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Abstract: Progressive Visual Analytics (PVA) has gained increasing attention over the past years.
It brings the user into the loop during otherwise long-running and non-transparent computations
by producing intermediate partial results. These partial results can be shown to the user
for early and continuous interaction with the emerging end result even while it is still being
computed. Yet as clear-cut as this fundamental idea seems, the existing body of literature puts forth
various interpretations and instantiations that have created a research domain of competing terms,
various definitions, as well as long lists of practical requirements and design guidelines spread across
different scientific communities. This makes it more and more difficult to get a succinct understanding
of PVA’s principal concepts, let alone an overview of this increasingly diverging field. The review and
discussion of PVA presented in this paper address these issues and provide (1) a literature collection
on this topic, (2) a conceptual characterization of PVA, as well as (3) a consolidated set of practical
recommendations for implementing and using PVA-based visual analytics solutions.
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1. Motivation

With data growing in size and complexity, and analysis methods getting more sophisticated and
computationally intensive, the idea of Progressive Visual Analytics (PVA) [1,2] becomes increasingly
appealing. A PVA approach can either subdivide the data to process each data chunk individually, or
it can subdivide the analytic process into computational steps that iteratively refine analytic results [3].
By doing so, PVA yields partial results of increasing completeness or approximative results of increasing
correctness, respectively. This is useful in a wide range of visual analytics scenarios:

• to realize responsive client-server visualizations using incremental data transmissions [4],
• to make computational processes more transparent through execution feedback and control [5],
• to steer visual presentations by prioritizing the display of regions of interest [6],
• to provide fluid interaction by respecting human time constraints [7], or
• to base early decisions on partial results, trading precision for speed [8].

Because of its versatility, the progressive approach to data analysis and visualization is
alternatively seen as a paradigm for computation, for interaction, for data transmission, or for
visual presentation. It is thus not surprising that PVA-related research is distributed over multiple
disciplines, motivated by various underlying problems, described in different, sometimes overloaded
terms at different levels of detail for different audiences.
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In this paper, we aim to give a comprehensive answer to the question What is Progressive
Visual Analytics? We do so by putting forth a multi-faceted characterization that reflects the main
perspectives on the subject, as they are described in the fragmented body of scientific literature on
this topic. Concretely, this paper makes three contributions:

1. a collection and review of scholarly publications on the topic of PVA from various domains;
2. a characterization of PVA capturing the reasons, benefits, and challenges of employing it;
3. a set of recommendations for implementing PVA sourced from a range of publications.

As the field of PVA is still emerging, the presented collection of publications as well as the
characterization and recommendations derived from them should not be mistaken for a survey that
aims to wrap-up a mature field of research. Instead, they should rather be understood as an overview
of the current understanding of PVA that bundles the research results achieved so far and serves
as a stepping stone for new ones. In order to make this overview practically useful, we adopt an
output-oriented, utility-driven perspective on PVA that looks at the existing literature from an angle
that asks What can it do for me? and How can I make it do that? Due to this output-oriented perspective,
this overview leans somewhat to the visualization and interaction side and focuses on discussing the
existing approaches from that end user perspective. In that sense, this paper complements existing
works focusing more on the computational angle [2,3,5].

The paper is structured as follows: After giving a brief introduction into PVA in Section 2,
we outline our procedure by which we have conducted this literature review in Section 3. We then
detail our characterization of PVA in Section 4, before discussing practical requirements for realizing
PVA and distilling them into recommendations in Section 5. Finally, we describe a use case example
from our own work to illustrate how we applied some of those recommendations in a real-world PVA
scenario in Section 6. Section 7 concludes this paper and gives an outlook on promising directions for
future work in this area.

2. PVA Fundamentals

Progressive Visual Analytics (PVA) “produces partial results during execution” [1].
This central concept is also known as Fine-Grain Visualization [9], Online Visualization [10],
Incremental Visualization [8], Progressive Visualization [11], Per-Iteration Visualization [12],
Optimistic Visualization [13], Approximate Visualization [14], and Progressive Analytics [2]. As a
common denominator, these all generate intermediary visualization outputs while the data is still
being processed.

PVA is often discussed in relation to two other forms of visual analytics: Monolithic Visual Analytics
(MVA) and Instantaneous Visual Analytics (IVA) [15]. MVA is the typical way of going about data analysis
by processing the whole dataset in one big algorithmic procedure without yielding intermediate results.
While in this context the term monolithic may be overloaded, no other, more fitting and better delineated
term has emerged yet for MVA-type analysis procedures. Whereas IVA usually employs some form
of preprocessing in order to make analysis results for the whole dataset available without delay.
Such preprocessed results—either data [16] or prerendered views [17]—are stored in databases, so that
they need only to be retrieved, but not computed any more. This way, the analyst can interactively
explore different parameter settings and get instantaneous feedback, as the results for each parameter
combination can be swiftly queried from that database. All three visual analytics paradigms are
schematically depicted in Figure 1.
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Figure 1. Instantaneous, Monolithic, and Progressive Visual Analytics described by their
temporal characteristics. Dotted lines indicate wait times in which the analysis is stalled. Note that in
the case of PVA, partial results of different quality can be used for different stages of visual analysis,
roughly aligning with the different levels or loops of the knowledge generation model for visual
analytics proposed by Sacha et al., [18].

PVA can be a complex approach with many intricacies and details to be considered. As a starting
point for discussing PVA, its behavior can be summarized as follows: After starting out, it produces
a first meaningful partial result at time point tResponse. “Meaningfulness” means that it must be
indicative of the final result, effectively ruling out progress bar displays and mere placeholders like
empty coordinate axes. From this time point onward, PVA produces early partial results with which the
user can already interact as if interacting with the final result—just not yet with the still missing data
points or visual details. PVA then proceeds until at time point tReliable the result is still approximate,
but already reflects the final result within an acceptable margin of error. From this time point onward,
PVA produces mature partial results that are trustworthy enough to start exploring the data and to
make first observations and findings. As the PVA process continues to run, it will produce the last
significant update at time point tStable after which the remaining updates will no longer change the
overall result in any substantial way. From this time point onward, PVA produces definitive partial
results that are close enough to the final result to be used in its place—for example, to verify the still
uncertain findings from before. If the findings hold up, they become confirmed insights into the
data [18]. And all this happens, before the final result is produced at time point tComplete.

Note that tComplete of PVA may actually exceed tComplete of MVA. This is usually due to the
computational overhead of producing and managing the incremental updates. Yet this drawback is
only a theoretical one, for two reasons:

1. With PVA, we are able to start the interactive analysis right after tResponse in parallel to the further
refinement of the view. Yet with MVA, view generation and interactive analysis can only be done
in sequence, so that the overall time spent on generating and utilizing the visualization extends
well beyond tComplete.

2. With PVA, we yield a sufficiently good partial result as early as tReliable and no later than tStable,
which is in most cases still well before MVA’s completion time. PVA’s tComplete is irrelevant,
since if we wanted a final and polished result, we would have used MVA in the first place.

PVA can generate results in two ways: by subdividing the data and processing it chunk by chunk,
or by subdividing the computational process and executing it step by step. In the first case, which we
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call data chunking, the partial results show increasingly more data over time, until at tComplete all the
data is shown in the final output. Whereas in the second case, which we call process chunking, the partial
results show all the data all the time, but the quality of the rendering increases with each step—from a
quick and dirty first view at tResponse to an elaborately refined final view at tComplete. In principle, it is
also possible to combine both strategies [3]. But this is rarely done. One reason observed in recent user
studies may be that users seem uneasy to judge the trustworthiness of partial data shown in unfinished
visualizations at the same time [19].

The description of PVA put forth in this section follows the output-driven perspective mentioned
in the introduction by using discrete time points to partition the progression into stages of different
analytical utility. This characterization mirrors recent research in activity-centered visualization design
that assesses a visualization based on the tasks and activities it supports [20], instead of just looking at
how faithful it represents the data (cp. representational primacy [21]). Yet, the resulting staged model of
PVA neither invalidates, nor supersedes the understanding of PVA as a continuous stream of results
that improves over time, as formulated for example by Fekete and Primet [2] and as signified by the
blue squares in Figure 1—but rather complements it. This is in particular so, as the stages assumed by
the model are hardly fixed, easy to determine, or even well-defined, because they are highly dependent
on the data, the task, the user, and the domain. But for the remainder of the paper, the four time points
and the intervals in between them provide us with an abstraction of a PVA run that serves as a relatable
and meaningful frame of reference to which we can map the highly heterogeneous body of literature
on one hand, and to which the readers can map their own PVA scenario or use case on the other hand.

