

SIS 20 7 Statistics and Data Science: new challenges, new generations

PROCEEDINGS OF THE CONFERENCE OF THE ITALIAN STATISTICAL SOCIETY 28-30 June 2017 Florence (Italy)

edited by Alessandra Petrucci Rosanna Verde

Proceedings e report

||4

SIS 2017 Statistics and Data Science: new challenges, new generations

28–30 June 2017 Florence (Italy)

Proceedings of the Conference of the Italian Statistical Society

edited by Alessandra Petrucci Rosanna Verde

FIRENZE UNIVERSITY PRESS 2017

SIS 2017. Statistics and Data Science: new challenges, new generations : 28-30 June 2017 Florence (Italy) : proceedings of the Conference of the Italian Statistical Society / edited by Alessandra Petrucci, Rosanna Verde. – Firenze : Firenze University Press, 2017. (Proceedings e report; 114)

http://digital.casalini.it/9788864535210

ISBN 978-88-6453-521-0 (online)

Peer Review Process

All publications are submitted to an external refereeing process under the responsibility of the FUP Editorial Board and the Scientific Committees of the individual series. The works published in the FUP catalogue are evaluated and approved by the Editorial Board of the publishing house. For a more detailed description of the refereeing process we refer to the official documents published on the website and in the online catalogue of the FUP (www.fupress.com).

Firenze University Press Editorial Board

A. Dolfi (Editor-in-Chief), M. Boddi, A. Bucelli, R. Casalbuoni, M. Garzaniti, M.C. Grisolia, P. Guarnieri, R. Lanfredini, A. Lenzi, P. Lo Nostro, G. Mari, A. Mariani, P.M. Mariano, S. Marinai, R. Minuti, P. Nanni, G. Nigro, A. Perulli, M.C. Torricelli.

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0: https://creativecommons.org/licenses/by/4.0/legalcode)

CC 2017 Firenze University Press Università degli Studi di Firenze Firenze University Press via Cittadella, 7, 50144 Firenze, Italy www.fupress.com

SOCIETÀ ITALIANA DI STATISTICA

Sede: Salita de' Crescenzi 26 - 00186 Roma Tel +39-06-6869845 - Fax +39-06-68806742 email: sis@caspur.it web:http://www.sis-statistica.it

La Società Italiana di Statistica (SIS), fondata nel 1939, è una società scientifica eretta ad Ente morale ed inclusa tra gli Enti di particolare rilevanza scientifica. La SIS promuove lo sviluppo delle scienze statistiche e la loro applicazione in campo economico, sociale, sanitario, demografico, produttivo ed in molti altri settori di ricerca.

Organi della società:

Presidente:

- Prof.ssa Monica Pratesi, Università di Pisa

Segretario Generale:

- Prof.ssa Filomena Racioppi, Sapienza Università di Roma

Tesoriere:

- Prof.ssa Maria Felice Arezzo, Sapienza Università di Roma

Consiglieri:

- Prof. Giuseppe Arbia, Università Cattolica del Sacro Cuore
- Prof.ssa Maria Maddalena Barbieri, Università Roma Tre
- Prof.ssa Francesca Bassi, Università di Padova
- Prof. Eugenio Brentari, Università di Brescia
- Dott. Stefano Falorsi, ISTAT
- Prof. Alessio Pollice, Università di Bari
- Prof.ssa Rosanna Verde, Seconda Università di Napoli
- Prof. Daniele Vignoli, Università di Firenze

Collegio dei Revisori dei Conti:

- Prof. Francesco Campobasso, Prof. Michele Gallo, Prof. Francesco Sanna, Prof. Umberto Salinas (supplente)

SIS2017 Committees

Scientific Program Committee:

Rosanna Verde (chair), Università della Campania "Luigi Vanvitelli" Maria Felice Arezzo, Sapienza Università di Roma Antonino Mazzeo, Università di Napoli Federico II Emanuele Baldacci, Eurostat Pierpaolo Brutti, Sapienza Università di Roma Marcello Chiodi, Università di Palermo Corrado Crocetta, Università di Foggia Giovanni De Luca, Università di Napoli Parthenope Viviana Egidi, Sapienza Università di Roma Giulio Ghellini, Università degli Studi di Siena Ippoliti Luigi, Università di Chieti-Pescara "G. D'Annunzio" Matteo Mazziotta, ISTAT Lucia Paci. Università Cattolica del Sacro Cuore Alessandra Petrucci, Università degli Studi di Firenze Filomena Racioppi. Sapienza Università di Roma Laura M. Sangalli, Politecnico di Milano Bruno Scarpa, Università degli Studi di Padova Cinzia Viroli, Università di Bologna

Local Organizing Committee:

Alessandra Petrucci (chair), Università degli Studi di Firenze Gianni Betti, Università degli Studi di Siena Fabrizio Cipollini, Università degli Studi di Firenze Emanuela Dreassi, Università degli Studi di Firenze Caterina Giusti, Università degli Studi di Firenze Alessandra Mattei, Università degli Studi di Firenze Elena Pirani, Università degli Studi di Firenze Emilia Rocco, Università degli Studi di Firenze Maria Cecilia Verri, Università degli Studi di Firenze

Supported by:

