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Introduction

Contexts and motivations

This PhD thesis deals with the numerical approximation of the solution of time-
dependent �rst-order Hamilton-Jacobi equations, in the form{

vt +H(x,∇v) = 0 (t, x) ∈ R+ × RN
v(0, x) = v0(x) x ∈ RN , (HJ)

where the hamiltonian H : RN × RN → R and the initial condition v0 are usually, at
least, continuous functions. It is well-known that in general this problem does not admit
classical solutions (v ∈ C1), independently on the regularity of the initial condition, since
its solutions may develop discontinuities in the gradient in �nite time. Consequently, it
was necessary to introduce some appropriate de�nition of solution in �weak sense�. This
was done by Crandall and Lions in [CL83], in which they introduce (and deeply study)
the de�nition of viscosity solution, which precise statement will be given in Section 1.1,
using argument based on the vanishing method. The theory of viscosity solutions allows
the proof of existence and, more importantly, uniqueness in a wide range of situations,
even for more general hamiltonians, possibly dependent also on v, and for less regular
solutions (e.g. discontinuous solutions) or hamiltonians (e.g. with discontinuous data).
Although the theory is still undergoing technical developments, especially regarding the
above mentioned situations, in the case of continuous solutions, which is the main focus
of this thesis, it is in fact a well established matter, as witnessed by the books by Lions
[L82] and Barles [B98]. In particular, the latter contains a chapter on discontinuous
viscosity solutions. This theory also naturally extends to second order degenerate elliptic
equations, for which we mention the survey paper [CIL92].
Moreover, it has been found that the viscosity solution is the natural concept to use in

many applications involving Hamilton-Jacobi equations, including for example optimal
control (the Bellman equation), di�erential games (the Isaacs equation), front evolution
(via the Level Set Method) and image processing (Shape from Shading and segmentation
problems). This will also be argument of the present work, mainly in Chapter 4, in which
we apply our scheme to the problem of the segmentation of an image.
The lack of smoothness of viscosity solutions makes it di�cult to develop e�cient

approximations. Starting from the 80's, monotone �nite di�erence methods have been
proposed by Crandall and Lions [CL84] using the fact that the solution of (HJ) is the
integral of the entropy solution of a strictly related conservation law, which is valid only
in the one-dimensional case (see e.g. [CFN95]). For the possible extension of the previous
relation in higher dimensions we mention the work [JX98]. On this basis, monotone
�nite di�erence methods conceived for the conservation laws have been adapted to the
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Introduction

approximation of the HJ equations and then extended to more general hamiltonians
by Souganidis ([So85a]) and Barles ([BS91]). However, monotone schemes are typically
very di�usive, a serious drawback when treating nonsmooth solutions, and are limited to
�rst order accuracy, in the sense of the consistency error, also in the case of very regular
solutions. Thus, if we want to achieve high-order consistency, at least in regular regions
of the solution, we have to look for non-monotone methods, then the real problem is to
prove convergence.
In order to summarize the previous discussion and focus on the analysis ahead, we

state the properties that should be satis�ed by the �high-order� or �high-resolution�
schemes for the approximation of (HJ):

• at least second order accuracy in regions of the domain where the solution is
regular;

• high-resolution of the singularities, avoiding the usual �rounding� produced by the
�rst-order monotone schemes;

• the arti�cial oscillations introduced should rapidly disappear as the grid is re�ned.

The use of high-order schemes is preferable mainly because of computational cost rea-
sons, especially when working with multidimensional problems, since they allow the use
of coarser grids, but on the other hand, proving convergence becomes a really di�cult
matter. A key tool for proving convergence of numerical approximations would be some
stability property of discrete solutions; for example, when working with continuous solu-
tions it is common to require the boundedness of the family of approximate solutions in
W 1,∞, so that the existence would follow by compactness by the classical Ascoli-Arzelà
theorem. Such estimates, may be obtained easily for monotone schemes and with some
e�ort for high-order Semi-Lagrangian schemes (see e.g. [FF14]), but in general are not
su�cient to infer convergence. In fact, at least to our knowledge, this theory is still lack-
ing a general stability concept, as the TV-stability for conservation laws for example,
that is able to secure the convergence of the numerical scheme to the viscosity solution
of the problem.
Apparently, a key to obtain some generality is to slightly loosen the monotonicity

property to the so-called ε-monotonicity, precisely de�ned in the sequel. Some hints
on this generalization are already present in [BS91], while a formal de�nition has been
given, for example, in [CFF10] for second order equations, in [BFFKZ14] for stationary
equations and by many other authors for �rst-order evolutive equations, which will
be cited later in this introduction. Moreover, in the convex case an equally useful
concept is the discrete uniform semiconcavity, introduced in [LT01], which allows to
prove convergence and, eventually with some further (not easy) computations, obtain
convergence estimates in the L1 norm.
Despite the di�culties in proving convergence, in the last decades a lot of e�ort has

been directed by many authors on the development of e�cient and high-order methods
for the solution of (HJ), using di�erent approaches. As a �rst example, we cite a very
e�cient class of �nite di�erence schemes, the Essentially NonOscillatory (ENO) and
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Weighted ENO (WENO) schemes, which ideas have been developded for the treatment
of hyperbolic conservation laws, respectively, by Harten et al. in [HEOC87] and by Jiang
and Shu in [JS96], and then extended to the case of (HJ), using the recalled relation
between the respective solutions, by Osher and Shu in [OSh91] and, later, by Jiang
and Peng in [JP00]. ENO and WENO schemes are of high-order, in the sense of the
consistency error, and because of their reliability, have been quite successful in many
applications. Unfortunately, in the general case although there is numerical evidence
that they convergence to the viscosity solution of (HJ), till now and to the best of our
knowledge, there is no convergence proof for these classes of schemes. However, conver-
gence may hold for related schemes (see for instance [LS95]), while minor results have
been proven by Fjordholm et al. in [FMT12], where they show some stability prop-
erty of the ENO interpolation although the result is not su�cient to obtain the total
variation boundedness (TVB), and in [JP00], where convergence for smooth solutions
is proved. Among the other possible approaches, let us mention the semi-discrete cen-
tral upwind schemes of [KNP01] (see also the references therein) and the discontinuous
Galerkin (DG) �nite element schemes, introduced by Cockburn and Shu in [CS89] for
conservation laws and later extended to HJ equations. These methods, as the ENO
and WENO schemes, typically require the use of Runke-Kutta (RK) time discretiza-
tions to achieve high-order accuracy in time, which leads to the use of bigger numerical
stencils (that are the set of nodes used in the numerical scheme). In particular, the
RKDG methods are very �exible, being able to treat complicated geometries and di�er-
ent boundary conditions, and have compact stencils, therefore are particularly indicated
for parallel implementation, but they require a stability condition which is usually costly
to enforce. In this brief list of contributions to the theory, a special mention is due to
the Semi-Lagrangian discretizations, developed by Falcone and Ferretti ([FF94], [FF14])
and Carlini ([CFR05], [CFF10]), which allows the use of very large-time steps, do not
require the use of RK procedures, since they are based on some direct representation
formula for the solution, and have been proven convergent, in the convex case, for a wide
range of possible reconstruction procedures. The proof there relies heavily on the work
of Ferretti ([F02]), where a �rst hint on the ε-monotonicity property can be found in the
hypothesis on the high-order reconstruction procedure, which has to be close enough to
the linear (monotone) interpolation.
Following on this idea, in recent years many authors faced the problem using the

ε-monotone (or similar de�nitions) stability property in order to prove convergence,
mainly devising di�erent procedures to ��lter� an high-order scheme, possibly unstable,
with a convergent monotone scheme. This idea was already present in [LS95], in the
context of implicit schemes, and has been further developed by Abragall in [A09] and
Oberman and Salvador in [ObSa15], for �rst-order stationary equation (in the latter
the main focus is on the eikonal equation) and by Froese and Oberman in [FO13], for
particular second order equations. Regarding the convergence of ε-monotone scheme
for stationary equations we also recall the above mentioned [BFFKZ14]. In this thesis
we mainly follow the approach of Bokanowski, Falcone and Sahu in [BFS16] on �ltered
schemes for evolutive �rst-order Hamilton-Jacobi equations, in which a convergence
result with error estimate is given. In the present work we try to deepen the study
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Introduction

of the �ltering process in order to better exploit the possibility o�ered by the relaxed
stability property.
Finally, it is worth saying that the development of this theoretical framework (i.e.

convergence to the viscosity solution of HJ equations) has been widely driven by the
above mentioned applications to control problems, image processing and Fluid Dynam-
ics. Regarding the applications to control problems we refer to the book of Bardi and
Capuzzo Dolcetta [BCD97], in which the focus is mainly on Hamilton-Jacobi-Bellman
equations, arising via the Dynamic Programming Principle in optimal control problems.
Another typical application of HJ equations, which will also be argument of the present

work, is the study and numerical approximation of fronts propagating in their normal
direction. This is done via the so-called Level Set Method, �rst introduced by Sethian
in [Se85], [Se90] and Osher in [OSe88], and brie�y recalled in Section 1.3. It is known
that this construction can be applied to model many physical problems, from crystal
growth to bubbles moving in a �uid, and so forth. Many e�cient schemes have been
proposed in recent years, we mention the book of Sethian [Se90] for some examples
of �nite di�erence schemes, the works of Bardi and Falcone [BF90] and of Falcone at
al. [FGL94] on the Semi-Lagrangian approximation for minimum time-problem, and
the paper of Bokanowski et al. [BCS13], where the RKDG method is used. In this
thesis we apply the method for the problem of image segmentation, following mainly
the approach in [MSV93], but proposing a slight modi�cation in the velocity c, which
seems to produce a stable and reliable scheme. For another possible application of
HJ equations in the context of image processing, we mention also the widely studied
Shape from Shading problem, for which we refer to the book [HB89] and to the more
recent work of Falcone and Tozza [FT16] (see also the references therein), where Semi-
Lagrangian discretizations are used to approximate the solution of Lambertian and non-
Lambertian models. Moreover, they give a uni�ed mathematical formulation of some
popular orthographic non-Lambertian models.

Contributions

Brie�y speaking, the aim of this thesis is to develop convergent schemes to the solution
of (HJ) which are of high-order in regions of regularity, deepening the study of [BFS16]
on �ltered schemes. The main novelty here is that the de�ned schemes have the desired
properties without the need to tune any parameter manually. This is done by the
introduction of a smoothness indicator function and a precise numerical formula for the
switching parameter ε. The new Adaptive Filtered Scheme has the form

un+1
j = SAF (un)j := SM (un)j + φnj ε

n∆tF

(
SA(un)j − SM (un)j

εn∆t

)
,

where φ is the introduced smoothness indicator function and εn is the new adaptive
switching parameter. For the latter, we design a procedure that automatically tunes the
value according to the regularity of the solution at any time step tn, which is measured
by the function φ.
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In order to construct the smoothness indicator function, we �rst deeply review the
theory of the smoothness indicators de�ned in [JS96] and [JP00], giving a precise proof
of their properties in Proposition 2.1. The idea of the proof is inspired by the one of
Corollary 2 in [ABM10], but it is more general. Moreover, the formulation of our proof
easily generalizes to get similar results for higher degree derivatives. Another aim of
this precise analysis is to clarify some confusion we have encountered in literature, since
the scaling factor needed in the de�nition of these indicators, when working with HJ
equations which present discontinuities in the �rst derivative, is usually mistaken.
Then, di�erently from the usual WENO procedure, we use the information given by

the indicators to construct the function φ, which basically measures the regularity of
the �rst derivative of a given function f . Moreover, we propose a genuinely multidi-
mensional version of the above one-dimensional de�nition on a cartesian grid, giving
also a very compact explicit formula for the case r = 2, which can be used for an easy
implementation. The de�ned 2D-smoothness indicators are able to precisely inspect the
regularity of the gradient of a function, as shown through some numerical test and by
the successful application in the construction of the 2D-Adaptive Filtered Scheme. To
our knowledge, this is a new contribution.
The main focus of our work is then to construct our new Adaptive Filtered Scheme

in one and two dimensions, extending the ideas in [BFS16] through a deeper inspection
of the ε-monotonicity property. As previously stated, this is done basically using the
smoothness indicator function in order to de�ne the numerical region of regularity at a
certain time tn, Rn, as the set of points on the grids in which it is �safe� to compute
the regularity threshold εn, according to the devised formula. The (main) result of this
new formulation is the statement of Theorem 3.11, in which we obtain the same good
properties of the convergence theorem in [BFS16], but avoiding some hypotheses which
shadow the need to manually tune the parameter ε, thanks to Proposition 3.9. The
second consequence, which is mainly testi�ed by the numerical tests at the end of the
Chapter 3, is that our scheme is able to exploit better the change in the regularity of the
solution, thanks to the tuning of the parameter εn at every time step according to the
detected regularity. This results in a better behavior in the numerical tests in terms of
both errors and stability properties, since our scheme is able to reduce the oscillations
otherwise allowed by the constant choice of ε and achieves high-order computed orders
in all situations, without the need to introduce any limitator.
Particular attention is given to the class of high-order schemes obtained by the dis-

cretization of the Lax-Wendro� method, written compactly for our problem in Lemma
3.2. Using this formula, we are able to devise and successfully test an example of
fourth-order Lax-Wendro� scheme, which requires only a very compact �ve-points sten-
cil. Notice that WENO and ENO procedure of higher order usually require many more
points for their de�nitions. Moreover, when applying the Runke-Kutta method, the
stencil is increased ad every step required by the order of the time discretization.
Finally we apply our 2D-Adaptive Filtered scheme to the problem of the segmentation

of an image, in the setting of the level set method. The main novelty here is the
a new de�nition of the velocity c, in the aim of [MSV93], designed to force all the
level sets to evolve according to the �same� law (in some reasonable sense). With this
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Introduction

de�nition, justi�ed by the method of characteristics, the velocity becomes anisotropic
and dependent also on v. More precisely, it is written as

c̃(x, y, v, vx, vy) = c

(
x− d(v)

vx
|∇v|

, y − d(v)
vy
|∇v|

)
,

where c(x, y) is the velocity of the classical model, computed using the information given
by the considered image, and d(v) is a function that measures the (signed) distance
between the v-level set and the 0-level set. Then, since this new de�nition could lead
to serious problems in the numerical implementation due to the low regularity of the
given data, we avoid most of these complications by proposing a simpli�ed procedure,
which in truth should be better justi�ed, especially at those points were the solution is
singular and the gradient it is not well de�ned. However, our simpli�ed approach with
the modi�ed velocity c̃ has given very promising preliminary responses, as shown by the
numerical tests at the end of Chapter 4. Moreover, the Adaptive Filtered Scheme seems
to improve evidently the results obtained by the simple monotone scheme, especially if
biomedical images are involved.
At the moment, the only work based on the topics of the present thesis, which is about

to be published, is the conference proceeding [FPT18], `Adaptive Filtered schemes for
Hamilton-Jacobi equations'.
Nevertheless, as self-testi�ed by this work, we are almost ready to submit a series of

papers containing the new contributions presented throughout these pages. For future
references, we would like to mention brie�y the ongoing works, in which this thesis will
be divided as follows:

• [FPTa], `Convergence of Adaptive Filtered Schemes for �rst order time-dependent
Hamilton-Jacobi equations', is based on the �rst parts of Chapter 2 and Chapter
3, and is centered on the proof of the convergence result for the one-dimensional
Adaptive Filtered scheme;

• [FPTb], `Smoothness indicators for multidimensional Adaptive Filtered Schemes',
is based on the remaining arguments of Chapter 2 and Chapter 3, that lead to
the construction of the 2D-Adaptive Filtered schemes, with main focus on the
de�nition of the multidimensional smoothness indicators;

• [FPTc], `A High-Order Scheme for Image Segmentation via a modi�ed Level-Set
method', is devoted to the application of our approach to the problem of segmen-
tation, presented in Chapter 4.

Organization

The thesis is organized as follows.
In Chapter 1 we prepare the setting for the analysis of the following chapters. In

Section 1.1 we brie�y review the theoretical results involving existence and uniqueness
for (HJ) in the continuous case, starting by the precise de�nition of viscosity solution and
the presentation of the classical method of characteristics. In Section 1.2 we recall the

viii



fundamental properties of monotone schemes, following the pioneering work of [CL84].
Then, in Section 1.3 we give a very minimal presentation of the level set method for
front propagation, using the notations in [FF14], and �nally, in Section 1.4 we discuss on
the applicability of space dimensional splitting methods on �rst-order Hamilton-Jacobi
equations.
In Chapter 2 we face the analysis of the smoothness indicators of [JS96] and [JP00]

and the construction of the smoothness indicator function φ necessary for the de�nition
of the scheme in the following chapter. In Section 2.1 we prove the main theoretical
result on the regularity indicators and present various possible constructions for the
function φ, mainly di�erent w.r.t. the degree of the interpolating polynomials used in
the de�nition. Then, in Section 2.2 we present the extension of the formulas in the 2D
case, giving an explicit formula for the case r = 2. Finally, Section 2.3 is dedicated to a
series of numerical tests on 1D- and 2D- functions with varying regularity, in which we
show the implications of Proposition 2.1 and the accuracy of the genuinely 2D extension
w.r.t. a more simple construction, based on the dimensional splitting of one-dimensional
indicators.
In Chapter 3 we de�ne our new Adaptive Filtered Scheme in one and two space di-

mensions, proving a convergence result with error estimates. In Section 3.1 we begin
by giving the �rst de�nitions and recalling the setting of the problem. Then, in Section
3.2 we proceed with the construction of the scheme, de�ning in detail all of its com-
ponents. Once all of the basic components have been de�ned, in Section 3.3 we prove
the stability and convergence property of our scheme, stated by Proposition 3.9 and
Theorem 3.11. Subsequently, in Section 3.4 we extend all the constructions in order to
apply the adaptive tuning of εn also in the 2D-setting. As a result, we de�ne a scheme
which can be applied, for instance, in Chapter 4 for the segmentation problem. Finally,
in Section 3.5 we conclude our main chapter by presenting some numerical tests for one
and two dimensional problems, comparing the results obtained by the Adaptive Filtered
Scheme with those of the simple Filtered Scheme of [BFS16] and of the WENO scheme
of second/third order.
In Chapter 4 we conclude the thesis by presenting an interesting application, coming

from image processing concerns. In Section 4.1 we begin by recalling the general setting
for segmentation problems, giving also some references on other possible approaches.
Then, in Section 4.2 we �rst recall the theory of the level set method for image segmen-
tation, as presented in [MSV93], whence we propose our modi�cation in the de�nition
of the velocity c and �nally, we justify its de�nition by the method of characteristics.
Section 4.3 is focused on the discussion on the numerical issues arising with the modi�ed
model, for which we propose a simpli�cation in order to avoid most of the mentioned
complications, and on the presentation of our numerical implementation, in the form
of a sketched pseudo-code. Lastly, in Section 4.4 we present a collection of numerical
test, on both synthetic and real images, with main focus on biomedical applications, in
which the e�ectiveness of the modi�ed model and the improvements of the AFS over
the monotone scheme are clearly recognizable.
In Appendix A we collect some technical results needed in Chapter 2 for the proof of

Proposition 2.1.
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1. Background results

In this chapter we collect some background results useful for a complete understanding
of the ideas developed in the following chapters. We will begin by reviewing the clas-
sical theory of viscosity solutions for Hamilton-Jacobi equations, focusing our attention
mainly on the equation

vt +H(x,∇v) = 0, (t, x) ∈ R+ × RN , (1.1)

where ∇ (if not speci�ed) denotes the gradient w.r.t. the x variable only, which will
be of primary interest in the rest of the thesis. Then, in Section 1.2 we collect some
fundamental and well-known results on monotone schemes and �nally, in the last two
sections, we present two closely related problems: the level set method in Section 1.3,
and the dimensional splitting in Section 1.4.

1.1. Overview on �rst-order Hamilton-Jacobi equations

In this section we brie�y review some classical theoretical results, avoiding to present
the details of the proofs in most cases. For a complete presentation we refer the reader,
for example, to the books [BCD97], [B98], [FF14] and [E10]
Let us consider a �rst-order evolutive Hamilton-Jacobi equation, which in the most

general case reads {
vt +H(t, x, v,∇v) = 0 (t, x) ∈ R+ × RN
v(0, x) = v0(x) x ∈ RN , (1.2)

where H : R+×RN×R×RN → R is, at least, a Lipschitz continuous function, generally
nonlinear, called hamiltonian and v0 ∈ BUC(RN ) is the initial condition (usually also
Lipschitz continuous in the sequel). We remind that BUC(Ω) denotes the space of
bounded and uniformly continuous functions on the domain Ω.
It is well-known that in general this problem does not admit classical solutions (v ∈

C1), independently on the regularity of the initial condition, since its solutions may
develop discontinuities in the gradient in �nite time. Consequently, we have to look for
a suitable de�nition of solution in some �weak sense�. Here we only review the de�nition
for Lipschitz continuous functions (v ∈ W 1,∞(R+ × RN )), referring the reader to [B98]
for the extension to the discontinuous case.

1.1.1. Method of characteristics

Before introducing the right de�nition of solution for (1.2), let us recall that, under
suitable assumptions, classical solutions may be constructed locally by the so-called

1



1. Background results

method of characteristics. In order to stay close to the majority of the literature on the
topic, we show the procedure considering a general �rst order equation

F (y, v,∇yv) = 0 in Ω ⊆ Rd, (1.3)

then we give an example of classical solution for the simpli�ed problem{
vt +H(∇v) = 0 in Ω = R+ × RN
v(0, x) = v0(x) ∀x ∈ RN . (1.4)

Fix a point y ∈ Ω, the idea is to �nd a curve y(s) inside Ω along which the solution
v(y(s)) can be easily computed (in the time-dependent case, usually s = t and y(t)
connects y to y(0), then the initial condition v0 can be used).
Let us consider a curve y(s) to be determined, and de�ne z(s) := v(y(s)), q(s) :=
∇yv(y(s)). Next, we derive equations for y, z, and q. Clearly, we have

ż(s) = ẏ(s) · q(s) and q̇(s) =
d

ds
(∇yv(y(s))) = D2

yv(y(s)) · ẏ(s),

where the hessian matrix D2
yv is not known and should be �removed�. In order to cancel

it, we di�erentiate equation (1.3) w.r.t. y, obtaining

∇yF + Fz∇yv +D2
yv · ∇qF = 0 ⇐⇒ D2

yv · ∇qF = −∇yF − Fz∇yv,

whence, it is enough to require ẏ(s) = ∇qF . Therefore, the characteristics of the
equation are obtained solving the system of ordinary di�erential equation

ẏ = ∇qF,
ż = ∇qF · q,
q̇ = −Fzq −∇yF.

(1.5)

In the case of the evolution equation (1.2), we can rewrite this system in a slightly more
convenient form. Using the notations y = (t, x) and q = (p0, p) = (vt,∇v), we have

F (y, z, q) = p0 +H(y, z, p),

and the system (1.5) reads

ẏ = ∇qF =

(
1
∇pH

)
⇐⇒ ṫ = 1, ẋ = ∇pH,

ż = ∇qF · q = p0 +∇pH · p = ∇pH · p−H,
q̇ = −Fzq −∇yF ⇐⇒ ṗ0 = HzH −Ht, ṗ = −Hzp−∇xH,

then, since we can choose s = t as parametrization and the equation for z does not
depend explicitly on p0, we can consider the reduced characteristic system

ẋ = ∇pH, x(0) = x,
ż = ∇pH · p−H, z(0) = v0(x)
ṗ = −Hzp−∇xH, p(0) = ∇v0(x),

(1.6)

2



1.1. Overview on �rst-order Hamilton-Jacobi equations

where now we added the initial conditions to close the problem.
Let us conclude this little digression by going back to our example problem (1.4), for

which the system (1.6) simply reads
ẋ(t) = ∇pH x(0) = x
ż(t) = ∇pH · p−H, z(0) = v0(x)
ṗ(t) = 0, p(0) = ∇v0(x),

(1.7)

which solution for the �rst and third equation is

x(t;x) = x+ t∇pH(∇v0(x)), p(t) ≡ ∇v0(x),

as can be easily veri�ed. Therefore, the solution given by the method of characteristics
reads

v(t, x) = v0

(
x−1(t;x)

)
+ t (∇pH · ∇v0 −H(∇v0))

(
x−1(t;x)

)
, (1.8)

which domain in time depends on the invertibility of the map x 7→ x(t;x). In general, this
map can be inverted only for relatively small times t > 0 and, consequently, the solution
v given by (1.8) it is not globally de�ned. In any case, under suitably strong assumptions
on the functions H and g, the solution previously constructed can be globally de�ned,
as stated by the following theorem, proved in [L82].

Theorem 1.1. Assume H and v0 in C2(RN ) and convex. Then, the function v de�ned
by (1.8) is a classical solution of the problem (1.4).

1.1.2. Viscosity solutions

Since the equation is not in divergence form, we can not use integration by parts to
de�ne weak solutions, as it can be done instead, for example, in the case of conservation
laws

ut +
N∑
i=1

∂

∂xi
fi(u) = 0 (t, x) ∈ R+ × RN ,

which in one space dimension are closely related to (1.2) (see e.g. [FF14], Section 2.4.).
Therefore, we are forced to use a di�erent technique which leads to the de�nition of
viscosity solution, presented in the this section for the general case of (1.2).
First, we have to clarify what we mean for �weak solution� in this setting. Let us

consider an open set Ω ⊆ R+ × RN and reintroduce the shorter notation y = (t, x).

De�nition 1.2. A function v : Ω→ R is called

i) classical solution for (1.2) in Ω if v ∈ C1(Ω) and satis�es

vt +H(y, v,∇v) = 0, ∀ y ∈ Ω;

ii) generalized solution for (1.2) in Ω if v is Lipschitz continuous in Ω and satis�es

vt +H(y, v,∇v) = 0, a.e. in Ω.
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1. Background results

Unfortunately, this last �generalized� de�nition it is not enough to select a unique
solution for the Cauchy problem, as can be noted by considering the classical example{

vt + |vx|= 0, (t, x) ∈ R+ × R,
v0(x) = |x| x ∈ R.

In fact, it is straightforward to verify that the functions v1(t, x) = |x|−t and v2(t, x) =
(|x|−t)+ are both generalized solutions.
In order to select a unique solution we have to rely on the vanishing viscosity method

which, in particular, lets us characterize the solution according to the following

De�nition 1.3. A function v ∈ BUC(Ω) is a viscosity solution of (1.2) if and only if,
for any ψ ∈ C1(Ω), the following conditions hold:

i) for any y0 ∈ Ω local maximum point for (v − ψ)(y),

ψt(y0) +H (y0, v(y0),∇ψ(y0)) ≤ 0,

(i.e. v is a viscosity subsolution);

ii) for any y0 ∈ Ω local minimum point for (v − ψ)(y),

ψt(y0) +H (y0, v(y0),∇ψ(y0)) ≥ 0,

(i.e. v is a viscosity supersolution).

This notion of solution was �rst introduced by Crandall and Lions in [CL83]. It is
straightforward to show that De�nition 1.3 is coherent with the classical sense, that is,
if v ∈ C1(Ω), then v is a viscosity solution if and only if it is a classical solution.

Remark 1.1. In De�nition 1.3 we can assume, without loss of generality, that y0 is a
strict maximum (respectively, minimum) point for (v − ψ)(y); in fact, it is enough to
replace ψ with ψ(y) + |y − y0|2. Moreover, the test functions can be assumed arbitrary
regular (but at least C1) and the maximum (resp. minimum) points can be chosen
global.

A fundamental property of viscosity solutions is the stability w.r.t. local uniform
convergence, di�erently from generalized solutions, for which it is possible to exhibit
examples of sequences that converge to functions which are not solutions of the problem
(in any sense!).
Here, in order to highlight a simple and direct implication of this property, we present

the result in the more general contest of degenerate elliptic equation, which have the
form

G
(
y, v,∇yv,D2

yv
)

= 0 in Ω,

where G : Ω × R × RN+1 × SN+1 → R is a continuous function that satis�es the
(degenerate) ellipticity condition

(y, z, q,M1) ≤ G(y, z, q,M2) if M1 ≥M2,
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1.1. Overview on �rst-order Hamilton-Jacobi equations

for all y ∈ Ω, z ∈ R, q ∈ RN+1 and M1, M2 ∈ SN+1, where SN+1 is the space of
(N + 1)× (N + 1) symmetric matrices, with the usual ordering

M1 ≥M2 ⇐⇒ (M1ξ, ξ) ≥ (M2ξ, ξ) ∀ξ ∈ RN+1.

The de�nition of viscosity solution in this contest is analogous to (1.3). Then, we can
state the stability result.

Theorem 1.4. Assume that, for ε > 0, vε ∈ C(Ω) is a viscosity subsolution (resp.
supersolution) of the equation

Gε
(
y, vε,∇yvε, D2

yvε
)

= 0 in Ω,

where {Gε}ε>0 is a family of continuous functions satisfying the ellipticity condition. If
vε → v uniformly on compact sets and Gε → G uniformly on compact sets, then v is a
subsolution (resp. supersolution) of the equation

G
(
y, v,∇yv,D2

yv
)

= 0 in Ω.

Proof. (Sketch) We give the proof only in the case of subsolutions, with the other being
analogous. Under the hypothesis on vε and v, it can be shown that, if y0 ∈ Ω is a strict
local maximum point for v − ψ, then there exists a sequence of local maximum points
for vε − ψ, denoted with {yε}ε, such that yε → y0. At those points, by de�nition, we
have

Gε
(
yε, vε(yε),∇yψ(yε), D

2
yψ(yε)

)
≤ 0,

then, exploiting the regularity of the test functions and the convergence hypothesis, we
can conclude

Gε
(
yε, vε(yε),∇yψ(yε), D

2
yψ(yε)

)
→ G

(
y0, v(y0),∇yψ(y0), D2

yψ(y0)
)

whence
G
(
y0, v(y0),∇yψ(y0), D2

yψ(y0)
)
≤ 0.

One of the most direct application of these result is the vanishing viscosity method
for �rst-order equations, represented by the sequence of equations

−ε∆vε + ut +H(y, vε,∇vε) = 0 in Ω,

for which the function Gε is given by

Gε(y, v, q,M) = −εTr(M[N,N ]) + p0 +H(y, v, p),

where q = (p0, p) ∈ RN+1 andM[N,N ] is the N ×N matrix obtained by deleting the �rst
row and �rst column from M (we are considering only spatial derivatives).
Next, we give an equivalent de�nition of viscosity solutions which was the �rst in-

troduced in [CL83] and will let us prove easily the connection between generalized and
viscosity solutions. Before that, we have to introduce some standard tools of convex
analysis.
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1. Background results

De�nition 1.5. Consider a continuous function v : Ω→ R and y ∈ Ω.
The subdi�erential of v at y is de�ned as the set

∇−v(y) =

{
q ∈ RN+1 : lim inf

z→y

v(z)− v(y)− q · (z − y)

|z − y|
≥ 0

}
.

An element q ∈ ∇−v(y) is called subgradient.
Analogously, the superdi�erential of v at y is de�ned as the set

∇+v(y) =

{
q ∈ RN+1 : lim sup

z→y

v(z)− v(y)− q · (z − y)

|z − y|
≤ 0

}
.

An element q ∈ ∇+v(y) is called supergradient.

It is good to point out that, if v is di�erentiable at y, then ∇+v(y) = ∇−v(y) =
{∇v(y)}. Without giving the proof, which can be found in [BCD97] (Lemma 1.7, p.
29), we characterize the previous sets in terms of test functions.

Proposition 1.6. Let v : Ω→ R. Then,

i) q ∈ ∇+v(y) if and only if ∃ψ ∈ C1(Ω) such that ∇ψ(y) = q and v − ψ has a local
maximum point at y;

ii) q ∈ ∇−v(y) if and only if ∃ψ ∈ C1(Ω) such that ∇ψ(y) = q and v − ψ has a local
minimum point at y.

