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ABSTRACT
With the availability of accessible and widely used cloud services, it

is natural that large components of healthcare systems migrate to

them; for example, patient databases can be stored and processed

in the cloud. Such cloud services provide enhanced flexibility and

additional gains, such as availability, ease of data share, and so

on. This trend poses serious threats regarding the privacy of the

patients and the trust that an individual must put into the healthcare

system itself. Thus, there is a strong need of privacy preservation,

achieved through a variety of different approaches.

In this paper, we study the application of a random projection-
based approach to patient data as a means to achieve two goals: (1)

provably mask the identity of users under some adversarial-attack

settings, (2) preserve enough information to allow for aggregate

data analysis and application ofmachine-learning techniques. As far

as we know, such approaches have not been applied and tested on

medical data. We analyze the trade-off between the loss of accuracy

on the outcome of machine-learning algorithms and the resilience

against an adversary. We show that random projections proved

to be strong against known input/output attacks while offering

high quality data, as long as the projected space is smaller than the

original space, and as long as the amount of leaked data available

to the adversary is limited.

CCS CONCEPTS
• Security and privacy → Data anonymization and sanitization;
Usability in security and privacy; • Social and professional topics
→ Patient privacy; • Applied computing→ Health informatics;
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1 INTRODUCTION
During the recent years, we witnessed the tremendous progress

made in the field of wireless sensor networks. This paved the way

and facilitated the wide adoption of small electronic devices with

interconnection capabilities. These devices composed the majority

of the so-called Internet of Things (IoT). The IoT is a highly dynamic

and radically distributed networked system, composed of an incred-

ible high number of objects [36]. It is vastly considered as one of the

most expanding area within future technologies and it is attracting

vast attention in different industry applications [28], ranging from

smart cities to home automation, farming, and many more fields of

application. Ubiquitous sensors, smart objects and devices involved

in IoT can generate a tremendous amount of data [20]. This flow of

data requires robust, available and fast storage solutions and builds

the bases to very effective and powerful algorithms in the fields of

machine learning and data mining [9].

Electronics health-care solutions and, generally speaking, the

Internet of Health Things (IoHT) follows the same trend. About 73%

of healthcare executives say that IoHT is a disrupting techology for

the next years and it is becoming one of the most funded areas in IoT.

Pervasive IoHT enables cost savings for both the administrations

and the individuals, but on the other hand it has some barriers,

like: privacy and security concerns, lack of skilled workers, poor

interoperability and more [1].

Given the sensitive nature of healthcare data, there is a strong

need to protect the information of the patients. Furthermore, the

recent adoption of General Data Protection Regulation (GDPR)

strengthens data protection and now it must be applied to any

organisation or individual that collects and processes information

related to EU citizens, regardless where the data is physically stored

or where they are based[4, 43]. At the same time, analysis of such

data are crucial for medical research and the drug industry. Con-

sequently, there is a need to design approaches that allow data

processing without exposing the personal underlying information.

For this reason, there has been a series of techniques for perturb-

ing data such that information on individual data points cannot

be leaked, while aggregate information is preserved. Examples of

such approaches are k-anonymity [41] and differential privacy [13].

The various approaches put different importance on the privacy

requirements; for instance, differential privacy attempts to alter

the data such as to provide very strong privacy guarantees, typi-

cally, without specifying the usefulness of the resulting data. for

general-purpose data analysis.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this paper we apply a method, which can be found in [29],

where the explicit goal is to obtain a dataset that remains useful af-

ter the perturbation (still providing some privacy guarantees). More

specifically, our approach is based on random projections (RP), a
technique that is typically applied primarily for efficiency reasons. It

is based on a fundamental result from the work of Johnson and Lin-

denstrauss [22] and the idea is the following: Assume that we have

large amounts of data (n datapoints), lying on a high-dimensional

space. Then, if we project each point to a random subspace of di-

mension O(logn/ϵ2), with high probability all pairwise distances

between the data points are preserved within a factor of 1 ± ϵ .
This technique has found multiple applications in streaming algori-

htms, in finding nearest neighbors in high-dimensional spaces, in

reducing the dimension of databases, and so on.