Università degli Studi di Firenze Università di Pisa Università degli Studi di Siena ISTAT Regione Toscana Comune di Firenze BITBANG srl

Index

Preface XX	ζV
Alexander Agapitov, Irina Lackman, Zoya Maksimenko Determination of basis risk multiplier of a borrower default using survival analy.	sis 1
Tommaso Agasisti, Alex J. Bowers, Mara Soncin School principals' leadership styles and students achievement: empirical resu from a three-step Latent Class Analysis	ults 7
Tommaso Agasisti, Sergio Longobardi, Felice Russo Poverty measures to analyse the educational inequality in the OECD Countries	17
Mohamed-Salem Ahmed, Laurence Broze, Sophie Dabo-Niang, Zied Gharbi Quasi–Maximum Likelihood Estimators For Functional Spatial Autoregressive Mo els	od- 23
Giacomo Aletti, Alessandra Micheletti A clustering algorithm for multivariate big data with correlated components	31
Emanuele Aliverti	

A Bayesian semiparametric model for terrorist networks

37

essandra Petrucci. Rosanna Verde (edited by). SIS 2017. Statistics and Data Science: new challenges, new generatio

Alessandra Petrucci, Rosanna Verde (edited by), SIS 2017. Statistics and Data Science: new challenges, new generations. 28-30 June 2017 Florence (Italy). Proceedings of the Conference of the Italian Statistical Society ISBN (online) 978-88-6453-521-0 (online), CC BY 4.0, 2017 Firenze University Press

Giorgio Alleva Emerging challenges in official statistics: new sources, methods and skills 43
Rémi André, Xavier Luciani and Eric Moreau A fast algorithm for the canonical polyadic decomposition of large tensors 45
Maria Simona Andreano, Roberto Benedetti, Paolo Postiglione, Giovanni Savio On the use of Google Trend data as covariates in nowcasting: Sampling and mod- eling issues
53 Francesco Andreoli, Mauro Mussini A spatial decomposition of the change in urban poverty concentration
59 Margaret Antonicelli, Vito Flavio Covella How green advertising can impact on gender different approach towards sustain-
ability 65
Rosa Arboretti, Eleonora Carrozzo, Luigi Salmaso Stratified data: a permutation approach for hypotheses testing 71
Marika Arena, Anna Calissano, Simone Vantini Crowd and Minorities: Is it possible to listen to both? Monitoring Rare Sentiment and Opinion Categories about Expo Milano 2015 79
Maria Felice Arezzo, Giuseppina Guagnano Using administrative data for statistical modeling: an application to tax evasion 83
Monica Bailot, Rina Camporese, Silvia Da Valle, Sara Letardi, Susi Osti Are Numbers too Large for Kids? Possible Answers in Probable Stories 89

Index IX
Simona Balbi, Michelangelo Misuraca, Germana Scepi A polarity–based strategy for ranking social media reviews
95
A. Balzanella, S.A. Gattone, T. Di Battista, E. Romano, R. Verde Monitoring the spatial correlation among functional data streams through Moran's Index
103
Oumayma Banouar, Said Raghay User query enrichment for personalized access to data through ontologies using
matrix completion method
109
Giulia Barbati, Francesca Ieva, Francesca Gasperoni, Annamaria Iorio, Gianfranco Sinagra, Andrea Di Lenarda
The Trieste Observatory of cardiovascular disease: an experience of administrative and clinical data integration at a regional level
115
Francesco Bartolucci, Stefano Peluso, Antonietta Mira
Marginal modeling of multilateral relational events 123
Francesca Bassi, Leonardo Grilli, Omar Paccagnella, Carla Rampichini, Roberta Varriale
New Insights on Students Evaluation of Teaching in Italy 129
Mauro Bernardi, Marco Bottone, Lea Petrella
Bayesian Quantile Regression using the Skew Exponential Power Distribution 135
Mauro Bernardi
Bayesian Factor–Augmented Dynamic Quantile Vector Autoregression 141

Index

Bruno Bertaccini, Giulia Biagi, Antonio Giusti, Laura Grassini Does data structure reflect monuments structure? Symbolic data analysis on a	Flo-
rence Brunelleschi Dome	149
Gaia Bertarelli and Franca Crippa, Fulvia Mecatti A latent markov model approach for measuring national gender inequality	157
Agne Bikauskaite, Dario Buono Eurostat's methodological network: Skills mapping for a collaborative statist office	tical 161
	101
Francesco C. Billari, Emilio Zagheni Big Data and Population Processes: A Revolution?	167
Monica Billio, Roberto Casarin, Matteo Iacopini Bayesian Tensor Regression models	179
Monica Billio, Roberto Casarin, Luca Rossini Bayesian nonparametric sparse Vector Autoregressive models	187
Chiara Bocci, Daniele Fadda, Lorenzo Gabrielli, Mirco Nanni, Leonardo Piccir Using GPS Data to Understand Urban Mobility Patterns: An Application to Florence Metropolitan Area	
Michele Boreale, Fabio Corradi Relative privacy risks and learning from anonymized data	199
Giacomo Bormetti, Roberto Casarin, Fulvio Corsi, Giulia Livieri A stochastic volatility framework with analytical filtering	205

