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The unprecedented quality, the increased data set, and the wide area of ongoing and near future weak
lensing surveys allows one to move beyond the standard two points statistics, thus making it worthwhile to
investigate higher order probes. As an interesting step toward this direction, we explore the use of higher
order moments (HOM) of the convergence field as a way to increase the lensing figure of merit (FoM). To
this end, we rely on simulated convergence to first show that HOM can be measured and calibrated so that it
is indeed possible to predict them for a given cosmological model provided suitable nuisance parameters
are introduced and then marginalized over. We then forecast the accuracy on cosmological parameters from
the use of HOM alone and in combination with standard shear power spectra tomography. It turns out that
HOM allow one to break some common degeneracies, thus significantly boosting the overall FoM. We also
qualitatively discuss possible systematics and how they can be dealt with.
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I. INTRODUCTION

That the Universe is spatially flat and undergoing a phase
of accelerated expansion is nowadays a well-known fact
confirmed by an overwhelming flood of hard to confute
evidence (see, e.g., [1] and references therein for a com-
prehensive although not updated review). What is respon-
sible for this speed-up is, on the contrary, still frustratingly
unknown notwithstanding the considerable numbers of
papers proposing theoretical solutions to this problem. On
the one hand, the concordance ΛCDM model [2], composed
by a cold dark matter (CDM) component causing clustering
and a cosmological constant Λ causing acceleration, makes
excellent work of fitting the data on cosmological scales [3–
7], but it is plagued by both theoretical shortcomings and
unsatisfactory agreement with data on galactic scales [8]. On
the other hand, dynamical models, collectively referred to as
dark energy [9–11], including, e.g., an evolving scalar field
rolling down its self-interaction potential, perform well at
reproducing the observed data, but lack a solid foundation
somewhat appearing as a way to shift the problem fromwhat

is driving speed up to what is sourcing the field and its
evolution. A radically different approach is possible if one
takes cosmic speed-up as a first signature of a failure in our
understanding of the laws of gravity. Rather than being
evidence for something missing in the cosmic pie, accel-
eration then becomes a way nature is pointing us to a more
general formulation of the theory of gravity with general
relativity. This opens up the way to a full set of modified
gravity theories [12,13] able to closely follow the same
background evolution of the ΛCDM model, hence being in
agreement with the same data.
Discriminating among these two rival approaches is the

aimofmodern cosmologywith ongoing and planned surveys
trying to achieve this goal by both reducing statistical and
systematic errors (hence constraining the dark energy equa-
tion of state) and looking for observational probes able to test
the growth of perturbations that evolves in different ways in
the two competing scenarios. Thanks to the possibility
offered to probe both the kinematics and the dynamics of
the Universe, gravitational lensing has long been considered
as an ideal tool to investigate the nature and the nurture of
dark energy and to look for signatures of modified gravity. It
is therefore not surprising that cosmic shear tomography has
been recommended as themost promising technique to solve
the problem of cosmic acceleration. After the pioneering
small area surveys such as the CFHTLenS [14] and
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DeepLens [15] programs that have shown the feasibility of
the proposal, large area surveys have started to fully exploit
the lensing potentialities with the first interesting results
already coming from surveys in progress, such as DES [16],
KIDS [17], and HSC [18]. Near future surveys, both ground
(LSST [19]) and space based (Euclid [20], WFIRST [21]),
will make it possible to make the error budget systematics
dominated so that, provided these latter are taken under
control, the hunt to the responsible of cosmic speed-up could
likely come to a successful conclusion.
From a practical point of view, all the above quoted

surveys aim at mapping cosmic shear from the ellipticity of
large galaxy samples. Shear catalogs are then used to
determine the two points correlation function splitting
sources in redshift bins to perform tomography. This is
then contrasted against theoretical expectations, thus con-
straining the cosmological parameters (see, e.g., [22]).
Alternatively, one can rely on a three-dimensional (3D)
analysis based on spherical Fourier-Bessel decomposition to
constrain both dark energy models [23] and modified gravity
theories [24]. It is worth noting that both these techniques
mainly probe the growth of structures in the linear and
quasilinear regimes so that the constraints on cosmological
parameters are affected by severe degeneracies such as the
well-knownΩM-σ8 one. To break this degeneracy, a possible
way out consists in moving to a different tracer. Indeed,
cosmic shear measurements can also be used to reconstruct
the convergence field that quantifies the projection along the
line of sight of the density contrast δðxÞ ¼ ½ρðxÞ − ρ̄�=ρ̄.
What makes convergence so attractive is the different scales,
which is sensible, too. Indeed, the convergence field mainly
probes the nonlinear scales [25–30], thus offering comple-
mentary information to the shear field. Moreover, on these
scales, the collapse of structures introduce deviations from
the Gaussianity which are strongly related to the underlying
cosmological model and theory of gravity. The non-
Gaussianity of the field can be quantified through higher
than second order moments, which can then be used to break
the ΩM-σ8 degeneracy [31,32]. Actually, higher order
moments depend on the full set of cosmological parameters
so that it is worth investigating whether they can represent a
valuable help to narrow down the uncertainties on the dark
energy equation of state, too. In other words, one can wonder
whether convergence moments can help to increase the figure
of merit (FoM) if used alone and/or in combination with the
standard second order cosmic shear tomography.
The plan of the paper is as follows. In Sec. II, we derive a

phenomenological yet well motivated relation connecting
the theoretical moments with the observed ones taking care
of issues related to noise and map reconstruction. How to
predict moments from a given cosmological model is
detailed in Sec. III, while Sec. IV presents the simulated
maps we use to show that moments can be measured from
wide enough surveys. Armed with these mock data, we can
then validate the relation between theoretical and observed

moments that is carried out in Sec. V, thus making us
confident that moments can indeed be used as cosmological
probes. What can be gained by such a probe is investigated
in Sec. VI through a Fisher matrix based forecast analysis.
A discussion of possible systematics and how they could
impact the results and be taken into account is presented in
Sec. VII, while Sect. VIII is devoted to conclusions. Some
further material is given in Appendixes A and B for the
interested reader.

II. CONVERGENCE MOMENTS

The lensing effect of the large scale structure is respon-
sible for the generation of the convergence field κ.
However, we do not actually measure the convergence κ,
but rather the ellipticity of the galaxies that are then used as
input to reconstruct the shear field γ. A suitable algorithm is
then used to get the convergence map. Provided the code is
correctly working, one can relate the input field κ to the
observed one κobs through the following linear relation:

κobs ¼ ð1þmÞκ þ cþN ; ð1Þ

where ðm; cÞ are the multiplicative and additive biases and
N is a noise term. Since both the signal and the noise
vanish when averaged over a sufficiently large area, i.e.,
hκi ¼ hN i ¼ 0, one usually deals with ~κobs ¼ κobs − hκobsi
so that h~κobsi ¼ 0. From Eq. (1), one naively gets

~κobs ¼ ð1þmÞκ þN ; ð2Þ

which is the starting point for the derivation of the
moments. Hereafter, to shorten the notation, we will drop
the tilde sign from ~κobs and denote with κobs the observed
convergence after subtracting the mean value.
Let us now compute powers of κobs using Eq. (2) to get

κ2obs ¼ ð1þmÞ2κ2 þ 2ð1þmÞκN þN 2;

κ3obs ¼ð1þmÞ3κ3þ3ð1þmÞ2κ2N þ3ð1þmÞκN 2þN 3;

κ4obs ¼ ð1þmÞ4κ4 þ 4ð1þmÞ3κ3N þ 6ð1þmÞ2κ2N 2

þ 4ð1þmÞκN 3 þN 4:

Since κ and N are uncorrelated, the expectation values of
products such as κnN m will simply be the product of the
corresponding expectation values. Since both κ andN have
zero mean, it is then easy to get the following expressions
for the moments of the observed convergence field:

hκ2obsi ¼ ð1þmÞ2hκ2i þ hN 2i;

hκ3obsi ¼ ð1þmÞ3hκ3i þ hN 3i;

hκ4obsi ¼ ð1þmÞ4hκ4i þ 6ð1þmÞ2hκ2ihN 2i þ hN 4i:
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The moments of the input convergence field κ should be
theoretically predicted for a given cosmological model.
However, since theory is imperfect (as we will see later),
one can postulate the following ansatz:

hκni ¼ ð1þ μnÞhκnith þ γn; ð3Þ

where hκnith is the moment of order n as predicted from the
theory, and ðμn; γnÞ are calibration parameters to match
theory with numerical simulations. Inserting these relations
into the above ones, we finally end up with the following
calibration relations:

hκ2obsi ¼ ð1þm2Þhκ2i þ c2 þ hN 2i; ð4Þ

hκ3obsi ¼ ð1þm3Þhκ3i þ c3 þ hN 3i; ð5Þ

hκ4obsi ¼ ð1þm4Þhκ4i þ c4 þ hN 4i
þ 6½ð1þm2Þhκ2i þ c2�hN 2i; ð6Þ

where we have dropped the label “th” to shorten the
notation and defined

1þmn ¼ ð1þmÞnð1þ μnÞ; cn ¼ ð1þmÞnγn:

It is worth noting how, although the calibration parameters
are in total seven, namely ðμ2; γ2; μ3; γ3; μ4; γ4; mÞ, they are
actually degenerate since they enter Eqs. (4)–(6) only
through their combinations defining the six nuisance
parameters ðm2; c2; m3; c3; m4; c4Þ. One could naively
think that the noise moments ðhN 2i; hN 3i; hN 4iÞ are fully
degenerate with ðc2; c3; c4Þ since both enter as additive
terms. However, that this is not the case can be understood,
noting that what moments of the observed convergence
field are not directly measured on the map as it is, but only
after smoothing it with a filter of aperture θ. As such, in
the above relations, while ðmn; cnÞ are constants, both the
observed and theoretical moments ðhκnobsi; hκiÞ and the
noise moments hN ni must be considered as functions of
the smoothing angle θ. While the dependence of hκni on θ
will be derived later from a theoretical motivated approach,
we can postulate here the following scaling for the noise
moments:

hN ni ¼ νnðθ=θ0Þ−n ð7Þ

with θ0 an arbitrary reference scale (which we will set to
1 arcsec) and νn the value of the noise moment of order n on
the smoothed map. Note that Eq. (7) is correct for a white
noise, but can be taken as an intuitive general result no
matter the noise power spectrum. In the particular case of a
Gaussian noise, it is

ν3 ¼ 0; ν4 ¼ 3ν22

so that the number of unknown noise quantities reduces to
one. However, as a conservative choice, we will not rely on
this assumption in the following. We therefore end up with
a total of nine nuisance parameters to match the theoreti-
cally expected moments to the observed one as measured
on a convergence map reconstructed from noisy shear data
and smoothed with a filter of aperture θ.