Our idea of applying a random projection approach on privacy-

preserving data mining is the following. Assume that we have

the records of multiple patients. Then we can consider a random

projection of these data. The result of Johnson and Lindenstrauss

guarantees that if we execute algorithms that depend on the pair-

wise distances on the data (e.g., several clustering or classification

algorithms), then the results obtained are with high probability

similar to those obtained on the real data set (and the error can be

quantified). Furthermore, because the projections are random, one

cannot use the projected data to obtain the real data: each datapoint

appears to be random. This, unless the attacker has some significant

power. This trade off is studied in previous works (e.g. [6], [29]).

It is not clear a priori that this approach could work in the appli-

cation on medical dataset that interests us. For instance, the lemma

by Johnson and Lindenstrauss is typically applied on settings where

the original data lie on a very high-dimensional space. However,

in practice, the original dimension may be low (for instance in

our dataset it is about 50). In this paper we look at this and other

issues by applying the random projection to a dataset containing

information about 70K cases of diabetes [42]. We show that it is

possible to reduce the dimensionality of the data and still obtain

accuracy scores that are comparable with the ones obtained from

the original non-projected data. At the same time, we also show

how sensible and private patient information such their age or

gender are safe against attacks that try to reconstruct the mapping

between the original data and the projected data after applying

random projections.

Structure of the paper. The rest of this paper is organized as

follows. In Section 2we present current solutions and the state of the

art on random projections and other privacy-preserving techniques.

In Section 3 we present the goals of our work and the approach

we used for achieving them, leveraging random projections. In

Section 4 we show our experimental results, where we explore

the limits of our approach both in terms of accuracy and privacy

protection. We conclude in Section 5 where we also propose future

work.

2 STATE OF THE ART
Data leakages are very common [44]. In this work, we are more

interested in reducing the ability of an attacker to reconstruct non-

yet-leaked data from the leaked one. Within medical premises,

there are multiple individuals who could obtain access to protected

information from the rightous doctor to untrustful workers. This

could lead to multiple entities knowing protected personal health

information.

Before 2003, with the enforcing of HIPAA rules, some private

medical information were regularly shared among professional [8].

Following the guidelines from Health Insurance Portability and

Accountability Act (HIPAA) [16], the US government made the

first concrete attempt to mitigate the chance of re-identification of

patients. In 2009, it was clear that HIPAA is not sufficient to protect

the privacy of an individual. In fact, the HIPAA was not able to pro-

tect the user personal information after the anonimization process

that substituted HIPAA parameters with IDs. In a famous case [38],

some researchers were able to re-identify users and also their sex-

ual orientation and other information. Moreover, the availability

of correlated data (coming from the same source or other sources)

could greatly help to identify a patient. Data breaches continue to

increase year after year, between 2005 and 2014, only in the US,

more than 26 million of people had some form of personal health

information leaked [44].

Therefore, more elaborate tecniques, which add noise to the data,

have been developed in the last years to protect users’ privacy and

still maintain a good level of accuracywhen exploring and analyzing

the data. One of these is differential privacy [13]. This approach

focuses on providing statistically coherent responses querying a

database, i.e. third parties are interested to query for information

about a sample of a population, not a single individual. Instead, we

are interested also in providing data about a specific individual, for

example investigating if he or she is suitable for a clinical trial.

In [25] the authors proved that the Johnson-Lindenstrauss trans-

form can be used as an alternative approach to achieve differential

privacy. The method is then compared against other techniques,

such as adding Gaussian noise to data or randomized response. The

proposed approach has superior accuracy bounds than the others,

while still keeping secure the privacy of the records. The authors

also criticize the work of Liu et al. about releasing data to third par-

ties after applying random projections in order to protect sensitive

information while still preserving accuracy of different data mining

algorithms: an adversary that has some background knowledge can

infer approximations of the original data. We address this issue in

the scenario of known input-output data (section 3.2) and show how

in real world scenario regarding medical data, under reasonable

assumptions for the power of the adversary, it is difficult for an

attacker to discover private information from projected records.

In the literature there exist a very large number of works regard-

ing the re-identification of person starting from various data, within

some degree it is called “breaking the k-anonimity”. For example

in [37] the authors presents a method to re-identify a user from its

preferences.

In this paper, we aim at investigating to what extent RPs can pro-

vide useful data for machine learning algorithms (e.g. classification)

on a group of potential patients while preserving at the same time

the privacy of individuals. RPs have been employed in a number of

healthcare applications, for example to segment tumor areas [27],

to enhance tomography [14], to cluster DNA microarrays[5] or to

classify cancer [45].