Х

Index	XI
Alessandro Brunetti, Stefania Fatello, Federico Polidoro Estimating Italian inflation using scanner data: results and perspectives	211
Guénael Cabanes, Younès Bennani, Rosanna Verde, Antonio Irpino Clustering of histogram data : a topological learning approach	219
Renza Campagni, Lorenzo Gabrielli, Fosca Giannotti, Riccardo Guidotti, Filo Maggino, Dino Pedreschi	nena
Measuring Wellbeing by extracting Social Indicators from Big Data	227
Maria Gabriella Campolo, Antonino Di Pino Assessing Selectivity in the Estimation of the Causal Effects of Retirement of Labour Division in the Italian Couples	
Stefania Capecchi, Rosaria Simone Composite indicators for ordinal data: the impact of uncertainty	235
Stefania Capecchi, Domenico Piccolo The distribution of Net Promoter Score in socio–economic surveys	241
Massimiliano Caporin, Francesco Poli News, Volatility and Price Jumps	247
Carmela Cappelli, Rosaria Simone, Francesca di Iorio	253
Growing happiness: a model-based tree	261
Paolo Emilio Cardone Inequalities in access to job-related learning among workers in Italy: evidence Adult Education Survey (AES)	from
	267

279

285

293

301

Signal detection in high energy physics	via a semisupervised nonparametric ap-
proach	
	273

Claudio Ceccarelli, Silvia Montagna, Francesca Petrarca
Employment study methodologies of Italian graduates through the data linkage of
administrative archives and sample surveys

Ikram Chairi, Amina El Gonnouni, Sarah Zouinina, Abdelouahid Lyhyaoui Prediction of Firm's Creditworthiness Risk using Feature Selection and Support Vector Machine

Sana Chakri, Said Raghay, Salah El Hadaj

Contribution of extracting meaningful patterns from semantic trajectories

Chieppa A., Ferrara R., Gallo G., Tomeo V. Towards The Register-Based Statistical System: A New Valuable Source for Population Studies

Shirley Coleman

Consulting, knowledge transfer and impact case studies of statistics in practice 305

Michele Costa The evaluation of the inequality between population subgroups 313

Michele Costola Bayesian Non–Negative l₁–Regularised Regression

319

Lisa Crosato, Caterina Liberati, Paolo Mariani, Biancamaria Zavanella Industrial Production Index and the Web: an explorative cointegration analysis

327

Index	XIII
Francesca Romana Crucinio, Roberto Fontana Comparison of conditional tests on Poisson data	333
Riccardo D'Alberto, Meri Raggi Non-parametric micro Statistical Matching techniques: some developments	339
Stefano De Cantis, Mauro Ferrante, Anna Maria Parroco Measuring tourism from demand side	345
Lucio De Capitani, Daniele De Martini Optimal Ethical Balance for Phase III Trials Planning	351
Claudia De Vitiis, Alessio Guandalini, Francesca Inglese, Marco D. Terribili Sampling schemes using scanner data for the consumer price index	357
Ermelinda Della Valle, Elena Scardovi, Andrea Iacobucci, Edoardo Tignone Interactive machine learning prediction for budget allocation in digital marketing scenarios	
	365
Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor Nonparametric classification for directional data	371
Edwin Diday Introduction to Symbolic Data Analysis and application to post clustering for com- paring and improving clustering methods by the Symbolic Data Table that they in- duce	
	379
Carlo Drago Identifying Meta Communities on Large Networks	387

Neska El F Jaidane	aouij, Jean-Michel Poggi, Raja Ghozi, Sylvie Sevestre Gl	nalila, Mériem
Random F	prest–Based Approach for Physiological Functional Vari Stress Level Classification	able Selection
jor Brivers		393
	hinetti, Silvia A. Osmetti a to evaluate the criticality of a product defectiveness	399
	erraccioli, Livio Finos l family graphical models and penalizations	405
Mauro Fer tore Scond	ante, Giovanna Fantaci, Anna Maria Parroco, Anna Maria otto	Milito, Salva-
Key–indica	tors for maternity hospitals and newborn readmission in S	Sicily 411
	nilla, Ganugi Piero, Zammori Francesco Variables theorem to fit Bimodal Distributions	417
	Finazzi, Lucia Paci clustering for identifying population patterns from smart	phone data 423
	Fiore, Antonella Simone, Antonino Virgillito s for Analyzing Large-Scale Statistical Datasets: Scanner	Data for CPI 429
	p, Thomas Brendan Murphy, Luca Scrucca ed Clustering with Sparse Covariance Matrices	437
	co-Villoria, Marian Scott egression for Functional Data	441

XIV

Gallo M., Simonacci V., Di Palma M.A. Three–way compositional data: a multi–stage trilinear decomposition algorithm 44:	5
Francesca Gasperoni, Francesca Ieva, Anna Maria Paganoni, Chris Jackson, Linda Sharples Nonparametric shared frailty model for classification of survival data 45.	
Stefano A. Gattone, Angela De Sanctis Clustering landmark–based shapes using Information Geometry tools 45'	7
Alan E. Gelfand, Shinichiro Shirota Space and circular time log Gaussian Cox processes with application to crime even data 46.	
Abdelghani Ghazdali Blind source separation 469	9
Massimiliano Giacalone, Antonio Ruoto, Davide Liga, Maria Pilato, Vito Santar cangelo An innovative approach for Opinion Mining : the Plutchick analysis 479	
Massimiliano Giacalone, Demetrio Panarello A G.E.D. method for market risk evaluation using a modified Gaussian Copula 48:	
Chiara Gigliarano, Francesco Maria Chelli Labour market dynamics and recent economic changes: the case of Italy 49	1
Giuseppe Giordano, Giancarlo Ragozini, Maria Prosperina Vitale On the use of DISTATIS to handle multiplex networks 499	9