III. MOMENTS FROM THEORY

Two main actors enter the scene of Eqs. (4)–(6). We
investigate here how one of them can be estimated for a
given cosmological model. To this end, we first remind the
reader that the weak lensing convergence field is the result
of inhomogenities in the large scale matter distribution
along the line of sight to a distant source. The two-
dimensional (2D) convergence field κ is then related to
the 3D density contrast δ as

κ ¼
Z

χs

0

dχWðχÞδðχÞ ¼ c
H0

Z
zh

0

WðzÞδðzÞ
EðzÞ dz; ð8Þ

where

χðzÞ ¼ c
H0

Z
z

0

dz0

Eðz0Þ ð9Þ

is the comoving distance to a source at redshift z (having
assumed a spatially flat universe), and EðzÞ ¼ HðzÞ=H0

with HðzÞ the cosmology dependent Hubble parameter and
a subscript 0 denotes present day values. In Eq. (8), the
integral extends up to the redshift of the last scattering
surface zh to take into account the cumulative effect of
the full matter distribution. However, the sum is actually
weighted by the lensing kernel WðzÞ, which takes into
account the normalized source redshift distribution nðzÞ
through

WðzÞ ¼ 3ΩMH2
0

2c2
ð1þ zÞχðzÞ

Z
zh

z

χðz0Þ − χðzÞ
χðz0Þ nðz0Þdz0:

ð10Þ

Using a Fourier decomposition and the Limber flat sky
approximation, it is then possible to compute the two points
projected correlation function (see, e.g., [33] and references
therein). Its average smoothed over an angle θ with a filter
WðθÞ then gives the second order moment of the con-
vergence field. A similar procedure can then be used to
infer higher order moments starting from multipoints
correlation functions and their corresponding multispectra.
Under the assumption of validity of the hierarchical ansatz
(which is the case in a highly nonlinear regime and in the
quasilinear one in the limit of vanishing variance), all
higher order multispectra can be written as weighted sums
of the products of the matter power spectrum. it is then
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possible to write the moments up to the fourth order of the
convergence field as [33]

hκ2iðθÞ ¼ C2ðκθÞ; ð11Þ

hκ3iðθÞ ¼ 3Q3C3ðκ2θÞ; ð12Þ

hκ4iðθÞ ¼ ð12Ra þ 4RbÞC4ðκ3θÞ; ð13Þ

where we have defined

κθ ¼ 2π

Z
P½l=χðzÞ; z�Wðlθ0Þldl; ð14Þ

CtðκnθÞ ¼
c
H0

Z
zh

0

WtðzÞκnθðzÞ
χ2ðt−1ÞðzÞEðzÞ dz: ð15Þ

In Eq. (14), Pðk; zÞ is the matter power spectrum evaluated
in k ¼ l=χðzÞ because of the flat sky approximation, while
the coefficients ðQ3;Ra;RbÞ depend on the amplitude of
the different topologies contributing to the multipoint
correlation functions. Their values should be tailored
against suitably designed N-body simulations that are
not always available. We will therefore set their values
to the following fiducial values:

Qfid
3 ¼ 1.00; Rfid

a ¼ 7.29; Rfid
b ¼ 16.23:

Equations (11)–(13) can be used as input in the calibration
relations (4)–(6). However, these have been derived postu-
lating that the actual theoretical quantities are linearly
related to the ones we have derived here as in Eq. (3).
Ideally, the theory summarized here should lead to a perfect
matchwith the (unknown) truemoments so that μn ¼ γn ¼ 0
for alln. However, there are different arguments advising one
to be conservative and allowing for ðμn; γnÞ to deviate from
null values. We sketch them qualitatively below.

(i) Equations (12) and (13) define the third and fourth
order moments up to a multiplicative term given by
Q3 and Q4 ¼ 12Ra þ 4Rb. We have set these
quantities to fiducial values, but they should actually
be set matching multipoint correlation functions to
those measured from high resolution N-body sim-
ulations. We can easily parametrize the systematic
uncertainty on them through the multiplicative bias
terms

1þ μ3 ¼ Q3=Qfid
3 ; 1þ μ4 ¼ Q4=Qfid

4 :

Note that, according to this argument, we should set
μ2 ¼ 0. Although we do not force this constraint for
reasons explained below, we nevertheless note that
we will indeed find that μ2 is quite small. On the
contrary, nothing prevents ðμ3; μ4Þ from signifi-
cantly deviating from the null value.

(ii) The convergence moments are estimated from func-
tionals of the smoothed mean convergence κθ
defined in Eq. (14). Here, one should integrate over
all the scales k, but what one actually does is to
truncate the integration range to avoid extrapolating
the nonlinear model for the matter power spectrum
to scales where it is not tested. Although one expects
that the scales outside the integration range give a
little contribution, this term can be boosted by the
functional defining hκni. It is therefore worth
allowing for this possibility to introduce the additive
bias term γn.

(iii) Notwithstanding the great efforts in modeling non-
linearities in the matter power spectrum, the match-
ing between the theoretical one Pðk; zÞ and that
estimated from N-body simulations is still not
perfect on all scales and redshift of interest. If we
denote with PNðk; zÞ this latter and take that this is
the best representation of the unknown actual one,
we can assume that the following relation holds true:

PNðk; zÞ ¼ ð1þ π1ÞPðk; zÞ þ π0Pðk0; z0Þ;
where ðπ0; π1Þ are constant quantities, Pðk0; z0Þ is
the value of the power spectrum in an arbitrary set
reference point ðk0; z0Þ, and the linear approxima-
tion is motivated by the assumption that the devia-
tions are small enough. It is then only a matter of
algebra to show that the moments evaluated using
PNðk; zÞ and those from Pðk:zÞ are related by a
linear relation as far as one neglects higher order
terms in ðπ0; π1Þ.

These considerations provide a valid support to Eq. (3) and
hence to the calibration relations derived from it. We will
nevertheless validate the linear relation (3) later through a
comparison with moments evaluated on a convergence map
inferred from numerical simulations.

IV. MOMENTS FROM SIMULATED MAPS

To validate the theoretical approach worked out above
and find the calibration parameters ðmn; cnÞ, we need to
contrast them against moments measured on a convergence
map reconstructed by shear noisy data. Although such a
kind of data set is starting to be available (see, e.g., [34]
from CFHTLenS, and [35] from DES Science Verification
data), the survey area is still too small to allow for reducing
the statistical uncertainty to an acceptable level and prevent
cosmic variance effects. Moreover, noiseless convergence
maps are also needed in order to validate Eq. (3), which can
obviously not be inferred from actual data. We are therefore
forced to rely on a simulated data set.

A. The MICE lensing catalog

N-body light cone simulations are an ideal tool to build
all-sky lensing maps. We rely, in particular, on the MICE
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Grand Challenge (MICE-GC) containing about 70 × 109

dark matter particles in a ð3h−1 GpcÞ3 volume [36,37]. The
parent simulation is run in a flat ΛCDM with cosmological
parameters set

ðΩM;Ωb; h; ns; σ8Þ ¼ ð0.25; 0.044; 0.70; 0.95; 0.80Þ;

with ðΩM;Ωb;h;ns;σ8Þ the matter and baryon density para-
meters, the Hubble constant in units of 100 km=s=Mpc, the
spectral index and the variance of perturbations on the
scale R ¼ 8h−1 Mpc, respectively. Galaxies are associated
with dark matter haloes using a halo occupation distribution
and a halo abundance matching technique [38] whose
parameters are set to match local observational constraints,
such as the local luminosity function [39,40], the galaxy
clustering as a function of luminosity, and color [41] and
color-magnitude diagrams [42].
Given its large volume and fine mass resolution, the

MICE-GC simulation also allows an accurate modeling of
the lensing observables from upcoming wide and deep
galaxy surveys. Following the onion universe approach
[43], all-sky lensing maps are constructed with subarcmi-
nute scale resolution. These lensing maps allow one to
model galaxy lensing properties, such as the convergence,
shear, and lensed magnitudes and positions. Tests have
been performed to show that the galaxy lensing mocks can
be used to accurately model lensing observables down to
arcminute scales. We use the MICECAT v2.0 (kindly
available to us from P. Fosalba), which updates the public
release MICECAT v1.0 catalog to include less massive and
hence lower luminosity galaxies. The galaxy catalog is
complete up to i ∼ 24 for 0 ≤ z < 1.4 so that we will
hereafter focus our attention on this redshift range only.

B. Convergence maps and moments estimate

To build the convergence and shear maps we need for
validation and calibration, we first cut 5 × 5 deg2 approx-
imately square patches taking care that they are well
separated so that they can be considered independent.
This reduces the usable area to Ω ¼ 3500 deg2 divided
into 140 subfields. Each subfield has an area large enough to
ensure good statistics, but small enough to make deviations
from flat sky approximation (used in the theoretical deriva-
tion) negligible. The MICECAT v2.0 catalog reports the
redshift z and the Right Ascension and Declination coor-
dinates (hereafter RA, Dec) on the sky of each galaxy. We
use the redshift z to select galaxies only in the redshift range
(0.1,1.4), and use a sinusoidal projection to convert the (RA,
Dec) coordinates defined on the curved sky into the
Cartesian ones ðx; yÞ defined on the tangential plane.
Following [34], we then arrange galaxies in approximately
square pixels with side length 0.85 arcmin. Given that the
number density of galaxies is about ng ≃ 27 gal=arcmin2,
this size ensures that there is a large number of objects in
each pixel without compromising the map resolution.

We construct two kind of maps. First, we use the
convergence values reported in the MICECAT v2.0 catalog
without any further modification. This can be considered
the actual convergence map that can be used to infer the
actual moments the theory should match. We will therefore
use it to validate the linear relation (3) and estimate the
calibration parameters ðμn; γnÞ. Note that, strictly speaking,
we do not need ðμn; γnÞ since they are fully degenerate with
ðm; cÞ so that only the combined parameters ðmn; cnÞ
finally enter the calibration relations (4)–(6). We therefore
use this ideal convergence map only as a way to show that
the theory reproduces the high order convergence moments
up to a linear transformation.
Actually, one does not observe the convergence itself,

but rather the shear components1 ðγ1; γ2Þ. These quantities
are available in the MICECAT v2.0 catalog, but we perturb
them by adding random values of the intrinsic ellipticity on
both the shear components to mimic the noise due to
intrinsic ellipticity. We then smooth the map and apply the
KS93 method [44] to get what we can consider the
observed convergence map κobs. Moments estimated from
this map are those that enter the left-hand side of Eqs. (4)–
(6). Note that the smoothing procedure, which is typically
used to reduce noise, critically depends on which filter is
adopted. To investigate the impact of this choice on the
results, we consider two popular cases, namely a Gaussian
and a top hat filter. In the Fourier space, their window
functions respectively read

~Wðl; θÞ ¼
�
exp ð−l2θ2=2Þ
2J1ðlθÞ=ðlθÞ

; ð16Þ

where Jν is the Bessel function of order ν and θ the filter
aperture that we vary over the range (2, 20) arcmin.
The catalogs thus obtained are used as input for the

estimate of high order convergence moments, which are
simply given by

hκni ¼ N −1
pix

X
~κni ðn ¼ 2; 3; 4Þ;

where the sum is over the N pix pixels in the map and ~κi is
the value of the convergence in the ith pixel after smoothing
the map with a given filter. Note that we first subtract a
constant offset in order to have hκi ¼ 0 to be consistent
with our derivation of the calibration relations.
This procedure is repeated for each of the 140 subfields,

thus getting a list of hκni values. We finally estimate the
moments and the covariance matrix as

hκniobs ¼
P hκniðkÞ

N f
ðn ¼ 2; 3; 4Þ; ð17Þ

1Actually, what is observed are the two components ðe1; e2Þ
of the ellipticity, but with no noise and intrinsic alignment there
is no difference with the shear components.
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where hκniðkÞ is the nth order moment estimated from the
kth subfield, and the sum is over theN f subfields. For later
applications, we remind the reader that it is N f ¼ Ω=25
with Ω in the used survey area (Ω ¼ 3500 deg2) giving
N f ¼ 140 for our reference MICECAT based case.
In practical applications, one will fit moments as a

function of the smoothing scale θ so that the data vector is

Dobs ¼ fhκ2iobsðθ1Þ; hκ2iobsðθ2Þ;…; hκ2iobsðθNÞ;
hκ3iobsðθ1Þ; hκ3iobsðθ2Þ;…; hκ3iobsðθNÞ;
hκ4iobsðθ1Þ; hκ4iobsðθ2Þ;…; hκ4iobsðθNÞg; ð18Þ

where we will explore different choices for both the
smoothing angle range ðθmin; θmaxÞ and the sampling dθ
taking equispaced values giving N ¼ ðθmax − θminÞ=dθ.
To estimate the data covariance matrix, one should run

different simulations of the same survey, which is actually
not possible. However, mimicking what is done with actual
surveys (see, e.g., [34]) and in previous works based on
simulated maps [45], we can use the N f subfields and
estimate the covariance matrix elements as

Covobsij ¼ 1

N f

P ½Di;k
obs −Di

obs�½Dj;k
obs −Dj

obs�
N f − 1

; ð19Þ

where Di;k
obs is the ith component of the data vector Dobs

estimated on the convergencemap of the kth subfield,Di
obs is

the value of the same component from the final vector (18),
and the sum is over the N f subfields. It is worthwhile to

spend more time on Eq. (19). This is based on the implicit
underlying assumption that all the subfields are a statistically
faithful realization of the same underlying properties. As
such, the covariance matrix for each subfield can be
evaluated as given by the second multiplicative term in
Eq. (19). This will give us the covariance for a field of area
equal to the subfield oneΩf so that a furtherΩf=Ω ¼ 1=N f

factor is needed to scale the covariance to the full survey
area Ω.