In [32], RPs were used to mask clear data projecting them in

smaller spaces, while in [6] and [26], similarly to our work, the
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authors discuss how to exploit RPs to enhance data privacy. The au-

thors in [32] also discuss the utility of the RP in reducing complexity

of problems while maintaining the usefulness of the projected data

for algorithms. It is anticipated that by 2020 there will be more than

26 billion devices involved in IoT related applications [40]. Surely,

not all of them will be part of the healthcare field, however we ex-

pect a very large amount of information to process. The usefulness

of RP in reducing problem complexity (or resource requirements)

is well understood and exploited as useful resource in the literature

[2, 7, 11, 15, 32]. For example, in [15], the authors explore some

ways to reduce high dimensional data for clustering while, in [33],

is presented a work on classification of small patches of images

from a very large database that takes advantage of the properties

offered by RPs.

During the last two decades, the contribution of machine learn-

ing and data mining algorithms in healthcare applications became

more frequent year after year. This is well demonstrated in the

literature, for example in [10, 18, 35, 46]. One last aspect to consider

is the chance to link together multiple datasets. For example in [34],

the authors presented the infrastructure of a databank in order to

enable record-linkage research studies. This linkage on one hand

could deeply help the development of newer treatments or drugs,

but on the other hand poses threats to the privacy of the individuals.

3 PROBLEM FORMULATION
We consider a reference scenario in which a group of users, char-

acterized by private features, are potentially suitable for a clinical

trial. Only a limited number of users in the group will be actually

enrolled in the trial. For the enrolled users, namely the patients,

the private features will be eventually made public to participate to

the clinical trial in the most effective way. Some knowledge on the

group is of primary importance for the researchers to understand

the size and the characteristics of potential patients. In general,

users are well disposed to support this need of the researchers pro-

vided that their privacy is preserved. The main problem we want

to address in this paper is:

Can we learn something on the group of users as a whole, while
preserving the privacy of the individuals who will not participate in
the trial?

More formally, we consider a group of n users, where each user

u is characterized bym features. We represent the corresponding

dataset as a matrix X ∈ Rm×n
, withm rows (the features) and n

columns (the users). As already observed, in the era of big data,m
and n can be particularly big.

Giannella et al. [17] show how it is possible to break the privacy

in some contexts of distance preserving mappings. Liu [30] instead,

highlights how mappings that do preserve distances within certain

bounds like random projections can boost the privacy guarantees.

We will apply these techniques in order to prove that users’ privacy

can be kept safe against malicious attackers.

We are interested in understanding to what extent the random

projection technique, which has been originally conceived to reduce

the dimensionality of a dataset, can also be used to preserve the

privacy of the users. In particular, we apply a random projection to

X , such that if R ∈ Rk×m is the random-projection matrix Y = RX

is the transformed matrix after applying the random projection,

with Y ∈ Rk×n . We denote by xui the column in X associated to

userui , and withy
u
i the corresponding column inY . In the scenario

we are describing the projected matrix Y is known to the public, it

is indeed the dataset on which researchers try to distill information

on the group; the transformation matrix R and the original data X
are private. Some columns of X may become public once the cor-

responding users will eventually decide to participate to a clinical

trial, in other words some pairs (xui ,y
u
i ) will become public.

We can now better describe the problem, splitting it into two

sub-problems:

Accuracy. Can we learn something on the group exploiting Y ?
Here we want to understand if the results of some machine-

learning algorithms on Y are a good approximation of the

ones obtained on X . If we answer positively to this question,

we can at least conclude that what can be learned from the

original data can be also learned from the projected data.

Privacy. Can we preserve the privacy of the individuals that will
not participate in the trial? As already observed, Y is public

whereas only some columns of X will eventually become

public when the corresponding users will decide to partici-

pate in a clinical trial. Consequently, some pairs (xui ,y
u
i )will

become public. Here we want to understand if an attacker

knowing Y and the some pairs (xui ,y
u
i ) can possibly know

something about the other users that do not participate in

the trial.

We now elaborate on these two dimensions.

3.1 Accuracy
Lemma 3.1 provides a technique to generate a low-dimensional rep-

resentation of the original data maintaining the pairwise distance

within an error ϵ . Since the pairwise distance is the key ingredient

for many classification tasks performed by machine learning algo-

rithms, this property allow us to have some guarantees that the

solution found in the low-dimensional space is a good approxima-

tion of the solution in the original and higher dimensional space.