3. Review Procedure

According to Fink [22] (p.3), “a research literature review is a systematic, explicit, and reproducible
method for identifying, evaluating, and synthesizing the existing body of completed and recorded
work produced by researchers, scholars, and practitioners.” This section is about the first part of this
definition—i.e., where we make explicit our method for conducting this review, so that its systematic
nature is documented and can be reproduced by others. Our literature review on the topic of PVA
entailed six steps:

(Step 1) Gathering literature on PVA. To collect PVA-related publications, we used the common
approach of a set of initial seed publications on the topic of PVA from various disciplines.
Using Google Scholar, we retrieved the set of all papers they cite, as well as all papers
citing them. For all PVA-related papers among them, we repeated this process, until no
further PVA-related papers were found. The set of initial publications included 15 papers from
various disciplines: Databases [23–27], Information Visualization [3,28], Scientific Visualization [9,11],
Visual Analytics [1,2,5,7], and Human–Computer Interaction (HCI) [4,8]. The results of this step are
listed in the Reference Section at the end of this paper.

(Step 2) Extracting different PVA concepts. We then went over all gathered papers with the aim of
extracting the different notions of PVA they describe. For the largest part, these notions align with the
scientific community in which the respective papers are published. For example, PVA papers from
the HCI community tend to focus on PVA as a means to facilitate interaction, whereas papers from
the Database community tend to position PVA as a means to produce database query results. It soon
became clear, that most papers put their own little twist on the basic idea of progression, which results
in a quite diverse and nuanced understanding of PVA with each PVA system or algorithm instantiating
their own PVA concept. Hence, the result of this step was the realization that the understanding of
PVA is much too heterogeneous to discuss it bottom up by merely collecting all its different notions.

(Step 3) Consolidating concepts in a characterization of PVA. To nevertheless get a grasp on the
body of literature, we thus proceeded to no longer look for distinctions between the various notions,
but for their commonalities, disregarding different terminologies and levels of detail. We found
that most instances of PVA note some reasons why it is employed in the first place and some PVA
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benefits that are exploited to address the reasons. Moreover, papers often discuss additional challenges
of using PVA. Breaking up PVA along these three aspects captures that there are different reasons
for using PVA, which are addressed by different PVA benefits and lead to different PVA challenges.
The characterization according to PVA’s reasons, benefits, and challenges is given in Section 4.

(Step 4) Extracting practical requirements for PVA. The existing body of literature offers various ways
in which to provide the PVA benefits and to resolve, circumvent, or at least reduce the PVA challenges.
To that end, a number of publications give practical advice on which additional features to provide
and what design criteria to observe to realize an effective and usable instance of PVA. We collected this
advice as requirements from these papers and we present this “raw” collection in Appendix A1.

(Step 5) Aligning requirements with PVA characterization. Having the collection of requirements is
just one side of the coin. We still need to know when to follow which one. For this reason, we drew
connections between the various requirements by grouping them in a process-driven way, and in a
user-driven way. The results of this step are detailed in Section 5. The process-driven grouping is done
with respect to the aspect of the visual analytics process to which they pertain. And the user-driven
grouping is done with respect to the PVA characterization given in Section 4, i.e., the PVA benefits
they aim to provide and the PVA challenges they aim to address. As a result of this step, we distill
nine high-level recommendations from the various requirements—one for each identified benefit
and challenge.

(Step 6) Exemplification of PVA characterization and recommendations. Finally in this last step,
we aim to put our PVA characterization and the proposed recommendations in the context of a real
world use case. For this step, we have chosen one of our own PVA solutions for the simple reason that
we have all the necessary inside information on why and how we built it, so that we can discuss it in
the necessary depth. This discussion is given in Section 6.

4. A Characterization of PVA

PVA is no end in itself. Instead, PVA is used in response to various shortcomings posed
by MVA in certain analysis scenarios. We call these shortcomings the reasons for using PVA.
Producing intermediate results translates into a number of benefits that counter these shortcomings
when using PVA instead of MVA. Yet PVA also incurs additional challenges for the developer and the
user to deal with. In the following, we detail the different reasons, benefits, and challenges of PVA.

4.1. Reasons for Using PVA

Going through the literature, we can find three main reasons why PVA is used instead of MVA.
These reasons all relate to the computational process—i.e., the dotted line shown for MVA in Figure 1
indicating the wait time for the result: it lasts too long (duration), it runs too slow (speed), and it is
non-transparent in its course.

Long-lasting computations. In this case, the main problem is the completion time tComplete of the
computation being well beyond the acceptable. Possible instances are:

• Indefinite computations: These are computations having no defined end by design, such as
visualizations for monitoring transient data streams [29–31].

• Quasi-indefinite computations: These are computations that will theoretically terminate at
some point, but reaching this point is a few thousand years out, e.g., due to combinatorial
explosion [32].

• Delayed computations: These types of computations can be completed within reasonable time, but it
is still taking too long to meet a given deadline by which the result is needed.

This list purposefully abstracts from the various technical causes that such unacceptable runtimes
can have. This can be either an inherent complexity of the problem—the data may be very complex
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(e.g., having hundreds of dimensions or being very heterogeneous) or the algorithms to be run on
it may exhibit a high complexity that simply take time to complete. Or it can be that insufficient
resources are available—e.g., the memory may be too small for the data so that swapping takes up
a large portion of the time, or the network connection over which the data is loaded may be slow.
While there can be a multitude of these underlying causes, which sometimes may even compound
each other, the result will always be one of the three instances listed above.

Slow computations. Here, the shortcoming is that the completion time tComplete is not within bounds
for fluid interaction [33] including guaranteed response times to queries and continuous manipulation
of views. Expected response times are commonly subdivided in three levels [2,34,35]:

• Task completion: Initiating a computational task, such as a query or complex filter operation on
large datasets, should not stall the flow of analysis for more than 10 s.

• Immediate response: In an interactive setting, such as tuning computational parameters in a GUI,
feedback to the made changes should appear in 1 s.

• Perceptual update: Computations initiated through direct interaction with the view should complete
in under 1 s to ensure smooth updates without noticeable stutter or flickering.

Note that long-lasting and slow computations, and in particular delayed and slow computations,
are discerned by their effects and not so much by their causes. Long-lasting computations make it
impossible to use their results—for visual analysis or otherwise—as the delay does not permit to act
upon the result in time. An example would be to forecast tomorrow’s weather or stock prices by the
day after tomorrow. Whereas slow computations pose no principal hindrance to using their results. It
may just become more tedious and less effective, as it has been shown that already minor latencies
have negative impacts on insight generation [36].

Non-transparent computations. Papers arguing from this perspective criticize the monolithic,
one-step nature of the computation that gives MVA its name. They note that MVA presents an
algorithmic black box without any means to observe, interject, and reconfigure it on the fly. Its only
means of understanding the computation is after the fact by inferring what might have happened from
the result produced at completion time tComplete. This argument is delivered from two different angles:

• Monolithic computations: In this instance, the focus lies on the complexity and opacity of the
computational process that cannot be observed, understood, or steered while running its
course [5].

• Monolithic visualizations: Here the focus lies on the visualization produced by the process and
being shown in all its cluttered, overplotted detail as a single monolithic end result [6].

Note that non-transparency is an independent reason from the computations’ runtime. In fact, a
computation can actually be completed in a matter of seconds and its non-transparency is the result of
its speed, as it is too fast to monitor or adjust the execution while it is running. So, it could even be
necessary to introduce intentional deceleration to decrease its speed and increase its duration to enable
observation and steering of the process in the first place.

These three reasons—duration, speed, and transparency—are often not clearly separated from
each other. This is not surprising as in MVA, all problems and shortcomings relate to the one and
only result produced at time point tComplete, which is the first meaningful, the first reliable, the last
significant, and the final result all in one. PVA, however, allows for a more nuanced discussion of
these aspects.