XVI	Index
Michela Gnaldi, Silvia Bacci, Samuel Greiff, Thiemo Kunze Profiles of students on account of complex problem solving (CPS) strategies ex- ploited via log-data	
	505
Michela Gnaldi, Simone Del Sarto Characterising Italian municipalities according to the annual report of the pre of–corruption supervisor: a Latent Class approach	
	513
Silvia Golia A proposal of a discretization method applicable to Rasch measures	519
Anna Gottard Tree–based Non–linear Graphical Models	525
Sara Hbali, Youssef Hbali, Mohamed Sadgal, Abdelaziz El Fazziki Sentiment Analysis for micro-blogging using LSTM Recurrent Neural Netwo	rks 531
Stefano Maria Iacus, Giuseppe Porro, Silvia Salini, Elena Siletti How to Exploit Big Data from Social Networks: a Subjective Well-being Indicator via Twitter	
	537
Francesca Ieva Network Analysis of Comorbidity Patterns in Heart Failure Patients using Ad trative Data	minis-
	543
Antonio Irpino, Francisco de A.T. De Carvalho, Rosanna Verde Automatic variable and components weighting systems for Fuzzy cmeans of butional data	distri-
	549
Michael Jauch, Paolo Giordani, David Dunson A Bayesian oblique factor model with extension to tensor data	553
	555

Index XVII	[
Johan Koskinen, Chiara Broccatelli, Peng Wang, Garry Robins Statistical analysis for partially observed multilayered networks 561	
Francesco Lagona Copula–based segmentation of environmental time series with linear and circular	
components 569	
Alessandro Lanteri, Mauro Maggioni A Multiscale Approach to Manifold Estimation 575	j
Tiziana Laureti, Carlo Ferrante, Barbara Dramis Using scanner and CPI data to estimate Italian sub–national PPPs 581	
Antonio Lepore Graphical approximation of Best Linear Unbiased Estimators for Extreme Value Distribution Parameters 589	
Antonio Lepore, Biagio Palumbo, Christian Capezza Monitoring ship performance via multi–way partial least–squares analysis of func- tional data	
595 Caterina Liberati, Lisa Crosato, Paolo Mariani, Biancamaria Zavanella	Ì
Dynamic profiling of banking customers: a pseudo-panel study 601	
Giovanni L. Lo Magno, Mauro Ferrante, Stefano De Cantis A comparison between seasonality indices deployed in evaluating unimodal and bimodal patterns	l
607	,
Rosaria Lombardo, Eric J Beh Three–way Correspondence Analysis for Ordinal–Nominal Variables 613	;

XVIII Index
Monia Lupparelli, Alessandra Mattei Log-mean linear models for causal inference
621
Badiaa Lyoussi, Zineb Selihi, Mohamed Berraho, Karima El Rhazi, Youness El Achhab, Adiba El Marrakchi , Chakib Nejjari
Research on the Risk Factors accountable for the occurrence of degenerative com- plications of type 2 diabetes in Morocco: a prospective study
627
Valentina Mameli, Debora Slanzi, Irene Poli Bootstrap group penalty for high-dimensional regression models
633
Stefano Marchetti, Monica Pratesi, Caterina Giusti Improving small area estimates of households' share of food consumption expendi-
ture in Italy by means of Twitter data 639
Paolo Mariani, Andrea Marletta, Mariangela Zenga
Gross Annual Salary of a new graduate: is it a question of profile? 647
Maria Francesca Marino, Marco Alfò
Dynamic random coefficient based drop-out models for longitudinal responses 653
Antonello Maruotti, Jan Bulla
Hidden Markov models: dimensionality reduction, atypical observations and algorithms
659
Chiara Masci, Geraint Johnes, Tommaso Agasisti A flexible analysis of PISA 2015 data across countries, by means of multilevel trees
and boosting 667

Index	XIX
Lucio Masserini, Matilde Bini Impact of the 2008 and 2012 financial crises on the unemployment rate in Ital interrupted time series approach	y: an 673
Angelo Mazza, Antonio Punzo, Salvatore Ingrassia An R Package for Cluster–Weighted Models	681
Antonino Mazzeo, Flora Amato Methods and applications for the treatment of Big Data in strategic fields	687
Letizia Mencarini, Viviana Patti, Mirko Lai, Emilio Sulis Happy parents' tweets	693
Rodolfo Metulini, Marica Manisera, Paola Zuccolotto Space–Time Analysis of Movements in Basketball using Sensor Data	701
Giorgio E. Montanari, Marco Doretti, Francesco Bartolucci An ordinal Latent Markov model for the evaluation of health care services	707
Isabella Morlini, Maristella Scorza New fuzzy composite indicators for dyslexia	713
Fionn Murtagh Big Textual Data: Lessons and Challenges for Statistics	719
Gaetano Musella, Gennaro Punzo Workers' skills and wage inequality: A time-space comparison across Euro Mediterranean countries	pean