Furthermore, reducing the size of the input data speeds-up the exe-

cution time of the algorithms and limits the amount of resources

needed.

Lemma 3.1. (Johnson and Lindenstrauss) Given ϵ > 0 and an
integer n let k be a positive integer such that k ≥ k0 = O(

loд(n)
ϵ 2 ). For

every set P of n points in Rm there exists a mapping f : Rm → Rk

such that for all u,v ∈ P

(1 − ϵ) ∥ u −v ∥2≤∥ f (u) − f (v) ∥2≤ (1 + ϵ) ∥ u −v ∥2

It can be proved that a random projection, is a mapping f that

fulfills the previous lemma with positive probability. This is often

referred as JL-embeddings.

3.2 Privacy: Known Input–Output Attack
We now try to answer one of the questions we raised in the previ-

ous section: Can a a malicious third party who knows some pairs

(xui ,y
u
i ) (i.e. that a particular record x

u
i is associated to yui after its

projection) learn information about other records?
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Liu in his Ph.D. thesis [30] describes a Bayes privacy model to
measure the privacy offered by a perturbation technique. The model

considers the attacker’s apriori and a posteriori beliefs about the

data and uses Bayesian inference to evaluate the privacy. For com-

pleteness, we repeat his framework here.

Let x be the unknown private data, y the perturbed data and θ
the attacker’s additional knowledge about the data. Then the MAP

estimate of x given y and θ is

x̂MAP (y, θ ) = argmax

x
fx |y,θ (x |y, θ )

with fx |y,θ the conditional probability density of x given y and θ .
Let Xp denote the first p columns of X and Xn−p the remaining

columns. We define similarly Yp and Yn−p . We further assume that

the columns of Xp are linearly independent and that Xp is known

to the attacker (i.e., the attacker has full knowledge of p patients).

Y is entirely known to the attacker, because as we stated before, it

is publicly available to conduct experiments on the projected data.

For the next reasoning the following hypothesis must be verified:

• The original data arose from as a sample from a matrix vari-

ate distribution.

• The projection matrix R is a k × m random matrix with

each entry indipendent and identically distributed with 0

mean and unit variance. R has a matrix variate Gaussian

distribution with mean matrixM = 0 and covariance matrix

Σ = Ik ⊗ In .
1

• Y has a matrix variate Gaussian distribution with mean ma-

trixM = 0 and covariance matrix Σ = Ik ⊗ 1

kX
TX

The attacker will try to produce x̂i , with 1 ≤ i ≤ m − p, such
that x̂i is a good estimate of the undisclosed private record xi . In
other words the attacker’s target is to try to give an estimation

of one of the records contained in Xn−p , given that he knows the

records in Xp and their randomly projected counterpart in Yp .
We now derive the MAP estimate of x given y = Rx and the

known matrices Xp and Yp

x̂MAP (y, θ ) = argmax

x
fx |y,θ (x = x |

1

√
k
Rx = y,

1

√
k
RXp = Yp )

which can be simplified in

argmax

x
fx ,y,θ (

1

√
k
RX = Y )

where X = [xXp ] and Y = [yYp ].
We further suppose that the attacker has no other background

knowledge about the private data, so we can assume that θ = 0.

The previous result can be written as

argmax

x
fx ,y (

1

√
k
RX = Y ) =

argmax

x
f 1√

k
RZ |Z (

1

√
k
RZ = Y |Z = X )fZ (Z = X )

If we assume that fZ is distributed uniformly over an interval, we

finally get

x̂MAP (y) = argmax

x
f 1√

k
RZ |Z (

1

√
k
RZ = Y |Z = X )

1⊗ indicates the Kroenecker product of two matrices [30]

In [30, Theorem 5.3.8] is shown that the probability density

function we obtained has the following form

(2π )−
1

2
k (p+1)det(

1

k
X
T
X )−

1

2
ketr {−

1

2

Y (
1

k
X
T
X )−1Y

T
}

We want to maximize this function in order to solve the problem

of finding the best estimate of x given the observation of Xp .
Liu proposes an algorithm to estimate the nondisclosed records

of a certain dataset. Experimental results have shown that while

decreasing the number of column records known to the attacker

(denoted by p) the relative error of the estimation increases. The

error in the estimation increases also decreasing the dimensionality

of the projected subspace (denoted by k). In particular the algo-

rithm uses the Nelder–Mead simplex algorithm to find the optimal

solution of the maximization problem.

