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Abstract The estimation of the size of a finite population is a problem encoun-
tered in a variety of applications. One standard statistical approach relies on mark-
recapture sampling, which may require high costs and annoyance to the population
of interest. These considerations have motivated the search for alternative sampling
strategies that allow to estimate the size of a population from a single capture. Het-
tiarachchige [4] proposes a method that is viable when the population is made of
only two generations: a group of generators and one of generated units. We inves-
tigate Bayesian methods alternative to the frequentist estimators used in [4]. Pre-
liminary results give evidence of competing performance of the Bayesian approach,
which in some cases sensibly outperforms the frequentist alternatives.
Abstract La stima della numerosità di una popolazione è un problema comune
a vari ambiti di applicazione. Le procedure di stima sono solitamente basate sul
noto metodo cattura-ricattura, il quale comporta elevati costi e disturbo della popo-
lazione. Tali considerazioni hanno stimolato la ricerca di tecniche che permettano
di ottenere un stima utilizzando un unico campione. Hettiarachchige [4] propone
un metodo applicabile nel caso in cui la popolazione sia composta di due sole gen-
erazioni: un gruppo di unità generatrici ed uno di unità generate. L’obiettivo del
nostro lavoro è quello di ottenere un’estensione Bayesiana dell’originale modello
frequentista. Risultati preliminari evidenziano accuratezza degli stimatori Bayesiani
sensibilmente migliore rispetto alle alternative frequentiste.
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1 Introduction

The problem of estimating the size or any other demographic parameter of a popula-
tion of interest for which there is no complete enumeration or reference list is com-
mon to a variety of applications: ecology (e.g. natural and wildlife populations),
reliability, epidemiology, social sciences. However, most of the literature regard-
ing this matter has been developed in the statistical ecology field, where capture-
recapture methods have been the ruling paradigm for the whole second half of the
20th century.

The modern foundation of these methods was laid in [2] and [6] and they are all
based on the pioneering mark-recapture sampling technique which originated the
well-known Lincoln-Petersen estimator. The most basic version consists of taking
a random sample of size n1 from the population and mark the captured individuals.
They are then returned to the population and, at a later occasion, a second sample
of size n2 is taken. The previously applied tags allow to recognize if and how many
of the captured individuals were already been sampled at the previous occasion. If
m of them already have a tag, then the Petersen estimator is: N̂P = (n1n2)/m.

The biggest issue with the application of such methods is that they require the
population to be sampled at least twice. The necessity of at least one further capture
occasion leads to increasing costs and, furthermore, can cause an ever-increasing
annoyance to the population of interest. The latter can alter its natural equilibrium,
leading to a change of conditions from one capture to the other. This may introduce
bias in the estimates when those changes are not taken into proper account and
requires behavioural adjustments on the basic model [3] . Moreover, there are a lot
of situations in which the captured individuals cannot be returned to the population,
making the procedure impractical. These considerations have motivated the search
for procedures that allow to estimate the size of a population in alternative ways.

In the last decades genetic data have become increasingly important in ecology
and conservation biology and their use in estimating the population size have been
considered [5]. The underlying idea is that the degree of biological relationship be-
tween a sample of individuals from the population provides information about the
population itself and DNA profiles can be used to detect the degree of relatedness be-
tween individuals. [7] exploit this idea in analogy to the traditional capture-recapture
method and argued in favor of a single sample version of the Petersen estimator. An
individual is marked by its presence in the sample, and “recaptured” if the sample
contains one or more close relatives. In practice, it allows to generalize from “re-
capture of self” to “recapture of closely-related kin” ([1]), where the detection of
kinship is based on the idea that an individual share more alleles with a parent than
with a biologically unrelated individual.

However, as it has already been underlined in [7], this approach is sensibly
more complex than the ordinary capture-recapture method. The effectiveness of
this method depends on hypotheses on the population that are hardly matched in
real life and relies on accurate estimates of the kinship coefficients between individ-
uals. The complexity of the method has been reduced by [4], who put himself in a
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Fig. 1 Schematic visual-
ization of the structure of
population and of the quan-
tities involved in the sample.
Different colors are used to
distinguish between param-
eters, latent variables and
observed quantities.
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simpler framework where kinship misclassification plays a slightly less important
role. The framework of study will be more extensively investigated in Section 2.

Our contribution to [4]’s work is to introduce a suitable way of implementing
Bayesian methods (Section 3) alternative to the frequentist estimators used by the
original author. A comparative analysis of these estimators is provided at the end
of the section. We finally provide an outline of some promising developments and
extensions that may improve on the precision of the proposed estimates in Section
4.

2 General Framework

Let us introduce formally the assumptions of the model. The population structure
considered in [4] is composed of only two generations: the individuals from the first
generation are denoted as mothers and the individual from the second as daughters.
For the purpose of this paper our main interest will be in estimating the size of the
population of the mothers.

The two generations are assumed mutually exclusive and collectively exhaus-
tive, and the population to be closed. A sample is taken and perfect identifiability
of mother-daughter couples is assumed. The appropriateness of this assumption is
discussed in [4].