C. Convergence of moments

Higher order moments (HOM) probe the shape of the
convergence probability distribution function (PDF). One
can qualitatively expect that the higher the order, the better
the PDF is characterized, but the larger must the statistics
be to catch the details of its shape. This translates in a
requirement on the survey area; i.e., one could wonder how
large must the total area be so that HOM are reliably
recovered from the convergence maps. To this end, we
estimate HOM as a function of the survey area Ω which, in
our case, actually means estimating moments using only a
number of subfields N f ≤ 140. Should the moments be
reliably estimated, the functions2 hκniðθÞ must be inde-
pendent of the survey area Ω as far as Ω ≥ Ωmin with Ωmin
the final requirement on the survey area. How to set
Ωmin actually depends on what one is interested in. To

FIG. 1. Convergence of the HOM for different values of the survey area Ω. Top: Percentage deviation ΔhκniðΩÞ=hκniðΩtotÞ as a
function of the smoothing angle θ for Ω ¼ f100; 500; 1500; 2500g deg2 (green, blue, orange, red lines) and Ωtot ¼ 3500 deg2. Bottom:
Same as before but with the difference normalized with respect to the statistical error. Solid (dashed) lines refer to the results for the
Gaussian (top hat) smoothing filter.

2Hereafter, unless confusion is possible, we drop the label
“obs” to shorten the notation. Moreover, we will set
ðθmin; θmax; dθÞ ¼ ð2; 20; 1Þ arcmin. Unless otherwise stated,
all the results are qualitatively valid also for other choices.
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understand this point, let us look at Fig. 1. Top panels show
that the deviation of HOM from their fiducial value (i.e., the
one estimated from the full area) can be quite significant
with the difference being particularly dramatic for the third
order moment (which probes the asymmetry of the con-
vergence PDF). If we demand that Δhκni=hκni is less than
10% for all orders, we getΩmin ∼ 2500 deg2. However, this
is a quite conservative limit that does not take into account
the statistical errors. Indeed, one can relax the constraint
asking that the systematic error on the HOM estimate is
smaller than the statistical uncertainties σ. Bottom panels
show that such a requirement is easier to fulfill depending
on both the survey area (with smaller areas leading to larger
σ hence less demanding constraints) and the smoothing
scale θ. For instance, if a Gaussian filter is used to smooth
the convergence maps, Ωmin ¼ 500 deg2 are enough to
measure moments with a systematic bias smaller than the
2σ error as soon as θ > 10 arcmin. This area increases to
Ωmin ¼ 1500 deg2 if one asks for all moments to be
measured with a bias smaller than 2σ for smoothing scales
θ > 5 arcmin. As a general result, we also find that the
requirements on the minimum area are stronger for a top hat

filter, which turns out to be less efficient in canceling
features introduced by the reconstruction from noisy data.
When fitting a model to the data, one should be confident

that not only the HOM central values but also the errors have
been estimated in order to avoid unrealistically tight con-
straints on model parameters because of underestimating the
uncertainties. We therefore investigate how the signal-to-
noise ratio νSN scales with the survey area using the square
root of the diagonal elements3 of the data covariance matrix
to define νSN. Top and central panels in Fig. 2 show the
expected behavior of νSNðθÞ with both the smoothing
scale and the survey area. On the one hand, the smaller

FIG. 2. Scaling of the HOM hκ2i (left), hκ3i (center), hκ4i (right) signal-to-noise (S/N) ratio νSN with smoothing angle θ and survey
area Ω. Top: S/N ratio as a function of θ for Ω ¼ f100; 500; 1500; 2500g deg2 (green, blue, orange, red lines). Center: S/N ratio as a
function of Ω for θ ¼ f4; 7; 10; 13garcmin (green, blue, orange, red lines). Bottom: Percentage deviation of the rescaled S/N ratio (see
text) from the value estimated from the full survey area. In all panels, solid (dashed) lines refer to the result for the Gaussian (top hat)
smoothing filter.

3Actually, one should take into account also the nondiagonal
elements and define the noise taking care of the correlations
between moments of the same order evaluated at different
smoothing scales or different orders at the same smoothing.
We prefer to rely on diagonal elements only to mimic the case
when one is using a single order only. For instance, one could be
interested in using only hκ2iðθ0Þ with θ0 a particular smoothing
scale. In this case, the S/N ratio would be defined using only the
error on this quantity so that one should check how this scales
with the survey area, which is what we are investigating here.
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the smoothing scales, the larger are the moments as one can
naively understand considering the case of a Gaussian
distribution. On the other hand, Eq. (19) suggests a scaling
of the noise with

ffiffiffiffiffiffiffiffiffi
1=Ω

p
so that we expect νSNðθÞ ∝ Ωα with

α > 0 and deviating from the naive α ¼ 1=2 value because
the signal also depends on the area as inferred from Fig. 1. It
is worth wondering which is the minimal area to make the
S/N ratio estimate reliable. Note that for this test we have first
to rescale the S/N for the different area, which is why we
consider ~νSNðθÞ ¼

ffiffiffiffi
Ω

p
νSNðθÞ, and look for theminimal area

needed tomake this quantity deviate from the final value less
than 20%. Bottom panels in Fig. 2 show a conservative cut
Ω > 1500 deg2 ensures reliable estimates of both HOM and
their uncertainties.
It is worth noting that our definition of S/N, although

quite intuitive, is somewhat optimistic since it neglects the
strong correlation among the components of the data
vector. We should therefore be confident that the correla-
tion matrix R too is stable. With its entries defined as

rij ¼
Covobsijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Covobsii Covobsjj

q ;

there are 3Nð3N þ 1Þ=2 independent elements so that it is
not immediate to understand whether the area is large
enough to consider reliable the estimate of R. As a
qualitative test, we therefore look at hriji, i.e., the average
value of its off diagonal elements which is plotted as a

function of the survey area Ω in the top panels of Fig. 3
where the error bars denote the 68% confidence range.
Taken at face value, these results show that there is no
convergence at all with hriji slowly but constantly decreas-
ing with Ω. However, the 68% confidence ranges well
overlap for Ω ≥ 1000 deg2 suggesting that the variation
can indeed be neglected. On the other hand, bottom panels
show that hΔρ=ρi¼ h100× ½1− rijðΩÞ=rijðΩtotÞ�i becomes
smaller than 10% as far as Ω ≥ 1500 deg2. Considering
that this is only a qualitative test, we can conclude that an
area as large as Ω ∼ 1500 deg2 allows a reliable estimate of
the HOM, the on diagonal elements of the covariance
matrix, and the full data correlation matrix.
As a final remark, we remind the reader that all the

results in this section have been obtained relying on the
MICECAT catalog, which has a definite redshift range and
a galaxy number density ng ≃ 27 gal=arcmin2. Should one
or both of these characteristics be different, one might redo
the analysis, which is, however, outside our aim here.

V. VALIDATING THE HOM CALIBRATION

To make moments a viable tool to constrain cosmo-
logical parameters, two preliminary steps are mandatory.
First, one has to show that HOM can be reliably
estimated from convergence maps reconstructed from
noisy shear data. Second, one has to find a way to
match theoretical predictions with observations through a
phenomenological recipe taking care of what cannot be
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FIG. 3. Testing the convergence of the correlation matrix R. Top: Average value and 68% confidence range of the independent
element of R for the Gaussian (left) and top hat (right) filters. Bottom: Average value and 68% confidence range of the percentage
deviation of the R elements from the value they get for Ω ¼ 3500 deg2. Dashed (dotted) lines mark the �10%ð�5Þ% limits.
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described within the theory. While the first step has been
successfully completed in the above section, the second
one is encapsulated in the calibration relations (4)–(6).
Our aim here is to both validate their derivation and
demonstrate that they can indeed fit the measured
moments.

A. Idealized convergence moments

To this end, let us first consider the HOM as estimated
from the convergence map provided by the MICECAT
catalog itself. Since there is no noise and no reconstruction
from shear is performed, HOM measured on this map may
be considered the true ones that theory has to match. As
explained in Sec. III, our theoretical predictions are given
by Eq. (3) with hκnith computed as in Eqs. (11)–(13).
Validating these relations therefore means finding the
parameters ðμn; γnÞ from a fit of the hκniðθÞ data. The
results are shown in Fig. 4 where we plot the best fit
curves4 superimposed to the estimated HOM.5 As is
apparent, the fit is quite good with the linear model passing
through the points well within the statistical uncertainty.
Moreover, the rms of the percentage residuals, defined as
ρrmsðnÞ ¼ 100 × ð1 − hκnifit=hκniÞ, turns out to be

ρrmsðnÞ ¼
� ð4.88; 9.34; 21.5Þ%
ð4.55; 9.22; 21.2Þ%

with the three values referring to moments of order n ¼ 2,
3, 4, and the first (second) row for a Gaussian (top hat)
filter. These small numbers definitely validate our assump-
tion that the theoretical approach outlined in Sec. III is
indeed able to reproduce the N-body derived HOM, thus
providing a first validation of Eqs. (4)–(6).
Although the exact values of ðμn; γnÞ are not of any use

in the following, it is nevertheless instructive looking at the
best fit values. For the Gaussian filter, we get

μ2 ¼ −0.002; γ2 ¼ −1.45 × 10−6;

μ3 ¼ 0.460; γ3 ¼ −2.82 × 10−9;

μ4 ¼ −0.191; γ4 ¼ 1.50 × 10−11:

As expected, the multiplicative bias for the second order
moment is negligibly small, while the larger values of
ðμ3; μ4Þ corrects for deviations of the ðQ3;Q4Þ constant
factors from the assumed fiducial values. On the other
hand, the additive biases ðγ2; γ3; γ4Þ are smaller than the
lowest data values, confirming our expectation that cutting
the integration range does not have a dramatic impact on
the estimate of theoretical moments. Similar considerations
also apply to the results for the top hat filter that read

μ2 ¼ −0.161; γ2 ¼ 0.74 × 10−6;

μ3 ¼ 0.298; γ3 ¼ −1.45 × 10−9;

μ4 ¼ −0.483; γ4 ¼ 1.72 × 10−10:
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FIG. 4. HOM as estimated on the noiseless convergence map for Gaussian (top) and top hat (bottom) filters. Best fit curves are
superimposed to the data with red, green, blue, orange, purple lines referring to the best fit parameters to the smoothing angle range
(2,20), (2,12), (4,14), (6,16), ð8; 18Þ arcmin, respectively.