731

XX II	ndex
Marta Nai Ruscone Exploratory factor analysis of ordinal variables: a copula approach	737
Fausta Ongaro, Silvana Salvini IPUMS Data for describing family and household structures in the world	743
Tullia Padellini, Pierpaolo Brutti Topological Summaries for Time–Varying Data	747
Sally Paganin Modeling of Complex Network Data for Targeted Marketing	753
Francesco Palumbo, Giancarlo Ragozini Statistical categorization through archetypal analysis	759
Michela Eugenia Pasetto, Umberto Noè, Alessandra Luati, Dirk Husmeier Inference with the Unscented Kalman Filter and optimization of sigma points	767
Xanthi Pedeli, Cristiano Varin Pairwise Likelihood Inference for Parameter–Driven Models	773
Felicia Pelagalli, Francesca Greco, Enrico De Santis Social emotional data analysis. The map of Europe	779
Alessia Pini, Lorenzo Spreafico, Simone Vantini, Alessandro Vietti Differential Interval–Wise Testing for the Inferential Analysis of Tongue Profiles	s 785
Alessia Pini, Aymeric Stamm, Simone Vantini Hotelling meets Hilbert: inference on the mean in functional Hilbert spaces	791

Index	XXI
Silvia Polettini, Serena Arima Accounting for measurement error in small area models: a study on generosity	795
Gennaro Punzo, Mariateresa Ciommi Structural changes in the employment composition and wage inequality: A com- ison across European countries	<i>par-</i> 801
Walter J. Radermacher Official Statistics 4.0 – learning from history for the challenges of the future	809
Fabio Rapallo Comparison of contingency tables under quasi-symmetry	821
Valentina Raponi, Cesare Robotti, Paolo Zaffaroni Testing Beta–Pricing Models Using Large Cross–Sections	827
Marco Seabra dos Reis, Biagio Palumbo, Antonio Lepore, Ricardo Rendall, Cl tian Capezza On the use of predictive methods for ship fuel consumption analysis from mas on-board operational data	
Alessandra Righi, Mauro Mario Gentile Twitter as a Statistical Data Source: an Attempt of Profiling Italian Users Ba ground Characteristics	ack- 841
Paolo Righi, Giulio Barcaroli, Natalia Golini Quality issues when using Big Data in Official Statistics	847
Emilia Rocco Indicators for the representativeness of survey response as well as convenience s ples	am- 855

XXII	Index
Emilia Rocco, Bruno Bertaccini, Giulia Biagi, Andrea Giommi A sampling design for the evaluation of earthquakes vulnerability of the re- buildings in Florence	sidential
	861
Elvira Romano, Jorge Mateu A local regression technique for spatially dependent functional data: an hete tic GWR model	vroskedas-
	867
Eduardo Rossi, Paolo Santucci de Magistris Models for jumps in trading volume	
	873
Renata Rotondi, Elisa Varini On a failure process driven by a self–correcting model in seismic hazard ass	sessment 879
M. Ruggieri, F. Di Salvo and A. Plaia Functional principal component analysis of quantile curves	887
Massimiliano Russo Detecting group differences in multivariate categorical data	893
Michele Scagliarini A Sequential Test for the C_{pk} Index	899
Steven L. Scott Industrial Applications of Bayesian Structural Time Series	905
Catia Scricciolo Asymptotically Efficient Estimation in Measurement Error Models	913

Index	XXIII
Angela Serra, Pietro Coretto, Roberto Tagliaferri On the noisy high-dimensional gene expression data analysis	919
Mirko Signorelli Variable selection for (realistic) stochastic blockmodels	927
Marianna Siino, Francisco J. Rodriguez-Cortés, Jorge Mateu, Giad Detection of spatio-temporal local structure on seismic data	a Adelfio 935
A. Sottosanti, D. Bastieri, A. R. Brazzale Bayesian Mixture Models for the Detection of High-Energy Astrono	omical Sources 943
Federico Mattia Stefanini Causal analysis of Cell Transformation Assays	949
Paola Stolfi, Mauro Bernardi, Lea Petrella Estimation and Inference of SkewStable distributions using the Mult of Simulated Quantiles	tivariate Method 955
Paola Stolfi, Mauro Bernardi, Lea Petrella Sparse Indirect Inference	961

Emilio Sulis	
Social Sensing and Official Statistics: call data records and social media sen analysis	timent
	985
Matilde Trevisani, Arjuna Tuzzi Knowledge mapping by a functional data analysis of scientific articles datab	ases 993
Amalia Vanacore, Maria Sole Pellegrino Characterizing the extent of rater agreement via a non-parametric benchm	arking
procedure	999
Maarten Vanhoof, Stephanie Combes, Marie-Pierre de Bellefon Mining Mobile Phone Data to Detect Urban Areas	
	1005
Viktoriya Voytsekhovska, Olivier Butzbach Statistical methods in assessing the equality of income distribution, case st Poland	udy of
i otana	1013
Ernst C. Wit Network inference in Genomics	
	1019
Dilek Yildiz, Jo Munson, Agnese Vitali, Ramine Tinati, Jennifer Holland Using Twitter data for Population Estimates	
Marco Seabra dos Rei	1025
Structured Approaches for High-Dimensional Predictive Modeling	1033