4 EXPERIMENTAL RESULTS
In this section, we present experimental results obtained on a

dataset containing information about 70000 cases of diabetes diag-

nosticated in 130 US hospitals during the decade 1999-2008 [42]
2
.

From now on we will refer to this dataset as the diabetes dataset.
We focus on the classification of patients based on their priva-

tized data. Following the work in [12, 19], we choose to use random
forest classifier in our dataset to classify the users. Moreover, from

the work in [23], we know that random forest classifiers works

really well with random projections. In Figure 1 we report the effec-

tiveness in terms of accuracy running the random forest classifier

[39] on the original data and on the projected data in multiple lower

dimensional spaces. To run and validate the classification algorithm,

we divided the whole dataset into two parts: train and test. In the

dataset we decided to predict the range of glucose level in the blood.

So that, the algorithm was firstly trained with the records within

the train part of the diabetes dataset, providing all the target values.
Thus, we made the random forest classifier algorithm predicts the

target values in the test part giving its features as input. Moreover,

we tested the effectiveness of RPs also with k-nearest neighbors (k-
NN) classifier, the results were reported in Figure 2. Our approach

was inspired by [3]. The results are quite different because in the

first experiment we taken a feature of the dataset (the range of

glucose level in the blood) as the value to predict, instead with

the second experiment we choose to run firstly a kMeans cluster-
ing algorithm (on the whole dataset) to obtain labeled groups and

then, with the k-nearest neighbors (k-NN) classifier we predicted
the values.

The blue line represents the accuracy of the machine learning

algorithm on the original data. The orange line, instead, represents

the accuracy of the same algorithm on the projected (obfuscated)

data. We tested the classification algorithm on projected spaces in

different sizes, starting from only 2 components up to 10 compo-

nents.

The lines plotted in Figure 1 presents the average values for each

projection space, while the vertical wiskers represent the confi-

dence interval corresponding to a specific projection space. For the

baseline (classification on the clear data) we ran the classification

algorithm 50 times, in each round starting from a random state of

2
The dataset is called “Diabetes 130-US hospitals for years 1999–2008 Data Set” and is

available at this page

https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
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Figure 1: Accuracy of the random forest classifier algorithm
on the original data (blue line) and on the projected data (or-
ange line), varying the projection space (# of components).
Mean values are reported as lines and 95% confidence inter-
vals are reported as vertical lines.

Figure 2: Accuracy of the k-nearest neighbors (k-NN) algo-
rithm on the original data (blue line) and on the projected
data (orange line), varying the projection space (# of compo-
nents). Mean values are reported as lines and 95% confidence
intervals are reported as vertical lines.

the random forest classifier. Since the original data is not projected

into any space, we have only a baseline with the associated mean

value and confidence interval. Thus, we reported the confidence

interval only at the lefties part of line using wisker again. Instead,

for the accuracy of classification on the projected data, we ran the

algorithm more than 100 times. In each round the algorithm gen-

erated a value for each projected space. The results were obtained

using the scikit-learn package on Python 3.6.
In [24, 31] the authors explore the security of such techniques:

they show how it is possible to use data dimensionality reduction

techniques to lower the complexity of data mining algorithms while

preserving their accuracy and how those techniques preserve the

privacy of users.

The authors start from the same privacy hypothesis we have

presented in 3.2 and study how an attacker in possession of a

collection of linearly independent private data records and their

corresponding transformed part can gather some insight about

other records.

We present the results we got running the algorithm of [30] on

this dataset. After choosing a number p of record pairs (xp ,yp )
we select a record x for which we do not know the mapping; the

algorithm we are using will try to give an estimation x̂ of the

original record x .
We used two techniques to evaluate how similar to the original

records the algorithm’s estimations were. Wemeasured the distance

between the estimation x̂ provided by the algorithm and the original

record x . We compute the relative error between the two vectors

with the following:

E(x, x̂) =
| |x − x̂ | |2
| |x | |2

The error E increases with the Euclidean distance between the two.

Notice that with this notation it may happen that the error is greater

than one: this could verify in the case that the distance between

x and its estimations x̂ is high and the norm of x is a small value.

This could happen if the algorithm’s estimation is very far off from

the original record.

This measuring has the drawback to lack an upper bound for

the dissimilarity. Neither the cosine similarity helps, since in our

case we are not interested only in the direction of vectors but also

in their magnitude.