4.2. Benefits of Using PVA

The defining and distinguishing factor of PVA is its ability to produce a sequence of results.
This sequence is largely defined by the four characteristic time points introduced in Section 2:
tResponse at which the first meaningful partial result is produced, tReliable at which the first trustworthy
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partial result is produced, tStable at which the last significant partial result is produced, and tComplete at
which the computation finishes. These create three time intervals in which results of different quality
and utility are produced:

Early partial results. These are produced between tResponse and tReliable. Therefore,
they are meaningful, but not necessarily reliable yet. An example for such an early partial result
would be a preview that gives already a first visual indication of the overall look and feel of the final
visualization, but without yet showing enough data to draw conclusions from it. Showing such a
preview can be used to orient oneself in the view before it gets too cluttered. If the preview is generated
quickly enough—i.e., tResponse stays below an acceptable update rate—it can provide fluid interaction.

Early partial results can further be used by the analyst to determine if the overall visual
representation suits the analytical needs, performing an early cancellation if not. An early cancellation
means that the preview is so far off from an acceptable visual result that it warrants to abort the
currently running computation and to try something else. Mühlbacher et al., [5] argue that early
cancellation also provides an important, albeit simple form of process control. It may not allow
full-fledged computational steering, but early cancellation can be used to test different algorithms and
parametrizations through trial and error.

Mature partial results. These are produced between tReliable and tStable. They already reflect the
final result within an acceptable margin of error. Hence, they can be used for an early start of the
visual analysis, as they show enough data and detail to make first observations in the still unfinished,
yet already trustworthy intermediate result. In that sense, mature partial results can be used to gain a
head start in time-critical analysis scenarios even before the results fully stabilize. The decision when a
partial result is reliable enough to do so is:

• process-specific: a monotonously converging progressive computation is likely to yield useful
results earlier than one that is highly fluctuating and bound to produce “surprises”;

• task-specific: a high-level overview task requires less detail to be shown than an
in-depth comparison;

• domain-specific: a social media analysis can accept a higher margin of error than analyzing patient
records to make a clinical treatment decision;

• user-specific: some users with experience in progressive computations may be able to see early on
“where this is going”, while others wait a little longer before feeling comfortable to work with a
partial result.

Definitive partial results. These are produced between tStable and tComplete. In this case,
the computation is not entirely finished yet and we are still dealing with partial results. These results
may not yet look as polished as the final result with last minor layout optimizations still needing
to be computed, or they may still miss some data points as a few remaining data chunks have not
yet been processed. Yet, these results leave no more doubt about the final outcome. That final
outcome can be assumed as settled at this stage and the partial results can be used in its place
for all practical purposes. Hence, they can be used for an early completion of the visual analysis,
confirming observations made on mature partial results and basing early analytic decisions on them.
There exist two scenarios of such early completions, which we term:

• hard early completion: this terminates the running computation and starts with the next analytical
step based on the findings made up to that point;

• soft early completion: this also starts with the next analytical step, but the computation is only
paused and not terminated [1].

While the hard early completion frees processing resources for the next analysis step, the soft early
completion frees CPU resources, but keeps memory resources allocated. In this way, the computation
can be immediately resumed at a later point in time—e.g., after returning from an analytical detour on
some matter that caught the analyst’s eye.
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In principle, a third option would also be possible that neither terminates nor pauses
the computation, but continues it as a background process. While this does not free any resources
except for screen space, it is the safest option if unsure about the stability of the current result. In the
event that the background process produces a new result exhibiting major differences, the users can
be alerted. They can then inspect these differences and decide whether to roll back any follow-up
analysis steps carried out since. To the best of our knowledge, this approach has so far not been
documented in the literature.

From the individual partial results that PVA generates, emerges a fourth benefit of PVA:

Succession of results. Besides providing new start and end points for visual analysis, PVA also
provides a constant outflow of results that lie in between. These form a string of natural “break points”
that can be used to

• monitor the computation in its course for understanding and possibly debugging the algorithmics
behind it (cp. software visualization);

• steer the computation through interactive reparametrization of algorithms or reprioritization of
data chunks, adapting the PVA process to early observations and emerging analysis interests;

• observe the build-up of complex visualizations step by step, showing increasing numbers of visual
elements to convey even dense, detailed, and cluttered visualizations;

• adapt an output to just the right level of detail so that the succession produces outputs of increasing
detail [6] or decreasing detail [37], which can be stopped at any in-between stage to fit the current
display space and desired visual complexity.

All of these benefits are often subsumed under the observation that PVA makes interactive visual
analysis more responsive [4] and more accessible [5]. Although, it is important to note that while
these benefits are inherent in the way PVA operates, they may not automatically show as desired.
For example, just by employing PVA, it is not guaranteed that certain response times and update
intervals are met as needed. For example, an algorithm may in principle be suited to work on
continuously updating data, but each update may take so long that it is not suited for interactive visual
analysis [38]. This requires careful configuration of the underlying mechanisms for chunking the data
and the process, which brings us to the challenges of using PVA.

4.3. Challenges of Using PVA

The additional possibilities that PVA opens up come with the price of additional efforts: It is up
to the analyst to decide how to initialize the progression and whether it runs as expected, as well as to
assess the usefulness and trustworthiness of partial results. Guidelines and metrics can inform the
analyst’s decisions, but in the end it remains the responsibility of the human in the loop to make these
decisions. We have identified five challenges that analysts face when using PVA:

Parametrizing the progression. Running a PVA solution asks for additional efforts at both design
phase and utilization phase for a suitable (for the task to be carried out) parametrization of the
progressive pipeline. Common parameters for data chunking concern the sampling technique,
the sample size, the processing order or prioritization of sampled data chunks, and how to combine
them back together through buffering, binning, or aggregation. Common parameters for process
chunking concern the step size for the iterations, the stopping criterion for when to end the progression,
and sometimes also a random displacement that governs the degree of intentionally introduced
fluctuation to avoid convergence towards local optima. Managing this additional parameter space,
not present in MVA, clearly demands additional efforts [39]. But PVA also helps in doing so, by allowing
interactive readjustment and fine-tuning of parameters while the progression is already on its way.

Judging partial results. Partial results, while being displayed promptly, come at the cost of being
only approximate. They are either incomplete in case of data chunking as not all data has yet
been processed, or they are inaccurate in case of process chunking as not all iterations have yet
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been computed. When dealing with intermediate results, the analyst has the additional burden of
judging whether they are “good enough” for the analytic task at hand—i.e., whether tReliable has
been reached. This challenge does not occur in MVA, as it is clearly rooted in the progression. There are
different strategies for judging partial results, such as looking at absolute completion rates (How much
of the full dataset is shown? How many out of all iterations have been computed?) or looking at
relative completion rates (How much additional information did a new result add to a previous one?)
Note that this particular challenge gains additional complexity when multiple views are involved that
exhibit different states of maturity. In this case, it is not clear on which view the user should rely to
judge the current result’s trustworthiness.

Monitoring the succession of results. The partial results alone do not tell the full story. Only in the
context of the series of results, we are able to judge the current one. Is the computation converging
towards a stable result or is there no such trend? If it is converging, can we estimate how long until
tStable is reached? And when the output is no longer changing, have we actually reached tStable?
Or is it just because the progression is “jammed”, dealing with the latest interactive changes we
made or processing an unexpectedly complex data chunk? So, while keeping an eye on the running
computation can be seen as an additional burden, it also provides additional information on the
provenance of the currently shown result as an intermediate point of that computation. This can be
used to further inform the reliability assessment of the current partial result, but also as an indication
for the need to adjust or steer the progression.

Steering the progression. Like MVA, PVA can be run in a fire and forget manner: once set up and
parametrized, it is never changed and runs its predefined course. Yet this would mean to disregard
most of PVA’s inherent flexibility and thus to reduce its use to only a fraction of what it could be:
a responsive mechanism with which we can interact while it is running and which can be adapted
alongside our growing understanding of the data and our evolving analytic interests. Leveraging this
full potential of PVA also means that the analyst cannot sit back and wait for the final result to arrive,
but has to actively intervene and steer the computation. At the minimum, the analyst has control
over starting, pausing, slowing down and speeding up, as well as stopping (early cancellation,
early completion) the process. This can also encompass branching of an analysis into two concurrently
run processes—e.g., running the same algorithm on different data, or different algorithms on the same
data to compare or interleave their results. More involved forms of steering include narrowing down
and refocusing the process on certain subspaces of interest within the dataset, or to halt the processing
of data subspaces irrelevant to the current task or analytic question.

