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Abstract. Aim of the present paper is the analysis of the strain along the beam 

that is equipped with Glass Fibers Reinforced Polymers (GFRP) with an embed-

ded set of optical Fiber Bragg Grating sensors (FBG), in the context of a project 

to equip with these new structural elements an Italian train bridge. 

Different problems are attacked, and namely:  

(i) during the production process [1] it is difficult to locate precisely the FBG 

along the reinforcement bar, therefore the following question appears: how can 

we associate the strain measurements to the points along the bar? Is it possible to 

create a signal analysis procedure such that this correspondence is found? 

(ii) the beam can be inflected and besides the strain at some points, we would like 

to recover the elastic shape of the deformed beam that is equipped with the rein-

forcement bars. Which signal processing do we use to determine the shape of the 

deformed beam in its inflection plane? 

(iii) if the beam is spatially inflected, in two orthogonal planes, is it possible to 

recover the beam spatial elastic shape? 

Object of the paper is to answer to these questions. 

1 Introduction 

The use of vibration measurements for structural health monitoring has attracted sig-

nificant research attention during the last three decades [2-4]. Traditional strengthened 

concrete members, such as beams, are composed of concrete included cement and steel 

bars reinforcement. In such structures, the main function of concrete is to provide re-

sistance to compressive loads. Steel bars embedded in the concrete, instead, provide 

resistance to tensile and shear loads. Nevertheless, the problem of corrosion associated 

with the steel bars reduced its live time. Recent technologies have resulted in alternative 

reinforcing materials such as GFRP materials that can be embedded in concrete mem-

bers to satisfy several desired properties. 

GFRP represent an attractive opportunity in the field of new concrete constructions 

as well as in the field of restoration of old ones. Their weight and resistance properties 
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provide good chances of replacement of traditional steel reinforcements in some appli-

cations [5-7]. 

FBG sensors allow distributed sensing over significant areas by multiplexing a large 

number of sensors on a single fiber, which are immune to electromagnetic interference 

and have compact size. Due to all these advantages, they have been widely used in 

many applications for the structural health monitoring [8,9]. 

This project started as a collaboration between the department of Mechanical and 

Aerospace Engineering of Sapienza University of Rome, BASF Italy Spa and SIREG 

GEOTECH srl. The main task of such project is to perform a structural restoration on 

a train bridge, located over Bormida river, in northern Italy. Instead of using traditional 

steel bars reinforcements, for this structure the previously mentioned GFRP rebars with 

embedded FBG sensors, will be adopted. 

By the use of a main station, suitably implemented, it will be possible to process all 

the data acquired through the sensors inside the structure, in order to achieve infor-

mation about the stress state of the bridge to perform a structural health monitoring 

activity. 

2 Uncertainties in the measurements 

A general difficulty we meet with fiber glass reinforcement bars are related to some 

uncertainties on the sensors locations. In general, we asked to produce each bar with 

three embedded optical lines, each equipped with at least one sensor. This configura-

tion, as it comes out from the following considerations, permits to solve the under-

determinacy intrinsically related to: (i) the axial positioning of the sensors on each line 

along each bar, (ii) the angular positioning of each bar inside the beam.  

However, since the radius of each bar is small with respect to the characteristic size 

of the beam section, and the radius of the circle over which the optical lines are placed 

is even smaller, we can approximate the nominal optical line positioning on each sec-

tion as it is identified by the centre of each bar. In this way the only unknown parameters 

of the sensors placements are related to their axial positions. This implies that, in gen-

eral, each sensor could be potentially located at an unknown axial position, but in this 

way, as it is clarified by the following sections, the number of unknowns is too large to 

be determined. Therefore, we need to reduce the degree of uncertainty of the system. 

One good point is that of producing bars that host optical line made with FBG sensors 

placed at given constant distance d. With this, we can resolve the under-determinacy of 

the system, as it is explained in the following section. 

3 Analytical model for predicting the system deformation 

Task of the proposed method is to estimate the elastic shape of the beam through the 

measurements of axial deformations in several points along the beam, whose positions 

are unknown. This method is applied to a beam subjected to bending deformation ac-

cording to the Euler-Bernoulli hypothesis. The unknown elastic shape of the beam can 

be expressed in form of an expansion of known eigenfunctions 𝜙 , combined 
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through a set of weighting unknown time-dependent coefficients, that are the modal 

coordinates 𝐴 . Since the distributed-parameter system has infinitely many vibration 

modes, the general response is a linear combination from all vibration modes: 

 , = ∑ 𝐴 𝜙∞=                     (1) 

 

where ,  is the transverse displacement of the neutral axis (at the point x and the 

time t) due to bending. 

The axial strain at a certain level (z) from the neutral axis of the beam is simply 

proportional to the curvature of the beam at that position (x): 𝜀 = −𝑧 2 ,2 = −𝑧 ∑ 𝐴 2𝜙2 ( )∞=           (2) 

 

Where 𝜀  is the measured strain provided by the FBG sensors and is the longitu-

dinal position of the i-th sensor along the j-th fiber. 