4Best fit values and 68% confidence ranges from all the fits
described in this section are given in Appendix A.

5Note that these plots and the following ones in Figs. 5 and
6 refer to the data as estimated from a single subfield so that
the error bars are larger by a factor N 1=2

f ≃ 12. We make this
choice in order to show that the fit to the full data set
reproduces the data of each subfield too so that one can rely
on the found calibration parameters even if only a smaller area
is available.
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The only remarkable difference is the multiplicative bias for
the second order moment, which turns out to be definitely
larger than for the Gaussian case suggesting that a top hat
filter is less efficient in smoothing nonlinearities not
correctly taken into account in the theoretical derivation.
Although the percentage residuals are already acceptably

small, one can nevertheless wonder whether it is possible to
further reduce them by cutting the smoothing angle range.
Such an approach would be motivated by the consideration
that the theory is inevitably based on assumptions that can
break down for small θ, i.e., when small scale features in
the convergence map are not smoothed out. We therefore
repeat the fitting procedure limiting the smoothing angle
range setting

ðθmin; θmaxÞ ¼ ð2; 12Þ; ð4; 14Þ; ð6; 16Þ; ð8; 18Þ arcmin;

thus getting the green, blue, orange, purple curves in Fig. 4.
To better illustrate the results, in Fig. 5, we plot the error
normalized best fit residuals (in absolute value) showing
that the fit definitely improves; i.e., the green, blue, orange,
purple curves stay below the red one over the correspond-
ing fitting range. Moreover, the rms of the percentage
residuals decreases up to an order of magnitude with the
increase of θmin. This result can easily be explained noting
that the larger the smoothing angle, the fewer nonlinearities
contribute to the moments. Since these are the main sources
of uncertainties in the theoretical modeling, it is not
surprising that decreasing their impact makes the linear
approximation better, thus reducing ρrmsðnÞ.

B. Observed moments

The above results validate Eq. (3) showing that the
theoretical modeling may be reconciled with actual

measurements on an idealized convergence map through a
linear transformation. However, this is only half of the story.
We indeed still have to demonstrate that the full calibration
relations work at reproducing the observed HOM. These are
estimated from the convergence map as reconstructed
applying the KS93 method to noisy shear data. We therefore
fit Eqs. (4)–(6) to the data6 measured on our simulated
reconstructed maps getting the results in Fig. 6.
As a reassuring result, we find that the fit is again quite

good even if the rms of percentage residuals is definitely
larger than before. Indeed, for the Gaussian and top hat
filters (first and second rows below), we find

ρrmsðnÞ ¼
� ð7.84; 6.10; 53.3Þ%
ð8.57; 21.5; 42.2Þ%

for n ¼ ð2; 3; 4Þ. Although the rms for the fourth order
moment is quite large, it is nevertheless worth stressing that
the best fit curve stays well within the error bars so that the
fit is still acceptable. A look at the hκ4iðθÞ plot, however,
shows that most of the deviations take place at large θ so
that one could reduce the rms by cutting this range. We
therefore repeat the fit for the four smaller ranges used
before and actually find a somewhat contradictory result.
Although ρrmsðn ¼ 4Þ indeed reduces when fitting to the
(2,12) and (4,14) ranges only, the best results are obtained
for θmin ≥ 6 arcmin, suggesting that the theory has prob-
lems on small angular scales. This is again consistent with
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FIG. 5. Same as Fig. 4 but now we show the error normalized fit residuals (in absolute value).

6Note that we actually perform fits separately for the second
and fourth order moments and the third order one since the
calibration parameters ðm3; c3; ν3Þ only enter in the hκ3iobs
relation. Moreover, we do not assume the noise is Gaussian so
that the three parameters ðν2; ν3; ν4Þ are all free to vary.
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what we get in the previous paragraph. However, when
fitting to the full range, the algorithm tries to improve the
agreement on small θ since this is the range where the S/N
is larger. We should therefore advocate against the use of
small smoothing scales to get fourth order moment data, but
this comes at the cost of giving away half the data set. We
will investigate later which strategy (i.e., improving the rms
of percentage residuals or retaining as much data as
possible) is more convenient.
It is interesting to look at the best fit values of the

calibration parameters. Considering in the rest of this
paragraph only the Gaussian filter (since the results are
qualitatively the same for the top hat case) and the fit to
the full range,7 we get

m2 ¼ −0.19þ0.28
−0.25 ; c2 ¼ −0.69þ1.35

−1.27 × 10−6;

m3 ¼ −0.53þ0.38
0.10 ; c3 ¼ −0.61þ0.71

−0.52 × 10−9;

m4 ¼ −0.11þ0.34
−0.33 ; c4 ¼ −0.10þ3.06

−3.15 × 10−11;

while the noise reference moments are

ν2 ¼ 0.21þ1.13
−0.21 × 10−4;

ν3 ¼ −0.56þ0.27
−0.07 × 10−10;

ν4 ¼ 2.24þ1.28
−2.24 × 10−10:

One could wonder whether these numbers are consistent
with expectations. Using the expressions derived before,
we can estimate the multiplicative bias m as

m ¼
�
1þmn

1þ μn

�
1=n

− 1:

Ideally, we should find the same result no matter which
order we choose for setting the calibration parameters. The
error on m can then be qualitatively estimated propagating
the errors on ðmn; μnÞ. Since the confidence ranges are
asymmetric, we first follow [46] and correct for asymmetric
errors with the following replacement rules:

mn → mn þ ðσþn − σ−n Þ; σðmnÞ → ðσþn þ σ−n Þ=2

with σ�n the positive and negative errors onmn. We thus get

mðmn; μnÞ ¼
8<
:

−0.08� 0.15 n ¼ 2

−0.20� 0.09 n ¼ 3

0.03� 0.10 n ¼ 4

:

These numbers are consistent with each other within less
than 2σ (taken as the sum in quadrature of the errors on the
terms compared), which is a quite reassuring result if one
also remembers that the fitting algorithm does not enforce
the consistency of m aiming only at finding the values
of the calibration parameters ðmn; cnÞ that maximize the
likelihood.
Somewhat more difficult is to judge whether the values

of ðν2; ν3; ν4Þ are reasonable or not making this question
actually ill defined. On the one hand, we note that our
simulated maps contain a Gaussian noise originating from
the dispersion of galaxies intrinsic ellipticity. According
to [47], we should expect a noise second order moment
on the convergence map given by σ2κ ¼ σ2ϵ=2θ2pixng. Setting
σϵ ¼ 0.28, θpix ¼ 0.85 arcmin, ng ¼ 27 gal=arcmin2, we
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FIG. 6. Same as Fig. 4 but for moments from the map reconstructed from noisy shear data.

7See Appendix A for the full list of calibration parameters.
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get σ2κ ¼ 2.0 × 10−3, which is 2 orders of magnitude larger
than our estimated ν2. However, σ2κ does not take into
account either the smoothing or the reconstruction so that a
disagreement is far from being worrisome. On the other
hand, we should find ðν3; ν4Þ ¼ ð0; 3ν22Þ since we know that
the noise is Gaussian. While ν3 may indeed be considered
vanishing since its value is 2 orders of magnitude smaller
than the lowest hκ3iðθÞ, ν4 is definitely different from its
expected Gaussian counterpart ðν4 ¼ 1.32 × 10−9Þ. The
difference may come from both the reconstruction pro-
cedure and the fitting algorithm, which does not enforce
any relation between ν2 and ν4, thus leaving a degeneracy
between these latter and c4. One could have changed the
fitting code by forcing ðν3; ν4Þ to their Gaussian values
(which also reduces the number of parameters). However,
in practical applications, one cannot assume a priori that
the noise is Gaussian so that we prefer to be conservative
and not introduce any prior on the noise parameters.
Motivated by these considerations, we deem as success-

fully passed the validation test of Eqs. (4)–(6).

VI. HOM AS COSMOLOGICAL TOOLS

Having shown that it is possible to correctly match
theoretical and observed moments, we can now investigate
whether HOM are actually of any help in constraining
cosmological parameters pc. As a preliminary remark, it is
worth stressing that pc are not the only quantities that enter
theory predictions. Indeed, one cannot assume a priori
that the calibration parameters ðmn; cnÞ are the same for
every cosmological model so that having determined them
from a fit to simulated data mimicking the actual ones is far
from being sufficient to deem them as known quantities.
Moreover, the noise properties of the field are fully
unknown so that one has to add the noise reference
moments ðν2; ν3; ν4Þ to the list of quantities to be fitted
for. Summarizing, the full parameters vector p will be the
union of the cosmological one,

pc ¼ fΩM;Ωb; w0; wa; h; ns; σ8g;

and the nuisance one

pn ¼ fm2; c2; m3; c3; m4; c4; ν2; ν3; ν4g:

Given the large number of parameters, we do not expect
HOM alone to be able to put severe constraints on all of
them. We will therefore set some parameters when
considering HOM only as a data set. On the other hand,
it has been suggested for a long time that HOM can help
breaking degeneracies affecting second order statistics
such as the cosmic shear tomography power spectra. We
will therefore also investigate how constraints on the full
set of parameters change when HOM are added to shear
tomography.

A. Fisher matrix formalism

To answer the above questions, we rely on the Fisher
matrix formalism [48]. We therefore compute the Fisher
matrix elements given by

Fij ¼
�
−
∂2 lnLðpÞ
∂pi∂pj

�
; ð20Þ

where the average is approximated by the likelihood value
estimated in the fiducial model and nuisance parameters
pfid, and, assuming a multivariate Gaussian, the likelihood
function reads

−2 lnLðpÞ ∝ ðDobs −DthÞTCov−1ðDobs −DthÞ; ð21Þ

where Dobs has been defined in Eq. (18), and Dth is its
theoretical counterpart evaluated through Eqs. (4)–(6). The
Fisher matrix elements therefore read

Fij ¼
∂Dth

∂pi
Cov−1

∂Dth

∂pj
; ð22Þ

showing that a key role is played by the data covariance
matrix, which we split up as

Cov ¼ Covobs þ Covsys ð23Þ

with the first term giving the statistical errors as computed
from Eq. (19). The second term is introduced to take into
account the inaccuracies in the calibration procedures, i.e.,
the fact that we can predict HOM from theory using
Eqs. (4)–(6) only up to a scatter quantified by the rms
of percentage residuals. This systematics covariance matrix
is diagonal8 so that its elements read

Covsysij ¼ ρrmsðiÞρrmsðjÞDobsðiÞDobsðjÞδKij ð24Þ

with δKij the Kronecker δ and ρrmsðiÞ the rms of the
percentage residuals for the order of the moment corre-
sponding to the ith element of the data vector Dobs. What
actually enters the likelihood is the precision matrix, i.e.,
the inverse of the covariance matrix. However, it is known
that this quantity may be biased if estimated from a not
large enough number of independent realizations.
Following [49], we therefore compute it as

8The systematics covariance matrix could actually be
nondiagonal. Indeed, the expected values of the calibration
parameters ðmn; cnÞ are correlated being all related to the same
multiplicative bias m. However, we have determined the
calibration parameters from separate fits without forcing
ðm2; m3; m4Þ to obey theoretical relations among them. This is
expected to cancel any correlation among them and among the
residuals of the calibration relations.
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Cov−1 ¼ N f −N d − 2