Handling fluctuating or even diverging progressions. Many PVA approaches assume a
“well-behaved”, monotonously converging progression of results that proceeds smoothly from a
crude first response to a refined final result. In practice, this is hardly ever the case: data may be
non-uniformly distributed across the chunks, the computation may perform random moves to escape
local optima, or the user may interact with the computation, readjusting it and thus introducing
discontinuities in the process. Governing concepts like data consistency (intermediate visualizations
should become increasingly representative of the complete dataset) and visual consistency (intermediate
visualizations should become increasingly representative of the completed visualization) are difficult
to enforce under such circumstances [40,41]. This makes it particularly hard to judge the reliability of
preliminary findings, which can turn out to be mere artifacts of the progression and not of the data.

Note that these challenges can compound each other. For example, having a strongly fluctuating
sequence of results makes it hard for analysts to determine the trajectory of the progression and thus
to judge the reliability of any intermediate result, but also to steer such an unpredictable process. As a
consequence, PVA requires knowledgeable analysts who are able to overlook and handle its challenges
in order to make sensible use of its benefits. This can be supported by the PVA system, if it fulfills
certain design requirements, as they are discussed in the following.
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5. Requirements

To instantiate the PVA concept in a visual analytics software, researchers have put forward a
number of goals and criteria that, if fulfilled, contribute to a well-designed PVA implementation.
We capture these various criteria and their different levels of necessity ranging from must have to nice
to have, which is very much dependent on the concrete scenario, under the umbrella term of requirements.
We collected 45 requirements from the literature and list them in Appendix A1. These requirements
were gathered from the following publications—their abbreviation indicating their source:

• RHel1: Hellerstein et al., 1999 [10]
• RH2–RH6: Hetzler et al., 2005 [28]
• RC7–RC8: Chandramouli et al., 2013 [25]
• RF9–RF12: Ferreira et al., 2014 [42]
• RS13–RS20: Stolper et al., 2014 [1]
• RM21–RM31: Mühlbacher et al., 2014 [5]
• RT32–RT41: Turkay et al., 2017 [7]
• RB42–RB45: Badam et al., 2017 [19]

For their in-depth discussion, we refer the reader to the original publications for which we have
indicated the detailed positions of their mention in the last column of the table in the Appendix.
In this section, we provide a high level overview, consolidating this long list of requirements and
drawing connections among them in two ways: First, by providing a characterization of the
requirements that aligns them with the aspects of the visual analytics process to which they refer (input
data, computational processing, visualization, and interaction). Second, by providing a user-driven
characterization of the requirements relating them to the function they provide to the user—i.e., the
respective PVA benefits which they ensure, and to the respective PVA challenges which they address.

5.1. Process-Driven Characterization

Commonly, the visual analytics process starts with the data to be analyzed, processes it and yields
a visualization that allows for user interaction. PVA follows this conceptual flow, yet is more flexible and
less sequential in the combination of these four steps, as it already allows visualizing and interacting
while some data are still being prepared and while the computational process is still running.

This flexibility is reflected by PVA requirements that explicitly address the interplay of the different
aspects of PVA—e.g., the implications of the processing on the interaction facilities, which need to
provide for managing the progression (RT36), as well as the implications of the interaction on the
processing, which must adhere to the respective time constraints (RT32).

As different requirements relate to different aspects of PVA, we group them accordingly into

• Data requirements concerning aspects from the ingestion and subdivision of the data, to
prioritization and aggregation strategies for data in a PVA solution;

• Processing requirements dealing with all aspects from the progressive implementation of the
computation to its execution and control;

• Visualization requirements regarding all aspects from visual feedback about the running process to
the dynamic presentation of the incremental outcome;

• Interaction requirements including all aspects from meeting human time constraints to providing
structured interaction with the process.

The requirements in the literature address either one of these subjects exclusively, or they deal
with the interplay of two phases. Figure 2 gives a summary of this relation between requirements and
the different subjects to which they refer. Note that we list the requirements in the spirit in which they
were introduced by their respective authors. For example, RS16 “Allow users to ignore irrelevant
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subspaces.” was introduced by Stolper et al., [1], (Section 4.3) specifically as a requirement for the
processing, or for the “analytics components” as they term it.

While we could easily see this requirement to also relate to the visualization in which the irrelevant
subspaces must be identified, to the interaction that must provide some means to select them, and to
the data handling that must ultimately be able to filter them out—we nevertheless placed it solely
under processing, as it was originally intended. This makes sense, as for example, Stolper et al., also
define another requirement RS20 that addresses the need for suitable visual interfaces to specify those
irrelevant subspaces.

Figure 2. The requirements from Appendix A1 linked to the different aspects of PVA: The main diagonal
lists requirements, which relate to a single PVA aspect. Other cells list requirements concerning two
PVA aspects. The shorthands relate to the following publications: RHel [10],RH [28],RC [25],RF [42],
RS [1],RM [5],RT [7],RB [19].

5.2. User-Driven Characterization

PVA requirements serve two general functions: There are those that provide PVA benefits to ensure
that PVA’s advantages over MVA are available in a PVA solution. And there are those that address
PVA challenges to ensure that the complications incurred by PVA can be handled. In the following,
we discuss the PVA requirements with respect to the functions they provide to the PVA user, and we
distill their main points into high-level recommendations.

5.2.1. Requirements for Providing PVA Benefits

The fundamental requirement for being able to provide PVA benefits at all is to use an algorithmic
procedure that yields a sequence of results, as for example online algorithms do (RT33). Yet to produce
clear and strong advantages over MVA, the sequence of results must also be made accessible in suitable
ways. This section summarizes the requirements for providing such ways.

Provide early partial results

There are three ingredients to providing useful early partial results: their immediacy, their
significance, and their actionability.
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Immediacy: The whole idea of early partial results is that they are provided promptly,
which usually means that tResponse must respect human time constants (RT32), as they are listed
under Section 4.1. Otherwise, the PVA process will be perceived as lagging or stalling. To ensure
immediacy, PVA systems should be designed to start computations immediately after being invoked
by the user (RT35). They can also employ the aforementioned adaptive sampling mechanisms to
ensure that only as much data as there is time for gets processed (RT34).

Significance: A partial result, as early as it may be delivered, is only useful if it shows what
the analyst needs to see. This notion is captured by various concepts, such as meaningfulness,
interestingness, and relevance:

• Meaningfulness (RS14): Partial results should reflect the overall result by coming in the same
format (sometimes called structure preservance RM24) and be appropriate to be taken in by a
human analyst.

• Interestingness (RHel1, RS15, RM29): Partial results are of no use, if those parts of the data,
which interest the analyst most, get processed and shown last. Hence, it is important to be able to
prioritize data and process it in order of decreasing interestingness.

• Relevance (RS16): Some parts of the data may not only be of lesser interest to the user, but actually
be entirely irrelevant to the analysis task at hand. Being able to exclude irrelevant data from
processing can further streamline the creation of useful partial results by making it faster and
less cluttered.

As interestingness and relevance are highly user-dependent, it is further necessary to provide a
suitable user interface to specify those notions (RS20).

Actionability: In addition to having a significant and early partial result, the analyst must also
be able to act upon it. Hence, the literature stresses the point that early partial results should already
provide full interactivity (RH5). This way, analysts can interact with them as they would interact
with the completed result. In addition, a PVA system should allow analysts to perform an early
cancellation of the running process (RM28), if they perceive the early partial results as inadequate for
their analytical needs.

Recommendation I : To provide early partial results—i.e., to establish tResponse—first processing results
should be delivered promptly, while maintaining their significance and interactivity.

Provide mature partial results

While mature partial results “inherit” the basic characteristics of early partial results of being
significant and interactive, providing them is not so much a question of undercutting a particular
time constraint. Instead, it is more about establishing trust in the still incomplete results, so that the
analyst is comfortable to start the visual analysis early. For this, the core concern is to communicate the
inherent uncertainty of the partial results, as well as the uncertainty of the computational process.