Now, it is rather natural the following

De�nition 1.7. A function v ∈ C(Ω) is a viscosity subsolution of (1.2) in Ω if

p0 +H(y, v(y), p) ≤ 0 ∀y ∈ Ω, ∀q = (p0, p) ∈ ∇+v(y).

In the same way, v ∈ C(Ω) is a viscosity supersolution of (1.2) in Ω if

p0 +H(y, v(y), p) ≥ 0 ∀y ∈ Ω, ∀q = (p0, p) ∈ ∇−v(y).

Finally, v is a viscosity solution if satis�es both of the above conditions.

Thanks to this new characterization we can easily express the connection between
viscosity and generalized solutions, in fact we have the following

Proposition 1.8. If v : Ω→ R is a continuous viscosity solution of (1.2), then

vt +H(y, v(y),∇v(y)) = 0

at every point where v is di�erentiable. Moreover, if v is also Lipschitz continuous, then

vt +H(y, v(y),∇v(y)) = 0 a.e. in Ω.
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1.1. Overview on �rst-order Hamilton-Jacobi equations

Proof. Let y be a point of di�erentiability for u. Then, ∇+v(y)∩∇−v(y) 6= ∅ since this
set contains ∇v(y). Moreover, this intersection reduces to a singleton, so that

∇+v(y) = ∇−v(y) = ∇v(y).

Hence, by De�nition 1.7 we have

0 ≤ vt +H(y, v(y),∇v(y)) ≤ 0,

which proves the �rst assertion. Then, the second statement follows from the previous
reasoning and applying Rademacher's theorem (which states that Lipschitz continuous
functions are a.e. di�erentiable, see e.g. [E10], pp. 280-281 for the proof).

1.1.3. Existence and uniqueness results

In this section we collect some classical results of uniqueness and existence of viscosity
solutions, focusing our attention on the evolutive equation

vt +H(x,∇v) = 0, in R+ × RN (1.9)

and giving some hints, if possible, on closely related generalizations. For a more detailed
presentation we refer the reader to [B98].
In the following results we will require that H(x, p) satis�es the usual set of assump-

tions:

lim
|p|→+∞

inf
x∈RN

H(x, p) = +∞; (H1)

H ∈ BUC(RN ×Br(0)) ∀r > 0; (H2)

∃ω(·) : [0,+∞)→ [0,+∞) modulus of continuity such that

|H(x, p)−H(y, p)|≤ ω(|x− y|(1 + |p|)) ∀x, y ∈ RN , ∀p ∈ RN . (H3)

The main issue in the theory of viscosity solutions is to prove uniqueness, which also
shows the advantage over the concept of generalized a.e. solutions. This is done via
the so-called comparison principle, also termed maximum principle, in the sense of the
following

De�nition 1.9. Let u, v ∈ C(R+×RN ) be, respectively, a sub- and a supersolution for
(1.9). Then, we say that a comparison principle holds for u and v if

u(0, x) ≤ v(0, x) ∀x ∈ RN ⇒ u(t, x) ≤ v(t, x) ∀(t, x) ∈ R+ × RN .

In the case such a relation holds, the proof of uniqueness is straightforward. At this
point, we can state a �rst fundamental result.

Theorem 1.10. Let H : RN × RN → R satisfy (H1), (H2) and (H3). Let u(t, x),
v(t, x) ∈ UC(R+ × RN ) be, respectively, a sub- and a supersolution of (1.9), then a
comparison principle holds for u and v. Moreover, the same results holds if (H3) is
replaced by the Lipschitz continuity in x, uniformly w.r.t. t, of u or v.
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Proof. (Sketch) In order to give a sketch of the proof we consider the slightly easier case
of u and v also bounded and, to lighten the notation, we name Ω = R+×RN . We argue
by contradiction assuming that u ≤ v does not hold for all (t, x) ∈ Ω, whence ∃λ > 0
such that

sup
Ω
{u(t, x)− v(t, x)− 2λt} =: σ > 0.

To exploit the de�nition of viscosity solution we resort to a �doubling of variables�
argument, de�ning

Φε,α(t, x, s, y) = u(t, x)−v(s, y)−λ(t+s)− (|x− y|2+|t− s|2)

ε2
−α(|x|2+|y|2+|t|2+|s|2).

The presence of the penalisation terms and the boundedness of the functions u and v
ensures the existence of a point (tε,α, xε,α, sε,α, yε,α) ∈ Ω× Ω such that

Mε,α := Φε,α(tε,α, xε,α, sε,α, yε,α) = max
Ω×Ω

Φε,α.

Consider the function

φ(t, x) = u(t, x)− Φε,α(t, x, sε,α, yε,α),

which clearly is a test function such that u − φ achieves its maximum at the point
(tε,α, xε,α). Then, by de�nition we have that

λ+
2(tε,α − sε,α)

ε2
+ 2αtε,α +H

(
xε,α,

2(xε,α − yε,α)

ε2
+ 2αxε,α

)
≤ 0.

Analogously, de�ning the test function

ψ(s, y) = Φε,α(tε,α, xε,α, s, y) + v(s, y)

such that v − ψ achieves its minimum point at (sε,α, yε,α), we get

−λ+
2(tε,α − sε,α)

ε2
− 2αsε,α +H

(
yε,α,

2(xε,α − yε,α)

ε2
− 2αyε,α

)
≥ 0.

Manipulating the previous relations and exploiting the hypothesis on H, eventually, we
can arrive to the inequality

2λ ≤ η(2α|yε,α|) + η(2α|xε,α|) + ω

(
|yε,α − xε,α|

(
1 +

∣∣∣∣2(xε,α − yε,α)

ε2
+ 2αxε,α

∣∣∣∣)) ,
with η modulus of continuity ofH on RN×BK , whereK depends onR = max{||u||∞, ||v||∞}
ed ε.
At this point, it is enough to prove that the term on the right side of the previous

inequality tends to 0 as (ε, α)→ (0, 0) to get the contradiction λ ≤ 0. This can be done
proving that (all the limits are for (ε, α)→ (0, 0)):
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1.1. Overview on �rst-order Hamilton-Jacobi equations

• Mε,α → σ;

• |xε,α − yε,α|+|tε,α − sε,α|→ 0;

• (|xε,α−yε,α|2+|tε,α−sε,α|2)
ε2

+ α(|xε,α|2+|yε,α|2+|tε,α|2+|sε,α|2)→ 0.

For the details of the computations we refer to [B98].

If we consider a bounded domain of the form Q = (0, T )× Ω, with Ω bounded set of
RN , then it is possible to state an analogous result for the equation

vt +H(t, x,∇v) = 0. (1.10)

In the latter situation the comparison principle will refer to the parabolic boundary
∂pQ = ∂Ω × [0, T ] ∪ Ω × {0} and will require only hypothesis (H3). In particular, it is
worth noticing that no speci�c assumptions are made on the behavior of H w.r.t. p,
then we have a uniqueness result for the equation

vt +H(∇v) = f(t, x) in Q, (1.11)

with f continuous function on Q, assuming simply the continuity of H.
In the more general case in which the hamiltonian depends also on v a further hypoth-

esis is needed in order to avoid the formation of discontinuities. Usually it is assumed
that, for all 0 < R < +∞, ∃γR ∈ R such that, ∀(t, x) ∈ R+×RN , −R ≤ v ≤ u ≤ R and
p ∈ RN ,

H(x, u, p)−H(x, v, p) ≥ γR(u− v). (H4)

Let us consider now equation (1.10) in [0, T ]× RN and assume

|H(t, x, p)−H(t, x, q)|≤ C|p− q|, ∀x ∈ RN , t ∈ [0, T ] e p, q ∈ RN , (H5)

then, the following �nite propagation speed type result, which we present without proof
(see [B98], pg. 72), holds.

Theorem 1.11. Assume (H2)-(H5) and let u, v ∈ C([0, T ] × RN ) be, respectively, a
viscosity sub- and supersolution. If u(0, x) ≤ v(0, x) in Br(0) for some r > 0, then
u(t, x) ≤ v(t, x) for all x in Br−Ct(0), Ct ≤ r.

Next, we focus on showing the existence of a solution in the viscosity sense. This
is usually done by the Perron method, which basically constructs a solution taking the
supremum of all the subsolutions of the problem. We give an example of application for
the Cauchy problem {

vt +H(x,∇v) = 0 in R+ × RN
v(0, x) = v0(x) ∀x ∈ RN . (1.12)

De�ne the set

S = {u ∈ C(R+ × RN ) : u(0, x) = v0(x) ∀x ∈ RN , u(t, x) viscosity subsolution};
(1.13)
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then, the Perron solution is obtained choosing

v(t, x) = sup
u∈S

u(t, x).

With this simple construction, we can prove the following existence result.

Theorem 1.12. Let H satisfy (H1), (H2), (H3) and let v0 ∈ UC(RN ). Then, there
exists a unique solution v(t, x) ∈ UC(R+ × RN ) of the problem (1.12). If moreover
v0 ∈W 1,∞(RN ), then v(t, x) ∈W 1,∞(R+ × RN ). In particular, if C > 0 is such that

||∇v0||∞< C and inf{H : |p|> C} > sup{|H|: |p|≤ ||∇v0||∞}

then ||∇xv||∞≤ C.

Proof. (Sketch) Let us give an idea of the proof of the existence in the case v0 ∈W 1,∞.
First, we notice that the set S de�ned by (1.13) is not empty, in fact (H1) and (H2)
imply that ∃C0 > 0, C1 ∈ R, such that

H(x, p) ≥ −C0 ∀ (x, p) ∈ RN × RN
H(x, p) ≤ C1 ∀ x ∈ RN , ∀ p ∈ BR, R = ||∇v0||∞,

then, de�ning M := max{C0, C1}, it follows that v(t, x) = v0(x)−Mt is a subsolution
in C(R+ × RN ) such that v(0, x) = v0(x), whence v ∈ S. Now, let

v(t, x) = sup
u∈S

u(t, x).

The next step is to prove that v is a subsolution. This is done by considering the
de�nition v(t, x) = supα∈A vα and then proceed by induction on the cardinality of the
set A. First thing is to prove that the supremum of a �nite set of subsolutions is a
subsolution, then consider a numerable set of subsolutions and, �nally, an aribrary set
A.
The prove that v is a supersolution we proceed by contradiction. Then, if we assume
that v is not a supersolution, we can �nd (t0, x0) ∈ R+ × RN , δ > 0, β > 0 and r > 0
such that

ψt(t, x) +H(x,∇xψ(t, x)) ≤ −β, ∀(t, x) ∈ Br((t0, x0)) t.c. |∇xψ(t, x)|≤ δ,

with ψ such that v − ψ has a maximum at (t0, x0). At this point, we consider the
function

vε(t, x) = max{v, ψ + ε− |t− t0|2−|x− x0|2},
with ε > 0 such that

√
ε < r and for which

(0, x) 6∈ {(t, x) : v(t, x) < ψ(t, x) + ε− |t− t0|2−|x− x0|2}, ∀x ∈ RN .

Finally, exploiting the de�nition of ε and the fact that function which are separately
subsolutions on open sets that cover RN are subsolutions of RN , we can prove that vε
is a subsolution and vε(0, x) = v0(x), that is vε ∈ S. Moreover,

vε(t0, x0) = ψ(t0, x0) + ε = v(t0, x0) + ε > v(t0, x0),

which contradicts the maximality of v.
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For completeness of presentation, we recall also the property of the viscosity solution
in the simpler case (1.4), but in all generality (we need only the continuity of H). More
precisely, de�ning S(t) : BUC(RN ) → BUC(RN ), as the solution map S(t)(v0(x)) :=
v(t, x), of problem (1.4), then the following result hols.

Proposition 1.13. Let H ∈ C(RN ), u0, v0 ∈ BUC(RN ) and t ≥ 0. Then,

i) ||(S(t)u0 − S(t)v0)+||∞≤ ||(u0 − v0)+||∞;

ii) ||S(t)u0 − S(t)v0||∞≤ ||u0 − v0||∞;

iii) infRN v0 ≤ tH(0) + S(t)v0 ≤ supRN v0;

iv) |S(t)v0(x+ y)− S(t)v0(x)|≤ supz∈RN |v0(z + y)− v0(z)|, per y ∈ RN ;

v) If v0 is Lipschitz continuous with constant Lv0, then S(t)v0 is Lipschitz continuous
with the same constant, moreover, it holds

||S(t)v0 − S(τ)v0||∞≤ |t− τ |sup
RN
{|H(p)|: |p|≤ Lv0}.

For the proof of this last result we refer the reader to the paper [CL83] (in particular
see pp. 38-39), in which they also prove the existence of the solution through the
vanishing viscosity method (see also [CL84], p. 16).

1.2. Convergence result for monotone schemes

After having clari�ed the theoretical setting, we make a �rst step into the main topic
of this thesis, that is the numerical approximation of the solution of the problem{

vt +H(∇v) = 0, in Ω := R+ × RN
v(0, x) = v0(x),

(1.14)

where H : RN → R is, at least, a continuous function and v0 su�ciently regular. Notice
that we are considering the problem in the most simple case, in which the hamiltonian
depends only on the gradient. That is in fact a rather usual approach, since the main
numerical di�culties come from the nonlinear dependence of H on ∇v. Moreover, more
general cases usually follow with minor modi�cations. Here we basically follow the lines
of [CL84], aiming to state a convergence result for �rst-order monotone schemes.
In the following, mainly to lighten the notation, we will present the result for the

case N = 2. Let us begin by considering a uniform grid in space (xj , yi) = (j∆x, i∆y),
j, i ∈ Z, and in time tn = n∆t, n ∈ [0, NT ], with (NT − 1)∆t < T ≤ NT∆t. Then,
we de�ne the notation vni,j for the values of the exact solution at the point (tn, xj , yi)
and uni,j for the relative values of the approximate solution. A generic two-level explicit
scheme will be written as

un+1 = S∆(un), (1.15)

for some operator S∆, where ∆ := (∆t,∆x,∆y) represents the dependence on the
discretization parameters. In what follows we use the shorter notation S, since it should
not cause any confusion.
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1. Background results

Remark 1.2. Notice that we are considering the unrealistic case of an in�nite grid in
space (i, j) ∈ Z2. That is because we want to avoid any discussion on the boundary
conditions, which should be treated separately. Alternatively, if we consider a bounded
domain, then we assume to possess also the external values of such set, if necessary.

De�nition 1.14. A scheme (1.15), dependent on d = (p + q) × (r + s) points, can
be written in di�erenced form if there exists a function h : Rd → R, called numerical
hamiltonian, such that

S∆(ui−p,j−r, . . . , ui+q+1,j+s+1) = ui,j −∆th (D+
x ui−p,j−r, . . . , D

+
x ui+q,j+s+1;

D+
y ui−p,j−r, . . . , D

+
y ui+q+1,j+s

)
, (1.16)

where D+
x u

n
i,j :=

uni,j±1−uni,j
∆x and D+

y u
n
i,j :=

uni±1,j−uni,j
∆y .

In the case of schemes in di�erenced form, the consistency condition can be stated in
a rather easy formulation, that is

De�nition 1.15. A scheme (1.15) in di�erenced form is consistent with the equation
(1.14) if, for any a, b ∈ R,

h(a, . . . , a; b . . . b) = H(a, b).

A particular class of schemes, that generally satisfy the previous de�nition, are the
so-called monotone schemes, which, following [CL84], we de�ne as

De�nition 1.16. A scheme SM of the form (1.15) is monotone on [−R,R] if SM is a
nondecreasing function of each argument, as long as |D+

x u
n|, |D+

x u
n|≤ R, where with

D+
z u

n we mean all the �nite di�erences in (1.16).

Remark 1.3. Notice that the a priori bound R on |vx| and |vy| is coherent with the
fact that the solutions of (1.14) are generally Lipschitz continuous functions.

Now we are in the position to present the main result of this section, for which we
give a sketch of the proof, referring to [CL84] for the complete version.

Theorem 1.17 (Crandall-Lions([CL84])). Let H : R2 → R be a continuous function and
v0 a bounded and Lipschitz continuous function on R2 with constant L. For λx, λy > 0
and �xed, let the scheme (1.15) be consistent with (1.14), have di�erenced form and be
monotone on [−(L+ 1), L+ 1]. Assume, moreover, that the numerical hamiltonian hM

is locally Lipschitz continuous. Then, if v is the viscosity solution of 1.14), there exists
a constant CCL dependent only on sup|v0|, L, hM and NT∆t such that

|uni,j − v(tn, xj , yi)|≤ CCL(
√

∆t), (1.17)

for 0 ≤ n ≤ NT and for all i, j, with λx := ∆t
∆x and λy := ∆t

∆y .
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1.2. Convergence result for monotone schemes

Proof. (Sketch) The idea of the proof is strongly related to the technique used in the
proof of Theorem 1.10.
First, in order to lighten the computations, let us assume the further conditions{

v(t, x, y)→ 0 for |x|+|y|→ ∞
uni,j → 0 for |i|+|j|→ ∞,

then, de�ne the continuous domains Q = [0,∞)×R2, QT = [0, T ]×R2 and their discrete
counterparts Qd = {(tn, xi, yj) : i, j ∈ Z, n ∈ N} and QdNT = {(tn, xi, yj) ∈ Qd : n ≤
NT }.
Fix T > 0 and NT ∈ N such that (NT − 1)k < T ≤ NT∆t, the aim is to get an estimate
for |v(tn, xi, yj)− uni,j |. Let us assume that

sup
i,j∈Z

0≤n≤NT

{v(tn, xi, yj)− uni,j} = σ > 0,

then, the point is to �nd an upper bound for σ (the proof of the lower bound is analo-
gous).
De�ne the function ψ : Q×Qd → R, according to the following

ψ(t, ξ, s, η) = v(t, ξ)− uni,j −
σ

4T
(t+ s) +

(
5M +

σ

2

)
β

(
ξ − η
ε

,
t− s
ε

)
,

whereM = sup|ξ|∈R2{|v0(ξ)|+T |H(0, 0)|}+1, ε > 0 and β a smooth function on R2×R,
such that 0 ≤ β ≤ 1, β(0, 0) = 1 and β(ξ, t) = 0 for |ξ|2+|t|2> 1. At this point, the
�rst step is to prove that there exists a maximum point (t0, ξ0, s0, η0) ∈ QT ×QdNT for
ψ, whence, considering separately all the possible cases for t0 ≥ 0 and s0 ≥ 0, it can be
shown that an estimate of the form

σ ≤ C(∆t+ ∆x+ ∆y)
1
2 ,

for some constant C > 0, holds in any situation.
Finally, to recover the general case it is enough to exploit the �nite speed of propa-

gation of both the exact and the approximated solution.

Next, in order to highlight the strict relation between monotone schemes in di�erenced
form and the exact solution map S(t)v0, we present also the properties of SM , referring
to [CL84] p.8, for the proof. Let us consider, only to simplify the notations, the one-
dimensional case and de�ne the set

C = {u ∈ l∞(Z) : |∆+uj |≤ R∆x, j ∈ Z}.

Then we can state the following result.

Proposition 1.18. Let R > 0 and SM a monotone scheme on [−R,R], in di�erenced
form with numerical hamiltonian hM bounded on bounded sets, such that SM : C →
l∞(Z). Then, if u, v ∈ C and K ∈ R,

13



1. Background results

i) SM (u+K) = SM (u) +K;

ii) ||SM (u)− SM (v)||∞≤ ||u− v||∞;

iii) ||∆+SM (u)||∞≤ ||∆+u||∞;

iv) SM (C) ⊂ C;

v) ||
(
SM
)n+j

(u)−
(
SM
)n

(u)||∞≤ j∆t sup|ξj |≤R|G(ξ)|;

vi) ||
(
SM
)n

(u)||∞≤ ||u||∞+n∆t|H(0)|,

where we used the notation ∆+uj = uj+1 − uj.

We would like to mention that, as a mere convergence results, Crandall-Lions theorem
([CL84]) was generalized by Barles and Souganidis in [BS91]. Their theorem gives a
more abstract and general framework for convergence schemes, including the possibility
of treating second-order equations, although no convergence estimate is obtained. Since
it would involve various de�nitions for second-order equations, that go beyond the scope
of this �rst chapter, we avoid to present the precise statement of the theorem. Roughly
speaking, it states that any monotone, stable and consistent scheme converges to the
exact solution, provided there exists a comparison principle for the limiting equation.
We also mention the version of the convergence theorem for �rst order equations due to
Souganidis ([So85b]), in which an estimate of order

√
∆t is obtained without requiring

the di�erenced form of the scheme, although several other (reasonable) conditions must
be met.
As we brie�y recalled in this section, monotone schemes are indeed e�ective schemes

for the approximation of the solution of (1.14), being stable and convergent. Unfor-
tunately, by a simple Taylor expansion, it can be shown that monotone schemes are
limited to �rst order accuracy even for regular solutions. Thus, if we need higher-order
accuracy, we have to look for non-monotone schemes. This would be preferable, for
example, for multidimensional problems, where the use of coarser grids is of primary
importance.
In Chapter 3 we propose a procedure to couple the convergence property of the mono-

tone schemes and the high-order consistency of some other (possibly unstable) scheme,
in order to overcome this limitation and still obtain a convergent scheme. This is done
basically relaxing the monotonicity property to a less restrictive ε-monotonocity, which
will be de�ned later in this thesis.

1.3. Fronts evolution via the level set method

In this section we review the basic formulation of the Level Set Method, �rst in-
troduced in [Se85], showing its reasoning and natural application to front propagation
problems. For a complete presentation we refer the reader to the book [Se96], here we
mainly follow the lines of [FF14].
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1.3. Fronts evolution via the level set method

The main advantage o�ered by this method, although it requires the embedding in a
higher dimensional space, is the possibility to follow fronts with complex evolution and
topology to high generality, thanks to the de�nition of viscosity solution of Hamilton-
Jacobi equations. As we will soon see, the problem of following a front in two space
dimensions evolving in its normal direction can be written in terms of a �xed level set of
the viscosity solution of a �rst (or second) order Hamilton-Jacobi equation of the form{

vt +H(x, y,∇v) = 0, (t, x, y) ∈ (0, T )× R2

v(0, x, y) = v0(x, y) (x, y) ∈ R2,
(1.18)

where v0 must be a proper representation of the front Γ0. More precisely, if we identify
the �rst con�guration of the front as the 0-level set of the viscosity solution, then we
require

De�nition 1.19. Assume that Γ0 is a closed curve in R2, and denote by Ω0 the region
enclosed by Γ0. A continuous function v0 : R2 → R is a proper representation of Γ0 if
and only if it satis�es the following conditions:

v0(x, y) < 0, (x, y) ∈ Ω0,
v0(x, y) = 0, (x, y) ∈ Γ0,

v0(x, y) > 0, (x, y) ∈ R2 \ Ω0.
(1.19)

Now, if we assume that the front Γ0 evolves in the normal direction with velocity
c(x, y) and orientation dependent on the type of evolution (outward for an expansion
and inward for a shrinking), we can easily derive the equation for the front Γt at a
generic time t > 0. Let us denote a point P ∈ Γt as P = (x(t, s), y(t, s)), where s is
a parametric representation of the front, then, since at every point the velocity V has
magnitude c(P ) and direction η(P ), in the case of an expansion we can write

V (P ) = (ẋ(t, s), ẏ(t, s)) = c(P )η(P ). (1.20)

Now, if we want to identify the front Γt with the 0-level set of the solution v of a Cauchy
problem with v0 as initial condition, that is

Γt := {(x, y) : v(t, x, y) = 0},

we can derive the equation characterizing the evolution simply by computing the to-
tal time derivative of v (t, x(t, s), y(t, s)) and taking into account that this derivative
vanishes on a level set of constant value. Whence we compute,

0 =
d

dt
v(t, x(t, s), y(t, s))

= vt(t, x(s, t), y(s, t)) +∇v (t, x(t, s), y(t, s)) · (ẋ(t, s), ẏ(t, s))

= vt(t, P ) + c(P )∇v(t, P ) · η(P )

= vt(t, P ) + c(P )|∇v(t, P )|, (1.21)

15



1. Background results

where we have written the normal direction η(P ) to the front Γt in terms of the function
v as η(P ) = ∇v(t, P )/|∇v(t, P )|. Since in this case the velocity c depends only on (x, y),
we obtain a �rst order evolutive Hamilton-Jacobi equation of eikonal type{

vt + c(x, y)|∇v|= 0, (t, x, y) ∈ (0, T )× R2

v(0, x, y) = v0(x, y) (x, y) ∈ R2,
(1.22)

which solution remains a function at any time t > 0 as long as the velocity c is smooth
enough. On the other hand, the front Γt can have complex shapes (due to breaking
or merging) and also develop sharp corners, that is thanks to the de�nition of viscosity
solution which allows the selection of the correct solution even when singularities appear.
In the previous derivation we assumed for simplicity that the velocity c depended only

on the position, but the same approach can be applied to more general velocities, such
as

• c(t, x, y), isotropic growth with time varying velocity

• c(t, x, y, η), anisotropic growth, dependent on normal direction

• c(t, x, y, k), Mean Curvature Motion, with k(t, x, y) mean curvature to the front
at time t,

• c(t, x, y, v), velocity dependent on the level set.

It is important to point out that, when using some of the previous velocities (e.g. the
de�nition for the Mean Curvature Motion), the model problem becomes{

vt + c(t, x, y,∇v,D2v)|∇v|= 0, (t, x, y) ∈ (0, T )× R2

v(0, x, y) = v0(x, y) (x, y) ∈ R2,
(1.23)

where c(t, x, y,∇v,D2v) = −div
(
∇v(t,x,y)
|∇v(t,x,y)|

)
, which is a Hamilton-Jacobi equation of

second-order.
It is noteworthy that the choice of the level set is arbitrary, and in fact all the level sets

of v are moving according to the same law. This fact will represent a major problem in
the application to shape recovery due to the discontinuity of the velocity �eld c, whence
a modi�cation to the classical model will be needed (see Chapter 4).

1.4. Dimensional splitting methods

We close this �rst preliminary chapter by describing a procedure useful to de�ne nu-
merical schemes for multidimensional problems using simple one-dimensional schemes.
Unfortunately, such techniques can not be used in all generality, in fact a strong as-
sumption on the nature of the evolution must be required, that is the separability of the
hamiltonian H. Nevertheless, it is worth pointing out that, by the following procedures,
the number of points necessary to compute the schemes (termed as the stencil of the
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1.4. Dimensional splitting methods

scheme) increases linearly w.r.t. the number of spatial dimensions, whereas the cardi-
nality of the stencil of full multidimensional schemes usually increases as the power of
N , where N is the number of variables.
As before, we focus on the case N = 2 and consider problems of the type{

vt +H(vx, vy) = 0
v(0, x, y) = v0(x, y),

(1.24)

where the hamiltonian is such that H(vx, vy) = H1(vx) + H2(vy), for a couple of one-
dimensional hamiltonians H1, H2. The �rst step is to consider the 1D-problems associ-
ated with the dimensional splitting, that are

vt +H1(vx) = 0 and vt +H2(vy) = 0, (1.25)

and then to denote with St, S
x
t and Syt , the solution maps of, respectively, the 2D and

1D problems at time t.
The issue of the convergence of dimensional splitting methods has been approached

in the contest of Lie-Trotter products by Souganidis in [So85b], for general equations,
with H dependent on (t, x, u,Du). The results of the paper apply directly to equations
of the form (1.24) with H, H1 and H2 continuous functions and, in particular, prove the
convergence of the Lie-Trotter splitting, that is

SLT∆t v
n = Sy∆tS

x
∆tv

n, (1.26)

at each time tn. More precisely, we have the following

Theorem 1.20. Let H, H1 and H2 continuous functions, with H = H1 + H2 and
v0 ∈ BUC(R2). Then, ∣∣∣∣ST v0 − [Sy∆tS

x
∆t]

nv0

∣∣∣∣
∞ → 0

for ∆t→ 0 and n→∞, with n∆t = T .

Proof. For the proof we refer to the formulation of the theorem as in [So85b], p. 218.
Conditions (F1)-(F6) follow directly from the properties of the viscosity solution map
(Proposition 1.13), applied successively �rst on Sy∆t and then on Sx∆t, and the composi-
tion of continuous functions. As an example, for (F3) we have that, for v ∈W 1,∞,∣∣∣∣Sy∆tSx∆t(v)

∣∣∣∣ =
∣∣∣∣∣∣Sx∆tv −H2

(
(Sx∆t(v))y

)
+O(∆t2)

∣∣∣∣∣∣ ≤ ||Sx∆tv||+ C1∆t ≤ ||v||+C∆t.

The same computations also prove condition (F7), in fact, let φ ∈ C2(R2) be bounded
and with bounded derivatives, then

Sy∆tS
x
∆tφ = φ−∆tH1(φx)−∆tH2(φy) +O(∆t2),

whence ∣∣∣∣∣∣∣∣Sy∆tSx∆tφ− φ∆t
+H(φx, φy)

∣∣∣∣∣∣∣∣ = O(∆t)→ 0, (1.27)

for ∆t→ 0. Finally, the statement of the theorem holds true applying the cited theorem
in [So85b].
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1. Background results

In order to prove the applicability of other splitting methods, e.g. the well-known
Strang-Marchuk splitting, which at each iteration reads

SSM∆t v
n = Sy∆t

2

Sx∆tS
y
∆t
2

vn, (1.28)

it is necessary to require the convexity of H1 and H2 and then apply the following
result, proved in [LR86], which holds for generic splittings methods of the form H(x) =
H1(x)+H2(x), with x ∈ RN . We state the result using the notations in [LR86], avoiding
to specify the little di�erences implied, since they should be easily understood from the
contest.

Proposition 1.21 (Lions-Rochet([LR86])). Let v0 ∈ BUC(RN ), H1, H2 convex func-
tions, then, for all t, s > 0, it holds

SH1(t)SH2(s)v0 = SH2(s)SH1(t)v0 = StH1+sH2(1)v0. (1.29)

Finally, the convergence of the splitting methods can be obtained applying succes-
sively the previous formula. Notice that Proposition 1.21 implies a rather interesting
consequence. In fact, under such hypothesis, the splitting method is exact, in the sense
that it does not produce error in the time evolution. Consequently, we could take as
time step ∆t the full length of the interval [0, T ] and whence obtain a global splitting.
For example, using Lie-Trotter splitting, �rst we should solve{

ut +H1(ux) for (t, x) ∈ (0, T )× R
u(0, x, y) = v0(x, y) for x ∈ R,

and, as a second step, proceed with the solution of{
vt +H2(vy) for (t, y) ∈ (0, T )× R
v(0, x, y) = u(T, x, y) for y ∈ R,

thus obtaining v(T, x, y) = ST v0.