However, if the position  are unknown, together with the unknown coefficients 

Ak(t), an undetermined set of conditions is produced which is unsolvable, since the 

number of unknowns is larger than the number of conditions. Since along the single 

optical fiber there are several FBG sensors that, due to the product specifications, are 

equally spaced at a known constant spacing d, it is possible to reduce the original num-

ber of unknowns ×   in the only j line offset  unknown variables. From this 

hypothesis, the eq. 2 becomes: 

 − 𝜀𝑧 = ∑ 𝐴 2𝜙2 ( + −  )∞=                (3) 

 

The equation system is easily solved: using NB fibres, each carrying NS sensors, the 

total number of available equations are 𝑁 = 𝑁 × 𝑁𝑆. The number of unkonwns de-

pends on the number of considered modal coordinates 𝑁 = 𝑁 , indeed we have 𝑁 × 𝑁  and 𝑁  number of line offsets, for a total number of unknown variables 

to identify equal to 𝑁 = 𝑁 × 𝑁 + 𝑁 . Such system can be solved through least 

square if it is satisfied the condition: 𝑁 ≥  𝑁 . 

 The problem of determining the elastic shape of the beam is simultaneously solved, 

since the solution of the previous system provides also the coefficients Ak, i.e. through = ∑ 𝐴 𝜙∞=  one can determine the elastic shape.  

For example, assume that the elastic shape is represented only by two coefficients 

A1 A2 (N=2) and considering the beam simply supported, we can write the mode shape 

in harmonic form as , = 𝐴 sin 𝜋 + 𝐴 sin 𝜋
 and an algorithm for 

the solution of the nonlinear equation eq. (3) can now be set. 

Assume we introduce a first guess for the offsets , the linear system is defined in 

matrix form: 

 𝑼 𝑨 = 𝒃    →      𝑨 = 𝑼+ 𝒃                           (4) 
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Where 𝒃 = {𝜀 𝑧 }  is the column vector of the acquired strains and 𝑼 ={ 𝜋 [ 𝜋 𝑜 + −  ]} is an 𝑁 × 𝑁 matrix and where 𝑼+ is the pseudo-inverse 

matrix. The equation error is now introduced: 

 = ‖𝑨 − 𝑼+ 𝒃‖                      (5) 

 

Now, fixed an initial guess for the offsets , an optimal set of coefficient A is 

obtained, then the problem is iterated varying , to find the minimum point ̅  so 

that a suitable error function will be minimised and ̅  will be the estimated offset for 

the fiber j. 

As explained, the error function  defined in eq. (5) depends indeed on the ini-

tial guess of the offset. We can set a first guess for , for example  =   , where 

M is a given integer, thus we obtain an overdetermined set of equations in two un-

knowns A1 A2 that can be solved in a least square sense (by using the pseudo-inverse), 

and evaluate the corresponding error . Now we are able to introduce another error 

function err, slightly different than eq. (5), which is defined as the mean error between 

the strains measured by the FBG sensors and the strains estimated by eq. (3), having 

used the optimal set of coefficients A1 A2: 

 

𝑔 𝑒 = ∑ 𝜀 −𝜀 𝑜𝑔 𝑒𝜀=                  (6) 

 

Then we can modify the value, as  =  , and solve again in the least square 

sense for A1 A2, and compute again the error. Let us proceed in this way evaluating the 

set of errors  for = , k=1,2,3,...,M. The value of k for which the equation error 

(7) is minimum identifies the estimated value of the offset  , at which are associated 

the optimal values for A1 A2. Therefore, in this way we can associate each of the strain 

measurement with the related point along the axis, i.e.  =  + − .  

The algorithm has been tested applying each time the same load P in different posi-

tion all over the length of the beam, between 0 and L, for a fixed value of the line offset; 

then the same set of loads have been applied, varying the position of the offset in the 

range of the maximum error of location, namely between 0 and d. The simulations have 

been carried out considering 39 displacements for the load over the entire length of the 

beam for a number of fixed offsets equal to 28; the results of the test are represented in 

Fig. 1. 
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Fig. 1. Simulation results: trend of the 𝑔 𝑒  function for one fixed line offset. 

 

Note that, for explanatory purpose, the results reported in the Fig.1 refer to just one 

fixed value of line offset . In this plot, each curve is the error function, eq. (6), related 

to a single load, applied in a specific position. The error functions have the same trend, 

specifically all of them have a minimum in the neighbourhood of the actual offset; 

however among the set of the curves there are some that provide a better estimation of 

the offset, while other provide larger errors. The estimation error is therefore intro-

duced, namely the relative error between the actual and the estimated offset: 

 = | 𝑜 − 𝑜 𝑒𝑜 |                          (7) 

 

Where, for the sake of notation, the dependence on the load position xp, e.g ec(xp), 

has been omitted. Over the entire set of obtained curves, only in certain cases we obtain 

an optimal solution in which the relative error of convergence is close to zero. The 

reasons behind this behaviour may depend on the generality of the model, which relies 

only on a few periodic eigenfunctions adopted to model the mechanical system; how-

ever this limits the reliability of the algorithm introduced so far. 