Uncertainty of the results: To judge how trustworthy a partial result is and thus how trustworthy
any first observations are, it is of principal importance to communicate the uncertainty (RM26).
Uncertainty displays can range from minimally invasive measures, such as adding confidence
bounds [8], to switching out the entire visualization for binned alternatives that prevent micro readings
in still uncertain areas of the plot [7], (Section 2.4.3). For a simpler communication, the results’
uncertainty can also be condensed into numerical aggregates or quality metrics (RM25).

Uncertainty of the process: Uncertainty is not only a characteristic of the partial result, but also of
the process that generated it. As uncertainties in the computations may influence the trustworthiness
of the results without being directly quantifiable, it is of equal importance to inform analysts about
them (RT41). Such provenance information can stretch from traits of the data preprocessing—i.e.,
the currently used sampling strategy, to the algorithmic parameters and any simplifications made
during the process (RM27).
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Recommendation II : To provide mature partial results—i.e., to establish tReliable—the inherent uncertainty
of the partial results and of the progressive computation should be communicated truthfully and comprehensively
for judging the results’ trustworthiness.

Provide definitive partial results

In contrast to mature partial results, definitive partial results are already quite certain and
thus trustworthy. For them, it is not the uncertainty the analyst has to judge, but the stability of
this state—i.e., is a seemingly good result already stable enough to be used in place of the final result?
Or is it just a local optimum or an accidentally good outlier produced by a fluctuating computation
that is not yet backed up by enough data chunks or iterations to be deemed stable? Hence, definitive
partial results require not so much judging the individual partial result, but the computational process
as whole. Indicators to inform this judgement are the process’ state and its progress.

State of the process: The analyst should be able to discern the aliveness of a process—i.e., whether
a current result is no longer visibly changing, because the result is actually stable, or because the
process is stalling due to a deadlock or a lost connection (RM21).

Progress of the process: It can also be beneficial for the analyst to know how much processing
has been done overall, either in absolute or relative terms (RM22, RM23). Another way to indicate
progress is to convey an estimated time to completion (RT40). In some cases, the complete result may
not be that far out and analysts may be willing to wait another minute for it, but not hours.

Note that prioritizing data (RHel1, RS15, RM29) or even having the user specify the data
samples (RC7) is also important for providing definitive partial results: it does not only allow seeing
the interesting data first, but it also ensures that after a certain point only uninteresting data remains
and the analysis can be completed early.

Recommendation III : To provide definitive partial results—i.e., to establish tStable—the process’ state and
progress should be communicated for judging its aliveness, convergence, and time of completion.

Provide a succession of results

The main requirement for being able to observe and influence the evolution of results is the
use of suitable visualizations (RT39) that lend themselves to being dynamically updated. In general,
PVA tends to more generic visualizations than task-specific ones, trying to offer a visual representation
that can be used for most tasks (RF10); with scatterplots and heatmaps being popular choices in
this regard. This is only logical, as visualizations in PVA are generated over time and quickly switching
between different special-purpose visualizations according to different tasks is not an option, as the
progression would have to start anew. Aside from these basic considerations, dynamic visualizations
should further provide adequate means for monitoring the succession and for steering the succession.

Monitoring the succession: When observing the running process, it is paramount to not only
have an expressive visual representation of the data and any associated uncertainties, but also of the
amount of change in between updates. As a guiding principle, we want the change in the visualization
to be proportional to the change in the underlying data (RF11). Otherwise, we might see change
where there is none and vice versa. The literature also points out the importance of supporting various
monitoring tasks, such as spotting general changes with each update (RH2, RS18), or tracking specific
items of interest across multiple updates (RH6).

Steering the succession: In some cases, it may be necessary to pause the progression on demand
in order to inspect a particularly complex update. This is usually supported via pause/play
mechanisms (RH3, RT36), with which users are familiar from animated visualizations and video
playback. In addition, it may also be of interest to change the time span between updates, e.g.,
by adapting the step-size or chunk-size of the progression (RT36). More sophisticated modifications of
the running process usually involve manual adjustments of intermediate results that are then used as
input for the next processing step (RM30)—e.g., to “help along” a clustering or a network layout.
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Recommendation IV : To provide a succession of partial results, visualizations with change-proportional
updates should be used together with interaction mechanisms for steering the progression dynamics and their
visual representation.

5.2.2. Requirements for Mitigating PVA Challenges

Being able to start and complete analyses early by working in parallel with the computation
requires additional efforts for monitoring and steering the computational process. While the last section
discussed how to provide the benefits of making PVA accessible to the user, this section discusses the
challenges of doing so and points out requirements that are aimed at reducing or even solving them.

Support the parametrization of the progression

A fundamental precondition to allow sensible parametrization of the progression is stated byRC8,
which basically demands a decoupling of data and process parameters—i.e., changes to how the data
are sampled should not incur changes on how the algorithm behaves and vice versa. If that requirement
is not fulfilled, as for example, different algorithms are chosen depending on the size of the data chunks,
seemingly simple parameter changes can yield unpredictable consequences. This precondition is
necessary for both, interactive and automated parameter changes.

Interactive parameter changes: Turkay et al., [7], (Section 4.1.3) have observed that PVA users
tend to be quite preoccupied with manual parameter changes—in particular in multi-view setups.
To make manual parameter adjustments in an informed manner, one can employ multiple consecutive
executions of the same progressive computation (RM31). By using different parameters for each,
their early partial results can be compared and the most promising can be chosen for continued
processing.

Automated parameter changes: It is also possible to use adaptive mechanisms for auto-adjusting
the parameters to match external constraints, such as a desired response time (RT34). Such an
automated parameter adjustment can not only be helpful to cope with input data of varying complexity,
but also help to keep the user’s attention on the data analysis instead of being distracted by the
multitude of PVA parameters and options (RH4, RS13).

Recommendation V : To support the parametrization of PVA, changes to process and data parameters should
yield predictable results that lend themselves to interactive and adaptive parametrization.

Support judging partial results

Not yet having the final result to compare with, it is extremely challenging to estimate the
uncertainty of the currently shown partial result (how bad it still is) or its quality (how good it
already is) [43]. Making the call of when a visualization is good enough to start and finish its
analysis remains highly subjective, differing among analysts even when pursuing the same task
on the same data [7], (Section 4.1.3). For reducing the cognitive efforts of taking in additional
uncertainty information, the literature emphasizes the importance of minimizing the added visual
complexity and of its consistent display across views.

Minimize added visual complexity: Communicating the uncertainty in addition to the currently
shown result puts extra complexity in the visualization. If possible, this extra information should
be rendered as an unobtrusive visual cue, adding minimal complexity to the base visualization and
thus easing its interpretation (RF9). Furthermore, these cues should use a distinct representation
from the base visualization, so as not to add visual noise (RF12). Error bars for column charts are a
good example for both: While also using the height to encode the uncertainty value, they do not use
the same column representation, which could have been confused with the columns from the base
representation. Instead they only consist of a few extra lines per column that grow less pronounced as
the uncertainty decreases.
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Consistency across views: In multi-view setups, uncertainty should be displayed in a consistent
fashion for all views (RB45). Consistency does not only relate to using similar visual uncertainty
representations across different views. It also concerns the effect of different views reaching stability at
different points during the progression. Having a partial result that is apparently stable in one view
and still changing in another is confusing to the user, which is why such discrepancies need to be taken
into account (RT37). One way of doing so is to compute the uncertainty in a global manner and to
display it in a dedicated view as a summary statistic over all views.

Recommendation VI : To support judging partial results, their uncertainty should be visualized in a way that
minimizes added visual complexity and ensures consistency across views.

Support monitoring the succession of results

To help observing the running progression, it is common to provide two modes (RB43):
a monitoring mode with continuously updating, dynamic views (RH6) and an exploration mode with
static views that only update on demand (RS19). Both modes require different kinds of support for
monitoring the progression: the dynamic views should be stabilized to maintain user orientation and the
static views should incorporate additional dynamic features to indicate new results.