Remark 1.4. The same results have been proven by Barles and Tourin in [BT01] for
hamiltoniansH(x, p) = H1(x, p)+H2(x, p), withH1 andH2 convex functions in p ∈ RN ,
for all x ∈ RN , and such that they satisfy the Lie bracket condition

[H1(x, p), H2(x, p)] = ∇xH1(x, p)∇pH2(x, p)−∇xH2(x, p)∇pH1(x, p). (1.30)

Remark 1.5. It is worth to notice that if the hamiltonian H is separable simply as
H(x, y, ux, uy) = H1(x, ux) + H2(y, uy), then the Lie bracket condition is trivially sat-
is�ed. Consequently, using Taylor expansions it can be shown that, for these kind of
equations, the Lie-Trotter splitting is in fact a second order method (in time), in the
sense of the consistency error. Moreover, if H1 and H2 are convex functions in the sec-
ond argument, then by Proposition 1.21 the dimensional splitting is exact and does not
introduce errors in the time evolution.
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1.4. Dimensional splitting methods

Now that we have ensured the reliability of the splitting methods in the contest of
Hamilton-Jacobi equations, we can pass to the problem of the numerical application,
basically substituting the exact solution operators with numerical schemes for the ap-
proximation of the one-dimensional subproblems. In the following we make a little abuse
of notation using S∆t to denote (also) the approximate solution operators, in order to
simplify the presentation, since it should not cause any confusion. As before, we choose
the Lie-Trotter splitting as leading example. We have

un+1 = Sy∆tS
x
∆tu

n, for n = 0, . . . , NT = T/∆t, (1.31)

for the local splitting, which is usually used in numerical implementations, or

u(T, x, y) = SyTS
x
Tu0, (1.32)

for the global splitting, where with ST we mean a large-time step numerical method,
such as for example, semi-lagrangian schemes (see [FF14] for a complete presentation of
this class of schemes), or a �full approximation�, in the sense of the time evolution, of
the relative subproblem on the interval (0, T ).
It is worth noticing that using the presented methods, we can construct monotone

(convergent) schemes for (1.24), using simple one-dimensional monotone schemes. Let
us begin by expliciting the scheme (1.31),

u
n+ 1

2
i,j = Sx∆t (un)j = Sx∆t

(
uni,j−r, . . . , u

n
i,j+r

)
un+1
i,j = Sy∆t

(
un+ 1

2

)
i

= Sy∆t

(
u
n+ 1

2
i−l,j , . . . , u

n+ 1
2

i+l,j

)
,

(1.33)

then we can prove the following lemma.

Lemma 1.22. Let the one-dimensional schemes Sx∆t, S
y
∆t have di�erenced form with

numerical hamiltonians hMx and hMy , and be consistent with H1 and H2, respectively.
Then, the resulting scheme (1.33) can be written in di�erenced form and it is consistent
with H. Moreover, if the one-dimensional schemes are monotone on [−R,R], then the
full scheme (1.33) is also monotone on [−R,R].

Proof. By hypothesis, we know that

u
n+ 1

2
i,j = uni,j −∆thMx

(
D+
x u

n
i,j−r, . . . , D

+
x u

n
i,j+r−1

)
and analogously,

un+1
i,j = uni,j −∆thMy

(
D+
y u

n+ 1
2

i−l,j , . . . , D
+
y u

n+ 1
2

i+l−1,j

)
.

Whence, composing the previous relations we have

un+1
i,j = uni,j −∆thMx

(
D+
x u

n
i,j−r, . . . , D

+
x u

n
i,j+r−1

)
−

−∆th̃My
(
D+
x u

n
i−l,j−r, . . . , D

+
x u

n
i+l−1,j+r;D

+
y u

n
i−l,j−r, . . . , D

+
y u

n
i+l,j+r−1

)
, (1.34)
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with h̃My such that h̃My (un)i,j = hMy (un+ 1
2 )i. To show that such h̃My can be easily written,

we explicit one of the arguments of hMy depending on un,

D+
y u

n+ 1
2

i,j =
u
n+ 1

2
i+1,j − u

n+ 1
2

i,j

∆y
=

= D+
y u

n
i,j − λy

[
hMx

(
D+
x u

n
i+1,j−r, . . . , D

+
x u

n
i+1,j+r−1

)
−

−hMx
(
D+
x u

n
i,j−r, . . . , D

+
x u

n
i,j+r−1

)]
.

This shows that the scheme (1.33) has di�erenced form with numerical hamiltonian
hM = hMx + h̃My .
For the consistency, assume that D+

x u
n
i,j = a and D+

y u
n
s,m = b for i − l < s < i + l,

j − r < m < j + r, then, exploiting the consistency of hMx with H1, we have from (1.34)

D+
y u

n+ 1
2

i−l,j−r = · · · = D+
y u

n+ 1
2

i+l,j+r−1 = b.

Successively, using also the consistency of hMy con H2, we get

hM (a, . . . , a; b, . . . , b) = hMx (a, . . . , a) + hMy (b, . . . , b) = H1(a) +H2(b) = H(a, b),

that is hM is consistent with H.
The monotonicity of (1.33) follows from the fact that the composition of nondecreasing

functions is nondecreasing, and using, as proved in [CL84], ||∆+
x S

x
∆t(u

n)||∞≤ ||∆+
x u

n||∞.

The convergence of this class of schemes directly follows applying Theorem 1.17.
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2. Smoothness indicators analysis

In this chapter we present a rather deep analysis of some well-known regularity in-
dicators, based on the divided di�erences of a function f . In Section 2.1, we begin by
recalling the theory of the regularity indicators de�ned in [JP00] for the construction
of the Weighted Essentially Non Oscillatory (WENO) schemes. Brie�y speaking, these
indicators are de�ned as summations of weighted L2 norms of appropriate approxima-
tions of the derivatives of the function. We will prove their properties depending on the
scaling factor ∆xα, α ∈ Z, which depends on the order of the integrated derivative and
gives the weight to the corresponding L2 norm. Through this study we also wish to
give general indications on how to correctly choose the regularity indicator, dependently
on the order of the discontinuous derivative. This is mainly because, when looking for
references for the present chapter, we have noticed that in various articles regarding
Hamilton-Jacobi equations, which focus on the regularity of the �rst derivative of the
solution, the scaling factor in the de�nition of the smoothness indicators is mistaken.
More precisely, since in [JP00], where the indicators for HJ are �rst used (βHJ in the
sequel), a precise formula of the de�nition is missing, most authors usually use the def-
inition in [JS96] for conservation laws (βCL in the sequel). The idea of the proof is
inspired by the proof of Corollary 2 in [ABM10] and it is quite general. In fact, it could
be easily modi�ed in order to get similar results on regularity indicators of higher degree
derivatives. Then, in Sec. 2.1.1, we will show how to use those indicators as building
blocks to de�ne our function φj , j ∈ Z, which measures the regularity of the solution
in Ij = (xj−1, xj+1), needed for the construction of the Adaptive Filtered Scheme in
Chapter 3. Finally, in Section 2.2 we will see how to generalize these constructions to
the multidimensional case, de�ning some new smoothness indicators which are able to
detect the discontinuities in the gradient of a function of two variables. At the best of
our knowledge, this is a new contribution.

2.1. One-dimensional case. The regularity indicators of
[JP00] and [JS96]

Brie�y speaking, the idea behind the de�nitions below is to use the magnitude of the
divided di�erences of a function f as indicator of regularity, similarly to the preceding
Essentially Non Oscillatory (ENO) procedure. The main novelty, w.r.t. the ENO idea,
is the scaling of the divided di�erences, which introduces a more direct dependence on
the discretization parameter ∆x.
More in detail, let us start the analysis by directly giving the de�nition of the smooth-
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2. Smoothness indicators analysis

ness indicators for Hamilton-Jacobi equations (HJ) in the sense of [JP00] as

βHJk [f ;xj ] =

r∑
l=2

∫ xj

xj−1

∆x2l−3
(
P

(l)
k (x)

)2
dx, (2.1)

and let us consider also the version for conservation laws (CL) of [JS96]

βCLk [f ;xj ] =
r∑
l=1

∫ xj

xj−1

∆x2l−1
(
P

(l)
k (x)

)2
dx, (2.2)

for k = 0, . . . , r − 1, where Pk(x) is the Lagrange polynomial of degree r interpolating
a function f on the stencil Sj+k = {xj+k−r, . . . , xj+k}. Notice that w.r.t. the de�nition
in [JS96] we have shifted the domain of integration of ∆x/2 in order to treat both
de�nitions (2.1) - (2.2) together. In the sequel we will drop the dependence on f and
on the point xj for more clarity, since it should not cause any confusion. Moreover, we
will often use the convention h := ∆x.
Then as a �rst big step we prove our main result of this section.

Proposition 2.1. Assume f ∈ Cr+1 (Ω \ {xs}), with Ω a neighborhood of xs, and
f ′(x−s ) 6= f ′(x+

s ). Moreover, (just for simplicity) let f (l)(x) 6= 0, ∀x ∈ (Ω \ {xs})
for l = 1, 2. Then, for k = 0, . . . , r − 1 and j ∈ Z, the following are true:

(i) If xs ∈ Ω \
◦
Sj+k ⇒ βHJk = O(∆x2) and βCLk = O(∆x2);

(ii) If xs ∈
◦
Sj+k ⇒ βCLk = O(∆x2), while βHJk = O(1),

where Sj+k = {xj−r+k, . . . , xj+k} and
◦
Sj+k= (xj−r+k, xj+k).

Proof. Let us take r > 1 and without loss of generality, let xs = 0 (to simplify the
notation).
Let us start by recalling that, using the Newton form of the interpolating polynomial,

for k = 0, . . . , r − 1 and j ∈ Z, we get

Pk(x) = f(xj−r+k) +
r∑
i=1

f [xj−r+k, . . . , xj−r+k+i]ωi−1(x), (2.3)

where ωi(x) = (x− xj−r+k) · · · (x− xj−r+k+i) and f [·] denotes the divided di�erence of
f , which are de�ned recursively as

f [xν ] := f(xν), ν = 0, . . . , r

f [xν , . . . , xν+i] := f [xν+1,...,xν+i]−f [xν ,...,xν+i−1]
xν+i−xν , ν = 0, . . . , r − i, i = 1, . . . , r.

(2.4)

Let us proceed with the proof of i). If we de�ne the function fh(y) := f(xj +hy), y ∈ Z,
we can write

f [xj−r+k, . . . , xj−r+k+i] = f [xj+(k−r)h, . . . , xj+(k−r+i)h] =
fh[k − r, . . . , k − r + i]

i!hi
,
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2.1. One-dimensional case. The regularity indicators of [JP00] and [JS96]

where fh[·] denotes the undivided di�erence of fh. At this point it is useful to notice
that, for l = 0, . . . , i (see Lemma A.1 in Appendix A for the proof),

fh[k− r, . . . , k− r+ i] =
i−l∑
n=0

(
i− l
n

)
(−1)i−l−nfh[(k− r+n), . . . , (k− r+n+ l)]. (2.5)

Moreover, if 0 6∈
◦
Sj+k, expanding with Taylor, it can be shown that for n = 0, . . . , i− l

and h→ 0, fh[(k−r+n), . . . , (k−r+n+ l)] ≈ hlf (l)(xj) (see Corollary A.3 in Appendix
A). Then, we can infer

fh[k − r, . . . , k − r + i]→
{
o
(
hl
)

for l < i ≤ r,
hlf (l)(xj) for i = l,

(2.6)

having exploited the relation
∑i

j=0

(
i
j

)
(−1)i−j = 0, for i ≥ 1 (see Lemma A.1 in Ap-

pendix A).
Now, if we de�ne the polynomial

Qk(y) := Pk(xj + hy) = fh(k − r) +

r∑
i=1

fh[(k − r), . . . , (k − r + i)]
qi−1(y)

i!
, (2.7)

where qi(y) = (y− (k− r)) · · · (y− (k− r− i)), fh(y) = f(xj + hy), then we can rewrite

P
(l)
k (x) =

dl

dxl

(
Qk

(x
h

))
=

1

hl
Q

(l)
k (y), l = 1, . . . , r. (2.8)

Then, applying the change of variable y = (x − xj)/h in the integral in (2.1) or (2.2),
we have

hα
∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = hα−2l+1

∫ 0

−1

(
Q

(l)
k (y)

)2
dy, (2.9)

where α = 2l − 3 or 2l − 1, respectively, and

Q
(l)
k (y) =

r∑
i=l

fh[(k − r), . . . , (k − r + i)]
q

(l)
i−1(y)

i!
. (2.10)

Furthermore, keeping in mind (2.6), we can write

Q
(l)
k (y) = fh[(k − r), . . . , (k − r + l)]

q
(l)
l−1(y)

l!
+

r∑
i=l+1

fh[(k − r), . . . , (k − r + i)]
q

(l)
i−1(y)

i!

= hlf (l)(xj) + o(hl),

having noticed that, since ql−1(y) is a monic polynomial of degree l, we have q
(l)
l−1(y) = l!.

From we have just seen, it follows

hα
∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = hα−2l+1

∫ 0

−1

(
Q

(l)
k (y)

)2
dy

= hα+1
(
f (l)(xj)

)2
+ o(hα+1),
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2. Smoothness indicators analysis

as we wanted. In fact, having in mind that by hypothesis f ′, f ′′ 6= 0, if we consider, for
example,

βHJk =

r∑
l=2

∫ xj

xj−1

h2l−3(P
(l)
k )2dx

=

r∑
l=2

h2l−2
(
f (l)(xj)

)2
+ o(h2l−2) = O(h2),

and in the same way for the other indicator (notice that for βCLk the summation starts
from l = 1).

Remark 2.1. To prove this point, it could be su�cient to observe that using the
regularity of f in Ω \ {xs} and the properties of the interpolating polynomial (which we
have just proved) we get

P
(l)
k (x) = f (l)(x) +O(hr+1−l), for xj−1 ≤ x ≤ xj , k = 0, . . . , r − 1.

Moreover, expanding with Taylor, it holds

f (l)(x) = f (m)(xj)O(h)m−l + o(hm−l), (2.11)

where m = max{s + 1, l} and s = max{k : f (i)(xj) = 0, ∀i ≤ k} (s ≤ r). Then,
integrating (remembering that by hypothesis s = 0⇒ m = l),

hα
∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = hα+1

(
f (l)(xj)

)2
+ o(hα+1),

as before.

Let us continue with the proof of ii). In this case the proof is a little more complicated
and it is better to treat separately the following two cases:

(a) 0 is a point of the grid {xi}, i ∈ Z;

(b) 0 ∈ Ii = (xi−1, xi) for some i ∈ Z.

Case a. By assumption 0 ∈ Sj+k for at least one k = 0, . . . , r− 1, then, for each �xed k,
there exists an integer js ∈ {k − r + 1, . . . , k − 1} such that xj = −jsh (for js = k − r
and js = k we fall in the case treated previously). Substituting in (2.3),

Pk(x) = f((−js + k − r)h) +

r∑
i=1

f [(−js + k − r)h, . . . , (−js + k − r + i)h]ωi−1(x),

with ωi(x) = (x+ (js− k+ r)h) · · · (x+ (js− k+ r− i)h). As we have done in the proof
of i), if we de�ne the function fh(y) := f(xj + hy) = f(h(y − js)), we can obtain the

relations (2.8)-(2.9) with Q
(l)
k (y) de�ned as in (2.10).
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2.1. One-dimensional case. The regularity indicators of [JP00] and [JS96]

At this point, it is useful to notice that (2.5) for l = 1 reads, for i = 1, . . . , r,

fh[k − r, . . . , (k − r + i)] =
i−1∑
j=0

(
i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)].

In order to simplify the notation let us de�ne is := js − k + r, that is to say the index
is ∈ {1, . . . , r− 1} such that xj + (k− r+ is)h = 0. Then, by assumption, we can write
for all i > t := max{is, l − 1},

fh[k − r, . . . , (k − r + i)] =

is−1∑
j=0

(
i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)]

+

i−1∑
j=is

(
i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)].

Since for h tending to 0 we have

fh[z + js, z + js + 1] = h
f((z + 1)h)− f(zh)

h
→
{
hf ′(0+) if z ≥ 0
hf ′(0−) otherwise

we can conclude that

fh[k − r, . . . , (k − r + i)] ≈ h

is−1∑
j=0

(
i− 1

j

)
(−1)i−j−1f ′(0−)+

+
i−1∑
j=is

(
i− 1

j

)
(−1)i−j−1f ′(0+)


= h

[
f ′(0+)− f ′(0−)

] i−1∑
j=is

(
i− 1

j

)
(−1)i−j−1

= h
[
f ′(0+)− f ′(0−)

]( i− 2

is − 1

)
(−1)i−is+1 6= 0,

where we have exploited the relations
∑i

j=0

(
i
j

)
(−1)i−j = 0 and

∑n
j=0

(
i
j

)
(−1)i−j =(

i−1
n

)
(−1)i−n, for 0 ≤ n < i by Lemma A.1 (Appendix A).

Furthermore for l ≤ i ≤ is, as we have seen in the �rst point i) of the proof,

fh[k − r, . . . , (k − r + i)] ≈ h
i−1∑
j=0

(
i− 1

j

)
(−1)i−j−1f ′(0−) = o(h),

which also follows directly from the �rst relation we have just reminded.
From what we have done so far we can deduce, recalling that t := max{is, l − 1},

hα
∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = hα−2l+1

∫ 0

−1

(
r∑

i=t+1

fh[k − r, . . . , (k − r + i)]
q

(l)
i−1

i!

)2

≈ Crkhα−2l+3
[
f ′(0+)− f ′(0−)

]2
,
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2. Smoothness indicators analysis

where Crk =
∫ 0
−1

(∑r
i=t+1

(
i−2
is−1

)
(−1)i−is+1 q

(l)
i−1

i!

)2

. Then, passing to the limit, we �nally

obtain

lim
h→0

hα
∫ xj

xj−1

(
P

(l)
k (x)

)2
dx =

{
O(h2) if α = 2l − 1
O(1) if α = 2l − 3

which is the thesis for case a.
Case b. By assumption there exists an integer js ∈ {k − r + 1, . . . , k} and a number
0 < as < 1 such that xj = (−js + as)h. It is clear now that we can repeat the same
constructions of the previous case de�ning the function fas,h(y) := f(h(y− js+as)) and
using it in place of fh. To obtain (2.9) it will su�ce to apply the change of variables
y = x

h + js − as. Then, de�ning is = js − k + r, for i ≥ t := max{is, l}, we get

fas,h[k − r, . . . , (k − r + i)] =

is−2∑
j=0

(
i− 1

j

)
(−1)i−j−1fas,h[(k − r + j), (k − r + j + 1)]

+

(
i− 1

is − 1

)
(−1)i−isfas,h[js − 1, js]

+
i−1∑
j=is

(
i− 1

j

)
(−1)i−j−1fas,h[(k − r + j), (k − r + j + 1)].

(2.12)

Now, noticing that

fas,h[js − 1, js] = f(ash)− f((as − 1)h)

= ash

(
f(ash)− f(0)

ash

)
+ (1− as)h

(
f(0)− f((as − 1)h)

(1− as)h

)
≈ ashf ′(0+) + (1− as)hf ′(0−)

= ash
[
f ′(0+)− f ′(0−)

]
+ hf ′(0−),

and that

fas,h[z + js − 1, z + js]→
{
hf ′(0+) if z ≥ 1
hf ′(0−) if z ≤ −1,

we can infer that if i = is (in this case in (2.12) on the right side of the equation we
have only the second term), then fas,h[k−r, . . . , (k−r+ i)] ≈ ash [f ′(0+)− f ′(0−)] 6= 0,
while if i > is,

fas,h[k − r, . . . , (k − r + i)] ≈ h
[
f ′(0+)− f ′(0−)

] [( i− 2

is − 1

)
(−1)i−is+1+

+ as

(
i− 1

is − 1

)
(−1)i−is

]
.

The last quantity, as it can be easily shown, it is null if and only if as = i−is
i−1 ; more

precisely, for k �xed there exists an integer i ≥ t such that fas,h[k− r, . . . , (k− r+ i)] ≈
Ch [f ′(0+)− f ′(0−)] with C 6= 0, whence the thesis even in the last case.
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2.1. One-dimensional case. The regularity indicators of [JP00] and [JS96]

Remark 2.2. Notice that we could avoid the restrictions on f in the points of regularity
by adding a small quantity σh = σh2, for some constant σ > 0, to the indicators βk and
consider instead

β̃k := βk + σh, (2.13)

as it has been done in [ABM10]. We will use this assumption in the sequel, choosing for
the moment σ = 1.

2.1.1. Regularity indicator functions

Now we can proceed with the construction of our function φ, which will be used in the
next chapter to measure the regularity of the approximated solution. In order to get a
good smoothness indicator but trying to keep the stencil of the reconstructions as small
as possible, we decided to stick with the simple case of r = 2. As we will show soon this
choice it is not restrictive and will give us the results we are looking for. Clearly some
adjustments will be needed and in doing so we will make use of the mappings introduced
in [HAP05] (see (2.23)).
Our aim is to identify the points (or the intervals) in which there is a singularity in

the �rst derivative of a function f . Let us focus the attention on a point xj of the grid,
the idea is to study the regularity of the function in the interval (xj−1, xj+1) using the
smoothness indicators βHJk with r = 2. In what follows we will drop the superscript HJ
as it is now clear, by Proposition 2.1, which indicators we should use.
Let us consider separately the intervals [xj−1, xj ] and [xj , xj+1] de�ning

β−k = ∆x

∫ xj

xj−1

(P ′′k (x))2dx, (2.14)

for k = 0, 1, where P0, P1 are the polynomials interpolating the functions, respectively,
on the stencils {xj−2, xj−1, xj} and {xj−1, xj , xj+1}; and symmetrically

β+
k = ∆x

∫ xj+1

xj

(P ′′k (x))2dx, (2.15)

for k = 0, 1, where now P0, P1 are the interpolating polynomials on {xj−1, xj , xj+1}
and {xj , xj+1, xj+2}. From the de�nition it is clear that (β+)j = (β−)j+1 so we have
to compute the quantities just once. To be as clear as possible let us write the explicit
form of the βk and their Taylor expansion around the point xj in the case of a uniform
grid,

• β−0 =
(
fj−2fj−1+fj−2

h

)2
= h2(f ′′j )2−2h3f ′′j f

′′′
j +h4

[
(f ′′′j )2 + 7

6f
′′
j f

(4)
j

]
− 7

6h
5f ′′′j f

(4)
j +

o(h5),

• β−1 = β+
0 =

(
fj+1−2fj+fj−1

h

)2
= h2(f ′′j )2 + h4

6 f
′′
j f

(4)
j + o(h5);

• β+
1 =

(
fj−2fj+1+fj+2

h

)2
= h2(f ′′j )2+2h3f ′′j f

′′′
j +h4

[
(f ′′′j )2 + 7

6f
′′
j f

(4)
j

]
+ 7

6h
5f ′′′j f

(4)
j +

o(h5)
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2. Smoothness indicators analysis

Then, we de�ne

α±k :=
1

(β±k + σh)2
, (2.16)

with σh = σh2 is the parameter we introduced in Remark 2.2. We focus on the infor-
mations given by the interpolating polynomial on {xj−1, xj , xj+1} de�ning

ω+ :=
α+

0

α+
0 + α+

1

,

to inspect the regularity on [xj , xj+1] and in the same way for [xj−1, xj ],

ω− :=
α−1

α−0 + α−1
.

By Proposition 2.1 and Remark 2.2 we know that β̃k = O(h2) if there is no singularity
in the stencil, and β̃k = O(1) otherwise, so in presence of a singularity we can only fall
in one of the following cases:

• If xj−2 < xs ≤ xj−1, then β̃
−
0 = O(1), β̃−1 = β̃+

0 = O(h2), β̃+
1 = O(h2);

• If xj−1 < xs < xj , then β̃
−
0 = O(1), β̃−1 = β̃+

0 = O(1), β̃+
1 = O(h2);

• If xs = xj , then β̃
−
0 = O(h2), β̃−1 = β̃+

0 = O(1), β̃+
1 = O(h2);

• If xj < xs < xj+1, then β̃
−
0 = O(h2), β̃−1 = β̃+

0 = O(1), β̃+
1 = O(1);

• If xj+1 ≤ xs < xj+2, then β̃
−
0 = O(h2), β̃−1 = β̃+

0 = O(h2), β̃+
1 = O(1),

with xs point of singularity. Now, we can compute

α±1 − α
±
0

α±0
=

(β±0 + σh)2 − (β±1 + σh)2

(β±1 + σh)2
=

(
β±0 − β

±
1

β±1 + σh

)(
β±0 + β±1 + 2σh

β±1 + σh

)
, (2.17)

which, noticing that, if the function is smooth in both stencils of β±0 and β±1 , we have

β±0 − β
±
1

β±1 + σh
= −2h

f ′′j f
′′′
j

(f ′′)2 + σ
+O(h2) = O(h) (2.18)

β±0 + β±1 + 2σh

β±1 + σh
= 2 +O(h) = O(1),

leads to
α±1 = α±0 (1 +O(h)). (2.19)

Then, we can deduce that if the solution is regular enough in both stencils

ω± =
α±k

α±0 + α±1
=

1

2
+O(h), (2.20)

28



2.1. One-dimensional case. The regularity indicators of [JP00] and [JS96]

with k = 0 for the superscript �+� and k = 1 for �−�. On the contrary, if there is a
singularity in at least one of the stencils

α±k =

{
O(1) if f is not smooth in Sj+k
O(h−4) if f is smooth in Sj+k,

(2.21)

then it is easy to verify that the behavior of our ω± falls in one of the following cases:

• If xj−2 < xs ≤ xj−1, then ω− = 1 +O(h4), ω+ = 1/2 +O(h)

• If xj−1 < xs < xj , then ω− = O(1), ω+ = O(h4)

• If xs = xj , then ω− = O(h4), ω+ = O(h4)

• If xj < xs < xj+1, then ω− = O(h4), ω+ = O(1)

• If xj+1 ≤ xs < xj+2, then ω− = 1/2 +O(h), ω+ = 1 +O(h4),

where with ω± = O(1) we mean a number dependent on the jump of the derivative.
Now, de�ning ωj := min{ω−, ω+} we can rewrite

ωj =

{
O(h4) if xj−1 < xs < xj+1
1
2 +O(h) otherwise.

(2.22)

Remark 2.3. It is interesting to point out that, without developing the algebra which
follows almost the same lines, if we had used the indicators βCLk we would have concluded

• If xj−2 < xs ≤ xj−1, then ω− = O(1), ω+ = 1/2 +O(h3)

• If xj−1 < xs < xj+1, then ω− = O(1), ω+ = O(1)

• If xj+1 ≤ xs < xj+2, then ω− = 1/2 +O(h3), ω+ = O(1).

Then, it is clear that, using the indicators for conservation laws, we can not exploit
the behavior of ω± in order to precisely locate a point of singularity xs. To be more
precise, here the O(1) comes from the fact that, by Proposition 2.1, we would not have
the property (2.21) in presence of a singularity, so using again the expansion (2.17) we
have to notice that

β±0 − β
±
1

β±1 + σh
= O(1),

a number dependent on the jump of the derivative. Notice that in the case of βCLk this
happens even if the solution is smooth in one of the two stencils.
Notice also that, when the solution is smooth, with the choice βCLk the information

given by ω± are more accurate, since the possible oscillations around the optimal value
are of order O(h3) instead of O(h), which follows expanding with Taylor as we have
done for βHJk .
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2. Smoothness indicators analysis

Going back to our ω±, we noticed through numerical tests that the O(h) term in
regular regions may produce heavy oscillations around the optimal value ω = 1/2. To
increase the accuracy, we can use higher order smoothness indicator (r > 2), as we will
show brie�y in the examples below, but we would need a bigger reconstruction stencil,
or we can use the mappings de�ned in [HAP05],

g(ω) =
ω(ω + ω2 − 3ωω + ω2)

ω2 + ω(1− 2ω)
, ω ∈ (0, 1) (2.23)

which have the properties that g(0) = 0, g(1) = 1, g(ω) = ω, g′(ω) = 0 and g′′(ω) = 0.
Then, we de�ne

ω∗± = g(ω±)

= g(ω) + g′(ω)(ω± − ω) +
g′′(ω)

2
(ω± − ω)2 +

g′′′(ω)

6
(ω± − ω)3 +O(h4)

= ω +
(ω± − ω)3

ω − ω3 +O(h4)

= ω +O(h3)

These mappings have been introduced to propose a modi�cation of the original WENO
procedure, termed M-WENO, which produces better approximations at critical points.

Remark 2.4. Notice that with respect to the de�nition in [HAP05] we avoided the
second weighting which seems unnecessary in our case. More explicitly, the mapping we
use is

g(ω) = 4ω

(
3

4
− 3

2
ω + ω2

)
. (2.24)

Another useful technique to reduce the oscillations, which in particular does not re-
quire any mapping, has been proposed in the context of hyperbolic conservation laws in
[BCCD08] and further generalized in [CCD11], leading to the de�nition of the so-called
WENO-Z schemes. This procedure can be applied for our purpose without any relevant
change. For example, for r = 2, it is implemented �rst de�ning

τ± :=
∣∣β±0 − β±1 ∣∣ , (2.25)

which has the properties:

• If f is smooth in, respectively, S± := S±0
⋃
S±1 , then τ± = O(h3);

• If f is smooth in some S±k , but not in S
±, then τ± � β±k ;

• τ± ≤ maxk β
±
k .

Then, analogously to the usual WENO procedure, the �nal indicator is obtained com-
puting

αZ,±k =
1

2

(
1 +

(
τ±

β±k + σh

)p)
, ωZ± =

αZ,±ν

αZ,±0 + αZ,±1

, (2.26)
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2.1. One-dimensional case. The regularity indicators of [JP00] and [JS96]

for k = 0, 1, with p = 2, ν = 1 for the superscript `−' and ν = 0 for `+'. Unfortunately,
applying directly the `WENO-Z' procedure to Hamilton-Jacobi equations, in particular
in our context, we do not achieve improvements comparable to those obtained through
the mapping (2.24). In fact, using the expansions and the same computations of the
previous lines, it is straightforward to show that the resulting smoothness indicators are
such that

ωZ± =
1

2
+O(h2),

and thus produce slightly wider oscillations around the optimal value. This problem
would probably suggest to increase to power p in (2.44), but in doing so also the depen-
dence on the magnitudes of successive derivatives of f is increased (see (2.18)), producing
even wider oscillations for coarser grids, thus discouraging such an approach.
For these reasons we avoid the use of the indicator ωZ in all the simulations of the

present work, also in order to reduce the number of similar simulations.

Remark 2.5. It seems that, at least in the case r = 2, making use of the full stencil
{xj−2, . . . , xj+2} in de�ning τ± in (2.25)-(2.44) gives very interesting results, even better
than the mapped indicators. More precisely, we propose the following de�nition, valid
for both cases,

τ =
∣∣β−0 − 2β−1 + β+

1

∣∣ , (2.27)

which gives

τ = 2h4
(

(f ′′′j )2f ′′j f
(4)
j

)
+O(h5) = O(h4), (2.28)

if the function is smooth in the full stencil. Consequently, it can be shown that the
indicators computed through (2.27)-(2.44), are such that

ωZnew =
1

2
+O(h4),

in regions of regularity and have similar behavior w.r.t. the previous constructions in
the remaining cases. We only recently came up with this new formulation, thus it will
not be further investigated in this thesis, but it will be most probably present in [FPTa].

The last step is to use such indicators to de�ne our function φ(ω), such that

φ(ωj) =

{
1 if the function f is regular in Ij ,
0 if Ij contains a point of singularity,

where Ij = (xj−1, xj+1), j ∈ Z. From the previous computations, it is clear that we
should de�ne φ such that φ = 1 if ω is close to 1

2 and φ = 0, otherwise. Notice that
in the latter are included both cases in which the function has a singularity in the �rst
derivative (ω = O(∆x4)) and when the second derivative is discontinuous (ω = O(1)).
The simplest choice is to take

φ(ω) = χ{ω≥M}, (2.29)

with M < 1
2 , a number possibly dependent on ∆x. Or we can choose a more regular

function

φ(ω) =
e−Mω − 1

e−M − 1
,
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2. Smoothness indicators analysis

where now M must be big enough to have a steep decent towards 0.

Remark 2.6. Notice that to construct the function φ using the indicators (2.1) with
r = 2 we need only �ve points to inspect the regularity in Ij .