4 Data Post processing with an ANN algorithm 

The algorithm previously introduced works indeed under rather general hypothesis, so 

that it is able to provide an estimate of the flexural deformation without requiring an 

accurate mechanical model of the structure. As a result, the algorithm can be applied to 

a wide set of structures, the trade-off is that the accuracy of the offset estimation is 

Offset position 
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affected by the actual placement of the offset and of the load that is exciting the struc-

ture. For a specific placement of the offset, the proposed technique shows indeed good 

accuracy for certain load positions, while it is not effective for others. To overcome the 

problem, an Artificial Neural Network [10] algorithm is implemented, to classify the 

reliable curves, which provide a good localization of the line offset, from the other 

curves that, on the contrary, provide wrong estimations. 

For each actual placement of the offset and of the load, the input vector that feeds 

the neural network will be composed by the following features: 

1. A set of g-error values 𝑔 𝑒 , defined in eq. (6), evaluated on an array 

of initial guess, 𝑔 𝑒 , uniformly distributed within the interval [0, 

d]=[ , ∆ , … , ∆ , …, (g− ∆ ], where d<L, being L the length of the struc-

ture, with g=51; 

2. the estimated offset value 𝑒 ; 

3. the prominence value of the error  function, e. g. 
( 𝑜 𝑒 )𝑜𝑔 𝑒 ; where 

𝑔 𝑒  is the mean value of the error.  

4. the total number of minima. 

To each input vector is associated a target value, which is the relative error ec in-

volved in the estimation of the offset position, previously introduced in eq. (7).  

In order to train the net, a dataset is generated by the iteration of the process above, 

considering n-different positions for the offset, uniformly distributed within the interval 

[0, d], and m-different positions for the load, uniformly distributed within [0, L], with 

n=2848 and m=191. To summarize, the generated dataset will contain a total number 

of records × = ; each record is composed by g+3=54 variables, which 

form the input of a column vector V. The target vector T has only one value, which 

range from 0 to 1. After the data have been collected and divided, an important step is 

the data normalisation, in order to make it easier for the ANN training to extract the 

relevant information. The input and output data is normalized so that they fall into a 

standard range, typically -1 to 1. For pattern recognition problem, a sigmoid transfer 

function is generally used in the output layer of the network, so target values range from 

-1 to 1, which represent the asymptotes of the function. However, this tends to cause 

difficulties for the training algorithm, which tries to saturate the sigmoid function to 

meet the target value. It is better to assign target values at the point where the second 

derivative of the sigmoid function is maximum. For the tangent-sigmoid function, this 

occurs when the net input is -1 and 1, which corresponds to output values of -0.76 and 

+0.76, therefore the targets are set to values of -0.76 and +0.76 instead of -1 and 1. 

5 Numerical Results 

Results of the network testing are reported. In Fig. 2 red circles represent the actual 

values of the normalised target used for testing, while the blue dots are the predictions 

made by the developed ANN. In detail, in the lower side of the graph there are the good 

estimations while in the upper side there are the false cases. Results show good 
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performance since the network is able to properly classify the vast majority of the cases: 

there is an almost perfect fit between the false cases and the output of the net, while for 

what concerns the true cases, ANN roughly provides a mean value between less (-0.6) 

and more (0.8) accurate estimations of the expected target, demonstrating that the reli-

ability of the dataset processing performed by the ANN is high. This is evident in the 

right subplot, in which the same results are reported in terms of probability density: 

target and ANN predictions have indeed the same distribution trend. 

 

 
Fig. 2. ANN algorithm results: Network Output VS Target (left), Probability Density Func-

tion (right). 

6 Concluding remarks 

The production process does not allow an accurate placements of FBG sensors along 

a Glass Reinforced Fibers beam. A technique for the identification of the placements 

of these sensors has been proposed, which relies on two main algorithms. The first 

algorithm is based on a modal approximation of the elastic shape of the beam, allowing 

a theorical estimation of its deformation to be compared with the one arising from the 

strain measurements, which allows a first estimation of the sensors placements. The 

accuracy of the estimation is however affected by the combination of the actual place-

ment of the sensors and of the load that is exciting the structure. Since the calibration 

of the measurement apparatus, e.g. the GFRP with embedded FBG sensors inserted into 

the mechanical/civil structure, can be carried out employing a number of suitable loads, 

a set of estimations will be at disposal but, among them, only some unknown trials, will 

provide good results, while other will provide larger errors.  

The problem of classify good from bad estimations is solved with a second algo-

rithm, which is based on  an Artificial Neural Network, and is able to predict the ro-

bustness of the estimation, providing an index that forecasts the error involved in the 

estimation process, for each position of the exciting load.  
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Numerical results shows that the proposed technique is able to locate properly the 

actual position of the sensors with good accuracy. 

The proposed method lays the foundations for future structural health monitoring 

and damage localization activities in bridge-like structures. The large amount of sensors 

and vibration measurements allows, with dedicated algorithms [11], the simultaneous 

identification of both the load characteristics and damage parameters [12]. 
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