Stabilizing dynamic views: The main challenge of a “live” display of the progression is that
constant changes of the view make it hard to keep one’s orientation, as the layout still moves data points
around or simply adjusts the color scale as new values are added. While in some sense, these changes
are representative of the progression, view changes still need to be limited (RS17), as otherwise the
animated view is nothing more than a flickering of seemingly unconnected partial results. A common
way of doing this is by using visual anchors (RB44) that introduce more stable landmarks in the view
to provide a frame of reference for the analyst’s mental map. For example, in online dynamic graph
drawing, this is done by assigning so-called pinning weights to central nodes, keeping them in place
while the layout around them changes [44], (Section 4.1).

Dynamic features in static views: In case of static views, it is still important to convey the ongoing
progression, so that the analysts know if the view they are currently working on is outdated and
requires an update on demand. Some PVA systems use a global highlighting of the UI elements
that are used for updating on demand—e.g., a “cautionary yellow background” to indicate that new
results are available [28], (Section 3.2). Others provide more detail, for example by dynamically adding
visual cues directly into the static view to mark those regions where new results are waiting to be
incorporated [1], (Section 5.3). For the special case of asynchronous updates—i.e., updates that come
in a different order than they were triggered—a color-coding of visual changes has been proposed to
aid users in maintaining an overview of the succession [45].

Recommendation VII : To support monitoring the succession of results, the visualization should ensure
stability for constantly changing dynamic views and embed dynamic features in fixed views.

Support steering the progression

Steering the progression adds onto the challenge of monitoring, as it not only implies that the
analysts understand from the monitoring what is currently going on, but also know how to tune it to
better comply with their expectations. Essential requirements for such a steering are that the analyst
has general information about the computational process to know what to change, and gets immediate
feedback on the changes to know how much to change it.

Information about the computational process: It is hard to steer a computational process that
is a mere black box to the analyst. While it helps with the parametrization if this black box behaves
deterministically (RC8), for actually steering it by switching algorithms or excluding certain parts
of the data, more information is needed. To support the steering, provenance information should be
shown that detail the current computational pipeline (RB42) and its current parametrization (RM27).
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Immediate feedback on made changes: Steering the progression in a particular direction by
prioritizing certain data or adjusting algorithmic modules of the pipeline requires the analysts to
see the effects of their changes to further fine-tune their adjustments. On one hand, this relates back
to RT32 and RT35, which require swift responses without delays. On the other hand, this also means
that the analysts must be able to observe any, possibly minor, effects in the output due to their steering
of the process. Yet for more complex changes that involve adjustments of many intricate UI controls
at the same time, this is hard to do in parallel. In these cases, structured interaction sequences (RT38)
can help to lessen the burden of the interactive steering and to be able to better focus on observing its
output. These sequences automate low-level interactions, such as moving sliders across a particular
interval or brushing/selecting data in certain regions.

Recommendation VIII : To support steering the progression, PVA systems should make the current processing
pipeline explicit and employ mechanisms that reduce the interaction costs of steering as well as of reverting back
to previous configurations.

Support handling fluctuating progressions

Fluctuations are another reason for distractions and interference with the analysis flow, which is
to be avoided (RH4, RS13). They can be induced by all aspects of visual analytics (cf. Section 5.1): by
the data, by the computational process, by the visualization, and by the interaction.

Data-induced fluctuations: Fluctuations can originate from data chunks with a skewed data
distribution that is not representative of the overall distribution in the dataset [46]. This happens when
employing an inadequate sampling technique, but can in particular be observed when performing
no sampling at all and simply partitioning the data as is. One solution is to randomize the data in a
preprocess before loading it into the PVA system [19], (Section 4). This simple, yet effective solution is
suited for scenarios in which one does not have access to the source of a PVA system and cannot add
improved sampling functionality to it. Note that the opposite approach of sorting the data according to
one’s own prioritization strategy can likewise be employed for PVA systems that do not support this.

Computational fluctuations: A common source for such fluctuations is the inclusion of
random displacements in the computation to escape local optima. For example, in some
computational approaches, such as genetic algorithms, random elements are an essential part of the
principal approach and cannot be eliminated or reduced. A generic way of handling highly fluctuating
processes and enforcing their gradual stabilization is to employ simulated annealing [47]. It uses a
cooling factor to gradually limit changes as the results become better, but not necessarily more stable.

Visual fluctuations: Visualizations with absolute positioning that use the Euclidean space as a
fixed frame of reference—e.g., scatterplots—remain reasonably stable unless the data items themselves
move around. Yet for example, in case of network diagrams, relative positioning is used that places
data items (nodes) in relation to each other. Such a relative positioning is prone to change with
every added data item, and it is thus not surprising that the idea of simulated annealing has also
been transferred to network visualizations [48], (Chaper 12.2). If fluctuations cannot be avoided, it is
common practice to at least try to smoothly animate between successive updates using animated
transitions [7], (Section 2.4.1) or staged animations [19], (Section 4.2).

Interaction-induced fluctuations: Interactions, such as reparametrizing or steering the process,
are one of the main causes of discontinuities in the progression. The literature notes that interactions
should take fluctuations into account (RT37). Turkay et al., [7], (Section 2.3.2), suggest using
structured interaction sequences (RT38) to ensure a steady parameter changes without the intermediate
discontinuities introduced by manual adjustments of sliders or brushes.

Recommendation IX : To handle fluctuations, these should be reduced by proper data sampling, by enforcing
process stability, by using absolute positioning and animation, and by steadying interactions.
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6. A Use Case Scenario

PVA is used for scenarios as diverse as designing neural networks [49] and pattern discovery in
categorical data [50]. Each of these different scenarios has a different reason for using PVA and thus its
very own take on how to concretely realize PVA. There exists no standard approach to implementing
a PVA solution, as each real world PVA scenario rarely requires different PVA benefits and needs to
handle different PVA challenges, depending on which flavor of PVA it uses (e.g., data chunking vs.
process chunking). Hence, depending on the scenario at hand, different PVA solutions may employ a
different subset of the proposed recommendations.

This section exemplifies this aspect by discussing a concrete use case in the context of our PVA
characterization. It shows how the respective recommendations are reflected in the design of the
resulting PVA system, illustrating how our characterization and recommendations can be used to
inform the design of new PVA solutions, as well as to describe existing ones. In the following,
we outline the specific setting of the scenario, position it in our PVA characterization, and detail the
recommendations we followed to yield our PVA solution.

6.1. The Visual Analysis Setting

The use case at hand is taken from Angelini et al., [32]. It supports explorative decision making
for marketing strategies of Telecom Italia Mobile (TIM). It seeks to find a subset of the 110 Italian
provinces that leads to an optimal Return of Investment (RoI) as captured by a given objective function.
This subset is iteratively derived in three steps:

1. The analyst selects 30 to 50 candidate provinces in a scatterplot. This scatterplot displays the
provinces according to numerical properties that will likely have an influence on the success of
the marketing campaign—e.g., market penetration and average income as shown in Figure 3.

2. Among those candidate provinces, a Top-10 subset is computed that maximizes the
objective function. The subset is displayed in a Sankey diagram, which allows the user to
explore the numeric properties of these provinces as well as their relation to the provinces not
included in the Top-10—see Figure 4.

3. Depending on the interactive assessment of the current set of Top-10 provinces, the analyst can
either go back to the scatterplot to choose a different candidate set, or conclude the analysis
with the current result and launch the marketing campaign in those ten provinces.

In the following assessment of this use case, we focus on the second step, as this step incorporates
the progressive computation of the Top-10 provinces. The Sankey diagram used to visualize the
(intermediate) results from this computation encodes the flow between two data facets: the market
penetration (percentage of population in possession of a SIM card in the concerned territories) shown
by the two leftmost axes, and the potential market (difference between the population index and
the absolute value of the potential market) shown by the two rightmost axes. The two axes for each
data facet encode the data on two different geospatial aggregation levels—regions and provinces.
Ribbons between the middle axes connect the provinces to their counterparts on the left/right,
and ribbons to the outer axes connect the provinces to the regions they belong to. As the width
of the ribbons is proportionally sized to the population of the corresponding regions and provinces,
they convey visually how each of them contributes to the overall RoI value.
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Figure 3. The scatterplot allows selecting a group of provinces that capture some high level
campaign scenarios. In the shown example, the analyst has selected provinces characterized by
high income and a market penetration close to the median. The objective is to promote some additional
non-essential features (e.g., faster network services or more data volume) that will likely be accepted
by existing TIM customers, but that also have a chance to win over new customers. As the potential
customers need to be able to pay for these additional features, the analyst purposefully chose high
income provinces as a suitable subset from which to extract the Top-10 provinces.