N f − 1
ðCovobs þ CovsysÞ−1; ð25Þ

where the multiplicative term corrects for the finite number
of realizations with N d the length of the data vector. An
important caveat is in order here. Since we have divided the
full survey area Ω in subfields of 25 deg2 each, it is
N f ¼ Ω=25. On the other hand, the data vector length is
N d ¼ ηðθmax − θminÞ=dθ ¼ ηΔθ=dθ, with η the number of
moments used (e.g., η ¼ 1 if only moments of order 2 are
used, or η ¼ 3 if one uses all orders). The choice of
ðΩ;Δθ; dθÞ must therefore be done taking care that the
condition N f > N d þ 2 is fulfilled in order to avoid
having a physically meaningless negative definite inverse
covariance matrix. For our fiducial choice, it is

ðΩ; θmin; θmax; dθ; ηÞ ¼ ð3500; 2; 20; 1; 3Þ

giving N f ¼ 140 and N d ¼ 57 so that the multiplicative
factor takes the quite small value ðN f −N d − 2Þ=
ðN f − 1Þ≃ 0.58, which reduces the Fisher matrix ele-
ments, and hence the forecasted constraints on the cosmo-
logical parameters. Since the total area is fixed, a possible
way out could be to reduce the subfields area so that N f is
larger, but we should then check whether the estimated
HOM are still reliable. As an alternative, one can reduce the
length of the data vector N d using a larger sampling dθ or
only a subset of the data (so that η is smaller). While both
these choices are possible, they both ask for reducing the
number of constraints that can have the opposite effect of
weakening overall the HOM constraining power.
Another effect also enters the game driving the choice of

ðθmin; θmax; dθÞ. As we have seen, ρrmsðnÞ is a function of
ðθmin; θmaxÞ so that the systematics covariance matrix will
be different depending on which smoothing angle range is
used. The decrease of ρrmsðnÞ with θmin would advocate in
favor of larger values, but it is possible to show that the
derivative terms into Eq. (22) are larger at small θ
consistent with the naive expectation that a large smoothing
angle cancels both the noise and the signal. The best range
to use is, therefore, a compromise between these two
opposite behaviors. A similar discussion also applies to
the choice of the sampling dθ. As shown before, moments
of the same or different orders evaluated at two different
smoothing angles ðθ1; θ2Þmay be significantly correlated if
θ2 − θ1 is smaller than a few times dθ. As a consequence,
the effective number of constraints is actually smaller than
the length of the data vector. Moreover, should dθ be too
small, the observed covariance matrix Covobs could become
close to degenerate, thus making unstable its numerical
inversion and hence unreliable the Fisher matrix itself.
Whether this happens also depends on the θ range. Indeed,
the larger is θ, the more the details of the convergence field
are smoothed out and the moments reduce to those of a

Gaussian distribution. Should we therefore consider only
large θ, the moments will be all correlated being simply a
description of the smoothed noise field so that which dθ
value does not matter at all.
Motivated by these considerations, we will therefore

explore different combinations of ðθmin; θmax; dθÞ. In par-
ticular, we consider five different ranges, namely

ðθmin;θmaxÞ¼ð2;20Þ;ð2;12Þ;ð4;14Þ;ð6;16Þ;ð8;18Þ arcmin;

and sample them with dθ ¼ 1; 2; 3; 4 arcmin. Moreover,
we will also investigate how the results depend on the
smoothing filter used, and whether it is more convenient to
use moments of all orders or only a subset of them.
As a final preliminary remark, a somewhat technical note

is in order. As already said at the beginning of this section,
one has to add the set of nuisance parameters pn to the list
of quantities to be determined by the fit to the data. As a
consequence, they also enter the Fisher matrix so that their
fiducial values have to be set. It is, however, convenient to
introduce a new nuisance parameter set ~pn ¼ pn=pfid

n with
pfid
n the values found from the fit to the simulated data set

for a given fiducial cosmology. Should the calibration be
independent of cosmology, we should expect ~pin ¼ 1 for all
the components i of the scaled vector. We therefore use ~pn
as the nuisance parameter set and fix its fiducial value to
unity. To break the degeneracies with cosmological param-
eters, we will add a prior matrix to the Fisher matrix one;
i.e., we redefine the Fisher matrix elements as

Fij ¼
∂Dth

∂pi
Cov−1

∂Dth

∂pj
þ πij; ð26Þ

where πij are the elements of the prior matrix. This is a
diagonal matrix whose first seven elements are set to zero
(since we do not want to put any prior on the cosmological
parameters), while the remaining elements are set to 1=σ2i
with σi quantifying our belief in the prior knowledge of the
nuisance parameters. Setting, e.g., σi ¼ 0.1 means we are
assuming that the true value of the ith component of the
nuisance parameters vector lies within 10% of the corre-
sponding fiducial one. To reduce the quantities to change in
the analysis, we will set σi ¼ σp for all i and explore how
constraints change as a function of σp.

B. Constraints on ðΩM;σ8Þ from HOM only

In the first application, one will probably be interested in
using moments only as constraints. However, because of
the large number of parameters (cosmological and nui-
sance) and the reduced numbers of effective degrees of
freedom because of the large correlations among moments
at different smoothing scales, one expects too weak con-
straints if all parameters are left free. One would therefore
focus only on the two parameters where lensing is most
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sensible, too, i.e., the matter densityΩM and the variance of
linear perturbations σ8. We therefore compute the Fisher
matrix, set all the cosmological parameters but ðΩM; σ8Þ,
and marginalize over the nuisance parameters for any given
choice of the prior σp, the fitting range ðθmin; θmaxÞ, and the
sampling dθ. Although limited to two parameters only, this
analysis will be helpful to elucidate how HOM actually
works, hence selecting the best strategy.
Let us start by investigating whether all moments have

to be used or comparable results can be obtained using
only a given combination of second, third, and fourth
order moments.9 Figure 7 shows the forecasted 1σ con-
straints on the parameters ðΩM; σ8Þ setting ðθmin; θmaxÞ ¼
ð2; 20Þ arcmin and four values of the sampling step dθ.
As expected, the constraints on ðΩM; σ8Þ are quite weak
and strongly dependent on the value of the prior σp. A
saturation roughly takes place for σp < 0.03 suggesting
that, for smaller values, the results are limited by the
HOM statistical and systematic errors. For a 10% prior on
the nuisance parameters and using all moments, we get
σðpμÞ=pμ ≃ 18ð6Þ% for pμ ¼ ΩMðσ8Þ which points at
HOM as interesting tools to constrain these two cosmo-
logical parameters. However, the constraints are strongly
dependent on priors with σðpμÞ=pμ ≃ 37ð22Þ% for pμ ¼
ΩMðσ8Þ if no prior is set. These are definitely too large to
deem HOM as actually useful which, however, does not
come as a surprise having HOM being suggested as
complementary probes to be used in combination with
standard cosmic shear tomography to break degeneracies
and not as a single tool. We will nevertheless keep

investigating their use as stand-alone probes to better
highlight which strategy is most suited to strengthen the
constraints.
One can naively expect that the strongest constraints are

obtained when all moments are combined. This is actually
not so obvious. Indeed, using all moments maximizes N d
in Eq. (25), thus reducing the inverse covariance matrix and
hence the Fij elements. Moreover, because of the strong
correlation among moments of different orders estimated
at the same θ and moments of the same order at close θ
values, the effective number of degrees of freedom is
smaller than the length of the data vector Dobs so that it
is not clear whether adding more orders automatically
translates to more constraints. On the other hand, the
number of nuisance parameters is smaller if only one order
or only two out of three are used. That is why we have
explored all seven possibilities that are plotted as different
colored lines in Fig. 7. Notwithstanding the above cau-
tionary considerations, it turns out that the best case
scenario is indeed the most obvious one. The best con-
straints are obtained when the full HOM data set (black
line) is used, but we nevertheless note that almost equiv-
alent results are obtained for the case with only second and
fourth order moments used (magenta line). Dropping off
the fourth order moments to use only second and third order
ones (orange line) leads to constraints on ðΩM; σ8Þ which
are comparable but yet definitely weaker, while using only
one set of moments (green, cyan, and blue lines) gives
significantly weaker constraints. Such results suggest that
most of the cosmological information is encapsulated in
second and fourth order moments, while third order ones
contain less information but can still be used to replace
fourth order moments because of the smaller systematic
uncertainty.
Let us now move to the question about which smoothing

angle range ðθmin; θmaxÞ should be used to minimize the
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FIG. 7. Fisher matrix forecast of the 1σ uncertainty on ΩM (top) and σ8 (bottom) as a function of the prior parameter σp from the fit to
data covering the smoothing angle range ðθmin; θmaxÞ ¼ ð2; 20Þ arcmin sampled with step dθ ¼ 1; 2; 3; 4 arcmin (from left to right). A
Gaussian filter has been used for smoothing, while black, green, cyan, blue, orange, magenta, red lines refer to the results using all
moments, second order only, third order only, fourth order only, second and third, second and fourth, third and fourth, respectively.

9Unless otherwise stated, all the results in this section refer to
HOM estimated after smoothing the reconstructed convergence
map with a Gaussian filter. The results are qualitatively un-
changed for the top hat case, too, the only differences being
highlighted at the end of this section if necessary.
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forecasted errors on ðΩM; σ8Þ. On one hand, for a fixed
sampling dθ, the wider is Δθ ¼ θmax − θmin, the larger is
the lengthN of the data vector. On the other hand, the larger
is Δθ, the larger is N d, thus making the inverse covariance
matrix smaller. Moreover, moving to larger θmin values
allows one to reduce (up to an order of magnitude) the
systematics contribution to the data covariance matrix
which should help in strengthening the constraints. To
explore which effects dominate, we use all HOM and plot
the constraints as a function of the prior parameter σp for
the five different ranges we have introduced before and four
different sampling step values. Results in Fig. 8 show that
the strongest constraints are obtained when the full (2,
20) arcmin (black line) range is used, but comparable
results can be reached if the upper limit is cut to 12 arcmin
only (green line). It is instructive to note that the worst
results are obtained for the intermediate range (4, 14) arc-
min (blue line). Such a result can be qualitatively explained
as follows. Most of the cosmological information is
encapsulated in the dependence of HOM on cosmological
parameters at small smoothing angles. In other words, the
derivatives ∂Dth=∂pi entering the Fisher matrix elements
Fij are decreasing function of θ so that Fij is larger when
small θ ranges are used. On the other hand, the overall
ρrmsðnÞ is smaller when the fit is limited to ranges with
large θmin, thus increasing Cov−1 and hence Fij. These two
different effects dominate in the extreme ranges, while they
compensate for each other in the intermediate one, which
therefore provides the weakest constraints.
Figure 8 can also be used to infer how the results change

with the sampling step dθ. Again, two competing effects
are at work here. On the one hand, the larger is dθ, the
smaller are the elements of the correlation matrixR and the
larger is the multiplicative term into Eq. (25), thus leading
to an overall increase of Fij. On the contrary, the larger is
dθ, the smaller is the length of the data vector Dobs so that
the number of degrees of freedom in the fit is smaller, hence

weakening the constraints. Figure 8 shows that the two
effects approximately compensate for each other if the full
(2, 20) arcmin range is used, while it is safer to set
dθ ≤ 3 arcmin if one wants to use only a subset of the data.
We finally conclude this analysiswith a note on the results

when the top hat filter is used.All the results are qualitatively
unchanged pointing at a preference for using all HOM data
over the full smoothing angle rangewith the finest sampling.
The only remarkable difference is the magnitude of the
constraints on ðΩM; σ8Þ which turns out to be dramatically
weaker. We indeed find that σðΩMÞ and σðσ8Þ can be larger
up to a factor of 2 for the same value of the prior parameter
σp. This is likely related to the top hat filter being too
aggressive in performing noise reduction with the smooth-
ing procedure removing also part of the signal where
cosmological information would have been usable.
However, we warn the reader that what is of most interest
is not the use of HOM alone, but the combination with shear
tomography so that we postpone to the next paragraph the
decision whether to dismiss the top hat filter overall.

