and various MM cell lines (SKO-007(J3), ARK, ARP) and primary
plasma cells (pz MM) as indicated; Figure S2. PB and BM derived cells from the same representative patient
were incubated for two hours with or without the target cell line, K562; Figure S3. PB and BM derived cells were
incubated for two hours with or without the target cell line, K562; Figure S4. Expression levels of NK cell receptors
on NK cell subsets derived from healthy PB donors. Table S1. Therapeutic history of relapsed patients.
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