Figure 4. The currently best Top-10 set of provinces is highlighted at the top of the parallel-Sankey plot.
The user can easily distinguish provinces above the market penetration median (yellow) and those
below (blue). The numerical quality indicators above the plot help the analyst judge the current result:
The first confidence value of 0.85 means that between 8 and 9 provinces of the current Top-10 are
already stable. The second confidence value shows that the current result is at 0.673 of the optimal
result—i.e., if the analyst waits for the remaining two provinces of the Top-10 to stabilize, the estimated
gain to the current objective function F = 8.648 will still be more than 30%. Putting these values in
relation to the small fraction of only a 2/10000th of all combinations having been tried yet, the current
result looks already quite good, but leaves room for further improvement.
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6.2. Characterization as a PVA Scenario

Reason for using PVA: Finding the Top-10 is a combinatorial optimization problem for
which no better solution exists than testing all possible combinations of 10 provinces out of the
selected candidate set. Computing the Top-10 on all 110 provinces and assuming we could test
3000 combinations in a second (actual throughput on an Intel Core i7 with 3.1 GHz), getting the
exact result would require around 500 years, which is certainly quasi-indefinite. Under the same
assumption, given a candidate set of only 40 provinces this computation would still require 75 h. While
this may still be doable, tComplete lies well beyond the expected task completion time of around 10 s,
effectively hindering a fluent analysis.

Benefits of using PVA: The iterative assessment of the result for different, manually tested and
refined candidate sets poses clear time constraints on the computation of the Top-10 provinces. To keep
the analyst engaged in a fluid back and forth between scatterplot and Sankey diagram, we need to
provide a result within a time frame of at most 30 s. PVA can be used to achieve this by producing
early partial results within such an acceptable time span, which are then further refined into mature
partial results while the analyst already starts exploring.

Challenges of using PVA: Using PVA to yield a swift first response from the computation creates
several challenges that our PVA design has to address. The foremost challenge is the inexact nature of
the partial results and the analyst’s need to judge them. In addition, the generated partial results are
likely to fluctuate, so that a province might disappear from the Top-10 only to be reintroduced later.
Finally, the parametrization of the data partitioning affects the runtime until the first result is
produced. Choosing it inappropriately can easily result in extremely long wait times even for the first
early partial result.

6.3. A Solution Design following the PVA Recommendations

The above characterization makes it obvious that this PVA scenario puts emphasis on some aspects,
while neglecting others. Our telecom marketers are not interested in definite partial results or even the
final result, as it is not necessary to find the best possible Top-10 set of provinces that improves the
RoI of an already mature Top-10 by a few digits after the decimal point. We define the maturity of an
intermediate Top-10 result in terms of the inherent uncertainty of the process, which we infer from a
metric that captures how many out of the 10 optimal provinces are already included in the current
Top-10 (see below for its computation). Overall, the users are not much interested in the process of
the computation itself and have no concern for monitoring the succession of results, let alone steering it.
Hence, our PVA solution, shown in Figure 4, follows the recommendations relating to the PVA benefits
and challenges identified in Section 6.2.

Providing PVA Benefits: A prerequisite of any PVA solution is to employ a procedure that produces a
stream of intermediate results. As a general approach, our PVA solution samples subsets of increasing
size from the candidate set, computes their Top-10, and replaces the current best solution with the
new one, if the newly produced Top-10 performs better with respect to the objective function.

Recommendation I: While this general approach could be used to deliver a prompt early result,
this result would most likely be far from significant and worth to be explored, as it initially only covers
a small subset of the candidate set. Hence, we employ a slightly different strategy for the first partial
result that ensures significance by covering the whole candidate set, while maintaining acceptable
response times: We divide the candidate set in two disjoint subsets of equal size, independently
compute their Top-5 provinces, and merge them into the very first Top-10 shown in the interactive
Sankey diagram. Subdivisions into even more subsets (e.g., Top-3) are also possible, depending on the
size of the candidate set and the desired tResponse.

Recommendation II: To provide means for estimating the inherent uncertainty of the current
partial result and of the progressive computation, we have implemented an adaptive strategy,
sampling the whole design space with different selection sizes and process granularities, to find
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suitable trade-offs. This strategy is implemented defining three intervals for the process granularity
and three intervals for the selection size, effectively obtaining nine possible configurations as their
pairwise combinations (see Figure 5). For each of these nine possible configurations, we collected and
averaged two measures:

Top-10 Proportion(TP) = Estimated Top-10 ∩ real Top-10
10 Function Ratio(FR) = Estimated function

optimal value

Figure 5. Exploring different PVA configurations of chunking data and process. The y axis represents
the provinces selection size, ranging from 10 to 110 provinces; the x axis represents the process,
ranging from (1) a monolithic process computing ( n

10) on the whole selection, via (2) computing (n
5)

splitting the selection in 2 chunks to produce an early partial result, and then compute ( n
10) on the whole

chunk in a longer time, to (3) a process composed by the sequence of computations (n
3), (

n
5), (

n
10) splitting

the selections in 3 chunks and producing an early partial result, refining it using two chunks, and then
computing the optimal solution on the whole selection. The tResponse values report the time span
needed to produce the first meaningful result for each configuration. The confidence measures, TP and
FR indicate the means of the numerical ratio between the estimated function and the optimal one,
and the proportion of the provinces belonging to both the estimation and the optimum, respectively.
The orange tiles represent the selected strategies in the current implementation: they respect the time
constraints and minimize errors.

These measures are used to provide the user with two confidence indicators: The TP value
denotes the stability of the current result. It can be read as the fraction of provinces of the current
Top-10 that will most likely also be part of the final Top-10. The FR value denotes how good the current
value of the objective function is compared to the probable optimum. As neither the real Top-10 nor the
optimal value can actually be obtained for large n, we use approximations. For example, for the real
Top-10, we use an average of a number feasible Top-10s computed on random provinces subsets, e.g.,
(40

10), (
40
5 ), and (40

3 ).
In addition, the percentage of processed data shows how many out of all possible province

combinations have been tested so far. Its basic idea is to put the confidence values TP and FR into
context by indicating just how few combinations have been tested so far and how long it would thus
take to be entirely certain. The analyst can then decide based on these data, whether it makes sense to
wait for a longer time to improve the actual result.
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Mitigating PVA Challenges: Our main design decision to counter the challenges was the use of
a minimalistic visual interface that masks the complexity of the underlying computation and its
parametrization. Its only visual feature is the Sankey diagram showing the current best result, while all
other information is given in textual or numerical form to not distract the user and to keep possible
fluctuations in the graphics to a minimum.

Recommendation V: The two parameters having most influence on tResponse are the size of the
candidate set and the number of subsets into which the candidate set is partitioned. As the candidate
set is chosen by the user, we have no control over it. Based on the benchmarks from Figure 5, we use
an adaptive parametrization for the number of subsets, which does not subdivide if the candidate
set contains ≤ 19 provinces, subdivides into two subsets for anything between 19 and 50 provinces,
and into three sets for ≥ 50 provinces. This way, we can guarantee tResponse of 29 s, 34 s, and 18 s,
respectively.

Recommendation VI: To minimize added visual complexity, our PVA solution shows the
uncertainty of the current result only in numerical form. We make it easy to interpret this numerical
uncertainty information by not just computing some abstract quality/error metrics, but actually
providing indicators of how good the current solution already is (first confidence value) and what
could still be gained by waiting for a better result (second confidence value).

Recommendation IX: While new results are continuously produced by our procedure, only results
that are better than the current best result will update the view. This leads to the effect that view
updates come irregularly and unforeseeably, and there is not much we can do about it. At least the
analysts know that any update is an improvement over the current view and that they do not have to
worry about having a good intermediate result being replaced by one that is worse. To smooth the
visual changes resulting from the transition to an updated result, the Sankey diagram does not only
show the current Top-10, but all candidate provinces. This way, provinces do not appear and disappear,
but merely move up to join the Top-10 or down if excluded again. This movement is animated to help
following the transition. To stabilize the interaction, the system automatically blocks the rendering of
a new partial result if the user is interacting with the current one.