C. Joint use of shear tomography and HOM

It has long been suggested that higher than second order
statistics can help break degeneracies among cosmological
parameters that limit the efficiency of cosmic shear tomog-
raphy. It is therefore our aim here to investigate whether this
is indeed the case and to which extent the combination of
shear tomography and HOM improves the constraints on
underlying cosmology. To this end, we assume that shear
tomography and HOM are independent probes so that the
total Fisher matrix simply reads

F ¼ FHOM þ FWL þΠ

with FHOM and FWL the HOM and shear tomography
Fisher matrices, and Π the priors matrix defined as
explained before. We refer the reader to Appendix B for
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FIG. 8. Same as Fig. 7 but all moments are used, while black, green, blue, orange, red lines refer to using data over the ranges (2, 20),
(2, 12), (4, 14), (6, 16), (8, 18) arcmin, respectively, sampled with step dθ ¼ 1; 2; 3; 4 arcmin from left to right.
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details on the estimate of FWL, while we only remark here
that it is based on an idealized survey having the same area,
number density, and redshift distribution of the MICECAT
catalogue we have used as input for the HOM Fisher
matrix. We will consider two different options for the
tomography splitting sources in three or six redshift bins.
Since we are interested in investigating how much the

use of HOM improves the constraints with respect to the
case when shear tomography only is used, we will always
discuss ratios of quantities so that it is immediately clear to
grasp any improvement. Although the details of an actual
survey may be different from the idealized one we are
considering, we are confident that taking the ratios partially
washes out these differences, making our results more
general. However, we are well aware that this point should
be addressed with care, which is nevertheless outside the
aim of this preliminary investigation.
With these caveats in mind, let us first look at Fig. 9

where we plot the ratio between the FoM with and without
using HOM, where we remind the reader that it is

FoM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

detCðw0; waÞ

s

with Cðw0; waÞ the inverse of the Fisher matrix margin-
alized over all parameters but ðw0; waÞ. We hold fixed the
smoothing angle range to the full one and look at how the
results change when the full HOM data set or only a part of
it is used. The most remarkable result we find is that the
FoM increases by a factor ∼2 even in the worst case
scenario when only a very poor prior ðσp ¼ 1Þ is set and
fourth order moments only (blue line) are used. Results
become roughly independent on the prior as far as σp ≤
0.03 which is encouraging since it suggests that a realistic

prior on the HOM nuisance parameters is enough to get a
valuable FoM increase. Which combinations of HOM is
best suited depends on the sampling step adopted.
However, as a general rule, lines clearly separate into
two groups depending on whether second order moments
are included in the combined shear þ HOM data set. When
hκ2iðθÞ data are included, the FoM increase is maximized
and is roughly the same no matter which sampling step is
used or which other data are added.
This result can be interpreted noting that both shear

tomography and hκ2iðθÞ are second order quantities so that
they are most sensible to the cosmological parameters than
higher order ones. As such, the derivatives with respect to
cosmological parameters entering the total Fisher matrix
elements receive a further contribution, thus ameliorating
the overall result. Higher than second order moments then
help break the ΩM-σ8 degeneracy that allows one to better
constrain these two quantities and, as a consequence, to
also strengthen the constraints on the other parameters,
hence leading to a larger FoM. The breaking of the ΩM-σ8
degeneracy takes place even when second order moments
are not used, thus motivating the factor 2.5 boost of the
FoM in these cases too. However, for all cases, the FoM
ratio is maximized when the full HOM data set is jointly
fitted with shear tomography so that we take this as our
final recommendation.
Let us now look at Fig. 10 where we investigate the

impact of changing the HOM data range assuming that all
moments are used in combination with shear tomography.
As soon as a prior with σp ≤ 0.3 is adopted, the preferred
range is always the full one (2, 20) arcmin or its narrower
version (2, 12) arcmin. This is consistent with a picture
where most of the cosmological information in encoded in
the small smoothing angle regime, which is expected given
that the more the map is smoothed, the more difficult it is to
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FIG. 9. FoM ratio as a function of the prior parameter σp. Black, green, cyan, blue, orange, magenta, red lines refer to using all HOM,
second order only, third only, fourth only, second and third, second and fourth, third and fourth in combination with cosmic shear
tomography based on three (top) and six (bottom) redshift bins. AGaussian filter is used to smooth the convergence map with smoothing
angles spanning the range (2, 20) arcmin with sampling step dθ ¼ 1; 2; 3; 4 arcmin from left to right.
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detect those deviations from non-Gaussianity, which bear
the imprint of the underlying cosmological model. Which
of the two ranges is most efficient in boosting the FoM then
depends on the sampling step and the details (three or six
redshift bins) of the shear tomography, but we can advocate
the use of the full one since it is the preferred case in all the
panels but in the bottom left one. On the contrary, there is
no significative dependence of the results on the sampling
step dθ. This is likely a consequence of the total Fisher
matrix being dominated by the shear contribution, which
makes HOM important mainly to break degeneracies. Since
this happens no matter which step is used, the differences
become meaningless, thus deleting any preference for any
particular value.
The FoM is a global measure of the efficiency of a given

set of cosmological probes to constrain the dark energy
equation of state (EoS). Yet, it is interesting to look at the

constraints on the single cosmological parameters and how
they improve when HOM are added to shear tomography.
Figure 11 is the answer to this question when all HOM are
combined with the six bin shear tomography considering
the five different smoothing angle ranges sampled with a
step dθ ¼ 1 arcmin. As is apparent, HOM are particularly
efficient at reducing the errors on all parameters with a
particular emphasis on EoS quantities ðw0; wa; wpÞ, the
matter density ΩM, and the variance σ8 of the linear matter
power spectrum. It is worth noting that the range more
convenient to reduce the error on a given parameter
depends on the parameter itself, but the full (2, 20) arcmin
range is ranked first or second for all parameters.
The reduction of the errors indeed comes from the HOM

breaking the ΩM-σ8 degeneracy. This can be efficiently
seen from Fig. 12 where blue (red) lines mark the 68%,
95%, 99% confidence ranges in the ðΩM; σ8Þ plane for
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FIG. 10. Same as Fig. 9 but changing the smoothing angle range and using all HOM in combination with shear tomography (with three
and six redshift bin results plotted in top and bottom panels). Black, green, blue, orange, red lines refer to the cases with
ðθmin; θmaxÞ ¼ ð2; 20Þ; ð2; 12Þ; ð4; 14Þ; ð6; 16Þ; ð8; 18Þ arcmin, respectively, with sampling dθ ¼ 1; 2; 3; 4 arcmin from left to right.
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FIG. 11. Ratio between the marginalized errors on the cosmological parameters for the case with the full HOM data set is used and
shear tomography is computed splitting galaxies into six redshift bins. Same color code as Fig. 10 is used to denote the smoothing angle
range used, while the sampling step changes from left to right as in that same figure. Panels are for ðΩM; w0; wa; wp;Ωb; h; ns; σ8Þ from
top left to bottom right, with wp the dark energy EoS at the pivot redshift.
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shear tomography with (without) the HOM contribution. It
is clear that, no matter the details of the HOM configuration
and whether three or six bins are used in shear tomography,
the use of HOM definitely changes the orientation of the
contours rotating them so that they become more parallel to
the coordinate axes. This is indeed what one expects when
the ΩM-σ8 degeneracy is broken. As a consequence, the
constraints on ðΩM; σ8Þ improves, which then start a sort of
chain reaction leading to an improvement of the constraints
on the other cosmological parameters, too.
All the results discussed so far refer to the case when a

Gaussian filter is used to smooth the map. Adopting a top
hat filter does not change the main outcome of this analysis;
i.e., HOM still increases the FoM by a factor of 2.5 in the
worst case scenario. However, two main differences occur.
First, the best strategy still claims the use of second, third,
and fourth order moments, but now giving away the fourth
order ones leaves the FoM ratio almost unchanged. Second,
the preferred smoothing angle range is now the (8,
18) arcmin, and large θmin values are typically preferred.
Such an opposite result with respect to the Gaussian case
can be traced back to the systematics errors coming from
the calibration of fourth order moments. Indeed, ρrmsðn¼4Þ
makes fourth order moment systematics comparable to

statistical errors on small smoothing scales so that one has
to move to the large ones to reduce the data covariance
matrix elements and, hence, the overall FoM. Contrary to
what has been suggested by the use of HOM to constrain
ðΩM; σ8Þ only, we therefore conclude that a top hat filter
can still provide valid help to increase the cosmic shear
tomography FoM.

VII. CONVERGENCE HOM SYSTEMATICS

The results presented up to now are implicitly based on a
number of realistic yet simplifying assumptions. There are
indeed some effects that we have neglected but that can
potentially impact our analysis introducing uncorrected
systematics. Some of them are discussed below trying to be
as quantitative as possible.

A. Shear multiplicative and additive biases

The convergence map has been reconstructed from
the noisy shear data implicitly assuming that these are a
faithful reproduction of the true shear field. Actually,
because of imperfections in the codes used to perform
galaxy shape measurements and of other instrumental
related systematics, the observed shear is a biased
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FIG. 12. The 68%, 95%, 99% confidence ranges in the ðΩM; σ8Þ plane as forecasted from the shear only (blue lines) and shear þ HOM
(red lines) Fisher matrix analysis. Top (bottom) panels refer to the case when three (six) redshift bins are used for tomography, while we
use all HOM for the Gaussian case, the full smoothing angle range, a step dθ ¼ 1 arcmin and σp ¼ 1, 0.1, 0.01 from left to right.
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representation of the actual one. It is common practice [50]
to model the relation between the observed and the actual
shear as linear, i.e., γobs ¼ ð1þmÞγ þ c, with ðm; cÞ the
multiplicative and additive biases (to not be confused
with the same quantities we have introduced in Sec. II).
Considering that shear is a two components field, the ith
component will read

γobs;iðϑ1; ϑ2Þ ¼ ½1þmþmiðϑ1;ϑ2Þ�γ1ðϑ1; ϑ2Þ
þ cþ ciðϑ1; ϑ2Þ;

where ðϑ1; ϑ2Þ are coordinates on the sky, and, without loss
of generality, we have split the additive and multiplicative
biases as the sum of a constant part common to both
components and a varying part characteristic of each
component. Moving to the Fourier space, we get

γ̂obs;iðl1;l2Þ ¼ ð1þmÞγ̂iðl1;l2Þ þ c

þ Ĝiðl1;l2Þ þ ĉiðl1;l2Þ;
with ðl1;l2Þ the component of the wave number vector,
f̂ðl1;l2Þ ¼ F ½fðϑ1; ϑ2Þ�, and F the Fourier transform
operator whose properties we have used to get the above
relation. In particular, the function Ĝiðl1;l2Þ is the con-
volution of the Fourier transforms of the ith components of
the shear and multiplicative bias. According to the KS93
algorithm, the Fourier transform of the convergence field
will then be given by

κ̂obsðl1;l2Þ ¼
l2
1 − l2

2 þ 2il1l2

l2
1 þ l2

2

γ̂obs:

Making some simple algebra, moving back to the real
space, and adding noise, the observed convergence field
will finally read