Social emotional data analysis. The map of Europe

Analisi emozionale dei Social Network. La mappa dell'Europa

Felicia Pelagalli, Francesca Greco and Enrico De Santis

Abstract In this paper we present an investigation of the emotional content conveyed by words in online conversations captured on Twitter. A multivariate technique applied to co-occurence of words together with Correspondence Analysis is adopted in order to find clusters of meaningful words detecting emotional categories that provide meaning to everyday events. Specifically, given the current historical period, where the European Union has to gain trust in its citizens, a corpus of 155000 tweets selected through the Italian keywords "Europa" and "EU" is analyzed. Results show clearly how the textual content is structured according to the different emotional expressions.

Abstract In questo articolo è presentata un'analisi testuale che esplora il contenuto emozionale delle parole nelle conversazioni su Twitter. È stata adottata una tecnica di analisi multivariata applicata alla co-occorrenza delle parole assieme all'analisi delle corrispondenze al fine di raggruppare le parole in cluster di significato e individuare le categorie e le emozioni che danno senso agli eventi – ossia, i significati attribuiti agli eventi dagli attori partecipanti a un determinato contesto. Dato il particolare periodo storico in cui versa l'Unione Europea, che si trova a dover guadagnare la fiducia dei propri cittadini, è stato preparato ed analizzato un corpus di 155000 tweet selezionati attraverso le keyword "Europa" ed "EU". I risultati mostrano chiaramente come il contenuto testuale è strutturato secondo le differenti espressioni emozionali del fenomeno.

Culture s.r.l., Piazza Capranica, 95 00186 ROMA, Italia,

Enrico De Santis

Felicia Pelagalli

Scuola di Specializzazione in Psicologia della Salute, Sapienza Universit degli Studi di Roma, Via degli Apuli, 1 - 00185 Roma, Italia, e-mail: feliciapelagalli@yahoo.it

Francesca Greco

Dipartimento di Psicologia Dinamica e Clinica, Sapienza Universit degli Studi di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italia, e-mail: francesca.greco@uniroma1.it

Department of Computer Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada, e-mail: enrico.desantis@ryerson.ca

Key words: Text Mining, Social Data Mining, Multivariate Analysis, Correspondence Analysis, Clustering.

1 Introduction

With the spread of social networks and micro-blogging platforms, statistical methodologies boosted with machine learning techniques find their natural habitat in the sea of available online data. In fact, related techniques enable us to perceive the feeling that runs through the network. An overwhelming quantity of conversations are exchanged, mostly through words in a written form. If from one side it can be possible grasping the opinions underlying the online social exchanges, from the other it is clearly interesting to have a measure of the emotional significance that gives meaning to social phenomena. Now more than ever, this knowledge can help institutions and community managers to realize people needs and problems. It is the emotion that drives us in making relation with the objects of a given context on the basis of affective symbolizations and social representations. Hence, in conveying emotions, words show the functioning structure of the mind-brain, according to a dual logic [1]: i) the asymmetrical conscious thought which allows entering in a relationship with a context or event; ii) the symmetrical emotional thinking that the context or the events immediately arouses within us. Thus, the content analysis of conversations has to catch and externalize the emotional "density" conveyed by words or chains of words, through suitable knowledge models substantiated by statistical techniques, such as the multivariate analysis. In fact, the latter, as an unsupervised technique, can find recurrences, relations between nodes of a network or can help grouping words in meaningful clusters, detecting emotional categories that provide meaning to everyday events. According to this framework, the linguistic communication can be interpreted not only on the basis of its semantic elements but also through the emotional framework that yields value to a given text. This context fits with the co-occurrence analysis of words, used as the first step of our investigation, to find associative links among words. In this study we analyze online conversations trying to discover how they are organized within the current social context and upon a given object represented by a set of keywords. Specifically, the corpus consists in 155000 tweets gathered, in the time period ranging from January 11, 2017, to February 11, 2017, trough the Twitter API, filtering the stream by the Italian keywords "Europa" and "UE". The corpus is analyzed through a pipeline of statistical and learning techniques briefly described in next section. Specifically, in order to obtain a thematic analysis based on the co-occurrence of lexical units upon the corpus at hand, a mapping of the latter in the Vector Space Model (VSM) [2] is performed. The k-means algorithm is then adopted obtaining a suitable partition through the cosine dissimilarity measure between word vectors. Finally, the Boolean contingency matrix, describing documents membership to the retrieved clusters, is analyzed with the well-known Correspondence Analysis (CA) technique.

The current paper is organized as follows. In Sec. 2 we provide a brief summary

of the adopted methodology, while in Sec. 3 main results are discussed. Finally, conclusion are drawn in Sec. 4.