Next, we show that if we make a particular choice for M we are able to prove the fol-
lowing result, which can be seen as an �inverse� of Proposition 2.1 for numerical solutions
and (probably) gives a useful tool for the analysis of the next chapter. Unfortunately, at
the moment, this result is valid only for indicators ω using the standard construction for
r = 2, without the possibility to introduce any of the presented modi�cations, or higher
order indicators. Moreover, as it will be brie�y discussed in Remark 3.4, it introduces
some limitations in the applicability even when using the standard indicators, testifying
the necessity of some improvements in the argument used.
Before proceeding, let us remind that we are working with structured grids, then if

we consider a one-parameter family of grid values {fj(∆x)}j∈J(∆x), as ∆x goes to 0, the
indexed family of sets of indices J(∆x) is expanding, in the sense that if ∆x2 < ∆x1,
then J(∆x1) ⊂ J(∆x2), where J(∆x) ⊆ Z, for all ∆x > 0. Moreover, we de�ne Is(∆x)
as the set of indices j such that φj = 0 and assume, for simplicity, |Is(∆x)|< ∞ and
Is(∆x) ≡ Is, for ∆x > 0.

Lemma 2.2. Let ω be computed using (2.14)-(2.15) and φ be de�ned by (2.29) with
M(∆x) = 1

2 − C∆x, for some constant C such that 0 < M(∆x) < 1
2 . Consider a

one-parameter family of sequences {fj(∆x)}j∈J(∆x), and a partition {Ri}i=0,...,|Is| of the
regularity set R = {j ∈ Z : φj = 1} =

⋃
iRi, and R = Z if Is = ∅. Then, if for all

i = 0, . . . , |Is|, there exists ji ∈ Ri, such that |D2fji(∆x)|<∞, we have that

|D2fj(∆x)|= |fj+1(∆x)− 2fj(∆x) + fj−1(∆x)|
∆x2

≤ B, ∀j ∈ R, (2.30)

for a constant B independent of ∆x.

Proof. It is clear that, since |Is|< ∞ by hypothesis, it is enough to prove the assertion
just for one i ∈ Is, or more simply in the regular case R = Z. Let us assume then
that the sequence is �regular� and, without loss of generality, that there exists jmin ∈ R
such that D2fjmin(∆x) = 0, which happens for example when the sequence has compact
support. In the following, we drop the dependence on ∆x for clarity of presentation,
since it should not cause confusion.
Since we are considering the case of ω computed by non-mapped indicators, we have

that, by de�nition of φ and ω, if φj = 1 then at least one ω± > M . Without loss of
generality, let us assume ω+ > M , with the other case being symmetrical. Then, by
de�nition,

ω+ =
(β+

1 + σh)2

(β+
1 + σh)2 + (β+

0 + σh)2
> M,

which leads by simple computations to

|β+
0 |<

√
1−M
M

|β+
1 |+

(√
1−M
M

− 1

)
σh,
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2.1. One-dimensional case. The regularity indicators of [JP00] and [JS96]

and dividing by ∆x2, we get

|D2fj |2<
√

1−M
M

|D2fj+1|2+

(√
1−M
M

− 1

)
,

where we used the de�nition of σh = σ∆x2, with σ = 1 for simplicity. Whence, iterating
till Lj ∈ N such that j + Lj = jmin, we have

|D2fj |2< . . . <

(
1−M
M

)Lj
2

|D2fjmin |2+

(√
1−M
M

− 1

) Lj∑
k=1

(
1−M
M

) k−1
2

=

(√
1−M
M

− 1

) Lj−1∑
k=0

(
1−M
M

) k
2

=

(√
1−M
M

− 1

)
1−

(
1−M
M

)Lj
2

1−
√

1−M
M

=

(
1−M
M

)Lj
2

− 1.

Now, if notice that forall j ∈ R we can �nd a constant L > 0 independent on j such
that Lj ≤ L

∆x and recall the hypothesis on M = 1
2 − C∆x, we can conclude

|D2fj |2 ≤
(

1−M
M

)Lj
2

− 1 ≤
(

1

M
− 1

) L
2∆x

− 1

=

(
2

1− 2C∆x
− 1

) L
2∆x

− 1

≈ (1 + 4C∆x)
L

2∆x − 1
∆x→0−→ e2LC − 1,

by the well known notable limit. Then, the statement follows taking B :=
√
e2LC − 1.

Remark 2.7. Notice that the previous lemma strongly relies on the fact that ω is
computed using (2.14)-(2.15) without introducing the mappings (2.24). In fact, if we
were to use (2.24), we could develop the algebra until the inequality

|D2fj |2≤
(

1

g−1(M)
− 1

) L
2∆x

− 1,

but, by de�nition, g−1 can not be expanded in Taylor series around the point 1
2 , whence

we could not use the notable limit to conclude.
On the other hand, through extensive numerical simulations on various critical situ-

ations, we could acknowledge that a weaker result seems to hold also for more general
indicators. More precisely, we collected numerical evidence that, �xed j ∈ Z, if the
sequence of the second order increments

D2fj(∆x) =
fj+1(∆x)− 2fj(∆x) + fj−1(∆x)

∆x2
,
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2. Smoothness indicators analysis

presents some kind of discontinuity, then we have

ωj = O(1).

Consequently, choosingM(∆x) = 1
2−C∆x, for a constant C such that 0 < M(∆x) < 1

2 ,
or even more simply, M(∆x)→ 0 as ∆x→ 0, we could infer

j 6∈ R, for ∆x→ 0,

Notice that this property can be proven almost directly in the case the discontinuity of
the second order increment is �caused� by that of the �rst order �nite di�erence, in the
sense

D+fj(∆x) :=
fj+1(∆x)− fj(∆x)

∆x
→ f+

x , D−fj(∆x) :=
fj(∆x)− fj−1(∆x)

∆x
→ f−x ,

with f+
x 6= f−x . On the contrary, if the sequence of D±fj(∆x) is �regular�, the detection

of a discontinuity in D2fj(∆x) is more involved. It is noteworthy to point out that we
are interested mainly in detecting unbounded second order increments. Unfortunately,
without any further assumption on the sequences {fj(∆x)}j∈J(∆x), such a result would
not su�ce to infer that |D2fj |< B if j ∈ R, for some B > 0, since we could not secure
the boundedness of second order increments at points in some neighborhood of a cell
(point) at which the sequence is �regular� but has unbounded second order increment.

2.1.2. Alternative constructions

In the following, we give some examples of other possible choices for the smoothness
indicator ω, using again indicators in the sense of [JP00] but in slightly di�erent versions,
more appropriate for our purpose. The aim is mainly to show how higher order indicators
(r > 2) can be used also in this context in order to have a better approximation of the
singular region.
First we give a slightly di�erent formulation for ω with r = 2, which allows to avoid

the computation of both indicators to de�ne φ.
Looking at the behavior of the β±k around a singularity, if we consider the information

given by the three stencils all together and remember that by de�nition α+
0 = α−1 , we

can write

ω =
θα+

0

α−0 + θα+
0 + α+

1

=
θα−1

α−0 + θα−1 + α+
1

, (2.31)

with θ a constant we can use to �decide� the optimal value ω in regular regions, still
ensuring easily that ω ∈ [0, 1]. For example, θ = 1 gives ω = 1/3, while θ = 2 gives
ω = 1/2. More precisely, reminding (2.19) and noticing that the exact same computation
(with α−0 in place of α+

1 ) would lead to

α−0 = α+
0 (1 +O(h)), (2.32)

we can see that if the function is smooth in [xj−2, xj+2] then

ω = ω +O(h) =
θ

2 + θ
+O(h).

On the other hand, if xs ∈ (xj−2, xj+2),
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2.1. One-dimensional case. The regularity indicators of [JP00] and [JS96]

• If xj−2 < xs ≤ xj−1, then ω =
θα+

0

α+
0

(
α−0
α+

0

+θ+(1+O(h))

) = θ
θ+1 +O(h)

• If xj−1 < xs < xj+1, then ω = O(h4)

• If xj+1 ≤ xs < xj+2, then ω =
θα+

0

α+
0

(
(1+O(h))+θ+

α+
1

α+
0

) = θ
θ+1 +O(h).

Then we can use the mappings (2.23) if we want to reduce the e�ects of the O(h) terms.
Notice that in the case of ω = θ/(θ + 1) + O(h) when the singularity enters or leaves
the stencil of the regularity indicator, we have, at least in the limit for h→ 0,

g

(
θ

θ + 2
+O(h)

)
≤ g

(
θ

θ + 1
+O(h)

)
⇒ θ

θ + 2
+O(h3) ≤ g

(
θ

θ + 1
+O(h)

)
,

using the fact that g is a non decreasing function, and so the mapping will have little
e�ects.
Another simple way to reduce the oscillations around the optimal value ω is to increase

the order of the reconstruction to compute the smoothness indicators. As an example
we show how to construct the indicators ω± using polynomials of degree r = 3. In order
to remain as short as possible, we will focus only on the construction of ω+, knowing
also that the case of ω− follows almost the same steps.
Let us start by considering the formula

β+
k =

3∑
l=2

∫ xj+1

xj

∆x2l−3
(
P

(l)
k

)2
dx,

which gives,

• β+
0 = 13h2

12

(
D2fj−1 −D2fj

)2
+ h2

4

(
D2fj−1 − 3D2fj

)2
,

• β+
1 = β+

0 = 13h2

12

(
D2fj −D2fj+1

)2
+ h2

4

(
D2fj +D2fj+1

)2
,

• β+
2 = β+

0 = 13h2

12

(
D2fj+1 −D2fj+2

)2
+ h2

4

(
3D2fj+1 −D2fj+2

)2
,

and, developing in Taylor series,

• β+
0 = h2(f ′′j )2 +h3f ′′j f

′′′
j +h4

(
4
3(f ′′′j )2 − f ′′j f

(4)
j

3

)
+h5

(
15
12f
′′′
j f

(4)
j +

f ′′j f
(5)
j

4

)
+o(h5),

• β+
1 = h2(f ′′j )2+h3f ′′j f

′′′
j +h4

(
4
3(f ′′′j )2 + 2

3f
′′
j f

(4)
j

)
+h5

(
17
12f
′′′
j f

(4)
j +

f ′′j f
(5)
j

4

)
+o(h5),

• β+
2 = h2(f ′′j )2+h3f ′′j f

′′′
j +h4

(
4
3(f ′′′j )2 − f ′′j f

(4)
j

3

)
+h5

(
37
12f
′′′
j f

(4)
j −

3
4f
′′
j f

(5)
j

)
+o(h5).
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Now, we de�ne α+
k as in (2.16),

α+
k =

1

(β+
k + σh)2

, for k = 0, 1, 2,

with σh = σh2 and focus on the interval [xj , xj+1] by de�ning

ω+ =
α+

0 + α+
1

α+
0 + α+

1 + α+
2

.

We recall that, by Proposition 2.1, β̃k = O(h2) if there is no singularity in the stencil
and β̃k = O(1) otherwise, so in presence of a singularity we can only fall in one of the
following cases:

• If xj−3 < xs ≤ xj−2, then β̃
+
0 = O(h2), β̃+

1 = O(h2), β̃+
2 = O(h2);

• If xj−2 < xs ≤ xj−1, then β̃
+
0 = O(1), β̃+

1 = O(h2), β̃+
2 = O(h2);

• If xj−1 < xs ≤ xj , then β̃+
0 = O(1), β̃+

1 = O(1), β̃+
2 = O(h2);

• If xj ≤ xs < xj+1, then β̃
+
0 = O(1), β̃+

1 = O(1), β̃+
2 = O(1);

• If xj+1 ≤ xs < xj+2, then β̃
+
0 = O(h2), β̃+

1 = O(1), β̃+
2 = O(1),

• If xj+2 ≤ xs < xj+3, then β̃
+
0 = O(h2), β̃+

1 = O(h2), β̃+
2 = O(1),

with xs point of singularity. Now, we can repeat the computations we have done for the
case r = 2 by writing for example

α+
k − α

+
2

α+
2

=
(β+

2 + σh)2 − (β+
k + σh)2

(β+
k + σh)2

=

(
β+

2 − β
+
k

β+
k + σh

)(
β+

2 + β+
k + 2σh

β+
k + σh

)
,

which, noticing that

β+
2 − β

+
k

β+
k + σh

= O(h2)

β+
2 + β+

k + 2σh

β+
k + σh

= O(1)

leads to
α+
k = α+

0 (1 +O(h2)), (2.33)

for k = 0, 1, 2. Then we can deduce that if the solution is regular enough in all the
three stencils

ω+ :=
α+

0 + α+
1

α+
0 + α+

1 + α+
2

=
2

3
+O(h2). (2.34)
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Remark 2.8. At this point, to be as clear as possible, it is better to present also the
de�nition of ω−, for which similar computations easily hold. We use the following

ω− :=
α−1 + α−2

α−0 + α−1 + α−2
. (2.35)

On the other hand, if there is a singularity in at least one of the stencils

α+
k =

{
O(1) if f is not smooth in Sj+k
O(h−4) if f is smooth in Sj+k,

then it can be shown that the behavior of ω± falls in the following cases:

• If xj−3 < xs ≤ xj−2, then ω− = 1 +O(h4), ω+ = 2/3 +O(h2)

• If xj−2 < xs ≤ xj−1, then ω− = 1 +O(h4), ω+ = 1/2 +O(h2)

• If xj−1 < xs < xj , then ω− = O(1), ω+ = O(h4)

• If xs = xj , then ω− = O(h4), ω+ = O(h4)

• If xj < xs < xj+1, then ω− = O(h4), ω+ = O(1)

• If xj+1 ≤ xs < xj+2, then ω− = 1/2 +O(h2), ω+ = 1 +O(h4),

• If xj+2 ≤ xs < xj+3, then ω− = 2/3 +O(h2), ω+ = 1 +O(h4),

whence, as in the case with r = 2, we have ω := min{ω−, ω+} = O(h4), if xs ∈ Ij =
(xj−1, xj+1), and ω away from 0, otherwise.

Remark 2.9. Notice that in this case, we cannot repeat the constructions we have done
for r = 2 because, as we can see developing β−0 with Taylor,

β−0 =
13h2

12

(
D2fj−2 −D2fj−1

)2
+
h2

4

(
D2fj−2 − 3D2fj−1

)2
= h2(f ′′j )2 − h3f ′′j f

′′′
j + h4

(
4

3
(f ′′′j )2 −

f ′′j f
(4)
j

3

)
− h5

(
37

12
f ′′′j f

(4)
j −

3

4
f ′′j f

(5)
j

)
+ o(h5),

whence,
β+

2 − β
−
0

β+
0 + σh

= O(h),

and we would lose the order of accuracy.

Finally, if needed we can use the mappings (2.23) to reduce the oscillations. Notice
that repeating the same computations as before we get

ω∗± = g(ω±) = ω +O(h6),

if the function is smooth in all the three stencils, while the mappings will have little
e�ects in the remaining cases.
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To conclude we just mention that, as it should be quite clear now, we can de�ne higher
order smoothness indicators using polynomials of order r ≥ 3 and taking

ω− :=

∑k=r−1
k=1 α−k∑k=r−1
k=0 α−k

, ω+ :=

∑k=r−2
k=0 α+

k∑k=r−1
k=0 α+

k

,

thus requiring a wider and wider stencil.

2.2. Regularity indicators in higher dimensions

In this section we will present a multidimensional extension of the smoothness indi-
cators studied in the previous section. In order to keep the ideas as clear as possible, we
will complete the construction only for the simplest case of two space dimensions and
r = 2, with more general situations following directly.
Let us begin by de�ning, for simplicity, a uniform discretization of the plane (x, y),

with mesh steps ∆x and ∆y, −∞ < xj <∞, j ∈ Z and −∞ < yi <∞, i ∈ Z. We will
also use the shorter notation hz := ∆z, for z = x, y.
Before proceeding with the construction, let us recall some important facts about

multivariate interpolation. As it is well known, there are many possibilities to de�ne
polynomials in two dimensions, in fact for example we could �x the total degree r of the
polynomial and consider a triangular array of points (then using polynomials in Pr(R2)),
or, as we will do in our approach, we can �x the degree r in each variable and de�ne the
2D-polynomial as the tensor product of one-dimensional polynomials (P ⊗Q ∈ Qr(R2),
with P,Q ∈ Pr(R)). Clearly, with the last approach, the number of points involved in
the stencil of the reconstruction increases exponentially (considering a square grid, if n
is the number of points of the one-dimensional stencils, then n2 is the cardinality of the
two-dimensional stencil).
Notice that in both cases the problem is well posed, in fact we can de�ne a unique

polynomial interpolating a given function f(x, y) on the points of the stencil with the
desired degree. Clearly some assumptions on the disposition of the points must be made,
in fact, for example the points must not lie on the same line, but that is trivially the
case for uniform cartesian grids. This is indeed our case of study, in which we will work
on structured grids.
Let us consider the general case of a rectangular stencil S = {x0, . . . , xn}×{y0, . . . , ym},

then, using again the Newton form, we de�ne the polynomial of degree n + m interpo-
lating a given function f as

P (x, y) =

n∑
s=0

m∑
t=0

ωt−1(x)ωs−1(y)f [x0, . . . , xt; y0, . . . , ys], (2.36)

where ωk(z) = ωk−1(z − zk), ω−1 = 1 and the two-dimensional divided di�erence f [·; ·]
are computed as in the one-dimensional case (2.4), keeping each time one of the two
variables �xed and computing the divided di�erence with respect to the free variable,
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2.2. Regularity indicators in higher dimensions

that is, for example

f [xt, ys] := f(xt, ys), t = 0, . . . ,m, s = 0, . . . , n

f [x0, . . . , xt; ys] :=
f [x1, . . . , xt; ys]− f [x0, . . . , xt−1; ys]

xt − x0
,

f [x0, . . . , xt; y0, . . . , ys] :=
f [x1, . . . , xt; y0, . . . , ys]− f [x0, . . . , xt−1; y0, . . . , ys]

xt − x0
,

and the same with respect to the second variable. Now, if we want to de�ne a smoothness
indicator of a function f , as in the one-dimensional case, we have to focus our attention
on a single cell of the grid, say for example (xj−1, xj ]× [yi−1, yi). Then, we propose the
following

βk,w =
n∑

α1=0

m∑
α2=0

∫ xj

xj−1

∫ yi

yi−1

∆xγ1∆yγ2

(
∂αPk,w(x, y)

∂xα1∂yα2

)2

dxdy, (2.37)

for k = 0, . . . , n − 1 and w = 0, . . . ,m − 1, where Pk,w is the interpolating polynomial
on the stencil Sk,w = {xj+k−n, . . . , xj+k}× {yi+w−m, . . . , yi+w}, α = (α1, α2) is a multi-
index and γ1, γ2 must be chosen (depending on α1 and α2, respectively) in order to have
the property

• βk,w = O(∆x2 + ∆x∆y + ∆y2) if the function is smooth in Sk,w;

• βk,w = O(1) if there is a singularity in
◦
Sk,w,

which we proved in Proposition 2.1 for the one-dimensional indicators. Notice that, also
in this situation, the computation of lower order derivatives can be avoided since they
are not useful in detecting discontinuities in the gradient. Therefore, the summation in
(2.37) should be restricted to multi-indices α such that |α|≥ 2.
From here on, in order to obtain an easy and explicit formula, we will focus on the

case n = m = 2, which is also enough for our needs. Notice that with this assumption
we work with polynomials of second degree in each variable, constructed on stencils of
nine points. Then, (2.37) simply reads

βk,w =
2∑

α1,α2=0
|α|≥2

∫ xj

xj−1

∫ yi

yi−1

∆x2(α1−1)∆y2(α2−1)

(
∂αPk,w(x, y)

∂xα1∂yα2

)2

dxdy, (2.38)

where we have made the choice γi = 2(αi − 1), i = 1, 2 in order to obtain the desired
property (as will be shown in the numerical tests). We will soon change a little this
notation in order to make it more comfortable for our approach, in which we will be
changing the integration domain in each subcase. More precisely, referring to Figure 2.1,
we will consider the splitting of the domain [xj−1, xj+1]× [yi−1, yi+1] into four subcells.
For each subdomain we will then compare only the information given by the �outer�
(light blue in the �gure) and the �inner� stencil (yellow in the �gure). Consequently, we
will need only one index to denote the respective stencil, using `0' for the inner stencil,
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2. Smoothness indicators analysis

Figure 2.1.: Stencils of the polynomials needed to compute ω−−.

and `1' for the outer one. Moreover, we use the superscripts `± ±, ± ∓' in order to
denote the shift with respect to the reference stencil, analogously to the one-dimensional
case.

Remark 2.10. To be precise, it is worth to point out that the formula (2.38) is an
improvement of our �rst attempted extension, which we will also use in the numerical
tests in Section 2.3. The previous de�nition is just slightly di�erent, and it reads

βk,w =
∑
|α|=2

∫ xj

xj−1

∫ yi

yi−1

∆x2(α1−1)∆y2(α2−1)

(
∂αPk,w(x, y)

∂xα1∂yα2

)2

dxdy. (2.39)

Through extensive numerical tests we noticed that, extending the summation to include
also the mixed derivative of order 4, the indicators give a more precise detection of
singular regions. This behavior is rather surprising, since the two de�nitions have, in
fact, the exact same computational cost and very similar explicit formulas, and will be
object of future investigations.

Since we consider a function f smooth on a grid point (xj , yi) if it is so in the whole
domain Ii,j := [xj−1, xj+1] × [yi−1, yi+1], following what we have done for the one-
dimensional case, we have to inspect separately the four subcells around the point. We
refer to the these subcells with the superscripts `± ±, ± ∓', according to the sign of the
shift between the point (xj , yi) and its symmetrical edge with respect to the center of
the considered cell, in both x and y directions, respectively. For example, if we focus on
the cell [xj−1, xj ]× [yi−1, yi] as in Figure 2.1, we use the superscript `− −'.
In this way we de�ne four indicators ω±± and ω±∓ for each point (xj , yi) which

quantify the regularity of the function in all the subcells around the point. Finally, we
take ω = min{ω±±, ω±∓} as the smoothness indicator for the domain Ii,j . In order
to compute these indicators, as Figure 2.1 shows, we always focus the attention on the
polynomial constructed on the central stencil S0 = {xj−1, xj , xj+1}×{yi−1, yi, yi+1} and
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2.2. Regularity indicators in higher dimensions

compare it with the polynomial constructed on the symmetrical stencil with respect of
the considered subcell (where they overlap), denoting the respective indicators by β0

and β1. Notice that with this approach even if we are using the `central' polynomial for
all the four indicators, we have to recompute β0 for each case because of the change in
the integration domain.

Remark 2.11. Notice that the situation is slightly, but fundamentally, di�erent from
the one-dimensional case, in which through our procedure we are able to measure the
regularity only in the open interval Ij = (xj−1, xj+1). That is indeed natural if we are
focusing on the point xj , since the integrals (2.14)-(2.15), with k = 0, are well-de�ned
if the solution is regular in the open interval (xj−1, xj+1).
On the contrary, in the two-dimensional case, since the boundary of the domain Ii,j

is a curve, there are at least two possible directions, say v1 and v2, along which we can
compute the directional derivative at any point (x, y) ∈ Ii,j . Then, if there exists a point
(xs, ys) ∈ Ii,j such that

∇v1f(xs, ys) 6= ∇v2f(xs, ys),

it seems reasonable to consider the interpolating polynomial P0(x, y) not well de�ned
in the whole domain, even if (xs, ys) coincides with one of the points of the boundary.
Therefore, the integrals in (2.38), with k,w = 0, are not well de�ned and, consequently,
the function f should be considered singular in Ii,j .

Now, we complete the construction for the case of ω−−, with the other three following
the exact same lines. Before proceeding, in order to make the notation even lighter,
assume without loss of generality that (xj , yi) = (0, 0) and let us introduce again the
function

fh(x, y) := f(xj + hxx, yi + hyy),

using which we can rewrite the polynomials as

P−−0 (x, y) =fh(−1,−1) + (x+ hx)fh[−1, 0;−1] + (y + hy)fh[−1;−1, 0]+

+ x(x+ hx)fh[−1, 0, 1;−1] + y(y + hy)fh[−1;−1, 0, 1]+

+ (x+ hx)(y + hy)fh[−1, 0;−1, 0]+

+ x(x+ hx)(y − hy)fh[−1, 0, 1;−1, 0]+

+ y(x+ hx)(y + hy)fh[−1, 0;−1, 0, 1]+

+ xy(x+ hx)(y + hy)fh[−1, 0, 1;−1, 0, 1],

for the reference stencil, and

P−−1 (x, y) =fh(0, 0) + xfh[0,−1; 0] + yfh[0; 0,−1] + x(x+ hx)fh[0,−1,−2; 0]+

+ y(y + hy)fh[0; 0,−1,−2] + xyfh[0,−1; 0,−1]+

+ xy(x+ hx)fh[0,−1,−2; 0,−1] + xy(y + hy)fh[0,−1; 0,−1,−2]+

+ xy(x+ hx)(y + hy)fh[0,−1,−2; 0,−1,−2],

for the outer stencil, where now fh denotes the divided di�erence of fh (notice that the
de�nition is di�erent w.r.t. the one-dimensional case).
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2. Smoothness indicators analysis

Whence, we plug this expressions in (2.38) and compute directly

βF,−−k =
2∑

α1,α2=0
|α|≥2

∫ 0

−∆x

∫ 0

−∆y
∆x2(α1−1)∆y2(α2−1)

(
∂αP−−k (x, y)

∂xα1∂yα2

)2

dxdy

=
1

∆x∆y

[
f[3,1]

2 + f[1,3]
2 + f[2,2]

2 +
17

12

(
f[3,2]

2 + f[2,3]
2
)

+
317

720
f[3,3]

2 + f[3,1]f[3,2]+

+f[1,3]f[2,3] −
1

6

(
f[3,1]f[3,3] + f[1,3]f[3,3]

)
− 1

12

(
f[3,2]f[3,3] + f[2,3]f[3,3]

)]
(2.40)

where we have used the shorter notation f[t,s] to denote the multivariate undivided
di�erence of f of order t in x and s in y. Notice that we avoided to specify the points
on which the undivided di�erence are computed in order to obtain a unique formulation
for both cases. If we want to write the explicit formula for a speci�c case, it is enough to
substitute back the correct di�erences computed on the considered stencils. Notice also
that we added due superscript `F ' to denote the �nal version of the indicators, mainly
in order to help the discussion in the numerical tests of Section 2.3.2.

Remark 2.12. Notice also that, in order to get a unique formula, we �used� the outer
stencil in a smart way, writing the Newton form of the polynomial starting from the
origin in both directions. More precisely, we have used the ordered stencils

S−−0 = {xj−1, xj , xj+1} × {yi−1, yi, yi+1}, S−−1 = {xj , xj−1, xj−2} × {yi, yi−1, yi−2}.

Using the same approach, we can obtain the formula (2.40) for all the other indicators
β++
k , β±∓k . In fact, it is enough to write the Newton form in a convenient way in each

case. More precisely, we advise the use of the following ordered stencils:

• S+−
0 = {xj+1, xj , xj−1}×{yi−1, yi, yi+1}, S+−

1 = {xj , xj+1, xj+2}×{yi, yi−1, yi−2};

• S++
0 = {xj+1, xj , xj−1}×{yi+1, yi, yi−1}, S++

1 = {xj , xj+1, xj+2}×{yi, yi+1, yi+2};

• S−+
0 = {xj−1, xj , xj+1}×{yi+1, yi, yi−1}, S−+

1 = {xj , xj−1, xj−2}×{yi, yi+1, yi+2}.

Notice that we are changing also the ordering of the reference stencil in each case. Then,
if we compute the integrals

βF,ϑ1ϑ2

k = (−1)|ϑ|
2∑

α1,α2=0
|α|≥2

∫ 0

ϑ1∆x

∫ 0

ϑ2∆y
∆x2(α1−1)∆y2(α2−1)

(
∂αP ϑ1ϑ2

k (x, y)

∂xα1∂yα2

)2

dxdy,

(2.41)
where |ϑ| denotes the number of `−' in (ϑ1, ϑ2), for ϑ1, ϑ2 = +,−, using the previous
ordered stencils, we obtain the same formula (2.40).

From this point the construction follows the same steps we saw in the previous sections.
At �rst we de�ne

α−−k =
1

(β−−k + σh)2
,
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2.2. Regularity indicators in higher dimensions

with σh = σ(h2
x + h2

y), σ > 0, then we take the informations given by the reference
polynomial computing

ω−− =
α−−0

α−−0 + α−−1

,

which will measure the regularity of the function in the cell (xj−1, xj ]× (yi−1, yi]. Once
we have computed in the same way the other three indicators, we can �nally de�ne

ω = min{ω−−, ω+−, ω−+, ω++}, (2.42)

which has properties similar to its one-dimensional counterpart (which we have not
proven yet). In fact, for example, we can use in the same way the mapping (2.24) to
reduce the oscillations in regular regions.
Notice that also the `WENO-Z' procedure can be directly generalized to the 2D-case.

It is su�cient to substitute the superscript `±' with `ϑ1ϑ2' in (2.25)-(2.44), that is

τϑ1ϑ2 :=
∣∣∣βϑ1ϑ2

0 − βϑ1ϑ2
1

∣∣∣ , for ϑ1, ϑ2 = +,−, (2.43)

αZ,ϑ1ϑ2

k =
1

2

(
1 +

(
τϑ1ϑ2

βϑ1ϑ2
k + σh

)p)
, ωZ,ϑ1ϑ2 =

αZ,ϑ1ϑ2
0

αZ,ϑ1ϑ2
0 + αZ,ϑ1ϑ2

1

. (2.44)

Finally, analogously to the one-dimensional case, if we want to de�ne a function φ
such that

φi,j =

{
1 if the function f is regular in Ii,j ,
0 if Ii,j contains a point of singularity,

(2.45)

with Ii,j = [xj−1, xj+1]× [yi−1, yi+1], it is enough to apply one of the functions φ de�ned
in Section 2.1.1.

Remark 2.13. For completeness of presentation, we give also the explicit formula for
the indicators as de�ned in Remark 2.10, that is

βP,−−k =
∑
|α|=2

∫ 0

−∆x

∫ 0

−∆y
∆x2(α1−1)∆y2(α2−1)

(
∂αP−−k (x, y)

∂xα1∂yα2

)2

dxdy

=
1

∆x∆y

[
f[3,1]

2 + f[1,3]
2 + f[2,2]

2 +
5

12

(
f[3,2]

2 + f[2,3]
2
)

+
17

720
f[3,3]

2 + f[3,1]f[3,2]+

+f[1,3]f[2,3] −
1

6

(
f[3,1]f[3,3] + f[1,3]f[3,3]

)
− 1

12

(
f[3,2]f[3,3] + f[2,3]f[3,3]

)]
(2.46)

which is evidently very similar to (2.40). As can be observed from the numerical tests
in Sec. 2.3.2, the indicators constructed using (2.46) seem to be able to correctly locate
a singularity in the domain

int (Ii,j)
⋃
{(xj−1, yi−1), (xj+1, yi−1), (xj+1, yi+1), (xj−1, yi+1)} .
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2. Smoothness indicators analysis

This reminds of the behavior of the indicators in the one-dimensional case, which we
recall do not detect singularities at the edge points. Although it is still not clear to
us which one is the most natural de�nition of regularity around a point (xj , yi) of the
grid, following the discussion in Remark 2.11, we choose the de�nition given by (2.37) as
the correct 2D-extension of the smoothness indicators. Moreover, when we applied the
2D-Adaptive Filtered Scheme, de�ned in Sec. 3.4, to the problem of front propagation
(see Example 6 in Section 3.5), the formula (2.37) gave more stable results, helping
reducing the oscillations in the approximated solution. This and similar considerations,
eventually, led us to use (2.37) in the de�nition of the 2D extension of our scheme.