6.4. User Feedback

We conducted several informal tests with Telecom Italia Mobile users in order to collect feedback.
The users were provided with the PVA solution and asked to explore the given scenario and propose
the Top-10 they considered as best solution. Eventually during a following discussion users were asked
for the confidence they have in their answers. Summarizing the obtained feedback, users appreciated
to have progressively refining results on which they could immediately start the exploration process
and form hypotheses. Nonetheless, we experienced different sensibilities to interpret confidence of the
results and eventual exploration of alternatives. The users asked us to provide more nuanced insight
in the magnitude of Top-10 changes. For example, they would like to see how big of an improvement
to the RoI the changes have provided. This makes sense, as there may be a lot of changes, but if these
only concern the lower ranks of the Top-10 with the Top-8 or Top-9 item being swapped out for minor
RoI improvements, the result might already be stable enough to work with it.

7. Conclusions

With the PVA characterization and recommendations given in this paper, we have extracted the
common aspects from a broad range of literature. Regardless of the very diverse areas from which
these papers stem, the reasons for using PVA, the utilized benefits of PVA and the observed challenges are
almost unifying factors among them. They only differ in the concrete requirements they state for dealing
with them, with some PVA solutions striving to provide PVA benefits and counter PVA challenges
on data level, while others go for the processing, visualization, or interaction. Yet even this diverse
set of requirements has its common elements, which we subsumed as recommendations. Together,
these aspects span the realm of PVA as it is currently described in the literature.
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Going through the existing papers, we did not only obtain an overview of the research that
has already been done in PVA. We also noticed aspects that have not yet been looked into and
remain open questions for future research. In the light of all the requirements for designing PVA
systems, one of the most pressing open question is once we have such a system, how to evaluate it?
While current research conducts user studies on PVA approaches as if they are MVA approaches, recent
work by Boukhelifa et al., [51] suggests that judging uncertain results introduces entirely new tasks,
which should probably be reflected in PVA studies. So it might be time to work on a progressive task
taxonomy to ensure that PVA systems are evaluated with appropriate tasks and criteria.

Another open point for research is to devise progressive analysis and visualization methods
as building blocks to be used in PVA systems. This is by no means a simple task and adapting
existing techniques to the PVA concept is a complex research question in its own regard, very similar
to the problem of parallelizing existing algorithms for their distributed use. For some techniques,
progressive variants have already been proposed – for example, for k-Means [52], MDS [53], t-SNE [54],
Treemaps [55], and Parallel Coordinates [56,57]. Yet these are merely a tiny fraction of the analysis and
visualization techniques our community are accustomed to use.

As a result of these open questions, this paper is neither a final treatment nor a complete
systematization of the PVA concept. It is a snapshot of this particular research domain as of June
2018, which bundles and connects the various aspects and notions that have been discussed so far.
We intend this snapshot to consolidate and converge research efforts in PVA, providing a common
ground for scientific discussions and engineering decisions in this domain.
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Appendix A. List of requirements

Table A1. Requirements collected from the current body of literature on PVA.

Requirement Description Source

RHel1 Process interesting data early, so users can get satisfactory
results quickly, halt processing, and move on to their next request

Hellerstein et al., 1999
(Preferential data delivery:
online reordering)

RH2 Enable monitoring the visualization and seeing what’s new each
time a new increment of data is processed and loaded into
the system

Hetzler et al., 2005 (Section 3.1)

RH3 Allow the explicit control of updates arrival Hetzler et al., 2005 (Section 3.2)
RH4 Minimize the disruption to the analytic process flow and the

interaction flow
Hetzler et al., 2005 (Section 3.2)

RH5 Provide full interactivity for dynamic datasets Hetzler et al., 2005 (Section 3.3)
RH6 Provide dynamic update features Hetzler et al., 2005 (Section 3.4)

RC7 Allow users to communicate progressive samples to the system Chandramouli et al., 2013 (Section 1.1)
RC8 Allow efficient and deterministic query processing over

progressive samples, without the system itself trying to reason
about specific sampling strategies or confident estimation

Chandramouli et al., 2013 (Section 1.1)

RF9 Uncertainty visualization should be easy to interpret Ferreira et al., 2014 (Design Goals)
RF10 Visualizations should be consistent across tasks Ferreira et al., 2014 (Design Goals)
RF11 Maintain spatial stability of visualizations across sample size Ferreira et al., 2014 (Design Goals)
RF12 Minimize visual noise Ferreira et al., 2014 (Design Goals)

RS13 Managing the partial results in the visual interface should not
interfere with the user’s cognitive workflow

Stolper et al., 2014 (Section 1)

RS14 Produce increasingly meaningful partial results Stolper et al., 2014 (Section 4.3)
RS15 Allow users to focus the algorithm to subspaces of interest Stolper et al., 2014 (Section 4.3)
RS16 Allow users to ignore irrelevant subspaces Stolper et al., 2014 (Section 4.3)
RS17 Minimize distractions by not changing views excessively Stolper et al., 2014 (Section 4.3)
RS18 Provide cues to indicate where new results have been found

by analytics
Stolper et al., 2014 (Section 4.3)

RS19 Support an on-demand refresh when analysts are ready to explore
the latest results

Stolper et al., 2014 (Section 4.3)

RS20 Provide an interface to specify where analytics should focus, as well
as the portions of the problem space that should be ignored

Stolper et al., 2014 (Section 4.3)

RM21 Provide feedback on the aliveness of the execution Mühlbacher et al., 2014 (Section 3.1)
RM22 Provide feedback on the absolute progress of the execution Mühlbacher et al., 2014 (Section 3.1)
RM23 Provide feedback on the relative progress of the execution Mühlbacher et al., 2014 (Section 3.1)
RM24 Generate structure-preserving intermediate results Mühlbacher et al., 2014 (Section 3.2)
RM25 Provide aggregated information Mühlbacher et al., 2014 (Section 3.2)
RM26 Provide feedback on the uncertainty of a result Mühlbacher et al., 2014 (Section 3.2)
RM27 Provide provenance information, including any meta-information

concerning simplifications made for generating a partial result
Mühlbacher et al., 2014 (Section 3.2)

RM28 Allow for execution control by cancellation Mühlbacher et al., 2014 (Section 3.3)
RM29 Allow altering the sequence of intermediate results

through prioritization
Mühlbacher et al., 2014 (Section 3.3)

RM30 Provide inner result control for steering a single ongoing
computation before it eventually returns a final result

Mühlbacher et al., 2014 (Section 3.4)

RM31 Provide outer result control to generate a result from multiple
consecutive executions of a computation

Mühlbacher et al., 2014 (Section 3.4)

RT32 Employ human time constants Turkay et al., 2017 (Section 2.1, DR1)
RT33 Employ online learning algorithms Turkay et al., 2017 (Section 2.2, DR2)
RT34 Employ an adaptive sampling mechanism (convergence &

temporal constraints)
Turkay et al., 2017 (Section 2.2.2, DR3)

RT35 Facilitate the immediate initiation of computations after
user interaction

Turkay et al., 2017 (Section 2.3.1, DR4)

RT36 Provide interaction mechanisms enabling management of
the progression

Turkay et al., 2017 (Section 2.3.1, DR5)

RT37 Design interaction taking into account fluctuations Turkay et al., 2017 (Section 2.3.1, DR6)
RT38 Provide interaction mechanisms to define structured

investigation sequence
Turkay et al., 2017 (Section 2.3.2, DR7)

RT39 Support the interpretation of the evolution of the results through
suitable visualizations

Turkay et al., 2017 (Section 2.4.1, DR8)

RT40 Inform analysts on the progress of computations and indicate the
time-to-completion

Turkay et al., 2017 (Section 2.4.3, DR9)

RT41 Inform analysts on the uncertainty in the computations and the way
the computations develop

Turkay et al., 2017 (Section 2.4.3, DR10)

RB42 Show the analysis pipeline Badam et al., 2017 (Section 7.3)
RB43 Support monitoring mode and exploration mode Badam et al., 2017 (Section 7.3)
RB44 Provide similarity anchors Badam et al., 2017 (Section 7.3)
RB45 Use consistently visualized quality measures Badam et al., 2017 (Section 7.3)
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