2 Material and methods

To finalize the herein proposed investigation, data is cleaned and pre-processed. In particular, instead of raw words, lemmas as main categories are used. Subsequently, the the most common words and the very rare words are filtered out. Lemmatization and filtering allows to obtain a more compact VSM, reducing even the sparsity of the model. We note that in the current section the formal terms "document" and "context" are interchangeable, such as "term", "word" or "lexical units". Following

Fig. 1 Schematic diagram of the adopted methodology for measuring the emotional structures underlying the online conversations.

the diagram of Fig. 1 the analysis presented is centered on the VSM [2], a particular vector or distributional model of meaning. VSM is based on a co-occurrence matrix, i.e. the word-document matrix, that is a way of representing how often words co-occur. From a methodological point of view the VSM embeds information retained within a corpus in a vector space representation, substantiating the distributional hypothesis according to which words that occur in similar contexts tend to have similar meanings. Lets define the term-document matrix $\mathbf{X} = [\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_D]$ where the content of each document vector $\mathbf{d}_j = [w_1, w_2, ..., w_V]$ is represented as a vector in the term space of dimension *V* that is usually the dimension of the vocabulary. A standard weighting scheme, used in the current work for w_i , is the the tf-idf (term frequency-inverse document frequency) [3], that provides higher weights to terms or words that are frequent in the current *j*-th document but rare overall in the collection.

In order to measure the similarity between two documents \mathbf{d}_p and \mathbf{d}_q enabling the cluster analysis, a well-suited similarity measure is used. It is the cosine similarity, that is $sim(\mathbf{d}_p, \mathbf{d}_q) = \cos(\mathbf{d}_p, \mathbf{d}_q) = \frac{\mathbf{d}_p \cdot \mathbf{d}_q}{\|\mathbf{d}_p\| \|\mathbf{d}_q\|}$.

The *k*-means algorithm is a *partitional* clustering algorithm [4, 5] based on squared error optimization approach. Specifically, given a set of objects (word vectors) $\mathbf{X} = \{\mathbf{d}_j\}_{i=1}^{D} \in \mathbb{R}^V$, where *V* is the dimension of data vectors, it finds a suitable partition $P = \{\mathscr{C}_1, \mathscr{C}_2, ... \mathscr{C}_k\}$ so that the sum of the squared distances between objects in each cluster and the respective representative element is minimized:

Felicia Pelagalli, Francesca Greco and Enrico De Santis

$$\arg\min_{p} \sum_{i=1}^{k} \sum_{\mathbf{x}_{j} \in \mathscr{C}_{i}} \left\| \mathbf{x}_{j} - \mathbf{c}_{i} \right\|^{2}, \tag{1}$$

where \mathbf{c}_i is the representative of the *i*-th cluster \mathcal{C}_i . Belonging to the family of the NP-Hard problems, a complete analytical solution is not know and *k*-means as greedy algorithm, can only converge to a local minimum.

CA is a statistical method useful for data visualization that is applicable to crosstabular data such as counts, compositions or any ratio-scale data. In this work, it is performed on the Boolean contingency matrix describing the partition P [6]. Let **P** denote a $q_r \times q_c$ data matrix with non negative elements that sum up to 1, i.e. $\mathbf{1}_{q_r}^T \mathbf{P} \mathbf{1}_{q_c} = 1$, where in general $\mathbf{1}_q$ is a q-dimensional vector of ones and T is the transpose operator. The CA is formulated as the following least-squares problem:

$$\min_{\mathbf{A},\mathbf{B}} \left\| \tilde{\mathbf{P}} - \mathbf{D}_r^{1/2} \mathbf{A} \mathbf{B}^T \mathbf{D}_c^{1/2} \right\|^2,$$
(2)

where $\tilde{\mathbf{P}} = \mathbf{D}_r^{-1/2} (\mathbf{P} - \mathbf{r} \mathbf{c}^T) \mathbf{D}_c^{-1/2}$, $\mathbf{r} = \mathbf{P} \mathbf{1}_{q_c}$, $\mathbf{c} = \mathbf{P}^T \mathbf{1}_{q_r}$, \mathbf{D}_r and \mathbf{D}_c are corresponding diagonal matrices. The column coordinate matrices \mathbf{A} and \mathbf{B} are of rank k that is the dimensionality of the approximation. By imposing $\mathbf{B}^T \mathbf{D}_c \mathbf{B} = \mathbf{I}_k$, it is possible obtaining a solution through the well-known Singular Value Decomposition: $\tilde{\mathbf{P}} = \mathbf{U} \Lambda \mathbf{V}^T$, where Λ is a diagonal matrix with in descending order the singular values on the leading diagonal and U and V are orthonormal matrices. A leastsquares approximation of $\mathbf{\tilde{P}}$ is obtained by selecting the first k columns of U and V and the corresponding singular values in Λ . Finally, the coordinate matrices are $\mathbf{A} = \mathbf{D}_{c}^{-1/2} \mathbf{U} \mathbf{\Lambda}$ and $\mathbf{B} = \mathbf{D}_{c}^{-1/2} \mathbf{V}$, so that $\mathbf{A}^{T} \mathbf{D}_{c} \mathbf{A} = \mathbf{\Lambda}^{2}$. Given the coordinate matrices the row coordinates are referred to as principal coordinates whereas the column coordinates are standard coordinates. The two sets of coordinates are also known as biplot and the inner-product $\mathbf{D}_r^{1/2} \mathbf{A} \mathbf{B}^T \mathbf{D}_c^{1/2}$ in (2) approximates the data. If the matrix **P** constitutes a contingency table, $\tilde{\mathbf{P}}$ is the matrix of standardized residuals, i.e. the matrix of standardized deviations from the independence model. Hence, a low-dimensional approximation of these standardized residuals is given by the biplot coordinates in A and B. In other words, it can be shown that this biplot will approximate, by euclidean distances on the plot, chi-square distances in P. Chisquare distance is mathematically the euclidean distance inversely weighted by the marginal totals.