κobsðϑ1; ϑ2Þ ¼ ð1þmÞκEðϑ1; ϑ2Þ þ cþN ðϑ1;ϑ2Þ
þ κEmulðϑ1; ϑ2Þ þ κEaddðϑ1; ϑ2Þ
þ iκB;totðϑ1; ϑ2Þ; ð27Þ

where the real E terms are given by

κXðϑ1; ϑ2Þ ¼ F−1½κ̂Xðl1;l2Þ�

with X ¼ ðE;Emul; EaddÞ and

κ̂Xðl1;l2Þ ¼
l2
1 − l2

2

l2
1 þ l2

2

f̂1ðl1;l2Þ −
2l1l2

l2
1 þ l2

2

f̂2ðl1;l2Þ

and ðf̂1;f̂2Þ¼ðγ̂obs;1;γ̂obs;2Þ;ðĜ1;Ĝ2Þ;ðĉ1;ĉ2Þ for X ¼ E;
Emul; Eadd, respectively. A similar expression holds for
the imaginary B component, which will still be the sum of
three terms, each one being the Fourier antitransform of a
function having the following structure:

κ̂Yðl1;l2Þ ¼
l2
1 − l2

2

l2
1 þ l2

2

f̂2ðl1;l2Þ þ
2l1l2

l2
1 þ l2

2

f̂1ðl1;l2Þ

with Y ¼ B;Bmul; Badd and ðf̂1; f̂2Þ the same as before.
Equation (27) reduces to our starting relation (1) when

one assumes that the B component vanishes and the
multiplicative and additive biases are not present so that
both κEmul and κEadd are identically null. Shear systematics
therefore have a double effect. First, they introduce a
further B term so that their presence can be detected by
the nonvanishing of this part. Second, they add two further
terms to the real E part, thus making the observed
convergence field a biased reproduction of the actual
one even if one assumes m ¼ c ¼ 0. Dropping the E label
for shortness, taking only the real part, and subtracting the
mean value, we then have

~κobs ¼ ð1þmÞκ þN þ ~κmul þ ~κadd ð28Þ

with ~κmul ¼ κ − hκmuli and ~κadd ¼ κ − hκaddi. Note that we
cannot assume a priori that the two systematic terms
ðκmul; κaddÞ have a null average so that they still enter ~κ
contrary to the constant offset term c. Equation (28) is the
same as Eq. (2) provided one redefines the noise term as

~N ¼ N þ ~κmul þ ~κadd:

Under the reasonable assumption that the multiplicative
and additive shear biases do not correlate with the signal
and the noise, it is straightforward to show that one can
repeat the full derivation of the calibration relations (4)–(6)
carried out in Sec. II provided that noise moments are
replaced with those of the effective noise ~N, which are a
combination of the moments of the actual noise fieldN and
the two systematics fields ð~κmul; ~κaddÞ.
We therefore safely conclude that the presence of shear

systematics has the only impact to change the nuisance
parameters of the HOM calibration but does not alter the
main conclusion that HOM can be calibrated and hence
used as cosmological tools.

B. Intrinsic alignment

Even under the idealized conditions of no systematics
from shape measurement, the observed shear can still be
biased because of intrinsic alignment [51]. In the weak
lensing limit, the observed ellipticity e of a galaxy is the
sum of the intrinsic ellipticity eint and the shear γ, i.e.,
e ¼ eint þ γ. Averaging over a large number of galaxies,
one gets a shear estimator as γ ¼ hei under the assumption
that galaxies are randomly oriented. Actually, because of
intrinsic alignment (IA), one has heinti ≠ 0 so that the
observed shear is γobs ¼ γ þ γIA. It is straightforward to
understand that the γIA terms originate an additive con-
tribution in the convergence that now reads
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κobs ¼ ð1þmÞκ þN þ ðκIA − hκIAiÞ;

where we have already subtracted the mean value over the
map so that it is hκobsi ¼ 0. Note that one cannot assume
a priori that hκIAi ¼ 0 so that we should carry this term
along the derivation. For shortness of notation, we will,
however, denote with κIA the last term in the above sum.
One can now follow the same steps carried out in Sec. II

to derive the calibration relations (4)–(6), but there is now
an important difference. While we can still assume that κ
andN are uncorrelated, this is not true for κ and κIA so that
the expectation value of terms as κnκmIA has to be taken into
account. Under the still realistic assumption that κIA andN
are uncorrelated, we finally end up with the following
extended calibration relations:

hκ2obsi¼ð1þm2Þhκ2iþc2þhN 2iþ2ð1þmÞhκκIAiþhκ2IAi;
ð29Þ

hκ3obsi ¼ ð1þm3Þhκ3i þ c3 þ hN 3i
þ 3ð1þmÞ2hκ2κIAi þ 3ð1þmÞhκκ2IAi
þ hκ3IAi; ð30Þ

hκ4obsi ¼ ð1þm4Þhκ4i þ c4 þ hN 4i
þ 6½ð1þm2Þhκ2i þ c2�hN 2i
þ 4ð1þmÞ3hκ3κIAi þ 4ð1þmÞhκκ3IAi
þ 6ð1þmÞ2hκ2κ2IAi þ 6hκ2IAihN 2i
þ hκ4IAi: ð31Þ

For κIA ¼ 0, Eqs. (29)–(31) reduce to the calibration
relations (4)–(6) we have used throughout the paper.
When IA is present, additional terms appear that have to
be dealt with. Some possible strategies are outlined below.

(i) As a brute force approach, one can consider the
additional terms as further nuisance parameters to be
determined from the fit itself. Although this is a
legitimate procedure, it is likely quite hard to
actually implement. Indeed, the dimension of the
nuisance vector pn becomes dramatically close to
that of the data vector, thus forcing one to use a
smaller sampling step dθ. Such a choice, however,
will likely push the correlation matrix elements
closer to 1, thus reducing the effective number of
quasi-independent constraints. Second, the greater
the number of fitting parameters, the greater the
possibility of degeneracies among them. Both ef-
fects will operate to increase the forecasted errors on
cosmological parameters, thus making HOM less
and less useful even when combined with shear
tomography. Moreover, in a Fisher matrix forecast
analysis, one should also find out fiducial values for

the additional nuisance parameters that are actually
hard to set.

(ii) To the opposite extreme, one can note that IA is a
small scale effect so that its impact will be reduced
when smoothing with a large enough filter aperture.
One can therefore suppose that the smoothing
procedure completely washes out the effect so that
the terms related to IA in Eqs. (29)–(31) are
negligible or can be compensated by a change in
the remaining nuisance parameters. Ideally, one
could also look for a suitably defined filter that
makes sure this assumption comes true. Whether this
is the case or not is, however, hard to say given the
present day lack of any study of the impact of IA on
map reconstruction.

(iii) Rather than considering the IA related terms as
quantities to be fitted for, one can reduce the
dimensionality of the problem by estimating them
theoretically. To this end, one can consider the
effective IA convergence field κIA as an actual
one and rely on the formalism developed in [33]
to compute both the moments of κIA and the
expectation value of the cross terms hκnκmIAi. One
should then replace the matter power spectrum
Pðk; zÞ in Eqs. (14) with the IA power spectrum
taking one of the models available in the literature
[52]. These are assigned by some characteristic
parameters that then add to the rest of the nuisance
parameters. Such an approach allows one not only to
reduce the dimension of pn but also to make the IA
terms dependent on the cosmological parameters,
thus adding further information in the HOM. How-
ever, to the best of our knowledge, a theoretical
estimate of the IA moments with the formalism of
[33] has never been attempted nor validated so that it
is still premature to judge whether such a theory
based treatment of the impact of IA on HOM is
viable or not.

Which of the above strategies is best suited to tackle the
impact of IA on HOM is not possible to say at the moment
of writing. Indeed, lensing light-cone simulations including
IA in the shear field are needed to perform map
reconstruction and HOM measurement and calibration
and to test a theoretical approach to the IA moments
estimate. We are nevertheless confident that IA systematics
can be consistently included in the HOM framework as
soon as a suitable simulated data set will be available.

C. Measurement noise and denoising

Equation (1) has been taken as our starting point, but we
have actually not shown that it actually holds since its
derivation is straightforward. We have then included a
noise term in our simulated data by adding a random
ellipticity to the value of the shear in each position of the
map to take care of the nonvanishing dispersion of the
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intrinsic ellipticity distribution. It is worth noting, however,
that this is not the only source of noise. One should indeed
add the component coming from measurement errors
typically related to instrumental effects (e.g., shape meas-
urement will be degraded close to the edge of the image).
The details of how to take care of this further component
depend on the survey at hand, but some general comments
are nevertheless possible and will be sketched below.
To this end, we can note that the noise field may be

considered as an additional field that enters the conver-
gence map reconstruction. But this is exactly the same
situation we have already dealt with in the previous
paragraph for IA. We can therefore repeat the same
derivation as above, but with the further simplification
that this noise field can be considered uncorrelated from the
convergence field. Equations (29)–(31) reduce to

hκ2obsi ¼ ð1þm2Þhκ2i þ c2 þ hN 2i þ hM2i; ð32Þ

hκ3obsi ¼ ð1þm3Þhκ3i þ c3 þ hN 3i þ hM3i; ð33Þ

hκ4obsi ¼ ð1þm4Þhκ4i þ c4 þ hN 4i
þ 6½ð1þm2Þhκ2i þ c2�hN 2i
þ 6½ð1þmÞ2hκ2i þ c2�hM2i
þ 6hM2ihN 2i þ hM4i; ð34Þ

where we have denoted with M the additional noise field
after subtracting its average value. Equations (32)–(34) are
actually the same as our standard calibration relations
(4)–(6) provided define a total noise field N tot¼N þM
so that all the results we have discussed in previous sections
still hold. As the only difference, we get an increase in the
magnitude of the noise moments. A second somewhat
obvious difference will be the S/N ratio of the measured
moments that will be smaller by an amount that depends on
the ratio M=N and hence on the survey details.
One can also wonder whether it is possible to fully

remove the contribution of the noise moments to improve
the convergence HOM measurements. Such a procedure
has been suggested in [34] where it was argued that a better
estimate of the HOM is provided by the corrected moments

hκ2corri ¼ hκ2obsi − hκ2rndi; ð35Þ

hκ3corri ¼ hκ3obsi; ð36Þ

hκ4corri ¼ hκ4obsi − 6hκ2obsihκ2rndi − hκ4rndi; ð37Þ

where quantities with the label “rnd” are measured over
noise only maps, and the overline denotes the average over
a large number of noise only map realizations.
To test whether this denoising procedure works, we first

build 100 noise only shear maps keeping fixed both the

position and the shape of galaxies on every 25 deg2 patch,
but we randomize their orientation. For a given filter and
smoothing length, we then use these maps to estimate the
terms entering Eqs. (35) and (37). Note that we are here
considering only the intrinsic ellipticity noise (i.e., we set
N tot ¼ N ), but the results of this test should qualitatively
hold whatever kind of noise is actually affecting the input
shear map.
If denoising is actually working, we should expect that

the corrected moments match those measured on the
noiseless convergence map. We therefore also perform
map reconstruction from an idealized shear map with no
noise. We then compare the second and fourth order
corrected moments10 with those measured on this map to
finally get

hκ2corri=hκ2freei¼ 0.88�0.01; hκ4corri=hκ4freei¼ 0.17�0.02

with quantities with the label “free” measured on the noise
free map. These numbers clearly point to a failure of the
denoising procedure since one should actually find values
of order unity. On the contrary, such low numbers are
evidence that denoising is removing both the noise and
(part of) the signal. As a possible way out, one could try to
empirically modify Eqs. (35)–(37) by adding some multi-
plicative factors to the correction terms and tailoring them
so that the noiseless moments are exactly recovered.
However, this would require a large number of both noise
and signal simulations to be sure that these corrective
factors do not depend on the noise properties and the
cosmological parameters, but are rather universal. This is
outside our aims here so that we conservatively argue
against using denoising in moment estimates.