In practice, we are dealing with a random sample from a population of N indi-
viduals, where M are “mothers” and D are “daughters” (N = M+D). The captured
individuals will be in part mothers and in part daughters. We are able to recognize

Latent Observables
n = m+d all units in the sample

m all mothers in the sample x all identified mothers in the sample
(di)

m
i=1 daughters for each mother in the sample (yi)

x
i=1 id. daughters for each id. mother in the sample

d = ∑
m
i=1 di all daughters in the sample y = ∑

x
i=1 yi all identified daughters in the sample

Table 1 Quantities of interests involved in the single sample
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Fig. 2 Graphical visualiza-
tion of the generating process
of the data. Parameters in red,
latent variables in orange and
observables in white.
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as daughters only those daughters whose mothers have been captured and viceversa.
The relevant quantities involved in the single sample are visualized in Figure 1 and
listed in Table 1 with appropriate notation:
Probabilistic Model. It is assumed that each mother has generated, at a previous
time, a certain number of daughters Di according to a Pois(µ). The total number
of daughters in the population is then D = ∑

M
i=1 Di ∼ Pois(Mµ). The parameter µ

is constrained to the set [1,+∞) by [4] for reasons related to the existence of the
moment estimator. Our Bayesian approach, theoretically, does not require such an
assumption but we will stick to this constraint to ensure a fair comparison. Further-
more, each individual is supposed to be captured independently with equal proba-
bility p.

The total number of mothers in the population M is the parameter of interest,
while µ and p are just nuisance parameters. The situation is graphically reported in
Figure 2.

An explicit form of the marginal likelihood can be obtained using a conditioning
argument:

P(n,x,(yi)
x
i=1|M,µ, p) =

M∧(n−y)

∑
m=x

P(n,x,(yi)
x
i=1|m,M,µ, p)P(m|M, p). (1)

P(m|M, p) is the probability to capture independently m mothers given that there are
M mothers in the population and they are captured with probability p1, which is:

P(m|M, p) = Bin(m|M, p) =
(

M
m

)
pm(1− p)M−m.

The joint density of (n,x,(yi)
x
i=1) conditioned on (m,M,µ, p), and hence the likeli-

hood of the model, can be shown to be equal to:

P(n,x,(yi)
x
i=1|m, M,µ, p) =

(
m
x

)
e−Mµ p(µ p)y

∏
x
i=1 yi!

((M−m)µ p)(n−m−y)

(n−m−d)!
.

1 This probability obviously does not depend on the mean number of daughters µ per mother.
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Fig. 3 Box-plots of the resulting estimates obtained for the 100 different simulation set for each es-
timator. From left to right: Moment and Maximum Likelihood estimators, posterior Mean, Median,
Mode and PMSE minimizer

3 The Bayesian Extension

Some undesirable peculiarity of the likelihood such as presence of non-unique solu-
tions and computational problems led [4] to discard the maximum likelihood estima-
tor. The author decided to resort to a moment-based estimator in order to overcome
these problems. However, the method of moments is still affected by well-known
boundary solution instability.

We propose an estimation procedure based on a Bayesian approach, which should
be able to regularize the model likelihood without incurring in the moment estimator
deficiencies. Furthermore, Bayesian methods allow to include prior information on
the demographic parameters of the population whenever such information is avail-
able and can eventually replace in a sensible way the ad-hoc constraint on µ .

Independent priors have been assigned to the parameters M, µ and p, so that the
posterior distribution can be written as:

π (M,µ, p|n,x,(yi)
x
i=1) ∝ L (M,µ, p;n,x,(yi)

x
i=1)π(M)π(µ)π(p)

The forms chosen for the priors of each parameter are:

• low-informative TruncatedGamma(0.05,0.025) and Beta(0.001,0.001) priors
for µ and p;

• inverse prior π(M) ∝
1

Ma for M, with a = 0,1,2.

Posterior samples from the joint posterior of the parameters have been obtained via
Metropolis-Within-Gibbs algorithm, where a Gibbs-style update is performed for M
and a bi-variate Normal random walk M-H is performed for (µ, p). The considered
Bayesian estimators are: the posterior mean M̂B, the posterior median M̂m and the
approximated PMSE minimizer2 M̂se.

2 The Posterior Mean Squared Error minimizer is the value that minimizes the MSE with respect
to the posterior distribution of the quantity of interest: argmina∈M ∑M∈M (M− a)2π(M|·), where
M is the quantity of interest and M its domain.
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Preliminary Results. A simulation study has been carried out in order to verify the
effectiveness of the proposed Bayesian estimators. For different configurations of
µ and p, with fixed M = 100 mothers, the simulation of mother-daughter sampling
have been replicated for S = 100 times, producing S = 100 realizations of all the
alternative estimators. The comparative performance is assessed in terms of Mean
Squared Error. Our preliminary results are exposed in Figure 3 and give evidence
of competing performance of the Bayesian approach which, especially in some con-
figurations, sensibly outperforms the frequentist alternatives.

4 Concluding remarks and further Developments

We have proposed a Bayesian framework for the estimation of the population size
in presence of a single sample. This technique relies on the pairing of mothers and
daughters in the sample through the use of genetic markers on the line of [4]. We
have shown that the Bayesian framework allows to reduce the error of the classical
estimators up to 50% in specific parameter settings. Indeed, we are currently workin
on many other improvements and extensions to the proposed Bayesian methodol-
ogy:

1. formal derivation of non-informative priors and principled informative priors
possibly removing the unnatural ad-hoc constraint µ > 1;

2. inclusion of other kind of kinships and/or other covariates in order to reduce the
variability of the unidentified part of the sample;

3. relaxation of restrictive model assumptions like the identical capture probability
and the perfect identification.
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