3 Results

As concerns the cluster analysis the cardinality k of the partition P is set to 5. In Tab. 1 are reported the explained variances for each principal components that hereinafter are named "factors". In Fig. 2 we can appreciate the emotional *map* of the Europe coming out from Italian tweets. It shows how discovered clusters are placed in the factorial space, whereas in Tab. 2 is reported the factors–clusters matrix that summarizes our main findings. The emerging *map* shows on the horizontal plane a sharp contrast between the "political power" and the "populist protest". The cluster of words \mathscr{C}_1 sees the chill and sooty European institutional places that are perceived as a remote center of power in which citizens do not definitely recognize themselves. The theme is the election of Antonio Tajani as president of the European parliament and Pittella defeat. Congratulations words, but even disappointment and irritation for who does not feel represented (dividere, urtare, sensibilità, impera). On the opposite side, a strong sense of helplessness regarding the big problems, such as immigrants and the economic crisis, \mathcal{C}_3 is characterized by the UE plan proposed in order to stop the sea blockade in front of Libyan territories. We have also tweets where the Italian Economy ministry is perceived as "unable", while the former prime minister Matteo Renzi together with Angelino Alfano (current Italian foreign minister) are considered "hypocrites". Another emerging contrast on the vertical plane is the "success of the economic power" and "people problems". From C₂ it emerges a two-speed Europe and the "economic power" represented by Germany with the chancellor Anghela Merkel and the president of the European Central Bank Mario Draghi. It is a strong power (velocità, vincere) that cohabits/forgets the human tragedies (permettere, vergognarsi). On the opposite side, \mathscr{C}_5 refers to the necessity of funds for places hit by the earthquake. Furthermore, it shows clearly the arising of new political movements, such as the one referred to Marine Le Pen in France, evidencing tension, betrayal, isolation and risks for Europe. Finally, in \mathscr{C}_4 (in a middle position on the map) we find the ambivalence fear/anguish related to the dichotomy opening-closing, where closing seems to prevail together with the fantasy of closing themselves off in the localism to avoid chaos. This is a cluster full of fears that undermine the Altiero Spinelli's project for a united Europe. *C*₄ is close the origin of axes on the factorial map, in fact it contains basic emotions that seem to span all the facets of the underlying discourse.

Table 1 Explained variance for each factor
--

Ind	Eigenvalues	%	Cumul. %
1	0.1538	29.54	29.5438
2	0.1308	25.14	54.683
3	0.1214	23.32	77.9995
4	0.1145	22.00	100

4 Conclusion

The current paper presents an analysis of a huge corpus of tweets in Italian language based on a set of statistical techniques, specifically a Cluster analysis and a Correspondence Analysis. Unlike the current sentiment analysis techniques, the proposed

	Factor 1	Factor 2	Factor 3	Factor 4	
\mathscr{C}_1	-	-0,2485	changing 0,2177	-0,5145	Problems related to the political power unable to drive the changing.
\mathscr{C}_2	hopes -0,5119	power 0,6132	changing 0,2352	0,0558	The success is related to the economic power represented by A. Merkel and M. Draghi.
C3	alert 0,3088	-0,1367	changing 0,2492	injustice 0,3808	Alert generated by the changing related to balance of powers.
C5	alert 0,4653	0,3534	changing -0,5362		The idea about the union with the social power of foreign countries because of the loss of identity.
C5	hopes -0,5718	problems -0,4382	product -0,4911	0,2101	The European genesis has a cost that causes problems: economic request for <i>help</i> and the rejection to <i>give</i> .

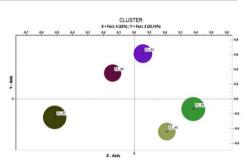


Fig. 2 The map of the Europe.

methodology takes into account the conversations on social networks like structured corpora, in which the relationships between words can be described beyond the evaluative bias (positive/negative or agree/disagree), giving rise to a dense structure of meaning. Results show clearly how the textual content is structured according to the different emotional expressions.

References

- [1] Matte Blanco. L'inconscio come insiemi infiniti. Biblioteca Einaudi, 2000.
- [2] Gerard Salton. The smart retrieval system experiments in automatic document processing, 1971.
- [3] Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. *J. documentation*, 28(1):11–21, 1972.
- [4] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral. J. ACM (JACM), 51(3):497–515, 2004.
- [5] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett., 31(8):651–666, June 2010.
- [6] M. van de Velden, A. Iodice D'Enza, and F. Palumbo. Cluster correspondence analysis. *Psychom.*, 82(1):158–185, 2017.

784

 Table 2
 The factor-clusters matrix.