D. Masking

Camera CCD defects, bright stars saturating the image,
satellite trails, and various spurious artifacts must be
masked out before any weak lensing analysis. On the
contrary, we have here assumed that no masking is needed
so that the full subfield area can be used to convert the shear
field into the convergence map though the KS93 method.
Actually, this is far from the truth in realistic applications so
that it is worth wondering whether and to which extent
masking impacts the HOM estimate.
To this aim, one can first note that moments describe the

shape of the convergence PDF so that they are global
quantities. Unless masking preferentially selects areas
with a given κ value, it is therefore expected that the κ
distribution is overall unchanged so that HOM are unaf-
fected by masking. Such a qualitative discussion would
actually hold if masking were performed on the conver-
gence map itself. On the contrary, masking is performed on

10We do not test third order moments since the denoising
procedure does not apply any correction to them.
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the shear field introducing holes that must be filled
somewhat in order to run the KS93 algorithm. Different
techniques [34,53] have been developed to tackle this
problem with the final aim of making the reconstructed
convergence map as similar as possible to the actual one.
As far as this goal is reached, we can still assume that the
global properties of the convergence field are unaffected,
hence leading to no bias on the HOM.
To see whether this is indeed the case, we carry on

a preliminary analysis using the filling form method
already applied to reconstruct the convergence field from
CFHTLensS data [34]. As a first step, we construct a simple
mask to be applied on the catalog shear data by randomly
positioning circles with radii between 0.18 arcsec to
1 arcmin in such a way that the total masked area is
20%. We generate this kind of mask for each of the 140
shear fields cut from the MICECAT catalog and input them
to the map reconstruction code. Moments are then esti-
mated from these reconstructed maps, getting the results
shown in Fig. 13. Note that this figure refers to moments
estimated from a single subfield since this is the area used
to generate the mask.
It is apparent that HOM from maps reconstructed from

masked data are only shifted upwards with respect to the
unmasked case with the shift being more or less statistically
meaningful depending on the moment order. Such results
are not fully unexpected and can be qualitatively explained
as follows. First, we note that the second order moment is
increased as a result of the smaller number of cells used
to compute the convergence PDF distributions, which
reduces the statistics and thus increases the variance of
the distribution because of the larger impact of the noise.
This, however, does not significantly change the symmetry
properties of the distribution so that the third order moment
is the least affected. On the contrary, the fourth order
moment is increased as a consequence of the increase of
the second order one. Indeed, should the distribution be
Gaussian, a factor of 2 boost in the second order moment
translates into a factor of 4 boost in the fourth order one.
Although the convergence PDF is not Gaussian, the
combination with the Gaussian noise makes this effect
still partially at work, thus motivating the increase we find.
What is important to stress, however, is that masking

does not invalidate our calibration approach. It is indeed

still possible to rely on Eqs. (4)–(6) which is our funda-
mental assumption for the use of HOM as cosmological
probes. Masking will change the values of the calibration
parameters, but these quantities are actually of no interest
for cosmology. Moreover, it is also worth noting that
the use of inpainting techniques will likely reduce the
difference among maps reconstructed from masked and
unmasked data, thus making the difference in calibration
parameters likely negligible. While this is a point we will
address in a separate paper, we can nevertheless safely
conclude that masking introduces systematics in the
analysis which do not bias the estimate of the cosmological
parameters.

VIII. CONCLUSIONS

More and better data does not only imply more and better
statistics. Improved observational techniques and wider
areas are two promises that ongoing and future lensing
surveys will respect, thus making available a large data set
of unprecedented quality data. Rather than limiting our-
selves to do better what has already been done up to now,
one can think to take the next step forward. From the point
of view of lensing studies, this means moving away from
second order statistics (two points correlation function and
cosmic shear tomography) and consider higher order
estimators. Motivated by this idea, we have here explored
the use of higher order moments of the convergence field to
increase the FoM of lensing surveys.
To make HOM viable cosmological tools, one has first to

show that it is possible to match theory and observations,
i.e., that reliable calibration relations exist so that the
predictions for a given set of cosmological parameters
are in agreement with the moments estimated from the
corresponding convergence maps. Equations (4)–(6) are
our answer to this question, making it possible to connect
the theoretical predictions from Eqs. (11)–(13) to the HOM
estimated from the MICECAT simulated catalog data. The
successful comparison with simulations has validated our
approach so that we can safely rely on it to use HOM as
cosmological probes.
A Fisher matrix analysis has then shown that, while as

stand-alone probe moments are unable to put meaningful
constraints on ðΩM; σ8Þ, the joint use of shear tomography
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and HOM can boost the FoM by up to a factor of 14 and no
less than a factor of 2. Such an astonishing result is due to
HOM breaking the ΩM-σ8 degeneracy, which makes it
possible to strengthen the constraints on all the cosmo-
logical parameters. This degeneracy breaking takes place
whatever smoothing angle range and sampling step is used,
but we advocate the use of the full (2, 20) arcmin range with
sampling dθ ¼ 1 arcmin since this choice guarantees a
better statistics and hence maximizes the FoM boost.
As encouraging as they are, these results have to be

considered still preliminary and taken cum grano salis.
First, we note that they refer to an idealized lensing survey
having area, redshift distribution, and number density
different from ongoing (DES, KIDS) and future (Euclid)
surveys. In particular, the shear tomography only FoM is
likely grossly underestimated because of the small number
of redshift bins we have used. The impact of the number of
bins can be appreciated by noting that the shear FoM
increases by a factor of 2 when we move from three to six
redshift bins. Since we have considered the FoM ratio, it is
clear that, if the denominator is underestimated, the full
ratio is overestimated. It is, however, reassuring that the
FoM ratio in Figs. 9 and 10 is roughly the same between top
and bottom panels, suggesting that the FoM increase does
not depend on the number of bins. However, changes in the
redshift distribution and number density affect both shear
tomography and HOM, and it is not possible to say in
advance if the changes go in the same direction, thus
leaving the FoM ratio unchanged.
To test whether this is the case, one should repeat the

analysis presented in this exploratory paper based on
simulations mimicking a given survey in terms of redshift
distribution, area, and number density. A possible example
is the recently released multidark weak lensing light cone
[54]. This will offer the possibility to not only extend the
redshift range but also adjust the source redshift distribu-
tion, thus allowing one to explore the impact of this
quantity on the validity of our linear calibration relation.
Moreover, being multidark based on a different input
cosmological model, we could also check whether the
results in the present paper still hold when the background
cosmology is changed. We stress that, in order for such a
test to be passed with green lights, it is not important that
the calibration coefficients ðm; cÞ are the same since they
will likely depend on both cosmology and the redshift
range probed, but only that the relation between theoretical
and observed moments can be approximated as a linear one
with small scatter. Although such a confirmation test is
needed, we are nevertheless confident that this is indeed the
case since there is nothing in our procedure related to which
cosmological model is the input for the simulation. The
impact on the FoM ratio is, in contrast, hard to reliably
forecast.
As a first step toward the use of HOM as supplementary

cosmological probes, our analysis has been based on a

number of assumptions that could be violated, thus origi-
nating unaccounted for systematics. Some of them have
been semiquantitatively addressed in Sec. VII where we
have shown that the main problems may come from IA
only. How troublesome IA is in lensing analysis, however,
is not unexpected news because IA is the main systematics
also in standard shear tomography. As discussed in
Sec. VII B, taking care of IA requires specifically designed
simulations that implement it in the shear field itself.
Although unavailable at the moment of writing, work is
in progress to make them available to the lensing commu-
nity so we are confident that the time will come when this
issue will correctly be taken into account. We note that a
theoretical approach calibrated on simulations can turn IA
from a problem to an opportunity since it should add further
cosmology dependent terms in HOM, thus increasing their
constraining power and hence the joint FoM.
As a conclusive remark, we want to stress that, as

preliminary as they are, the results presented in this paper
convincingly show that moving beyond second order
statistics is an efficient way to deepen our understanding
of the dark energy permeating the Universe. It is therefore
entirely possible that the wisest use of future data is not
doing more of the same, but rather some of the higher.
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APPENDIX A: CALIBRATION PARAMETERS

We summarize here the results of the HOM calibration
analysis. Tables I and II report the median and the
68% confidence range of the calibration parameters, and
the rms of the percentage residuals for the idealized
and noisy moments, respectively. Results for fits to limited
smoothing angle ranges are also given.
Concerning the results for noisy moments, we remind the

reader that second and fourth order moments are jointly fit
since the same parameters enter both calibration relations.
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As a side effect, the rms on third order moments will
typically be smaller than the one for second and fourth
order ones since in this case the fit has to adjust a smaller
set of parameters and only minimize the residuals with
respect to a single set of moments. A further remark
concerns the ν4 parameter that turns out to be practically
unconstrained at the upper end (with the upper limit of the
68% confidence ranges being up to 2 orders of magnitude
larger than the median value). Actually, we checked that
this is a consequence of the very small contribution the
noise gives to the overall fourth order moments so that even
values of ν4 as large as its upper limit are negligible with
respect to the signal. A similar discussion also holds for ν3.
Although such large errors could be reduced by shrinking
the statistical errors on moments with wider area surveys,
we stress that we do not actually worry about the uncer-
tainties on the calibration parameters since these quantities
are marginalized over in the present Fisher matrix analysis
and in future application to real data.

APPENDIX B: SHEAR FISHER MATRIX

We briefly sketch below how we computed the cosmic
shear tomography Fisher matrix. Its elements are

Fαβ ¼
Xlmax

l¼lmin

ð2lþ 1ÞfskyΔl
2

× Tr

�∂CðlÞ
∂pα

Cov−1ðlÞ ∂CðlÞ∂pβ
Cov−1ðlÞ

	
; ðB1Þ

where fsky is the fraction of the sky covered by the survey,
the sum is over the l mode within the range ðlmin;lmaxÞ,
CðlÞ is the N bin ×N bin lensing matrix whose elements
CijðlÞ read

CijðlÞ ¼
c
H0

Z
zh

0

Wγ
i ðzÞWγ

jðzÞ
EðzÞχ2ðzÞ P

�
lþ 1=2
χðzÞ ; z

	
dz; ðB2Þ

having assumed no contribution from IA. These also enter
the covariance matrix CovðlÞ which is assumed to be
Gaussian so that its elements are simply given by

CovijðlÞ ¼ CijðlÞ þ
γ2intδ

K
ij

fing × 3600ð180=πÞ2 ðB3Þ

with δKij the Kronecker symbol, and fing the source number
density for the ith redshift bin. We will use equipopulated
bins, it is fi ¼ 1=N bin, while we set γint ¼ 0.22 for the
variance of the intrinsic ellipticity distribution.
In Eq. (B2), Pðk; zÞ is the same matter power spectrum

we have used to compute the theoretical HOM, while
Wγ

i ðzÞ is the same as WðzÞ in Eq. (10) provided one
replaces nðzÞ with niðzÞ, this latter quantity being the
redshift distribution for the ith bin. This is obtained from
the full redshift distribution nðzÞ convolving with the
selection function of the ith bin, which also takes into
account photometric redshift uncertainties. Finally, we set
ðlmin;lmaxÞ ¼ ð10; 5000Þ and use 50 equispaced logarithm
bins in l adjusting Δl accordingly.
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