It is important to point out that we could have chosen many di�erent ways to extend
the indicators in two dimensions, some of which would have been even less expensive.
For example, we could have constructed the polynomials on rectangular stencils overlap-
ping on a whole half of Ii,j , requiring less points and computations (there are only three
polynomials and four integrals), thus losing the symmetry in both directions. Another
possibility would have been to consider triangular stencils and compute again four indi-
cators, thus requiring just six points to construct each polynomial (which total degree
would have been at most 2). Although this last case seems plausible and it is clearly
less expensive than our choice, we do not believe that it would be e�ective, or at least
as e�ective as the one we de�ned, for the detection of discontinuities in the gradient (it
would be interesting to �nd out if it is true).

2.3. Numerical tests

In this section we will present some numerical tests on the smoothness indicators
we have de�ned in Chapter 2. In the �rst part we will focus on the one-dimensional
case, trying on one hand to con�rm the thesis of Proposition 2.1 and on the other to
show the improvements we can get by using the mappings of [HAP05] or higher order
indicators. Then, we will pass to the multidimensional case, aiming to show the same
good properties, even if they are not proven true yet.

2.3.1. One-dimensional examples

In the following examples we will test the properties of the one-dimensional smooth-
ness indicators and, at least in the case of functions with discontinuities on the �rst
derivative, we will consider both the cases in which the singularities fall on points of the
grid or they do not. For all the tests we use the discontinuous function φ (2.29) with
constant M = 0.15.

Test 1. Linear function with more than one singularity

As a �rst example, let us consider the function

f(x) =

{
1
2 − |x| if − 1 ≤ x ≤ 1
0 otherwise ,

44



2.3. Numerical tests

which is a linear function with three points of singularity, located at x = −0.5, 0 and 0.5.
We will consider both the cases in which the singularities fall on a grid point or inside
a cell. More precisely, in the latter we consider a situation in which the singularities
do not fall at the center of a cell, rather inside its �left half�. In this �rst test we just
compare the results obtained with the indicators βCLk and βHJk with r = 2 in their
standard de�nition, without adding any mapping or modi�cation.

Figure 2.2.: Test 1. Linear function with singularities in x = −0.5, 0 and 0.5.

We start testing the indicators in the case in which the singularities fall on grid points.

Figure 2.3.: Test 1. Singularities on grid points. Results obtained using βCL (on the left) and βHJ

(on the right) with r = 2 for ∆x = 0.1 and ∆x = 0.05.
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2. Smoothness indicators analysis

Figure 2.4.: Test 1. Singularities on grid points. Results obtained using βCL (on the left) and βHJ

(on the right) with r = 2 for ∆x = 0.1 and ∆x = 0.05.

From Figure 2.3, we can clearly see that if there is a singularity in the stencil, then
ωCL± = O(1), with the constant depending on the jump of the derivative, while ωHJ± → 0
as ∆x → 0, as we expected. Notice that if the singularity falls on a grid points both
ωHJ± vanish on such points. Consequently, as Figure 2.4 shows, the smoothness indicator
function φ is able to detect all the singularities only using βHJ , while on the other case
it detects only the singularity in the center (by coincidence).
Then, we test the case in which the singularities fall inside an interval Cj = (xj−1, xj).

In particular, we test the case in which they are always located closer to the left node.
This second test case is even more emblematic, in fact in Figure 2.5 we can see the
good behavior of the smoothness indicators obtained using βHJ . We have that if the

singularity is inside
◦
S, then one of the two ωHJ± = O(h4) and the other is equal to

a constant. On the other hand we have that ωCL± = O(1) close to a singularity. As a
consequence, the φCL function is not able to detect any node close to a singularity, while
φHJ selects precisely all the cells which contain a point of singularity (Figure 2.6).
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2.3. Numerical tests

Figure 2.5.: Test 1. Singularities not on grid points. Results obtained using βCL (on the left) and
βHJ (on the right) with r = 2 for ∆x = 0.1 and ∆x = 0.05.

Figure 2.6.: Test 1. Singularities not on grid points. Results obtained using βCL (on the left) and
βHJ (on the right) with r = 2 for ∆x = 0.1 and ∆x = 0.05.
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Test 2. Nonlinear function with singularity

In order to check the behavior of the indicators in both singular and regular regions
at the same time, in the second test we consider the function

f(x) =

{
(1−|x|)2

1.2 if − 1 ≤ x ≤ 1
0 otherwise ,

which has one point of singularity located at x = 0. Notice that this function is C1(R)\
{0}, but the second derivative is discontinuous in x = −1 and x = 1, at the edge of
its support. This will expose a limit of the smoothness indicators βHJ , which we try
to suppress introducing some modi�cations. We will consider both the cases in which
the singularity falls on a grid point or inside a cell. For this test at �rst we compare
again the results obtained with the indicators βCLk and βHJk with r = 2 in their standard
de�nition, then we present some test obtained adding two modi�cations, the mapping
(2.24) for βHJ with r = 2 and the indicators (2.34)-(2.35) using βHJ with r = 3.

Figure 2.7.: Test 2. Nonlinear function with a point of singularity in x = 0.

We begin by testing the indicators when the singularity falls on a grid point. As
Figure 2.8 shows, both indicators are able to detect the singularity in the origin, but
using βHJ we have that ω± = O(1) in x = −1 and x = 1. This is the problem we
mentioned previously, the presence of a discontinuity in the second derivative (which
causes a �jump� between α±0 and α±1 , respectively) a�ects the results by causing the
formation of �uctuations around the optimal value 1

2 , which do not vanish as ∆x→ 0.
For this test, although the two indicators present some problems, the φ function is

able to detect the singularity in the origin and recognize the regularity on the rest of
domain as we can see from Figure 2.9. Notice that these results are rather fortunate, in
fact the �random� O(1) terms (in the origin for βCL and at the support boundary for
βHJ) do not cause any real problem. In the worst case scenario, as the next test will
expose, we could have not detected the singularity in the �rst case and obtained some
false negatives in x = −1 and x = 1 for the latter. Notice that the �rst indicator has a
better behavior in regularity regions, in particular it is not a�ected by the discontinuity
in the second derivative.
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2.3. Numerical tests

Figure 2.8.: Test 2. Singularity on grid point. Results obtained using βCL (on the left) and βHJ (on
the right) with r = 2 for ∆x = 0.1 and ∆x = 0.05.

Figure 2.9.: Test 2. Singularity on grid point. Results obtained using βCL (on the left) and βHJ (on
the right) with r = 2 for ∆x = 0.1 and ∆x = 0.05.
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Then, let us repeat the test in the case in which the singularity falls inside an interval
Cj = (xj−1, xj), again in the situation in which it is located closer to the left node.
This simulation comprehends all the situations we analyzed previously, in fact in Figure
2.10 we can notice on one hand the good behavior of ωCL in regularity regions and
the random jump close to the origin (which is way more evident in the left node of
the singular cell), while ωHJ is able to isolate perfectly the nodes of the singular cell,
although presents oscillations around x = −1 and x = 1, even wider than the previous
test case.
Consequently, the results given by our φ function are a�ected by the problems we just

described. The indicators on the left of Figure 2.11 are able to detect just the left node
of the singular cell (again by coincidence), while for those on the right we notice some
false negatives located at the edge of the support, although the singular cell is precisely
detected.

Figure 2.10.: Test 2. Singularity not on grid point. Results obtained using βCL (on the left) and βHJ

(on the right) with r = 2 for ∆x = 0.1 and ∆x = 0.05.
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Figure 2.11.: Test 2. Singularity not on grid point. Results obtained using βCL (on the left) and βHJ

(on the right) with r = 2 for ∆x = 0.1 and ∆x = 0.05.

We conclude this second test case by trying to solve, at least partially, the problems
just mentioned. We are interested in modifying only the indicators ωHJ , because, as it is
already pretty clear, ωCL are not well suited for this kind of functions. Then we repeat
the test adding the mapping (2.24) to ωHJ with r = 2 and consider also the case of
ωHJ with r = 3, for both the previous test cases but only for the �rst re�nement of the
grid, which is enough to show the improvements. As Figures 2.12 and 2.13 clearly show,
the two modi�cations are able to reduce the random oscillations around x = −1 and
x = 1, then improving the results given by the φ function. It is good to point out that,
as we can see from the right column, even increasing the order of the reconstructions,
the discontinuities in the second derivative still a�ects the results of the indicator ωHJ

(the oscillations again do not vanish as ∆x→ 0, but for brevity we avoided to show the
second re�nement of the grid).
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2. Smoothness indicators analysis

Figure 2.12.: Test 2. Some modi�cations. Results obtained using βHJ with r = 2 and the the mapping
(2.24) (left) and βHJ with r = 3 (right), in the case the singularity falls on a grid point
(top) or does not (bottom) with ∆x = 0.1.

Figure 2.13.: Test 2. Some modi�cations. Results obtained using βHJ with r = 2 and the the mapping
(2.24) (left) and βHJ with r = 3 (right), in the case the singularity falls on a grid point
(top) or does not (bottom) with ∆x = 0.1.
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Test 3. Smooth function

In the last test we focus on the behavior of the indicators in regions of regularity, so
we consider the function

f(x) =

{
(1− x2)

4
if − 1 ≤ x ≤ 1

0 otherwise ,

which is at least C2(R), but it has several points in which the concavity changes. Also
in this test we begin comparing the results obtained with the indicators βCLk and βHJk
with r = 2 in their standard de�nition, then, to reduce the oscillations su�ered by the
latter, we add the same modi�cation we introduced in the previous case.

Figure 2.14.: Test 3. Smooth function.

The di�erence between the two indicators is evident in Figure 2.15, in fact ωHJ± present
wide oscillations around the optimal value, due to the O(h) term in (2.20) and the
changes in the magnitude of the second derivative, which vanish very slowly. On the
other hand, ωCL± presents way smaller oscillations which completely vanish in one mesh
re�nement. Then, as shown in Figure 2.16, the function φ recognizes the whole regularity
of the f just using ωCL, while on the other case it presents several false negatives, even
with the second re�nement. This behavior is not surprising since, as highlighted in
Remark 2.3, the indicators for conservation laws have better accuracy in regions of
regularity when using the same degree r. This is because the CL indicator uses more
information on the function f , especially those coming from the integral of the �rst
derivative of the interpolating polynomials, which can not be used when dealing with
singular functions (in the derivative).
We can try to suppress the oscillations and at same time increase the convergence of

ωHJ± towards the optimal value 1
2 by adding the mapping (2.24) or by increasing the

degree of the polynomials, as shown in Figures 2.17 and 2.18. Using the modi�cations
we are able to obtain good results for φ(ωHJ), in fact although some false negatives are
still visible in the �rst choice of the grid for both indicators, we get the desired behavior
in just one mesh re�nement.
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2. Smoothness indicators analysis

Figure 2.15.: Test 3. Results obtained using βCL (on the left) and βHJ (on the right) with r = 2 for
∆x = 0.1 and ∆x = 0.05.

Figure 2.16.: Test 3. Results obtained using βCL (on the left) and βHJ (on the right) with r = 2 for
∆x = 0.1 and ∆x = 0.05.
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Figure 2.17.: Test 3. Results obtained using βHJ with r = 2 and the the mapping (2.24) (on the left)
and βHJ with r = 3 (on the right), for ∆x = 0.1 and ∆x = 0.05.

Figure 2.18.: Test 3. Results obtained using βHJ with r = 2 and the the mapping (2.24) (on the left)
and βHJ with r = 3 (on the right), for ∆x = 0.1 and ∆x = 0.05.
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2.3.2. Two-dimensional examples

The aim of the section is to investigate the behavior of the 2D smoothness indicators
de�ned in Section 2.2 in various situations, as for the one-dimensional case. In fact, all
the following examples are direct generalizations of those of the previous section. One of
the main topic here is to compare the results obtained using the two very similar formulas
(2.40) and (2.46), trying to show the reasons of our preference in the construction of
the 2D-Adaptive Filtered Scheme in Section 3.4. For better clarity, we denote the two
indicators using the symbols, respectively, βF2D (full) and βP2D (partial). Moreover, in
order to reduce the number of redundant simulations, for both constructions we consider
only the case r = 2 and add directly the mapping (2.24) to reduce the oscillations.
It is noteworthy that an easy and direct 2D-extension of the smoothness indicator

can be obtained by dimensional splitting, that is,

ωsplit = min{ωx, ωy}, (2.47)

where ωx and ωy are the 1D smoothness indicators in each direction, computed �xing
each time the other variable. Notice that for the �genuine� 2D indicator (2.40) we use
polynomials in Q2(R2), while for the splitting indicator only couples of polynomials
in P2(R)). By extensive numerical simulations, which we do not report in the sequel,
but will be most probably present in [FPTb], we observed that the latter approach,
although very simple and fast, has clearly some drawbacks in terms of reliability with
respect to β2D, especially because of the oscillations around the optimal value in regions
of regularity and the problems in localizing singularities which do not fall on grid points.
For all the tests we use the discontinuous function φ (2.29) with constant M = 0.2.

Notice that we slightly increased the value of M with respect to the one-dimensional
case, that is because the indicators seem to give smoother results in regular regions,
having smaller oscillations around the optimal value 0.5.

Test 1. Function with singularities in one point and on a curve

Let us begin these two-dimensional examples by considering the analogous of the �rst
test of the previous section,

f(x, y) =

{
1−

√
x2 + y2 if x2 + y2 ≤ 1

0 otherwise ,

which clearly has a point of singularity located in the origin and a singularity circle at
the base of the cone. We consider both the cases in which the point of singularity in
the origin falls on a grid point or inside a cell (again not in the center but closer to the
south/west node).
First we analyze the case of the central singularity falling on a grid point, using the

contour plots to show precisely the behavior of the indicators with respect to the location
of the singularities. In order to highlight this fact, we plot also the points of singularity,
in green in Figure 2.20 and in red in Figure 2.21.
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Figure 2.19.: Test 1. Function with singularities in a point and on a circle.

Figure 2.20.: Test 1. Singularity on a grid point. Results obtained using βF2D (on the left) and βP2D (on
the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

From Figure 2.20 we can see that both indicators seem to detect the right regions of
singularity and have a very good behavior in regular regions (in light green), although
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ωF2D is evidently more precise. Looking at the neighborhood of the origin we notice
that ωP2D has wide �uctuations only in the diagonal direction, whereas ωF2D has a more
uniform behavior, also around the singularities on the circle.
Consequently, looking at Figure 2.21 in which we have highlighted only the 0.1-level

and the 1-level, we have that φF2D recognizes with extreme precision all the cells and the
grid nodes containing a singularity, while φP2D seems to miss some points of the circle
and localizes the singularity in the center, consisting in this case of just one point. This
behavior is rather typical and will be investigated throughout all the simulations. The
full indicator ωF2D is able to detect singular cells even when the singularity just barely
intersects the considered region, whereas ωP2D recognizes only �strong� singularities, that
are close to a grid point or situated around the center of the considered cell. Moreover,
looking at the behavior of φP2D around the singularity in the center, which enlarges the
detected singular region in the second re�nement, we are led to believe that the results
of φF2D are more precise and, evidently, more stable w.r.t. mesh re�nements.

Figure 2.21.: Test 1. Singularity on a grid point. Results obtained using βF2D (on the left) and βP2D (on
the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

Then, we repeat the test using a grid staggered w.r.t the singularity in the origin.
Figures 2.22 and 2.23 con�rm the impressions given by the previous simulation, in

fact the indicator ωF2D and the function φF2D are able to recognize all the cells containing
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a singularity, in particular those around the circle, which is always inside the 0-level set
of φF2D (Fig. 2.23 on the left), while ωP2D has a rather asymmetrical behavior on the
circle. The portion of the circle in the �South-West� direction is well detected, while
on the other three directions the detected regions degenerate into points (Fig 2.23 on
the right). Notice that in this case is the full indicator that has a particular behavior
around the origin in the second re�nement, spreading the detected singular region in
the direction of the singularity.

Figure 2.22.: Test 1. Singularity inside a cell. Results obtained using βF2D (on the left) and βP2D (on
the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.
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Figure 2.23.: Test 1. Singularity on a grid point. Results obtained using βF2D (on the left) and βP2D (on
the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

Test 2. Nonlinear function with singularity in one point

For the second test we consider a nonlinear function with a singularity in the origin
(again analogous to the 1D-case),

f(x, y) =

{ (
1−

√
x2 + y2

)2
if
√
x2 + y2 ≤ 1

0 otherwise .

We repeat the tests as in the previous example, �rst with the point of singularity on a
grid node, then the staggered grid.
Figures 2.25 and 2.26 (in which we have zoomed the neighborhood of the singularity)

follow the same line of the �rst test, at least regarding the point of singularity in the
origin. In fact, we can observe that ωF2D has again a more uniform behavior with respect
to ωP2D in all directions, whereas the results on the regular regions are practically the
same.
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Figure 2.24.: Test 2. Function with a singularity in the origin.

Figure 2.25.: Test 2. Singularity on a grid point. Results obtained using βF2D (on the left) and βP2D (on
the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.
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Figure 2.26.: Test 2. Singularity on a grid point. Results obtained using βF2D (on the left) and βP2D (on
the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

In the case of the staggered grid, in Figures 2.27 and 2.28, we can observe that, as in
the previous example, ωP2D localizes better the singular regions, while ωF2D again spreads
asymmetrically the region of singularity, although in the correct direction given by the
position of the singularity. This is in fact natural, since from a numerical point of view,
if a grid point is very close to a singularity, then at that point the function behaves
similarly. Consequently, we can consider the function singular even at such points.
Summarizing the previous observations, we can deduce that the formula (2.46) is more

suited to localize singularities with high precision, since the corresponding indicator is
able to select the correct grid points or cells characterized by a strong discontinuity in
the gradient. On the other hand, using the formula (2.40), we are able to detect the
regularity of the function in the whole domain Ii,j = [xj−1, xj+1]× [yi−1, yi+1], boundary
included. It is clear then, since when developing genuinely 2D-numerical schemes we
usually need at least a nine-point stencil Si,j = {xj−1, xj , xj+1} × {yi−1, yi, yi+1}, that
the correct indicators for the construction of our Adaptive Filtered Scheme should be
based on (2.40), instead of (2.46). Moreover, when working with second order schemes
in 2D, as the ones we will de�ne in Sec. 3.4, in order to verify the high-order consistency
property using Taylor expansion, we have to require the regularity of the function in the
whole domain Ii,j .
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Figure 2.27.: Test 2. Singularity inside a cell. Results obtained using βF2D (on the left) and βP2D (on
the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

Test 3. Smooth function

For completeness of presentation, we conclude this section with the analysis of the
behavior in regions of regularity, whence we consider the smooth function

f(x, y) =

{ (
1− (x2 + y2)

)4
if x2 + y2 ≤ 1

0 otherwise .

As we can see from Figure 2.30, both indicators give the desired responses, recognizing
the regularity of the function in the whole domain. Moreover, we can observe that
the results are very similar, presenting the exact same (small) oscillations around the
optimal value, with minor di�erences only at the boundary of the support. We avoid to
present also the results for φ since it is clear that it is a constant function (φ ≡ 1) in all
four cases.
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Figure 2.28.: Test 2. Singularity inside a cell. Results obtained using βF2D (on the left) and βP2D (on
the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

Figure 2.29.: Test 3. Smooth function.
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Figure 2.30.: Test 3. Accuracy in regions of regularity. Results obtained using βF2D (on the left)
and βP2D (on the right), with r = 2 and the mapping (2.24), for ∆x = ∆y = 0.1 and
∆x = ∆y = 0.05.

2.4. Conclusions

We have presented a detailed analysis of the smoothness indicators of [JP00], showing
that they are the correct de�nition to use when working with continuous function with
discontinuous derivative. Consequently, we showed a slightly (but fundamentally) di�er-
ent application in order to analyze the regularity of a function on a symmetric interval,
presenting also various possible constructions. In the second part, we proposed a new
genuinely 2D-extension of the studied approach, giving also a very compact explicit for-
mula for the computation. Moreover, we have tested several di�erent one-dimensional
smoothness indicators, trying to show the properties proved in Proposition 2.1. As we
expected, we observed that the indicators βHJ are the right indicators to localize dis-
continuities in the �rst derivative, although they present some problems in regularity
regions due to direct dependence on the value (and regularity) of the second derivative.
We were able to overcome these limitation, at least partially, adding the mapping 2.24
and increasing the order of the polynomials involved in the computation of the indi-
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cators. We also acknowledged the better behavior of the indicators βCL in regions of
regularity, but also the fact that they are not able to localize the singularities in general
situations. Finally, we have tested the proposed possible approaches to extend the one-
dimensional ideas to the multidimensional case. We were able to infer the good behavior
of both indicators which detect the singularity, localized in one point or on a curve, and
recognize the regions of regularity, although the �full� indicator (2.37) has given more
promising responses in terms of applicability to the adaptive �ltering idea, developed in
Chapter 3.
To summarize the above facts, when working with Hamilton-Jacobi equations, we

advise the use of the βHJ , with r = 2, in one space dimension and βF in the two
dimensional case, both augmented by the mappings (2.24). In this way it is possible
to devise an e�cient and reliable indicator using only �ve grid points (5 × 5 in 2D).
Moreover, in order to avoid any unnecessary complication, we suggest the use of the
discontinuous function φ with M > 0, a small positive constant, say M = 0.15. This is,
in fact, the implementation that we will be using in all the remaining numerical tests of
the thesis.
Future investigation will focus on the improvement of Lemma 2.2, in order to include

also more useful de�nition of the indicators and to help the analysis of the adaptive
�ltering approach. Moreover, we will inspect the possible advantages brought by the
use of the `WENO-Z' procedure, which, as already noted in Remark 2.5, seems to give
more possibilities with respect to the mapping of [HAP05]. Finally, the precise analysis
of the multidimensional indicators, in the aim of Proposition 2.1, is another possible
interesting development.
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In this chapter we will show how to de�ne a class of convergent schemes for �rst order
Hamilton-Jacobi equations, the Adaptive Filtered Schemes. We will start by giving some
hints on the construction of the schemes and then we will specify the hypotheses needed
to ensure their properties. Consequently, we will prove our main result, concerning the
consistency and convergence properties of our class of schemes. Finally, we will generalize
the construction to more space dimensions, de�ning the schemes used in Chapter 4 for
the problem of the segmentation of an image.
The chapter is organized as follows: in Section 3.2 we de�ne our new �ltered scheme

and present in detail all its basic components, then in Section 3.3 we state our conver-
gence result. Section 3.4 is focused on the multidimensional extension of the proposed
constructions and, �nally, in 3.5 we conclude the chapter by presenting some one- and
two-dimensional numerical tests.

3.1. Introduction and �rst de�nitions

The accurate numerical solution of Hamilton-Jacobi (HJ) equations is a challenging
topic of growing importance in many �elds of application, e.g. control theory, KAM
theory, image processing and material science. Due to the lack of regularity of viscosity
solutions, this issue is delicate and the construction of high-order methods is usually
rather di�cult (e.g. ENO, WENO). In recent years a general approach to the construc-
tion of high-order methods using �lters has been proposed by Lions and Souganidis in
[LS95] for a class of implicit schemes and reinterpreted by Augoula and Abgrall ([AA00])
in the context of explicit schemes, leading to the �rst de�nition of ε-monotonicity. More
recently, a general framework for ε-monotone schemes has been introduced by Froese
and Obermann in [FO13], for stationary Hamilton-Jacobi equations, by Obermann and
Salvador in [ObSa15], for particular second order equations and �nally applied to time-
dependent �rst order Hamilton-Jacobi equations by Bokanowski et al. in [BFS16].
Following the approach in [BFS16], we will present a procedure to de�ne a class of

��ltered" schemes for time-dependent Hamilton-Jacobi equation of the form{
vt +H(∇v) = 0, (t, x) ∈ [0, T ]× RN ,
v(0, x) = v0(x), x ∈ RN , (3.1)

where the hamiltonian H and the initial data v0 are Lipschitz continuous functions. It is
well known that with these assumptions we have an existence and uniqueness result for
the viscosity solution (see [FF14] or [B98]). Notice that, at least for the moment, we are
considering the most simple case with the hamiltonian depending only on the gradient of
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the solution. This is in fact a rather usual approach, since the main numerical di�culties
come from the nonlinear dependence of H on ∇v. Moreover, more general cases usually
follow with minor modi�cations. Our aim here is to present a rather simple way to
construct convergent schemes to the viscosity solution v of (3.3) with the property to
be of high-order in the region of regularity.
A typical feature of a �ltered scheme SF is that at the node xj it is a mixture of a

high-order scheme SA and a monotone scheme SM according to a �lter function F . The
scheme is written as

un+1
j ≡ SF (un)j := SM (un)j + ε∆tF

(
SA(un)j − SM (un)j

ε∆t

)
, j ∈ Z, (3.2)

where ε = ε∆t,∆x > 0 is a parameter going to 0 as (∆t,∆x) is going to 0 and does not
depend on n. Filtered schemes are high-order accurate where the solution is smooth,
monotone otherwise, and this feature is crucial to prove a convergence result for viscosity
solutions as in [BFS16].
In this chapter we improve the �ltered scheme (3.2) introducing an adaptive and auto-
matic choice of the parameter ε = εn at every iteration. To this end, we use a smoothness
indicator in order to select the regions where we can compute the regularity threshold
εn. Our smoothness indicators are based on the ideas of Jiang and Peng [JP00], but
other indicators with similar properties can be used.

3.2. A new Adaptive Filtered scheme

In this section we will complete the construction of the one-dimensional scheme, pre-
senting in detail all its basic components. Let us consider the one-dimensional time-
dependent Hamilton-Jacobi equation{

vt +H(vx) = 0, (t, x) ∈ [0, T ]× R
v(0, x) = v0(x), x ∈ R, (3.3)

where the hamiltonian H and the initial data v0 are Lipschitz continuous functions.
Starting from the ideas of [BFS16] on �ltered schemes, we proceed in this study

introducing a procedure to compute the regularity threshold ε in an automatic way, in
order to exploit the local regularity of the solution.
Let us begin de�ning a uniform grid in space xj = j∆x, j ∈ Z, and in time tn =

t0 + n∆t, n ∈ [0, NT ], with (NT − 1)∆t < T ≤ NT∆t. Then, we compute the numerical
approximation unj = u(tn, xj) with the simple formula

un+1
j = SAF (un)j := SM (un)j + φnj ε

n∆tF

(
SA(un)j − SM (un)j

εn∆t

)
, (3.4)

where un+1
j := u(tn+1, xj), S

M and SA are, respectively, the monotone and the high-
order scheme, F is the �lter function needed to switch between the two schemes, εn is
the switching parameter at time tn and φnj is the smoothness indicator function at the
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node xj and time tn, de�ned as shown in Section 2.1.1. More details on the components
of the schemes will be given in the following sections.
Notice that if εn ≡ ε∆x, with ε > 0 and φnj ≡ 1, we get the Filtered Schemes of

[BFS16].

3.2.1. Assumptions on the schemes

In this section we present in detail the basic components of our scheme, which are a
monotone �nite di�erence scheme SM and a high-order scheme SA, possibly unstable.
Let us begin by giving the assumptions on the monotone scheme.

Assumptions on SM .

(M1) The scheme can be written in di�erenced form

un+1
j ≡ SM (un)j := unj −∆t hM (D−unj , D

+unj )

for a function hM (p−, p+), with D±unj := ±unj±1−unj
∆x ;

(M2) hM is a Lipschitz continuous function;

(M3) (Consistency) ∀v, hM (v, v) = H(v);

(M4) (Monotonicity) for any functions u, v,

u ≤ v ⇒ SM (u) ≤ SM (v).

Under assumption (M2), the consistency property (M3) is equivalent to say that
for all functions v ∈ C2([0, T ] × R), there exists a constant CM ≥ 0 independent on
∆ = (∆t,∆x) such that

EM (v)(t, x) :=

∣∣∣∣v(t+ ∆t, x)− SM (v(t, ·))(x)

∆t

∣∣∣∣ ≤ CM (∆t||vtt||∞+∆x||vxx||∞) , (3.5)

where EM is the consistency error. The last relation clearly shows the bound on the
accuracy of the monotone schemes, which are at most �rst order accurate even for
regular solutions.

Remark 3.1. As pointed out in [BFS16], under the Lipschitz assumption (M2) the
monotonicity property (M4) can be restated in terms of some quantities that can be
easily computed. In fact, it is enough to require, for a.e. (p−, p+) ∈ R2,

∂hM

∂p−
(p−, p+) ≥ 0,

∂hM

∂p+
(p−, p+) ≤ 0, (3.6)

and the CFL condition

∆t

∆x

(
∂hM

∂p−
(p−, p+)− ∂hM

∂p+
(p−, p+)

)
≤ 1. (3.7)
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We call the CFL number, dependent on the hamiltonian of the considered problem, the
constant ratio λ := ∆t

∆x such that (3.7) is satis�ed. Notice that working with explicit
�nite di�erence schemes this number can always be computed.

Example 3.1. We give some examples of monotone schemes in di�erenced form which
satisfy (M1)-(M4). Other examples may be found in the pioneering work [CL84] or in
[Sh98].

• For the eikonal equation,
vt + |vx|= 0,

we can use the simple numerical hamiltonian

hM (p−, p+) := max{p−,−p+}. (3.8)

• For general equations, instead, we recall the Central Upwind scheme of [KNP01]

hM (p−, p+) :=
1

a+ − a−
[
a−H(p+)− a+H(p−)− a+a−(p+ − p−)

]
, (3.9)

with a+ = max{Hp(p
−), Hp(p

+), 0} and a− = min{Hp(p
−), Hp(p

+), 0}.

• Another numerical hamiltonian we could use is the Local Lax-Friedrichs hamilto-
nian

hM (p−, p+) := H

(
p− + p+

2

)
− α(p−, p+)

2
(p+ − p−), (3.10)

with
α(p−, p+) = max

p∈I(p−,p+)
|Hp(p)| ,

where I(a, b) represents the interval with endpoints a and b.The scheme is mono-
tone under the restriction λ < maxp|Hp(p)|.

Next, we de�ne the requirements on the high-order scheme.

Assumptions on SA.

(A1) The scheme can be written in di�erenced form

un+1
j = SA(un)j := unj −∆thA(Dk,−uj , . . . , D

−unj , D
+unj , . . . , D

k,+unj ),

for some function hA(p−, p+) (in short), with Dk,±unj := ±unj±k−u
n
j

k∆x ;

(A2) hA is a Lipschitz continuous function;

(A3) (High-order consistency) Fix k ≥ 2 order of the scheme, then for all l = 1, . . . , k
and for all functions v ∈ C l+1, there exists a constant CA,l ≥ 0 such that

EA(v)(t, x) :=

∣∣∣∣v(t+ ∆t, x)− SA(v(t, ·))(x)

∆t

∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞

)
.
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It is interesting to notice that we are not making any assumption on the stability of
the high-order scheme, that is because �ltered schemes are able to stabilize a possibly
unstable scheme.
Before giving some examples of high-order schemes satisfying (A1)-(A3), let us state

an interesting property of the solution v of (3.3) in case of su�cient regularity. Notice
that we are considering the simplest case of H dependent only on the gradient of v.

Lemma 3.2. Let v be the solution of (3.3). Then, if v ∈ Cr
(
Ω(t,x)

)
, r ≥ 2, where Ω(t,x)

is a neighborhood of a point (t, x) ∈ Ω := [0, T ]× R, it holds

∂kv(t, x)

∂tk
= (−1)k

∂k−2

∂xk−2

(
Hk
p (vx(t, x))vxx(t, x)

)
(3.11)

= (−1)k
∂k−2

∂xk−2

(
Hk−1
p (vx(t, x))

∂

∂x
H(vx(t, x))

)
,

for k = 2, . . . , r.