A solution is provided in [21], where a radial basis function

kernel can be used for representing similarities: we are going to use

1 − 1

edist (x ,x̂ )
as a similarity function between x and its estimation

x̂ , where dist(x, x̂) = | |x − x̂ | |2. The bigger the Euclidean distance

between two vectors, the bigger the error edist (x ,x̂ ) will be. In this

way we have a [0, 1) bound for the similarity of the estimations.

By applying the inverse we get a value in the range [0,1): if x and

x̂ are the same vector (perfect reconstruction performed by the

algorithm) then
1

edist (x ,x̂ )
= 1.

Our workplan is the following: for every subspace of dimension-

ality k we apply the algorithm with different knowledge about the

number of pairs (xp ,yp ) the attacker knows. We go from p = k − 1

to p = 1. In the next figures we display the results of our exper-

iments, with the two different measuring techniques we used to

quantify the similarity between the original records and the esti-

mated ones. We report the mean of the errors for every pair (k,p)
and the variance. On the X axis are placed the tuples (k,p) for which
we have conducted the experiments, on the Y axis we placed the

reconstruction errors.

On low-dimensionality subspaces we get a high relative error,

meaning that it is not possible to give an effective approximation of

the original (private) data records. In higher dimensions the approx-

imation is closer to the original data. We ran our experiments with

10 features of the dataset, since with vectors of higher dimensional-

ity it becomes more difficult to run the reconstruction algorithm in

reasonable times; also with higher dimensionalities the algorithm

we are using outputs vector reconstructions that are very dissimilar

from the original ones.

We applied the random projection to reduce the feature space

in different dimensions, from 10 to 3. Notice, however, that even

when the projected space has the same dimension of the original
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space, we already get a significant relative error, meaning that on

the average it is not possible for the attacker to extrapolate any

useful information about the patients’ records. So for records of

higher dimensionality there is already a safe privacy bound when

applying random projection to them, at least against this kind of

attacks.

We assigned an increasing numerical value to nominal features,

that is, we assigned 0 to the text male and 1 to text female in the

gender feature.
We applied random projection to this records, from k = 10 (no

dimensionality reduction) to k = 3; the number p of pairs (original

record, projected record) known to the attacker is in the range

k − 1 ≤ p ≤ 1.

With k = 2 we obviously have only p = 1: we omit this result

since it is not meaningful with respect the other results we get for

higher k and p, because it does not show how knowing less (or

more) information about the original data changes the reliability of

the reconsturction we get.

Figure 3: Mean and variance of the relative error while using
the formula | |x−x̂ | |2

| |x | |2

In the next figures we show the mean and variances of the errors

for every tuple (k,p) for which we have conducted the experi-

ment. It can be seen from the charts that as the number of known

input-output pairs p decreases, the reconstruction error increases.

Together with the dimensionality reduction, disclosing a scarce

number of known input-output pairs can help with the task of

preserving the privacy of users involved in clinical trials.

In this case we are projecting low dimensionality vectors (k =
10) but we still get high reconstruction errors when applying the

techniques we have explained. This is another confirmation of the

thesis that random projections help keep the privacy of users when

their information is shared among research institutes.

5 CONCLUSIONS
In this work, we applied an random-projections approach to privacy-

preserving data mining of medical data.

Figure 4: Mean and variance of the similarity between orig-
inal records and their reconstruction while using the simi-
larity function 1 − 1

e | |x−x̂ | |2

First we demonstrated the usefulness of RP in increasing pri-

vacy of personal health data. The projected data are useful for

machine learning algorithms (for example, in clustering) while

allows the sharing of information between parties without reveal-

ing the patients’ clear data. In this particular application, this is

of notable importance since allows entities involved in different

health branches to cooperate effectively without sharing clear data.

Second, we investigated to what extent an attacker can discover

additional information starting from leaked data. As long as the

projected space is smaller than the original space, and as long as

the amount of data leaked is small, than the proposed approach is

robust and mantains very good performance in both accuracy and

privacy.

We analyzed the ratio behind and the performances (in terms of

accuracy) of the RP applied on sensible healthcare data. The results

shows that the use of RP offers great enhancements in privacy pro-

tection. This was a first step into developing a full-fledged platform

that allows the effective share of medical data. In future we are

planning a bigger real-world deployment of such platform to fur-

ther validate our results, plus an audit to check privacy protection

against real third parties.
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