Proof. Let us proceed by induction on 2 ≤ k ≤ r, omitting the dependence on (t, x) to
simplify the notation. For k = 2, we have

vtt =
∂

∂t
(−H(vx)) = −Hp(vx)vxt = −Hp(vx)

∂

∂x
(−H(vx)) = H2

p (vx)vxx,

and the statement holds in this case. Suppose now that (3.11) holds for 2 < k < r − 1,
then we can compute

∂k+1v

∂tk+1
=

∂

∂t

(
∂kv

∂tk

)
=

∂

∂t

(
(−1)k

∂k−2

∂xk−2

(
Hk
p (vx))vxx

))
by inductive hypothesis

= (−1)k
∂k−2

∂xk−2

(
∂

∂t

(
Hk
p (vx))vxx

))
= (−1)k

∂k−2

∂xk−2

(
∂

∂p

(
Hk
p (vx)

)
vxtvxx +Hk

p (vx)vxxt

)
= (−1)k

∂k−2

∂xk−2

(
∂

∂x
(Hk

p (vx))vxt +Hk
p (vx)

∂

∂x
(vxt)

)
= (−1)k

∂k−1

∂xk−1

(
Hk
p (vx)vtx

)
= (−1)k+1 ∂

k−1

∂xk−1

(
Hk+1
p (vx)vxx

)
,

as we wanted.

Let us now consider the value of the solution at v(t + ∆t, x), with ∆t > 0 and its
Taylor expansion of order r ≥ 2 around the point (t, x). Using Lemma 3.2, we can
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rewrite

v(t+ ∆t, x) = v(t, x) + ∆tvt(t, x) +
r∑

k=2

∆tk

k!

∂kv(t, x)

∂tk
+O(∆tr+1)

= v(t, x)−∆tH(vx(t, x))+

+
r∑

k=2

(−∆t)k

k!

∂k−2

∂xk−2

(
Hk
p (vx(t, x))vxx(t, x)

)
+O(∆tr+1), (3.12)

which for r = 2 simply reads

v(t+ ∆t, x) = v(t, x)−∆tH(vx(t, x)) +
∆t2

2
H2
p (vx(t, x))vxx(t, x) +O(∆t3). (3.13)

Remark 3.2. Using this last relation we could show that, assuming (A1)-(A2), the
consistency property is equivalent to require that for l = 2, . . . , k, and for all v ∈ C l+1,

EA(v)(t, x) :=

∣∣∣∣hA(D−v,D+v)−H(vx) +
∆t

2
H2
p (vx)vxx

∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞

)
. (3.14)

Now, let us give some examples of high-order schemes satisfying (A1)-(A3) with l = 2.

Example 3.3. As a �rst example let us consider the class of schemes obtained combining
a high-order in space numerical hamiltonian hA∗ and the second order Runge-Kutta SSP
(or Heun scheme). To explain the simple procedure, let us consider the semidiscrete
problem

ut = hA∗ (D−u(t, x), D+u(t, x))),

where hA∗ , is a high-order in space numerical hamiltonian of second order,

hA∗ (D−vnj , D
+vnj ) = H(vx(tn, xj)) +O(∆x2), (3.15)

such as the simple second order central approximation

hA∗ (D−unj , D
+unj ) = H

(
D−unj +D+unj

2

)
, (3.16)

then to obtain the same accuracy in time we discretize using the second order SSP
Runge-Kutta scheme,{

u∗ = un −∆thA∗ (D−un, D+un)

un+1 = 1
2u

n + 1
2u
∗ − ∆t

2 h
A
∗ (D−u∗, D+u∗).

(3.17)

The scheme can be written in di�erenced form in the sense of (A1)-(3.14) de�ning

hA(D−un, D+unj ) =
1

2

[
hA∗ (D−un, D+un) + hA∗ (D−u∗, D+u∗)

]
. (3.18)
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To verify that the scheme is second order we can use the Taylor expansion to see that

hA∗ (D−v∗j , D
+v∗j ) = H

(
vnx(xj)−∆t

∂

∂x
H(vnx(xj))

)
+O(∆x2)

= H(vnx(xj))−∆t [Hp(v
n
x(xj))v

n
xx(xj)]Hp(v

n
x(xj)) +O(∆x2),

having exploited the relation v∗ = vn−∆t[H(vnx(xj)+O(∆x2)], the Lipschitz continuity
of H and having assumed a CFL condition λ = ∆t

∆x = const; whence, again using the
consistency property (3.15)

hA(D−vn, D+vn) = H(vnx(xj))−
∆t

2
H2
p (vnx(xj))v

n
xx(xj) +O(∆x2),

as we wanted. Notice that through this procedure the stencil of the scheme (3.15)
becomes doubled for hA.
Notice also that this procedure can be easily extended to the case of hamiltonian

dependent on the space variable x.

Example 3.4. Then we propose a couple of numerical hamiltonians hA obtained dis-
cretizing directly the formula (3.13) or, equivalently, obtained from the same Lax-

Wendro� schemes for conservation laws by the substitution unj =
vnj+1−vnj

∆x . The �rst
is the original Lax-Wendro� scheme

hA(D−unj , D
+unj ) = 1

2

{
H
(
D+unj

)
+H

(
D−unj

)
+

−∆t
∆xHp

(
D−unj +D+unj

2

)[
H
(
D+unj

)
−H

(
D−unj

)]}
,

(3.19)
and the second is its variation proposed by Richtmyer,

hA(D−unj , D
+unj ) = H

(
D−unj +D+unj

2
− ∆t

2∆x

[
H
(
D+unj

)
−H

(
D−unj

)])
. (3.20)

Example 3.5. Following the approach of the Lax-Wendro� schemes and making use
of the expansion (3.12), we can easily write higher order schemes, in both space and
time, using very compact stencils. The idea is simply to discretize directly the above
expansion using �nite di�erence approximations of the right order. For example, if we
want to write a fourth order Lax-Wendro� scheme using only �ve points, one of the
possibilities is to de�ne

H1 = H
(
uj−2−8uj−1+8uj+1−uj+2

12∆x

)
,

H2 = H2
p

(
uj−2−8uj−1+8uj+1−uj+2

12∆x

)(
−uj−2+16uj−1−30uj+16uj+1−uj+2

12∆x2

)
,

H3 = 1
2∆x

[
H3
p

(
uj+2−uj

2∆x

)(
uj+2−2uj+1+uj

∆x2

)
−H3

p

(
uj−uj−2

2∆x

)(
uj−2uj−1+uj−2

∆x2

)]
,

H4 = 1
∆x2

[
H4
p

(
uj+2−uj

2∆x

)(
uj+2−2uj+1+uj

∆x2

)
− 2H4

p

(
uj+1−uj−1

2∆x

)(
uj+1−2uj+uj−1

∆x2

)
+H4

p

(
uj−uj−2

2∆x

)(
uj−2uj−1+uj−2

∆x2

)]
,

73



3. Adaptive Filtered Schemes

and then compute

hA(D−unj , D
+unj ) = H1 −

∆t

2

[
H2 −

∆t

3

(
H3 −

∆t

4
H4

)]
. (3.21)

It is straightforward to verify that, if the solution v is regular enough, using Taylor
expansion we have

• H1 = H(vx) +O(∆x4),

• H2 = H2
p (vx)vxx +O(∆x4),

• H3 = ∂
∂x

(
H3
p (vx)vxx

)
+O(∆x2),

• H4 = ∂2

∂x2

(
H4
p (vx)vxx

)
+O(∆x2),

and that the resulting scheme satis�es (A1)-(A3) with l = 4. Notice that to obtain
fourth order it would have been enough to have approximations of one order lower for
H2 and H4, but thanks to the symmetry of the discretizations we can get higher orders
without increasing the number of points in the stencil.

3.2.2. Filter function

In order to couple the schemes and their properties, we need to de�ne a function F ,
called �lter function F, such that

(F1) F (x) ≈ x for |x|≤ 1,

(F2) F (x) = 0 for |x|> 1,

which implies that

• If |SA − SM |≤ ∆tεn and φnj = 1⇒ SAF ≈ SA

• If |SA − SM |> ∆tεn or φnj = 0⇒ SAF = SM .

It is clear that, with just these two requirements, we are left with several possible
choices for F . In the following, we present some examples of �lter functions satisfying
the previous relations, which di�er especially for regularity properties. We number the
functions in order to be clearer in Figure 3.1.

Example 3.6. As a �rst example let us present the �lter function we use in our numer-
ical tests, de�ned in [BFS16] as

F1(x) =

{
x if |x|≤ 1
0 otherwise,

(3.22)

which is clearly discontinuous at x = −1, 1 and satis�es trivially the properties (F1)-
(F2).
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3.2. A new Adaptive Filtered scheme

Example 3.7. As a second possibility we propose the family of regular �lter functions
given by the formula

F (x) = x exp
(
−c(|x|−a)b

)
,

for appropriate choices of the parameters a, b and c.

Remark 3.3. We give some hints on how to chose the parameters. We notice that

• a controls the amplitude of the transition phase around 1 and −1;

• b controls the slope of the transition phase;

• c can be used to make the exponent approach 0 faster when x ≈ 1,−1.

In particular, in Figure 3.1 we represent two choices for the parameters,

F2(x) = x exp
(
−4(|x|−0.25)20

)
(a = 0.25, b = 20, c = 4) (3.23)

and a variant graphically more similar to F1,

F3(x) = x exp

(
−(|x|−0.01)50

100

)
(a = 0.01, b = 50, c = 0.01). (3.24)

These functions are very regular (F ∈ C∞) and developing with Taylor we can see that
they satisfy (F1)-(F2).

Example 3.8. As last examples let us consider some functions which satisfy (F1)-(F2)
and are continuous, but are not necessarily di�erentiable. First, let us consider the
family of functions

F (x) =

{
x exp

(
− a
b−|x|

)
if |x|≤ b

0 otherwise,
(3.25)

varying the parameters a and b. We propose the choice

F4(x) =

{
x exp

(
− 0.001

1.05−|x|

)
if |x|≤ 1.05

0 otherwise,
(3.26)

where we chose the value b = 1.05 in order to make the function approach better the
value 1 for x = −1, 1. Finally, we recall also the �lter de�ned in [ObSa15] as

F5(x) =


x |x|≤ 1
0 |x|≥ 2
−x+ 2 1 ≤ x ≤ 2
−x− 2 −2 ≤ x ≤ −1.

(3.27)

After extensive computations, we noticed that the results obtained with our AF
scheme are not sensitive with respect to changes in regularity of the �lter function,
even with very large transition phases. That is probably because, as we will see in the
next section, the parameter εn is designed to obtain the property (F1) whenever possi-
ble, then in regions of regularity of the solution the argument of F lies most probably in
[−1, 1], where all the �lter functions are practically the same. Some major di�erences,
instead, can be seen in the results obtained with the SF scheme, for which the threshold
ε is �xed at the beginning.
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3. Adaptive Filtered Schemes

Figure 3.1.: Possible choices for the �lter function F .

3.2.3. Tuning of the parameter εn

The last step is to show how to compute the switching parameter εn, which is the real
core of the adaptivity of our scheme. Then, if we want the scheme (3.4) to switch to the
high-order scheme when some regularity is detected, we have to choose εn such that∣∣∣∣SA(vn)j − SM (vn)j

εn∆t

∣∣∣∣ =

∣∣∣∣hA(·)− hM (·)
εn

∣∣∣∣ ≤ 1, for (∆t,∆x)→ 0, (3.28)

in the region of regularity at time tn, that is

Rn =
{
xj : φnj = 1

}
. (3.29)

For the de�nition of a function φ such that

φnj =

{
1 if the solution un is regular in Ij ,
0 if Ij contains a point of singularity,

(3.30)

we refer to Section 2.1.1, where we show how it can be computed. To be precise, following
the discussion in Remark 2.7, in the actual formulation we are forced to add a �technical�
assumption in order to justify the proof of Proposition 3.9. In the end, we de�ne the
region of regularity Rn detected by the function φ̃ as the set

Rn =
{
j ∈ Z : φ̃(ωnj ) = 1

}
, with φ̃nj =

{
1 if φ(ωnj ) = 1 and |D2unj |< B,

0 otherwise,
(3.31)

for some constant B � 0. Notice that with this de�nition, which, we recall, is needed
only for theoretical reasons, it is not necessary to require M(∆x) → 0, then we can
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3.3. Convergence result

simply choose a constant M > 0 small enough (e.g. M = 0.15), as we will do in the
numerical tests of Section 3.5.
Therefore, computing directly by Taylor expansions, we have for the monotone scheme

hM (D−vnj , D
+vnj ) = H(vnx(xj)) +

∆x

2
vnxx(xj)

(
∂p+h

M
j − ∂p−hMj

)
+O(∆x2),

where we used the relation

D±vnj = vnx(xj)±
∆x

2
vnxx(xj) +O(∆x2),

while for the high-order scheme, by the consistency property,

hA(D−vnj , D
+vnj ) = H(vnx(xj))−

∆t

2
H2
p (vnx)vxx +O(∆t2) +O(∆x2).

Whence, from (3.28) we obtain

εn ≥
∣∣∣∣∆x2 vnxx

(
∂p+h

M
j − ∂p−hMj + λH2

p (vnx)
)

+O(∆t2) +O(∆x2)

∣∣∣∣ . (3.32)

Finally, we use a numerical approximation of the lower bound on the right hand side of
the previous inequality to obtain the following formula for εn,

εn = max
xj∈Rn

K
∣∣H (Dunj

)
−H

(
Dunj − λ

[
H(D+unj )−H(D−unj )

])
+
[
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

]
−
[
hM (D+unj , D unj )− hM (D−unj , D unj )

]∣∣ , (3.33)

withK > 1
2 , λ := ∆t

∆x andDunj :=
unj+1−unj−1

2∆x . Notice that if we assume enough regularity
on the solution v, then (3.33) gives a second order approximation of the right hand side
of (3.32) multiplied by 2K.
It is worth to mention that, using very similar computations, in [BFS16] the authors

propose a �simpli�ed� approach to compute the parameter ε = c1∆x, where the constant
c1 has to chosen roughly such that

c1 ≥
1

2
||vxx||∞

∣∣∣∣∣∣∣∣∂hM∂p+
(vx, vx)− ∂hM

∂p−
(vx, vx)

∣∣∣∣∣∣∣∣
∞
, (3.34)

with the range of values of vx and vxx to be estimated in terms of the values of (v0)x
and (v0)xx and the hamiltonian function H.

3.3. Convergence result

We are now able to present our main result, but before doing so let us state a useful
proposition about the numerical solution and the parameter εn.
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Proposition 3.9. Let un be the solution obtained by the scheme (3.4)-(3.33) and assume
that v0 and H are Lipschitz continuous functions. Assume also that Rn is de�ned by
(3.31), with φ given by (2.29), and that λ = ∆t/∆x = constant. Then, εn is well
de�ned and un satis�es, for any i and j, the discrete Lipschitz estimate

|uni − unj |
∆x

≤ L

for some constant L > 0, for 0 ≤ n ≤ T/∆t. Moreover, there exists a constant C > 0
such that

εn ≤ C∆x.

Proof. Before proceeding with the proof let us notice that, if un satis�es (3.9) for a
constant Ln > 0, calling for brevity

D∗uj := Dunj − λ
[
H(D+unj )−H(D−unj )

]
,

we have that

εn = max
xj∈Rn

K
∣∣H (Dunj

)
−H (D∗uj) +

[
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

]
−
[
hM (D+unj , D unj )− hM (D−unj , D unj )

]∣∣
= max

xj∈Rn
K

∣∣∣∣∣∣
∆t

H
(
Dunj

)
−H (D∗uj)

Dunj −D∗uj

(H(D+unj )−H(D−unj )

D+unj −D−unj

)

+ ∆x

(
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

D+unj −D−unj

)

−∆x

(
hM (D+unj , D unj )− hM (D−unj , D unj )

D+unj −D−unj

)](
D+unj −D−unj

∆x

)∣∣∣∣∣
= max

xj∈Rn
K

∣∣∣∣∣∣
∆t

H
(
Dunj

)
−H (D∗uj)

Dunj −D∗uj

(H(D+unj )−H(D−unj )

D+unj −D−unj

)

+ ∆x

(
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

D+unj −D−unj

)

−∆x

(
hM (D+unj , D unj )− hM (D−unj , D unj )

D+unj −D−unj

)] √
β+

0 [unj ]

∆x

∣∣∣∣∣∣
≤ K |(∆tLH2LH + 2∆xLhM )B|
= KB (λLH2LH + 2LhM ) ∆x, (3.35)

where LH and LH2 are the local Lipschitz constant of H on [−Ln, Ln] and [−2Ln −
∆tLHB, 2Ln + ∆tLHB], respectively, and Ln is the Lipschitz constant of un. Notice
that if the function H is globally Lipschitz continuous we have the same estimate with
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LH2 = LH , where now LH is the global Lipschitz constant of H. Notice also that we
have used the fact that, by de�nition,√

β+
0 [unj ]

∆x
=
D+unj −D−unj

∆x
= D2unj ,

and that xj ∈ Rn ⇒ D2unj < B, for some constant B > 0 independent on n, by
Lemma 2.2 or by the de�nition of Rn (3.31). Then, the last statement would follow
with C = KB(λL2

H + 2LhM ).
Let us now prove the main statement proceeding, as usual, by induction on n ≥ 0 and

noticing that it is su�cient to prove (3.9) for i and j such that i = j ± 1.
For n = 0, as we take u0

j = v0(xj) for j ∈ Z, we have that (3.9) is satis�ed by the
Lipschitz continuity assumption on v0, with constant L0.
Now, assuming that (3.9) is satis�ed for n− 1 > 0 so that εk for k = 0, . . . , n− 1 are

bounded by (3.35), we can compute

|uni − unj |
∆x

=
1

∆x

∣∣SM (un−1)i + φiε
n−1∆tF (·)i − SM (un−1)j − φjεn−1∆tF (·)j

∣∣
≤ 1

∆x

(
|SM (un−1)i − SM (un−1)j |+εn−1∆t|φiF (·)i − φjF (·)j |

)
≤
|un−1
i − un−1

j |
∆x

+
2∆t

∆x
εn−1

then, iterating back and using the same arguments,

|uni − unj |
∆x

≤
|un−1
i − un−1

j |
∆x

+ 2∆tC ≤ . . .

≤
|u1
i − u1

j |
∆x

+ 2(n− 1)∆tC

≤
|u0
i − u0

j |
∆x

+ 2n∆tC

≤ L0 + 2
T

∆t
∆tC = L,

where C is well de�ned by (3.35). Notice that we have used the monotonicity of SM

and the fact that |F |≤ 1.

Therefore, it is clear that by construction our scheme is ε-monotone, in the sense of
the following

De�nition 3.10 (ε-monotonicity). A numerical scheme S is ε-monotone if for any
functions u, v,

u ≤ v ⇒ S(u) ≤ S(v) + Cε∆t,

where C is constant and ε→ 0 as ∆ = (∆t,∆x)→ 0.
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Finally, we conclude this section giving our convergence result for the Adaptive Fil-
tered Schemes.

Theorem 3.11. Let the assumptions on SM and SA be satis�ed. Assume that v0 and
H are Lipschitz continuous functions, un+1

j is computed by (3.4)-(3.33), with K > 1/2

and λ = ∆t
∆x , a constant such that (3.7) is satis�ed. Let us denote by vnj := v(tn, xj) the

values of the viscosity solution on the nodes of the grid. Then,

i) the AF scheme (3.4) satis�es Crandall-Lions estimate [CL84]

||un − vn||∞≤ C1

√
∆x, ∀ n = 0, . . . , NT ,

for some constant C1 > 0 independent of ∆x.

ii) (First order convergence for regular solutions) Moreover, if v ∈ C2([0, T ]×R), then

||un − vn||∞≤ C2∆x, ∀ n = 0, . . . , NT ,

for some constant C2 > 0 independent of ∆x.

iii) (High-order local consistency) Let k ≥ 2 be the order of the scheme SA. If v ∈ C l+1,
with 1 ≤ l ≤ k, in some neighborhood of a point (t, x) ∈ [0, T ]× R, then

EAF (vn)j = EA(vn)j = O(∆xl) +O(∆tl)

for tn − t, xj − x, ∆t, ∆x su�ciently small.

Proof. i) Let us proceed as has been done in [BFS16] de�ning wn+1
j = SM (wn)j , the

solution computed with the monotone scheme alone with w0
j = v0(xj). Then by de�ni-

tion,

un+1
j − wn+1

j = SM (un)j − SM (wn)j + φjε
n∆tF

(
SA(un)j − SM (un)j

εn∆t

)
, (3.36)

whence, exploiting the nonexpansivity in L∞ of SM , the de�nition of εn and that |F |≤ 1,

max
j
|un+1
j − wn+1

j |≤ max
j
|unj − wnj |+εn∆t. (3.37)

Then, proceeding recursively on n ≤ NT and recalling that by Proposition 3.9 there
exists a constant C > 0 such that εn ≤ C∆x := ε for each n,

max
j
|unj − wnj |≤

n−1∑
k=0

εk∆t ≤ nε∆t ≤ Tε. (3.38)

At this point, by the triangular inequality

max
j
|un+1
j − vn+1

j |≤ max
j
|un+1
j − wn+1

j |+ max
j
|wn+1
j − vn+1

j |, (3.39)
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whence we have that

max
j
|un+1
j − vn+1

j |≤ max
j
|wnj − vnj |+εT ≤ (CCL + CT )

√
∆x, (3.40)

with CCL > 0 given by the Crandall-Lions estimate for SM .
ii) Let us recall that by (3.5), in the case of v ∈ C2 the consistency error for the
monotone scheme is such that EM (vn)j ≤ CM (∆t+ ∆x). Then we can compute

|un+1
j − vn+1

j | = |SM (un)j + φjε
n∆tF (·)− vn+1

j |

≤ |SM (un)j − SM (vn)j |+|SM (vn)j − vn+1
j |+εn∆t

≤ ||un − vn||∞+∆t (EM (vn) + εn) ,

whence, by recursion on n ≤ NT and recalling what we have done in the previous point,

||un − vn||∞≤ ||u0 − v0||∞+T

(
max

k=0,...,n−1
||EM (vk)||∞+ε

)
. (3.41)

To conclude this proof what is left is to use the estimate on EM and Proposition 3.9.

iii) In order to show that SAF (vn)j = SA(vn)j for ∆t e ∆x small enough it is su�cient
to prove that

|SA(vn)j − SM (vn)j |
εn∆t

≤ 1, for (∆t,∆x)→ 0, (3.42)

which follows directly from the computation we have done in section 3.2.3 for the tuning
of the parameter εn and the de�nition of the regularity set Rn (3.31), with φ given by
(2.29). In fact, if we plug (3.33) inside the previous inequality, we can deduce that

|SA(vn)j − SM (vn)j |
εn∆t

≤ 1

2K
+O(∆x) +O(∆t),

which, using that K > 1/2 by assumption, leads to the thesis as (∆t,∆x)→ 0. Notice
that we have used the property εn = O(∆x) and exploited the CFL condition.

Remark 3.4. Notice that the assumption M(∆x) = 1
2 − C∆x, for some constant

C > 0 such that M(∆x) > 0, needed to apply Lemma 2.2, may give some problems
in the proof of third assertion of the previous theorem. In fact, applying the standard
de�nition (2.20) to the viscosity solution v at a point xj and recalling the computations
that led to (2.18), we get that

ω±j =
1

2
∓ 4∆x

v′′j v
′′′
j

(v′′j )2 + σ
+O(∆x2).

Consequently, in order to be sure that if v ∈ C3, then j ∈ R, we have to choose the
constant C such that

C ≥

∣∣∣∣∣ v′′j v
′′′
j

(v′′j )2 + σ

∣∣∣∣∣ ,
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3. Adaptive Filtered Schemes

or require additional smoothness assumptions on v, for example v′′′j � v′′j . This in
fact poses a strong limitation on the applicability of Lemma 2.2, at least in the present
formulation. It would be interesting to see if a similar argument can be applied using
indicators with r = 3 or the `WENO-Z' procedure, which would de�nitely solve the
previous problem. This issue will be object of future investigations.

3.4. Adaptive Filtered Scheme in 2D

The aim of this section is to show how to properly generalize the ideas presented in the
previous section in order to solve problems in more space dimensions. To keep the ideas
as clear as possible we will focus on the two dimensional case and, again, we consider the
simplest situation in which the hamiltonian depends only on the gradient of the solution,
with more general situations following with minor modi�cations. In particular, we give
some details on how to modify the formulas in the case of hamiltonians depending also
on the space variables, which will be used in Chapter 4.
Let us begin by considering the problem{

vt +H(vx, vy) = 0, (t, x, y) ∈ [0, T ]× R2,
v(0, x, y) = v0(x, y), x ∈ R2,

(3.43)

where the hamiltonian H and the initial data v0 are Lipschitz continuous functions, as
usual, in order to ensure the existence and uniqueness of the viscosity solution. Notice
that, if we consider problems involving hamiltonians depending also on the position
(x, y) or the solution v (H(x, y, v,∇v)), clearly we have to make more assumptions on
the behavior of H w.r.t. the other variables. For a detailed presentation of uniqueness
and existence results in more general situations we refer the reader to [CL83] and [B98].
Now, let us de�ne a uniform grid in space (xj , yi) = (j∆x, i∆y), j,i ∈ Z, and in time

tn = t0 + n∆t, n ∈ [0, NT ], with (NT − 1)∆t < T ≤ NT∆t. Then, we compute the
numerical approximation uni,j = u(tn, xj , yi) with the simple formula

un+1
i,j = SAF (un)i,j := SM (un)i,j + φni,jε

n∆tF

(
SA(un)i,j − SM (un)i,j

εn∆t

)
, (3.44)

where SM and SA are respectively the monotone and the high-order scheme, now de-
pendent on both space variables. F is the same �lter function of the one-dimensional
version, needed to switch between the two schemes, εn is the switching parameter at
time tn and φni,j is the smoothness indicator function at the node (xj , yi) and time tn,
based on the 2D-smoothness indicators de�ned in Section 2.2.

3.4.1. Assumptions on the schemes

For convenience of presentation in this section we recall the assumptions we have to
require on the composing schemes SM and SA, which are clearly direct generalizations
in two space dimensions of those presented in Section 3.2.1. Let us begin by restating
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3.4. Adaptive Filtered Scheme in 2D

the assumptions on the monotone scheme.

Assumptions on SM .

(M1) The scheme can be written in di�erenced form

un+1
i,j ≡ S

M (un)i,j := uni,j −∆t hM
(
D−x u

n
i,j , D

+
x u

n
i,j ;D

−
y u

n
i,j , D

+
y u

n
i,j

)
for a function hM (p−, p+; q−, q+), with D±x u

n
i,j := ±uni,j±1−uni,j

∆x and D±y u
n
i,j :=

±uni±1,j−uni,j
∆y ;

(M2) hM is a Lipschitz continuous function;

(M3) (Consistency) ∀u, v, hM (u, u, v, v) = H(u, v);

(M4) (Monotonicity) for any functions u, v,

u ≤ v ⇒ SM (u) ≤ SM (v).

Under assumption (M2), the consistency property (M3) is equivalent to say that
for all functions v ∈ C2([0, T ] × R), there exists a constant CM ≥ 0 independent on
∆ = (∆t,∆x) such that

EM (v)(t, x, y) :=

∣∣∣∣v(t+ ∆t, x, y)− SM (v(t, ·, ·))(x, y)

∆t

∣∣∣∣
≤ CM (∆t||vtt||∞+∆x||vxx||∞+∆y||vyy||∞) , (3.45)

where EM is the consistency error. The last relation highlights the well-known �rst order
bound on the accuracy of the monotone schemes for regular solutions.

Remark 3.5. Using the same arguments of the one-dimensional case it can be easily
shown that, under the Lipschitz assumption (M2), the monotonicity property (M4) is
equivalent to require, for a.e. (p−, p+) ∈ R2,

∂hM

∂p−
≥ 0,

∂hM

∂p+
≤ 0,

∂hM

∂q−
≥ 0,

∂hM

∂q+
≤ 0, (3.46)

and the CFL condition

∆t

∆x

(
∂hM

∂p−
− ∂hM

∂p+

)
+

∆t

∆y

(
∂hM

∂q−
− ∂hM

∂q+

)
≤ 1. (3.47)

Analogously, we de�ne the constant ratios λz := ∆t
∆z , for z = x, y such that (3.47) is

satis�ed and call the CFL number the maximum λ = max{λx, λy}.

Example 3.12. In this example we recall a couple of monotone schemes in di�erenced
form satisfying (M1)-(M4), which will be used in the numerical tests.
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• For the eikonal equation,

vt +
√
v2
x + v2

y = 0,

we can use the simple numerical hamiltonian

hM (p−, p+; q−, q+) :=

√
max{p−,−p+, 0}2 + max{q−,−q+, 0}2. (3.48)

• For general equations, instead, we can use the 2D-version of the Local Lax-Friedrichs
hamiltonian

hM (p−, p+; q−, q+) :=H

(
p+ + p−

2
,
q+ + q−

2

)
− αx(p−, p+)

2
(p+ − p−)− αy(q

−, q+)

2
(q+ − q−), (3.49)

with

αx(p−, p+) = max
p∈I(p−,p+)

|Hp(p, q)| , αy(q
−, q+) = max

q∈I(q−,q+)
|Hq(p, q)| ,

where the maximum are computed uniformly in q and p, respectively, and I(a, b)
represents the interval with endpoints a and b. The scheme is monotone under the
restrictions λx ≤ max|Hp|−1 and λy ≤ max |Hq|−1.

• Another interesting (and easy to compute) numerical hamiltonian we would like
to use is the 2D-extension of the Central Upwind scheme of [KNP01]

hM (p−, p+; q−, q+) :=
a−b−H(p+, q+)− a−b+H(p+, q−)

(a+ − a−)(b+ − b−)

+
a+b+H(p−, q−)− a+b− −H(p−, q+)

(a+ − a−)(b+ − b−)

+
a+a−

a+ − a−
(p+ − p−) +

b+b−

b+ − b−
(q+ − q−), (3.50)

with a± and b± de�ned as the positive part of the maximum (superscript �+�) and
the negative part of the minimum (superscript �-�), respectively, of Hp and Hq in
the cell Ci,j = [xj− 1

2
, xj+ 1

2
]× [yi− 1

2
, yi+ 1

2
]. These quantities can be estimated as

a+ = max± {Hp(p
±, q±), 0} , a− = min± {Hp(p

±, q±), 0} ,
b+ = max± {Hq(p

±, q±), 0} , b− = min± {Hq(p
±, q±), 0} .

Unfortunately, at least to our knowledge, this numerical hamiltonian has still to
be proven monotone, whence we avoid to use it in the numerical tests.

Remark 3.6. It is straightforward to adapt the monotone schemes de�ned in the pre-
vious example in order to handle hamiltonian dependent also on the space variables.
In fact, it is enough to consider such dependence of H, Hp and Hq in the formulas for
hM (xj , yi, p

−, p+; q−, q+).
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3.4. Adaptive Filtered Scheme in 2D

Next, we recall the assumptions on the high-order scheme.

Assumptions on SA.

(A1) The scheme can be written in di�erenced form

un+1
j = SA(un)j := unj −∆thA

(
Dk,−
x ui,j , . . . , D

−
x u

n
i,j , D

+
x u

n
i,j , . . . , D

k,+
x uni,j ;

Dk,−
y ui,j , . . . , D

−
y u

n
i,j , D

+
y u

n
i,j , . . . , D

k,+
y uni,j

)
,

(3.51)

for some function hA(p−, p+; q−, q+) (in short), with Dk,±
x uni,j := ±uni,j±k−u

n
i,j

k∆x and

Dk,±
y uni,j := ±uni±k,j−u

n
i,j

k∆y ;

(A2) hA is a Lipschitz continuous function.

(A3) (High-order consistency) Fix k ≥ 2 order of the scheme (for all the variables), then
for all l = 1, . . . , k and for all functions v ∈ C l+1, there exists a constant CA,l ≥ 0
such that

EA(v)(t, x, y) :=

∣∣∣∣v(t+ ∆t, x, y)− SA(v(t, ·))(x, y)

∆t

∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞+∆yl||∂l+1

y v||∞
)
.

Again, it is worth to notice that no further hypothesis are needed, neither for stability
reasons.
In order to restate the consistency property in a more useful form, we �rst compute

the second order term of the expansion

v(t+ ∆t, x, y) = v(t, x, y) + ∆tvt(t, x, y) +
∆t2

2
vtt(t, x, y) +O

(
∆t3

)
, (3.52)

which gives, dropping the dependance on (x, y) for brevity,

vtt =
∂

∂t
(−H(vx, vy))

= −Hp(vx, vy)vxt −Hq(vx, vy)vyt

= Hp(vx, vy)
∂

∂x
(H(vx, vy)) +Hq(vx, vy)

∂

∂y
(H(vx, vy))

= H2
p (vx, vy)vxx +H2

q (vx, vy)vyy + 2Hp(vx, vy)Hq(vx, vy)vxy, (3.53)

then it is straightforward, assuming (A1)-(A2), to write the consistency property in
terms of the numerical hamiltonian hA, that is
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3. Adaptive Filtered Schemes

(A3′) (High-order consistency) Fix k ≥ 2 order of the scheme (for all the variables),
then for all l = 1, . . . , k and for all functions v ∈ C l+1, there exists a constant
CA,l ≥ 0 such that

EA(v)(t, x, y) :=
∣∣hA(D−x v,D

+
x v;D−y v,D

+
y v)−H(vx, vy)

+
∆t

2

[
Hp(vx, vy)

∂

∂x
(H(vx, vy)) +Hq(vx, vy)

∂

∂y
(H(vx, vy))

]∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞+∆yl||∂l+1

y v||∞
)
. (3.54)

In the following examples we present some simple high-order schemes satisfying (A1)-
(A3) with l = 2, dropping the dependence on (i, j) (and also on n) in order to lighten
the notations.

Example 3.13. Analogously to the one-dimensional case, the easiest way to construct
an high-order scheme satisfying (A1)-(A3) with l = 2, is to consider a second order in
space numerical hamiltonian hA∗

hA∗ (D−x v,D
+
x v;D−y v,D

+
y v) = H(vx, vy) +O

(
∆x2

)
+O

(
∆y2

)
, (3.55)

such as the simple second order Centered approximation

hA∗ (D−x u,D
+
x u;D−y u,D

+
y u) = H

(
D−x u+D+

x u

2
,
D−y u+D+

y u

2

)
, (3.56)

and combine it with the second order Runge-Kutta SSP (or Heun scheme) (3.17).

Example 3.14. In this example we propose a series of numerical hamiltonians hA

obtained discretizing directly the formula (3.53).

• The �rst is the most direct and simple discretization, to which we will refer as the
Lax-Wendro� scheme

hA(D±x u;D±y u) =H(Dxu,Dyu)− ∆t

2

[
H2
p (Dxu,Dyu)D2

xu +

+H2
q (Dxu,Dyu)D2

yu+ 2Hp(Dxu,Dyu)Hq(Dxu,Dyu)D2
xyu
]
,

(3.57)

where D±z u, Dzu, D
2
zu are, respectively, the usual one-sided and centered one-

dimensional �nite di�erence approximations of the �rst and second derivative in
the z-direction, while for the mixed derivative we use

D2
xyui,j =

ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4∆x∆y
.
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• Another possibility, which is more closely related to the one-dimensional Lax-
Wendro� scheme (3.19), is the following

hA(D±x u;D±y u) = H(Dxu,Dyu)− ∆t

2∆x
Hp(Dxu,Dyu)H∗x−

∆t

2∆y
Hq(Dxu,Dyu)H∗y ,

(3.58)
where we have de�ned

H∗x =H

(
ui,j+1 − ui,j

∆x
,
ui+1,j+1 − ui−1,j+1 + ui+1,j − ui−1,j

4∆y

)
−H

(
ui,j − ui,j−1

∆x
,
ui−1,j − ui−1,j + ui+1,j−1 − ui−1,j−1

4∆y

)
(3.59)

and

H∗y =H

(
ui+1,j+1 − ui+1,j−1 + ui,j+1 − ui,j−1

4∆x
,
ui+1,j − ui,j

∆y

)
−H

(
ui,j+1 − ui,j−1 + ui−1,j+1 − ui−1,j−1

4∆x
,
ui−1,j − ui,j

∆y

)
.

(3.60)

This can be seen as a discretization of the third relation in (3.53).

• The last example we propose is the Richtmyer form,

hA(D±x u;D±y u) = H

(
Dxu−

∆t

2∆x
H∗x, Dyu−

∆t

2∆y
H∗y

)
, (3.61)

which, in particular, does not require any computation of Hp or Hq.

Example 3.15. Finally, we would like to show a simple way to de�ne a scheme satisfying
(A1)-(A3) with l = 4, reminding that, in our approach, the high-order scheme has
no need to be stable, in any sense. Then, generalizing the construction of Example
3.13, we can de�ne a fourth-order scheme by combining the simple fourth-order central
approximation

hA∗ (D−x u,D
+
x u;D−y u,D

+
y u) = H

(
D∗xu,D

∗
yu
)
, (3.62)

where the approximated partial derivative are computed as

D∗xu =
ui,j−2 − 8ui,j−1 + 8ui,j+1 − ui,j+2

12∆x
, D∗yu =

ui−2,j − 8ui−1,j + 8ui+1,j − ui+2,j

12∆y
,

with the classic fourth-order Runke-Kutta scheme

u(1) = un + ∆t
2 h

A
∗ (D±un)

u(2) = un + ∆t
2 h

A
∗
(
D±u(1)

)
u(3) = un + ∆thA∗

(
D±u(2)

)
un+1 = un + ∆t

6

[
hA∗ (D±un) + 2hA∗

(
D±u(1)

)
+ 2hA∗

(
D±u(2)

)
+ hA∗

(
D±u(3)

)]
= 1

3

[
∆t
2

(
hA∗ (D±un) + hA∗

(
D±u(3)

))
+ 2u(2) + u(3)

]
.

(3.63)
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Notice that, di�erently from the usual approach, used when working with Hamilton-
Jacobi equations (e.g. WENO schemes of higher order), we do not require the time
discretization to be strong stability preserving, thus we can use the more e�cient formula
(3.63), which is also easier to implement w.r.t. the SSP version (see [Sh98] for more
details). It is worth to point out that, di�erently from the Lax-Wendro� construction
(3.21), the stencil of the scheme is not very compact, requiring 17× 17 points in total.
Further investigation will focus on the extension of Lemma 3.2 to the multidimensional
case, which would most probably lead to the de�nition of fourth-order schemes with
compact stencils of 5× 5 points.

3.4.2. Tuning of εn

Let us explain how to generalize the formulas to compute the switching parameter
εn.Then, if we want the scheme (3.44) to switch to the high-order scheme when some
regularity is detected, we have to choose εn such that∣∣∣∣SA(vn)i,j − SM (vn)i,j

εn∆t

∣∣∣∣ =

∣∣∣∣hA(·; ·)− hM (·; ·)
εn

∣∣∣∣ ≤ 1, for (∆t,∆x,∆y)→ 0, (3.64)

in the region of regularity at time tn, that is Rn =
{

(xj , yi) : φni,j = 1
}
. We recall that,

in Section 2.2, we have de�ned a function φ such that

φni,j =

{
1 if the solution un is regular in Ii,j ,
0 if Ii,j contains a point of singularity,

(3.65)

with Ii,j = (xj−1, xj+1)× (yi−1, yi+1).
Following the same computations of the one-dimensional case, we proceed by Taylor

expansions, then for the monotone scheme we have

hM (D−x v
n, D+

x v
n;D−y v

n, D+
y v

n) =H(vnx , v
n
y ) +

∆x

2
vnxx
(
∂p+h

M
i,j − ∂p−hMi,j

)
+

∆y

2
vnyy
(
∂q+h

M
i,j − ∂q−hMi,j

) (
∆x2

)
+O

(
∆y2

)
,

while for the high-order scheme, by the consistency property,

hA(D±x v
n
i,j ;D

±
y v

n
i,j) =H(vnx , v

n
y )− ∆t

2

[
H2
p (vnx , v

n
y )vnxx +H2

q (vnx , v
n
y )vnyy

+2Hp(v
n
x , v

n
y )Hq(v

n
x , v

n
y )vxy

]
+O

(
∆t2

)
+O

(
∆x2

)
+O

(
∆y2

)
.

Whence, from (3.64) we obtain

εn ≥
∣∣∣∆x

2
vnxx
(
∂p+h

M − ∂p−hM + λxH
2
p (vnx , v

n
y )
)

+
∆y

2
vnyy
(
∂q+h

M − ∂q−hM + λyH
2
q (vnx , v

n
y )
)

+ ∆tvnxyHp(v
n
x , v

n
y )Hq(v

n
x , v

n
y ) +O(∆t2) +O(∆x2) +O(∆y2)

∣∣∣,
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that has to be satis�ed in the region of regularity at time tn, detected by the smoothness
indicator function φ, that is

Rn =
{

(xj , yi) : φni,j = 1
}
. (3.66)

Then, we use a numerical approximation of the lower bound on the right hand side of
the previous inequality to obtain the formula for εn. In order to devise a simple formula,
we introduce the notation

h̃Mp+ = hM
(
Dxu

n, D+
x u

n, Dyu
n, Dyu

n
)
− hM

(
Dxu

n, D−x u
n, Dyu

n, Dyu
n
)
,

with the other cases following analogously. Finally, the simplest discretization, which
we use in the numerical examples, is

εn = max
(xj ,yi)∈Rn

K

∣∣∣∣∆t2 (
H2
pD

2
xu

n +H2
qD

2
yu

n + 2HpHqD
2
xyu

n
)

+

+
(
h̃Mp+ − h̃Mp−

)
+
(
h̃Mq+ − h̃Mq−

)∣∣∣ , (3.67)

where all the derivatives of H are computed at (Dxu
n, Dyu

n) and the �nite di�erence
approximations around the point (i, j), while K > 1

2 . Another possibility, which does
not require the computation of the derivatives of H is the following

εn2 = max
(xj ,yi)∈Rn

K

∣∣∣∣H (Dxu
n, Dyu

n)−H
(
Dxu

n − λx
2
H∗x, Dyu

n − λy
2
H∗y

)
+

+
(
h̃Mp+ − h̃Mp−

)
+
(
h̃Mq+ − h̃Mq−

)∣∣∣ , (3.68)

where H∗x and H∗y are de�ned by (3.59)-(3.60). The only reason we avoid the use of the
formula for εn2 , which is a more direct generalization of (3.33), is because it is not easy
to keep the same formulation when adding also the dependence on the space variables
(x, y), as we will be doing in Chapter 4.

Remark 3.7. It is worth to note that all the formulas derived from (3.53), such as the
2D-Lax-Wendro� schemes and the de�nition of εn, easily extend to the case in which the
hamiltonian depends also on the space variables H(x, y, vx, vy). In fact, we can repeat
the exact same computations of (3.53) till the third equation, then we simply have

vtt = Hp(x, y, vx, vy)
∂

∂x
(H(x, y, vx, vy)) +Hq(x, y, vx, vy)

∂

∂y
(H(x, y, vx, vy))

= Hp (Hx +Hpvxx) +Hq (Hy +Hqvyy) + 2HpHqvxy, (3.69)

where in the last equality we have dropped all the dependence for brevity. Therefore, to
adapt the previous formulas it is enough to add a centered approximation for Hx and
Hy or, again, to use a direct approximation of the space derivatives in the �rst equation
of (3.69). Notice also that the procedure described in Example 3.13, extends to this
situation without relevant modi�cations. In fact, as for the monotone schemes, it is
enough to consider the dependence of H on (x, y).
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Remark 3.8. Notice that, assuming to de�ne the region of regularity Rn analogously
to (3.31), we could state and prove a convergence result equivalent to Proposition 3.9
and Theorem 3.11 for the 2D-Adaptive Filtered Scheme de�ned in this section. We avoid
to present the results since we would follow the exact same lines of the one-dimensional
counterparts, at least for the proof of the convergence theorem. The analogous of Propo-
sition 3.9 would need only minor modi�cations when proving the estimate for εn, which
now involves the second order increments in both direction D2

xu, D
2
yu and the mixed

�nite di�erence D2
xyu.

3.5. Numerical tests

In this section we present some one-dimensional and two-dimensional examples de-
signed to show the properties of our scheme, stated by Theorem 3.11. Our goal is also
to compare the performances of our Adaptive Filtered Schemes SAF with those of the
Filtered Schemes SF scheme of [BFS16] and of the WENO scheme of second/third order
of [JP00]. Here we use the same e�cient implementation suggested in [JP00] (Remark
pp. 6-7) with σ = 10−8, independent on ∆x, avoiding any of the improvements pro-
posed in [ABM10], [HAP05] or [CCD11]. To be precise, for the basic Filtered Scheme
we use the implementation suggested in [BFS16] using also di�erent high-order schemes,
but avoiding the use of the limiter correction in all simulations. This is mainly because
we want to show that the problems that were �xed through the introduction of the
limiter in [BFS16], can be solved, at least partially, by the adaptive procedure and the
function φ. Moreover, since the main aim is to use even higher order schemes (fourth
order schemes) and to show the reliability of the adaptive tuning, the use of the limiter
would be counterproductive, since it would inevitably limit also the full accuracy of the
resulting scheme. This fact has been proved in various forms in literature (the scheme
is TVD) and can be easily con�rmed through some easy numerical tests, such as the
transport of a regular function.
For each test we specify the monotone and high-order schemes composing the �ltered

schemes, as well as the the CFL number λ, and compute the errors and orders in L∞

and L1 norm. In particular, the CFL number will be chosen to satisfy the standard CFL
condition

λmax|Hp(p)|≤ 1, (3.70)

which is in fact equivalent to (3.7) and more easily computed. Moreover, in two dimen-
sions it simply becomes

max{λx max|Hp(p, q)|, λy max|Hq(p, q)|} ≤
1

2
. (3.71)
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3.5.1. One-dimensional examples

Example 1. Transport equation.

In order to test the capability of our scheme to handle both regular and singular
regions, let us begin with a simple linear example and consider the problem{

vt(t, x) + vx(t, x) = 0 in (0, T )× Ω
v(0, x) = v0(x),

with periodic boundary conditions, in two di�erent situations. At �rst, aiming to test
the full accuracy of the schemes, we consider the regular initial data (Case a),

v0(x) = sin(πx), x ∈ Ω (3.72)

with Ω = [−2, 2] ans T = 0.9. Then, as a second test, we take the mixed initial data
(Case b),

v0(x) =


min{(1− x)2, (1 + x)2} if − 1 ≤ x ≤ 1,
sin2(π(x− 2)) if 2 ≤ x ≤ 3,
0 otherwise,

(3.73)

with Ω = [−1.5, 3.5] and T = 2. The latter problem models the transport of a function
composed by two peaks, the �rst with one point of singularity while the second is in C2.
For these tests we use the Central Upwind scheme (3.9) as monotone scheme and the
simple Heun-Centered (HC) scheme (3.16)-(3.17) as high-order scheme, with λ = 0.9
for Case a and λ = 0.4 for Case b. We also compare the results obtained using SAF

with the 4th order Lax-Wendro� scheme (3.21) as high-order scheme. We recall that the
latter high-order scheme has a very compact 5-points stencil, while the WENO scheme
of second/third order (coupled with the third order Runge Kutta scheme) has a stencil
of nine points.

Figure 3.2.: (Example 1a.) Plots at time T = 0.9 with the AF-HC scheme on the left and
WENO on the right for ∆x = 0.05.

In the �rst test all the schemes are very accurate and achieve optimal order in both
norms, as shown in Figure 3.2 and Table 3.1. In this case both �ltered schemes have
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Table 3.1.: (Example 1a.) Errors and orders in L∞ and L1 norms.

F-HC (5∆x) AF-HC AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

40 10 1.36e-02 1.36e-02 1.37e-04 8.02e-02
80 20 2.56e-03 2.41 2.56e-03 2.41 8.66e-06 3.98 2.62e-02 1.62
160 40 5.76e-04 2.15 5.76e-04 2.15 5.43e-07 4.00 4.50e-03 2.54
320 80 1.40e-04 2.04 1.40e-04 2.04 3.40e-08 4.00 1.95e-04 4.52

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

40 10 3.58e-02 3.58e-02 3.62e-04 2.07e-01
80 20 6.66e-03 2.43 6.66e-03 2.43 2.25e-05 4.01 4.14e-02 2.32
160 40 1.48e-03 2.17 1.48e-03 2.17 1.40e-06 4.01 5.09e-03 3.02
320 80 3.57e-04 2.05 3.57e-04 2.05 8.69e-08 4.01 3.08e-04 4.05

the same numerical results and coincide with the HC high-order scheme (we avoided
to report the same results), as wanted. Moreover, we can see that our fourth order
scheme is much more accurate even than the WENO scheme, despite the smaller stencil
required.

Table 3.2.: (Example 1b.) Errors and orders in L∞ and L1 norms.

F-HC (10∆x) AF-HC AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

50 50 3.46e-01 2.98e-01 2.65e-01 3.47e-01
100 100 1.41e-01 1.29 1.78e-01 0.75 1.56e-01 0.77 2.07e-01 0.75
200 200 9.69e-02 0.54 1.12e-01 0.66 9.08e-02 0.78 1.28e-01 0.70
400 400 7.29e-02 0.41 7.05e-02 0.67 5.06e-02 0.84 7.66e-02 0.74

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

50 50 4.34e-01 2.94e-01 2.21e-01 3.62e-01
100 100 1.41e-01 1.63 9.77e-02 1.59 4.26e-02 2.38 1.39e-01 1.39
200 200 4.24e-02 1.73 3.06e-02 1.67 9.22e-03 2.21 3.83e-02 1.86
400 400 1.38e-02 1.62 1.01e-02 1.60 2.61e-03 1.82 8.39e-03 2.19

For the second case, looking at Figure 3.3 we can observe that the adaptive tuning
of εn is able to contain the oscillations behind the peaks produced by the unstable HC
scheme, which are clearly visible instead in the case of SF with ε = 5∆x. We can
also see that our scheme coupled with the fourth order scheme produces again the best
results in terms of errors and orders in both norms (see Table 3.2) and gives the best
resolution of the peaks, preserving better the kink of the singularity and the feet of the
regular part, without introducing any oscillation.
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Figure 3.3.: (Example 1b.) Plots of the solution at time T = 2 with ∆x = 0.025. Top: simple
�ltered scheme with HC on the left, adaptive on the right. Bottom: fourth order
scheme AF scheme on the left and WENO on the right.

Example 2: Eikonal equation.

As a �rst nonlinear problem let us consider the eikonal equation{
vt(t, x) + |vx(t, x)|= 0 in (0, 0.3)× (−2, 2),
v0(x) = max{1− x2, 0}4, (3.74)

where v0 is a Lipschitz continuous initial data with high regularity. Then, we repeat the
simulation with the �reversed� initial data

v0(x) = −max{1− x2, 0}4, (3.75)

which presents also a major problem in the origin because of the saddle point in the
hamiltonian, where two directions of propagation occur. Here the aim is mainly to
compare the results obtained by the un�ltered high-order schemes with their �ltered
versions, in order to show the stabilization property of the �ltering process. For the
monotone scheme we use the numerical hamiltonian (3.8), while to achieve high-order
we use the Lax-Wendro�-Richtmyer (LWR) scheme (3.20). Moreover, as in the previous
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example, we present also the results obtained with the AF scheme coupled with the
fourth order LW scheme. The CFL number is set to 0.375 for both simulations.

Figure 3.4.: (Example 2a.) Initial data (left) and plots of the solution at time T = 0.3 with
the AF scheme (center) and the LWR scheme (right) for ∆x = 0.025.

Table 3.3.: (Example 2a.) Errors and orders in L∞ and L1 norms.

F-LWR (5∆x) AF-LWR AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

40 8 1.96e-02 1.64e-02 2.18e-02 6.81e-02
80 16 4.48e-03 2.13 4.00e-03 2.04 9.98e-03 1.13 3.42e-02 1.00
160 32 1.06e-03 2.08 1.11e-03 1.85 1.35e-03 2.89 1.62e-02 1.08
320 64 2.56e-04 2.05 2.56e-04 2.12 2.31e-04 2.55 7.52e-03 1.11

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

40 8 1.52e-02 1.16e-02 1.11e-02 2.05e-02
80 16 3.78e-03 2.01 3.71e-03 1.65 1.05e-03 3.40 4.68e-03 2.13
160 32 8.94e-04 2.08 8.96e-04 2.05 7.28e-05 3.85 9.55e-04 2.29
320 64 2.09e-04 2.09 2.09e-04 2.10 7.14e-06 3.35 1.40e-04 2.78

Let us �rst point out that, as Figures 3.4-3.5 clearly show, the LWR scheme is unstable
in the origin in both situations, while the AF scheme (and the simple �ltered scheme)
is not. Then, for the �rst case, looking at Table 3.3 we can see that the �ltered-
LWR schemes give almost the same results, are of high-order in both norms and have
better errors even than the WENO scheme in almost all simulations. Moreover, we can
recognize the typical, as will be shown also by the following examples, improvements
and drawbacks of the fourth order LW scheme, which has a slightly wider stencil. In
fact, the scheme has bigger errors in the L∞ norm in the �rst three re�nements of the
grid, while has way better errors and orders in the L1 norm, achieving almost optimal
order, which testi�es the overall improvement.
For Case b, as testi�ed by Table 3.4, we can repeat almost the same considerations,

but this time the improvements given by the adaptive �ltering are evident. The AF-
LWR scheme is again of high-order especially in the L1 norm, without the need to
introduce any limiter as has been done in [BFS16], and the numerical results are always
comparable to those obtained by the WENO scheme of second/third order, while the
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Figure 3.5.: (Example 2b.) Plots at time T = 0.3 with the AF and WENO schemes for ∆x =
0.05 (left) and LWR scheme for ∆x = 0.0125.

Table 3.4.: (Example 2b.) Errors and orders in L∞ and L1 norms.

F-LWR (5∆x) AF-LWR AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

40 8 1.91e-02 1.40e-02 1.63e-02 2.33e-02
80 16 9.24e-03 1.04 3.37e-03 2.06 7.51e-03 1.11 1.02e-02 1.19
160 32 5.77e-03 0.68 1.58e-03 1.09 2.14e-03 1.81 4.10e-03 1.32
320 64 3.46e-03 0.74 7.09e-04 1.16 6.92e-04 1.63 1.22e-03 1.75

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

40 8 2.38e-02 2.01e-02 1.29e-02 2.96e-02
80 16 8.48e-03 1.49 5.70e-03 1.82 2.05e-03 2.65 7.04e-03 2.07
160 32 3.41e-03 1.32 1.82e-03 1.65 3.20e-04 2.68 1.43e-03 2.30
320 64 1.52e-03 1.17 5.84e-04 1.64 6.38e-05 2.33 2.82e-04 2.34

AF-LW4ord scheme has again worse L∞ errors for the �rst discretizations and better
errors and orders in the L1 norm.

Example 3: Burgers' equation.

Let us consider now the Burgers' equation for HJ with a regular initial data{
vt(t, x) + 1

2(vx(t, x) + 1)2 = 0 in (0, T )× (0, 2),
v0(x) = − cos(πx),

(3.76)

which is a test case widely used in literature. In order to test the full accuracy of the
schemes even in the nonlinear case, we �rst run the simulation for T = 4

5π2 , when the

solution is still regular, with λ = 2
π2 ≈ 0.2 < max|Hp|−1 = 0.5. Then, we consider the

�nal time T = 3
2π2 when a moving (to the right) singularity appears, taking λ = 15

8π2 ≈
0.19. For both simulations we use the the Central Upwind monotone scheme and the
LWR scheme for both the �ltered schemes and compare the results as before with the
WENO scheme and the fourth order AF scheme.
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Figure 3.6.: (Example 3.) From left to right: initial data of problem (3.76) and plots of the
solution at time T = 4/(5π2) and T = 3/(2π2) for ∆x = 0.025.

Table 3.5.: (Example 3.) T = 4/(5π2). Errors and orders in L∞ and L1 norms.

F-LWR (10∆x) AF-LWR AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

40 8 1.30e-02 9.61e-03 1.89e-03 1.04e-02
80 16 8.67e-03 0.59 2.77e-03 1.79 2.84e-04 2.73 2.12e-03 2.30
160 32 5.07e-03 0.77 7.24e-04 1.94 2.68e-05 3.41 1.82e-04 3.54
320 64 2.66e-03 0.93 1.83e-04 1.99 1.89e-06 3.83 2.05e-05 3.15

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

40 8 3.76e-03 3.30e-03 2.76e-04 3.67e-03
80 16 1.29e-03 1.54 8.20e-04 2.01 1.97e-05 3.81 6.57e-04 2.48
160 32 4.49e-04 1.52 2.04e-04 2.01 1.50e-06 3.71 5.43e-05 3.60
320 64 1.82e-04 1.30 5.09e-05 2.00 1.04e-07 3.86 2.98e-06 4.19

This example summarizes all the behaviors already seen in the previous cases. In fact,
as displayed by Tables 3.5-3.6, if the solution is still regular the fourth order AF scheme
gives the best results and achieves the optimal order in both norms, while when the
singularity appears has the usual problems in the L∞ norm and better orders (than the
second order scheme) in the L1 norm. Here we have to notice that the WENO scheme
has better errors and orders in the second simulation w.r.t. all the �ltered schemes.
Moreover, we can clearly see that the simple �ltered scheme depends heavily on the
choice of ε, in fact after extensive computations we noticed that choosing for example
ε = 5∆x we get worse results in both cases, while if we increase the constant we get
better results in the regular case and worse in the latter. In the tables we presented the
results for the choice that gives the best results in the singular case, while it has clearly
problems in the �rst situation. This is the main advantage of the adaptive εn which is
able to tune itself in the right way depending on the local (in time) regularity of the
solution.
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Table 3.6.: (Example 3.) T = 3/(2π2). Errors and orders in L∞ and L1 norms.

F-LWR (10∆x) AF-LWR AF-LW4ord WENO 23

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

40 16 4.88e-02 5.30e-02 6.31e-02 3.89e-02
80 32 2.47e-02 0.98 2.47e-02 1.10 2.87e-02 1.13 1.61e-02 1.27
160 64 9.81e-03 1.33 9.95e-03 1.31 1.03e-02 1.48 5.12e-03 1.65
320 128 2.57e-03 1.93 2.59e-03 1.94 2.69e-03 1.94 8.40e-04 2.61

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

40 16 5.17e-03 5.28e-03 3.83e-03 3.69e-03
80 32 1.26e-03 2.03 1.27e-03 2.06 8.89e-04 2.11 6.94e-04 2.41
160 64 2.86e-04 2.14 2.87e-04 2.14 1.43e-04 2.64 8.67e-05 3.00
320 128 5.68e-05 2.33 5.68e-05 2.34 1.82e-05 2.97 6.40e-06 3.76

3.5.2. Two-dimensional examples

Example 4: Rotation in two dimensions.

In this example we show how to use our one-dimensional schemes to solve simple
problems in two dimensions. We consider the problem{

vt − yvx + xvy = 0 in (0, 2π)× Ω,

v(0, x, y) = max
{

0, r0−(x+1)2−y2

1−r2
0

}2
,

(3.77)

with r0 = 0.5 and Ω = [−2.5, 2.5]2, which models the rotation of a C1 function around
the origin. In this situation, since the hamiltonian H(x, y, vx, vy) = −yvx + xvy can be
expressed as a sum of one-dimensional hamiltonian, depending on the evolution along the
x and y direction, respectively, we can use a dimensional splitting to solve the problem.
More precisely, if we write H(x, y, vx, vy) = H1(y, vx) + H2(x, vy), we can approximate
the solution by solving sequentially the problems in one space dimension

vt +H1(y, vx) = 0 and vt +H2(x, vy) = 0,

keeping each time the other space variable constant. Although the hamiltonians do not
commute, has can be seen computing the Lie bracket [H1, H2] = −xvx − yvy 6= 0, we
can still use the dimensional splitting has shown previously, but we should not expect
the simple Lie-Trotter splitting

un+1 = S∆t
y

(
S∆t
x (un)

)
, (3.78)

where S∆t
x and S∆t

y are numerical schemes of time step ∆t for the problems in the x and
y direction, respectively, to be more than �rst order accurate in time. Nevertheless, we
perform the simulations using the one-dimensional second order �ltered schemes of the
previous tests.
For this test we use the Central Upwind monotone scheme and the Heun-Centered

scheme as high-order scheme and compare the results obtained by the one-dimensional
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WENO scheme in both directions. We use a square uniform grid with the CFL number
set to λ = π

8 ≈ 0.39 < 0.4 = max{Hp}−1 = max{Hq}−1.

Figure 3.7.: (Example 4.)Plots of exact and computed solution (AF top-right, F bottom-left,
WENO bottom-right) at time T = 2π with ∆x = 0.05.

If we look at Figure 3.7 we can clearly see the advantages brought by the automatic
tuning of the parameter εn and the stabilizing properties of the φ function. In fact, our
AF scheme is able to almost completely nullify the oscillations caused by the unstable
HC scheme (see Table 3.7), while the simple F scheme with ε = 5∆x cannot. Moreover,
in the latter case the oscillations keep on being ampli�ed as time goes on, reducing
the e�ective accuracy of the scheme. Despite this graphically evident improvement, the
errors and orders of the �ltered schemes are rather close, but the adaptive version has
always better results, which are also close to those of the WENO scheme, especially in
the L1 norm.
Moreover, reminding the discussion at the beginning of the example and looking at

Table 3.7, we can observe rather surprising high orders for all the schemes. This is
probably due to radial symmetry of the evolution and of the function and does not
happen when using the AF-LW4ord scheme, which instead gives very poor results.
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Table 3.7.: (Example 4.) Errors and orders in L∞ and L1 norms.

HC F-HC (5∆x) AF-HC WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

50 160 2.44e-01 1.78e-01 1.53e-01 1.82e-01
100 320 9.10e+03 −15.18 6.26e-02 1.51 5.71e-02 1.43 4.49e-02 2.02
200 640 7.30e+16 −42.87 2.02e-02 1.64 1.95e-02 1.55 1.32e-02 1.76
400 1280 1.87e+60 −144.20 8.64e-03 1.22 6.34e-03 1.62 3.32e-03 1.99

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

50 160 4.98e-01 1.32e-01 1.21e-00 1.42e-01
100 320 2.36e+03 −12.21 4.42e-02 1.58 3.96e-02 1.61 4.77e-02 1.57
200 640 3.99e+15 −40.62 1.35e-02 1.71 1.16e-02 1.77 1.02e-02 2.22
400 1280 3.79e+58 −142.77 3.99e-03 1.75 3.32e-03 1.81 1.22e-03 3.07

Example 5: Generating singularities in two dimensions.

In this example we consider a problem similar to the Burgers' equation in two dimen-
sions, which is strictly connected to (3.76),{

vt + (vx + 1)2 + (vy + 1)2 = 0 in (0, T )× Ω,
v(0, x, y) = −0.5 (cos(πx) + cos(πy)) ,

(3.79)

with Ω = [0, 2]2 and periodic boundary conditions. As for problem (3.76), we consider
the �nal time T = 4

5π2 , when the solution is still smooth, and then T = 3
2π2 , time

at which an interesting set of singularities develops. It is clear that we can use the
dimensional splitting also in this situation and solve the problem using one-dimensional
schemes and the Lie-Trotter splitting, since the hamiltonians H1 and H2 commute. We
use the same schemes as in the previous example and a slightly more restrictive CFL
number w.r.t. problem (3.76) in order to use coarser grids, which is set to λ = 4

5π2 ≈ 0.08
for the �rst test, and λ = 3

4π2 ≈ 0.076 for the latter.
The exact solution is computed by the Hopf-Lax formula,

v(t, x, y) =

(
min
a∈A
−1

2
cos(π(x− at)) +

1

4
a2 − a+ min

b∈A
−1

2
cos(π(y − bt)) +

1

4
b2 − b

)
,

with A = [−5, 5], where we used the fact that the evolution can be seen as the sum of
separate one-dimensional evolutions.
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Figure 3.8.: (Example 5.) Top: Initial data (left) and exact solution at T = 3/(2π2) (right).
Bottom: solution at T = 4/(5π2) (left) and T = 3/(2π2) (right) computed by the
AF scheme with ∆x = 0.1

Table 3.9.: (Example 5.) T = 3/(2π2). Errors and orders in L∞ and L1 norms.

LWR F-LWR (10∆x) AF-LWR WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

20 20 1.69e-01 9.49e-02 1.04e-01 8.68e-02
40 40 6.39e-02 1.40 3.67e-02 1.37 3.80e-02 1.45 2.27e-02 1.93
80 80 3.23e-02 0.98 1.41e-02 1.38 1.47e-02 1.37 9.08e-03 1.32
160 160 2.64e-02 0.29 3.73e-03 1.91 3.90e-03 1.92 2.22e-03 2.03

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

20 20 6.18e-02 4.62e-02 4.62e-02 3.60e-02
40 40 1.74e-02 1.83 8.19e-03 2.50 8.24e-03 2.49 4.68e-03 2.94
80 80 4.54e-03 1.94 1.88e-03 2.13 1.80e-03 2.20 6.92e-04 2.76
160 160 1.13e-03 2.00 3.73e-04 2.33 3.78e-04 2.25 7.62e-05 3.18

As we could expect, in this example we have analogous result w.r.t. Example 3, with
the AF scheme performing well in both situations and better than the F scheme in
the regular case (see Tables 3.8-3.9). Here again the simple �ltered scheme has slightly
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Table 3.8.: (Example 5.) T = 4/(5π2). Errors and orders in L∞ and L1 norms.

LWR F-LWR (10∆x) AF-LWR WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

20 10 7.45e-02 7.75e-02 8.32e-02 8.66e-02
40 20 3.38e-02 1.14 5.12e-02 0.60 2.77e-02 1.59 3.59e-02 1.27
80 40 1.49e-02 1.18 3.25e-02 0.66 6.58e-03 2.08 1.30e-02 1.47
160 80 6.42e-03 1.22 1.94e-02 0.75 1.78e-03 1.89 4.87e-03 1.41

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

20 10 3.67e-02 4.42e-02 3.72e-02 3.71e-02
40 20 9.53e-03 1.94 1.21e-02 1.87 8.50e-03 2.13 1.00e-02 1.89
80 40 2.28e-03 2.06 4.29e-03 1.49 2.05e-03 2.05 1.95e-03 2.36
160 80 6.51e-04 1.81 1.70e-03 1.33 5.42e-04 1.92 4.50e-04 2.11

better results after the singularities develop, due to the action of the φ function in the
regions of singularity, but the loss of accuracy is in fact minimal. Moreover, our scheme
performs as good as the WENO scheme when the solution is still regular, while the
latter performs much better in the second case.
To conclude the section, in the following examples we perform the analysis of the

schemes de�ned in Section 3.4, with the same aim of the previous tests. We compare
the 2D-AFS scheme with the basic 2D-F scheme with ε = 20∆x using the same com-
posing schemes, again avoiding the use of the limiting correction of [BFS16], as well
as with the 2D-WENO scheme of second/third order, which uses the same monotone
numerical hamiltonian. All the following simulations will be performed using the local
Lax-Friedrichs scheme (3.49) as monotone scheme, while for the high-order schemes we
focus on the centered schemes of second (3.56) and fourth order (3.62)-(3.63), named
fourth-order centered Runke-Kutta (RKC4 in short). The comparison is conducted also
in terms of elapsed CPU-time, since when working with multidimensional problems it
becomes a major issue.

Example 6. Transport of a regular function in 2D

As in the one-dimensional case, we begin the analysis by testing the full accuracy of
the schemes on the transport of a very regular function at constant velocity. That is,
we solve the following problem{

vt + vx + vy = 0, in (0, T )× Ω,
v(0, x, y) = v0(x, y), in Ω

(3.80)

where Ω = [−2, 2]2 and T = 0.9, with the regular initial condition

v0(x, y) = max
{

0, 1− x2 − y2
}4
. (3.81)

The CFL number is λ = 0.2 < 1
2 . The results showed in Table 3.10 clearly testify the

success of the �ltering process, with the �ltered schemes achieving the optimal order of
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the high-order scheme in both norms. Only the fourth-order scheme seems to have some
problems in the L∞ norm, although the results obtained are evidently superior to all the
other schemes. Notice also that, as it is expected, the AF-HC basically coincides with
HC when the solution is regular. Moreover, in Table 3.11 we can see that the adaptive
�ltering almost doubles the computational cost of the scheme, while the further increase
produced by the higher-order scheme seems almost negligible. On the other hand, the
implementation of the WENO scheme is evidently more demanding.

Table 3.10.: (Example 6.) Errors and orders in L∞ and L1 norms.

HC AF-HC AF-RKC4 WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

40 30 7.14e-02 7.14e-02 4.69e-03 2.88e-02
80 60 1.63e-02 2.13 1.63e-02 2.13 5.28e-04 3.15 2.82e-03 3.35
160 120 4.02e-03 2.02 4.02e-03 2.02 5.38e-05 3.29 3.46e-04 3.03
320 240 9.99e-04 2.01 9.99e-04 2.01 6.44e-06 3.06 4.33e-05 3.00

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

40 30 6.84e-02 6.88e-02 7.94e-03 2.79e-02
80 60 1.66e-02 2.05 1.66e-02 2.05 6.34e-04 3.65 3.50e-03 2.99
160 120 4.03e-03 2.04 4.03e-03 2.04 4.64e-05 3.77 4.37e-04 3.00
320 240 9.96e-04 2.02 9.96e-04 2.02 3.28e-06 3.82 5.40e-05 3.02

Table 3.11.: (Example 6.) CPU times in seconds.

Nx Nt HC AF-HC AF-RKC4 WENO 2/3

40 30 0.053 s 0.087 s 0.098 s 0.41 s
80 60 0.385 s 0.648 s 0.723 s 2.96 s
160 120 2.797 s 5.108 s 5.675 s 43.38 s
320 240 22.18 s 40.85 s 46.11 s 674.5 s

Example 7: Eikonal equation in two dimensions.

In the last example we consider the equivalent of equation (3.74) in two dimensions,{
vt +

√
v2
x + v2

y = 0 in (0, T )× Ω,

v(0, x, y) = v0(x, y),
(3.82)

where Ω = [−3, 3]2 and T = 0.6, in four di�erent situations. Let us �rst recall that
this problem comes out in front propagation problems through the level set method as
brie�y shown in Section 1.3. Here we are considering a simple expansion with constant
velocity. Our aim is to compare the schemes in terms of the computed error and of the
resolution of the 0-level set, in both cases of a single front and of a merging, also varying
the regularity of the representation function v0. The CFL number is set to λ = 0.25 < 1

2
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for all the simulations. In the �rst two tests we perform the evolution of a single front,
for a regular initial datum (Case a)

v0(x, y) = 0.5− 0.5

(
max

{
0,

1− x2 − y2

1− r2
0

})4

,

and for a sharper initial condition (Case b)

v0(x, y) = min {|x|, |y|, 0.2} .

Our objective is to inspect the behavior of the schemes when varying the �number of
singularities� in the evolution. One is brought directly by the hamiltonian, since it is
only Lipschitz continuous and presents a saddle point in the origin, then, others may
be already present in the initial datum or caused by some merging. In this context,
the �rst simulation is similar to an accuracy test, in fact, looking at Table 3.12 we can
acknowledge the better results given by the fourth order scheme in the L1 norm, whereas
the more compact AF-HC scheme performs better in L∞, analogously to what happens
in the one-dimensional case (see Example 2b). Moreover, looking at the results of the
basic �ltered scheme, we may have a �rst con�rmation of the stabilizing properties of the
φ function, even in the two space dimensions, without the need to introduce any limiter
correction. This fact is recognizable also in Case b, in the sense that it prevents the
oscillating behavior (of the numerical order of convergence) of the basic �ltered scheme
in Table 3.14, especially in the L∞ norm, although the latter seems to produce better
results for the �rst re�nements. Nevertheless, the overall behavior is very similar to the
Case a, with the standard WENO schemes losing in terms of both norms w.r.t. the
adaptive �ltered schemes.

Figure 3.9.: (Example 7a.) Left: the initial front. Right: comparison of the 0-level sets at
T = 0.6 using the AF-HC and WENO scheme with ∆x = ∆y = 0.05.
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Table 3.12.: (Example 7a.) Errors and orders in L∞ and L1 norms.

F-HC (20∆x) AF-HC AF-RKC4 WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

30 12 1.90e-01 2.33e-01 2.22e-01 2.22e-01
60 24 1.05e-01 0.86 4.80e-02 2.28 4.62e-02 2.27 7.05e-02 1.65
120 48 6.83e-02 0.62 1.78e-02 1.43 1.88e-02 1.30 2.54e-02 1.47
240 96 4.66e-02 0.55 8.56e-03 1.06 8.77e-03 1.10 9.81e-03 1.37

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

30 12 6.44e-01 7.90e-01 6.14e-01 7.39e-01
60 24 2.25e-01 1.52 1.92e-01 2.04 6.95e-02 3.14 2.48e-01 1.58
120 48 7.51e-02 1.58 5.32e-02 1.85 1.73e-02 2.01 5.67e-02 2.13
240 96 2.83e-02 1.41 1.55e-02 1.78 6.20e-03 1.48 1.01e-02 2.49

Table 3.13.: (Example 7a.) CPU times in seconds.

Nx Nt F-HC AF-HC AF-RKC4 WENO 2/3

30 12 0.015 s 0.034 s 0.027 s 0.042 s
60 24 0.077 s 0.157 s 0.172 s 0.509 s
120 48 0.569 s 1.194 s 1.317 s 7.577 s
240 96 4.338 s 9.219 s 10.04 s 109.1 s

Figure 3.10.: (Example 7b.) Left: the initial front. Right: comparison of the 0-level sets at
T = 0.6 using the AF-HC and WENO scheme with ∆x = ∆y = 0.05.

Finally, we complete our analysis inspecting the case of merging fronts, �rst with two
collapsing regular representations (Case c), which 0-level set is composed by two circles,
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Table 3.14.: (Example 7b.) Errors and orders in L∞ and L1 norms.

F-HC (20∆x) AF-HC AF-RKC4 WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

30 12 8.11e-02 8.88e-02 1.00e-01 1.25e-01
60 24 6.22e-02 0.38 6.72e-02 0.40 6.29e-02 0.67 7.34e-02 0.76
120 48 7.75e-02 −0.32 3.92e-02 0.78 4.04e-02 0.64 4.42e-02 0.73
240 96 5.38e-02 0.53 2.30e-02 0.77 2.39e-02 0.76 2.63e-02 0.75

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

30 12 2.58e-01 3.63e-01 2.50e-01 4.52e-01
60 24 1.82e-01 0.51 2.04e-01 0.83 1.80e-01 0.47 2.15e-01 1.07
120 48 9.38e-02 0.95 9.76e-02 1.06 9.01e-02 1.00 9.60e-02 1.16
240 96 5.23e-02 0.84 3.86e-02 1.34 3.79e-02 1.25 3.98e-02 1.27

Table 3.15.: (Example 7b.) CPU times in seconds.

Nx Nt F-HC AF-HC AF-RKC4 WENO 2/3

30 12 0.013 s 0.023 s 0.025 s 0.041 s
60 24 0.071 s 0.167 s 0.172 s 0.501 s
120 48 0.479 s 1.143 s 1.274 s 7.887 s
240 96 3.825 s 9.048 s 9.89 s 110.3 s

that is

v0(x, y) = 0.5− 0.5 max
(
max(0, f−)4,max(0, f+)4

)
,

f± =
1−

(
x±

√
2

2

)2
−
(
y ±

√
2

2

)2

1− r2
0

, r0 = 0.5,

then, we consider also a couple of sharp representations (Case d), which 0-level sets,
composed by two squares, presents some marked corners,

v0(x, y) = min

{
f1 − r0, f2 − r0,

1

2
r2

0

}
, with f1 = max

{∣∣∣∣∣x−
√

2

2

∣∣∣∣∣ ,
∣∣∣∣∣y −

√
2

2

∣∣∣∣∣
}
,

f2 = max

{∣∣∣∣∣
(
√
r0x+

√
2

2

)
+

(
√
r0y +

√
2

2

)∣∣∣∣∣ ,
∣∣∣∣∣
(
√
r0x+

√
2

2

)
−

(
√
r0y +

√
2

2

)∣∣∣∣∣
}
,

where r0 = 0.5 is a parameter mainly needed to control magnitude of the square 0-level
front. For Case b the solution is computed for T = 0.7, in order to have the two fronts
merge. The results obtained are collected in Tables 3.16-3.18 and Figures 3.11, 3.12 and
3.13, in which we visualize the merging through both the representations and 0-level
sets. It is clear that we can repeat the same observations of the previous cases, following
almost the same lines, also in presence of a merging. The most interesting results are
given by Table 3.18 and Figure 3.12, in which the AF-RKC4 proves its reliability in
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Figure 3.11.: (Example 7c.) From left to right. Top: initial datum and initial front. Bottom:
plot of the solution using the AF-HC scheme and fronts using the �ltered schemes
at T = 0.6 with ∆x = ∆y = 0.05.

terms of error and resolution of the front, being able to keep the sharpness of the edges
also w.r.t the WENO scheme. Finally, as Figure 3.13 clearly shows, all the schemes
produce very sharp results, but the AF-RKC4 seems considerably sharper, at least in
the region where the representation connects with the �at part.
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Table 3.16.: (Example 7c.) Errors and orders in L∞ and L1 norms.

F-HC (20∆x) AF-HC AF-RKC4 WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

30 12 2.31e-01 2.08e-01 1.96e-01 2.16e-01
60 24 8.84e-02 1.38 6.45e-02 1.69 1.06e-01 0.88 9.08e-02 1.25
120 48 5.42e-02 0.71 4.93e-02 0.39 6.02e-02 0.82 4.49e-02 1.02
240 96 4.71e-02 0.20 1.78e-02 1.47 3.34e-02 0.85 2.31e-02 0.96

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

30 12 1.29e+00 1.20e+00 9.25e-01 1.37e+00
60 24 4.07e-01 1.67 3.41e-01 1.82 1.57e-01 2.55 4.46e-01 1.62
120 48 1.27e-01 1.67 8.78e-02 1.96 5.68e-02 1.47 1.08e-01 2.04
240 96 5.24e-02 1.28 3.35e-02 1.39 3.39e-02 0.75 3.40e-02 1.67

Table 3.17.: (Example 7c.) CPU times in seconds.

Nx Nt F-HC AF-HC AF-RKC4 WENO 2/3

30 12 0.012 s 0.023 s 0.033 s 0.042 s
60 24 0.075 s 0.172 s 0.21 s 0.499 s
120 48 0.506 s 1.227 s 1.518 s 7.525 s
240 96 3.979 s 9.513 s 11.87 s 124.7 s

Figure 3.12.: (Example 7d.) Initial front (left) and fronts at T = 0.7 using WENO and AF-
RKC4 scheme (right).
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Figure 3.13.: (Example 7d.) Top: exact solution (left) and plot of the solution at T = 0.7
computed by the AF-HC scheme(right). Bottom: plots of the solution at T = 0.7
computed by the AF-RKC4 (left) and WENO (right) schemes.

Table 3.19.: (Example 7d.) CPU times in seconds.

Nx Nt F-HC AF-HC AF-RKC4 WENO 2/3

30 14 0.013 s 0.031 s 0.03 s 0.048 s
60 28 0.085 s 0.195 s 0.22 s 0.596 s
120 56 0.623 s 1.469 s 1.626 s 8.488 s
240 112 4.544 s 11.29 s 12.35 s 129.8 s

The conclusions of these last two examples are rather promising, testifying the good
properties of the Adaptive Filtered Schemes also in more space dimensions. It is inter-
esting to notice that, although the wideness of the stencil seems to limit excessively the
accuracy in the L∞ norm in presence of some singularity, the simple AF-RKC4 gave very
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Table 3.18.: (Example 7d.) Errors and orders in L∞ and L1 norms.

F-HC AF-HC AF-RKC4 WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord

30 14 1.64e-01 1.06e-01 1.06e-01 1.26e-01
60 28 6.93e-02 1.24 8.35e-02 0.35 7.31e-02 0.54 7.28e-02 0.79
120 56 6.73e-02 0.04 4.76e-02 0.81 4.24e-02 0.79 4.18e-02 0.80
240 112 8.57e-02 −0.35 2.79e-02 0.77 2.41e-02 0.82 2.71e-02 0.63

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord

30 14 6.11e-01 8.33e-01 5.20e-01 8.53e-01
60 28 3.18e-01 0.94 3.98e-01 1.07 3.60e-01 0.53 4.31e-01 0.98
120 56 1.65e-01 0.95 1.89e-01 1.08 1.73e-01 1.05 1.78e-01 1.27
240 112 1.22e-01 0.43 8.48e-02 1.15 7.57e-02 1.19 7.22e-02 1.30

good responses, especially in terms of sharpness of the representation. It would be really
interesting to see the results obtained through a more compact Lax-Wendro� scheme,
in the aim of (3.21), but such a de�nition seems to be rather di�cult to reach, at least
in the form of Lemma 3.2. Nevertheless, it will surely be object of future investigations.

3.6. Conclusions

We have presented a rather simple way to construct convergent schemes, which are
of high-order in the regions of regularity for the solution. The �lter method is able to
stabilize an otherwise unstable (high-order) scheme, still preserving its accuracy. The
novelty here is the adaptive and automatic choice of the parameter εn which improves the
scheme in [BFS16]. The computation of εn, although more expensive, is still a�ordable
in low dimension. The adaptive scheme is able to reduce the oscillations which may
appear choosing a constant ε and, as shown by the numerical tests, gives always better
results. Finally, we note that the adaptive �ltered scheme, with a wise choice for the
high-order scheme, has results close to the WENO scheme in terms of errors but seems
to have a better accuracy on the kinks.
All the construction directly generalize to treat multidimensional problems, still keep-

ing the good properties of the one-dimensional scheme. The main advantage of the
�ltered schemes relies in their simplicity of implementation and in the extreme general-
ity allowed for the choice of the high-order scheme. In the latter context, the adaptive
de�nition of the parameter εn and the stabilization properties of the function φ, represent
a relevant improvement w.r.t. the basic scheme in [BFS16]. That is because no further
limiting correction is needed, thus preventing the risk of losing accuracy when using
schemes of order of accuracy higher than 2. The general applicability of our procedure
has been testi�ed by the successful implementation of simple and e�cient fourth-order
schemes in one and two space dimensions.
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4. Segmentation of images via the Level

Set Method

Our aim is to present a rather simple approach to the problem of the segmentation
of a real image, i.e. we are interested in the detection of the boundaries of objects
represented in a picture. This problem appears in many di�erent �elds such as, for
example, biomedicine, astronomy and security.
The chapter is organized as follows: in Section 4.1 we begin by giving a brief in-

troduction to the problem and to the state-of-the-art literature, while in Section 4.2,
we recall the level set method for front propagation, focusing on its application to the
segmentation problem and presenting the modi�cation to be made w.r.t. the classical
approach. Then, in Section 4.3, we present the numerical procedure used to solve the
segmentation problem, based on our new multidimensional Adaptive Filtered Scheme
and �nally, in Section 4.4, we show the applicability of the proposed ideas through some
numerical tests on synthetic and real images.

4.1. Introduction

In the last decades many authors faced the problem proposing di�erent approaches,
based mainly on variational formulations or on appropriates PDE models. Regarding
the variational formulations, there is already a huge variety of models based on energy
minimization, that have been applied to segmentation problems, for example, by Kass
et al. in [KWT88]. They use energy-minimizing snakes, also termed active contours,
that are attracted to the image relevant features, whereas internal spline forces impose a
smoothness constraint. Since this method relies on the construction of functionals, which
local minima may have several possible solutions, it usually leads to good results in some
situations but presents various problems in terms of general applicability, being heavily
dependent on the knowledge of the speci�c situation (e.g. the results generally change
varying the initial guess). Moreover, despite a good initialization, the active contour
model cannot be forced to extrude trough any signi�cant protrusion, thus it cannot be
used to recover very complex shapes (see [MSV93] for a more detailed discussion and
some numerical examples of this behavior).
On the other hand, the PDE approach, which was �rst presented in [MSV93] and

inspired by the pioneering works of Sethian ([Se85], [Se90]) and Osher ([OSe88]) on the
level set method for front evolution, seems to overcome most of the limitations imposed
by the variational techniques and can be applied to general cases. However, depending
on the complexity of the proposed model, further assumptions on the �smoothness� of
the picture to be segmented are needed, but that is rather natural (e.g. second order
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equations coming from the Mean Curvature Motion problem, where the curvature is not
well de�ned if the boundary of the object is not smooth). The solution of the PDE
model is an evolving surface that is able to follow the topological changes caused by
the relevant edges to be detected, still keeping its precise mathematical reasoning (as
viscosity solution to some Hamilton-Jacobi type equation) and that of the segmentation
front (as the 0-level set of the solution). The only real drawback of this idea, as we will
see in the sequel, is that the problem (reconstruction of a 2D closed curve or of a �nite
collection of such curves) has to be immersed in a higher dimensional space, leading to
more heavy computations.
In this work we will follow the PDE approach in its most simple form, which leads to

a �rst order time-dependent Hamilton-Jacobi equation of eikonal type. In this situation,
the front evolves in the normal direction with velocity dependent only on the information
given by the considered image. Here we renew the ideas proposed in [MSV93], mainly
w.r.t. the technique used to track back the evolving 0-level set, achieving pretty good
results without the need to look for the curvature information, which would instead lead
to a second order Hamilton-Jacobi equation.
To approximate the solution of the proposed model we use the new Adaptive Filtered

Scheme in two space dimensions, that has been presented in Section 3.4 and �rst suc-
cessfully applied to 1D problems in Chapter 3 and by the authors in [FPTa]. We will
also give some hints on the construction of the scheme for the image segmentation.

4.2. Level Set Method for Segmentation

Let us begin by recalling that, as shown in Section 1.3, the problem of following a
front Γt evolving in its normal direction can be restated in terms of the 0-level set of
the solution of the problem{

vt + c(x, y)|∇v|= 0, (t, x, y) ∈ (0, T )× R2

v(0, x, y) = v0(x, y) (x, y) ∈ R2,
(4.1)

where c(x, y) is the velocity of the front in the normal direction η(t, x, y) = ∇v(t,x,y)
|∇v(t,x,y)|

and v0 is a proper representation of the front Γ0 (see De�nition 1.19). Since in this case
the velocity c depends only on (x, y), we obtain a �rst order time-dependent Hamilton-
Jacobi equation of eikonal type, which solution remains a function at any time t > 0
as long as the velocity c is smooth enough. On the other hand, the front Γt can have
complex shapes (due to breaking or merging) and also develop sharp corners. This
feature is due to the de�nition of viscosity solution, which allows the selection of the
correct solution even when singularities appear.
We recall also that the choice of the level set is arbitrary, and in fact all the level sets

of v are moving according to the same law. This fact represents a major problem in the
application to shape recovery due to the discontinuity of the velocity �eld c, whence a
modi�cation to the classical model is needed.
After de�ning the model equation, we are now able to describe how the level set

formulation for front propagation can be used for the segmentation of an image. The
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basic idea behind this technique is that the boundaries of a speci�c object inside a given
image, described by the brightness function I(x, y), are characterized by an abrupt
change of the values of I, so that the magnitude of |∇I| can be used as an indication of
the edges. In order to make use of this intuition, we have to de�ne the velocity c(x, y)
accordingly.
First, we notice that the 0-level set represents the boundary of an evolving shape that

should stop in the proximity of the edges of the desired objects. As a �rst consequence,
depending on the orientation of the evolution, we have to choose the initial front in
an appropriate manner. More precisely, if we want the front to expand towards the
desired shape, then the initial con�guration must lie entirely inside the object, with
more separate fronts in the case of more than one object of interest. Whenever we
want the front to shrink and envelope all the interesting objects, we have to choose
a con�guration that contains all of them (for example, we can use the frame of the
picture). Next, in the case of an expanding (shrinking) front we should require the
velocity c(x, y) to be basically a positive (negative) constant in regions where the value
of I varies smoothly, and to be close to 0 when the front is close to an edge, where the
evolution should stop. In the sequel, for brevity, we will consider only the case of an
expansion, since the opposite can be obtained by simply taking −c(x, y), or inverting
the sign of the representation funtcion v0.
Following the classical models, we use and compare two di�erent de�nitions of c with

similar properties, both presented in [MSV93], and then propose a slight modi�cation
in order to make the computations more stable, with a very little increase in the com-
putational cost. We recall that, in order to reduce the possible noise of the image and
the relative importance of natural changes of I inside the objects of interest (that could
lead to the detection of wrong edges), the input data are usually smoothed through
the convolution with a Gaussian �lter. This can be obtained by evolving the function
I according to the heat equation for an appropriate time interval (usually very small).
Notice that, in general, the function I(x, y) is usually disontinuous at the boundary of
the objects in the image, then, at such points, the �smoothing e�ect� of the Gaussian
�lter has a smaller impact w.r.t. that on the noise.
The �rst velocity we consider is

c1(x, y) =
1

(1 + |∇(G ∗ I(x, y))|p)
, p ≥ 1, (4.2)

where p is used to give more weight to the changes in the gradient, if necessary. According
to this de�nition, the velocity has values in [0, 1] and is ,at least locally, a strictly positive
constant when I is smooth, otherwise it is close to 0 if there is a rapid change in the
values of I. Another possibility, which we will not use since it is very similar to c1, could
be

c(x, y) = e−|∇(G∗I(x,y))|. (4.3)

The second choice we consider, de�ned in [MSV93], has the form

c2(x, y) = 1− |∇(G ∗ I(x, y))|−M2

M1 −M2
, (4.4)
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where M1 and M2 are the maximum and minimum values of |∇(G ∗ I(x, y))|. This
latter velocity has similar properties w.r.t. the previous one, having values in [0, 1] and
being close to 0 if the magnitude of the image gradient is close to its maximal value, and
basically equal to 1 otherwise. If we want the value of the velocity closer to 0 near the
edges also in this case, we can simply take the p-power of c2, having care of the possible
change in the sign for negative velocities (shrinking case). More precisely, when we want
the front to shrink, in order to keep the negative sign of the velocity, we should use

c2(x, y) = (−1)p−1

(
1− |∇(G ∗ I(x, y))|−M2

M1 −M2

)p
. (4.5)

It is clear that both de�nitions have the desired properties, but with slightly di�erent
features. More precisely, in the �rst case the velocity depends more heavily on the
changes in the magnitude of the gradient, thus giving an easier detection of the edges
but also possibly producing false edges inside the object (think of light re�ection, as an
example). On the other hand, the latter velocity is smoother inside the objects, being
less dependent on the relative changes in the gradient, but might present some problems
in the detection of all the edges if at least one of those is �more marked�.

4.2.1. Extension of the velocity function

In this section we recall the problem, �rst addressed in [MSV93], regarding the exten-
sion of the image-based velocity function c(x, y) to all the level sets of the representation
v. As pointed out in the cited paper, the speed function c de�ned in the previous section
has meaning only on the front Γt, since it was designed precisely to force the 0-level set
to stop in the proximity of an edge. Consequently, it derives its meaning not on the
geometry of v but only on the con�guration of the front Γt. Therefore, it is necessary to
give a physical meaning also to the speed used to make all the other (in�nite) level sets
evolve. That is because, if we apply this discontinuous (around the edges) speed to all
the level sets of v, then as time evolves discontinuous solutions will appear as soon as
some level set reaches the region of the plane characterized by the object boundaries. As
a consequence, the problem would not �t anymore in the classical de�nition of viscos-
ity solution and most classical numerical methods for Hamilton-Jacobi equations would
need at least a limiting correction in order to select the correct solution, or otherwise
would produce unstable results (only monotone methods would probably be able to treat
such situations without the limiting process).
Here we follow the idea discussed in [MSV93], proposing a simple way to extend the

velocity function, which depends only on the initial condition v0 and let us avoid all
the heavy computations required by the �rst solution proposed by the authors, still
obtaining stable results. Thus, recalling their approach, the �rst property that has to
be required on the velocity function is the following

Property 1. Any external (image-based) speed function that is used in the equation
of motion written for the function v should not cause the level sets to collide and cross
each other during the evolutionary process.
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4.2. Level Set Method for Segmentation

As we previously stated, the appropriate extension depends on the choice of the initial
representation, then to present the basic idea, as a �rst (and fundamental) example let
us take the distance (to the initial 0-level set) function, that is

v0(x, y) = dist {(x, y),Γ0} . (4.6)

Therefore, with this choice we can de�ne the velocity extension as follows

Property 2. The value of the speed function c at a point P lying on a level set {v = C}
is exactly the value of c at a point Q, such that the point Q is a distance C away from
P and lies on the level set {v = 0}.

In order to apply this construction, in [MSV93] the authors propose a simple but heavy
procedure to track the point Q on the 0-level set associated to each point P of any level
set. These computations clearly lead to the necessity of some modi�cations, such as
the reinitialization for stability purposes and the narrow band approach to reduce the
computational cost.
In this work we try to avoid such problems in tracking the 0-level set, making use of

the knowledge on the evolution and on the initial condition. The idea is straightforward
and it is based on the fact that the evolution is oriented in the normal direction to the
front, whence if the reciprocal disposition of the level sets is also known (that is why
we must choose wisely the initial condition) and we make all the points in the normal
direction to the 0-level set evolve according to the same law, then it is reasonable to
expect that all such points will keep their relative distance unchanged as time �ows.
To present our modi�cation, let us still consider the distance to Γ0 as initial condition,

then by construction all the C-level set are at a distance C from the 0-level set, as stated
by Property 2. Whence, if we consider a generic point (xc, yc) on a C-level set, then it
is reasonable to assume that the closest point on Γ0 should be

(x0, y0) = (xc, yc)− v(t, xc, yc)
∇v(t, xc, yc)

|∇v(t, xc, yc)|
.

Therefore, it seems natural to de�ne the extended velocity c̃(x, y) as

c̃(x, y, v, vx, vy) = c

(
x− v vx

|∇v|
, y − v vy

|∇v|

)
, (4.7)

which coincides with c(x, y) on the 0-level set, as it is needed. The exact same approach
can be applied as long as the initial distance between the level sets is known, then, if we
want higher regularity to the evolving surface, which would be preferable in the case of
high-order schemes such as the Adaptive Filtered scheme that we use in the numerical
tests, we can de�ne an appropriate initial condition, for example, by simply rotating
a regular function in one space dimension. More precisely, let us consider a regular
function v0 : R+ → R such that v0(r0) = 0, where r0 is the radius of the initial circle Γ0

(e.g. the right branch of a parabola centered in the origin), and de�ne v0(x, y) rotating
its pro�le, that is

v0(x, y) = v0

(√
x2 + y2

)
. (4.8)
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4. Segmentation of images via the Level Set Method

Then, it is clear that the C-level set of v0 are located at a distance

d(C) := v−1
0 (C)− r0, with v−1

0 (C) ≥ 0, (4.9)

from the 0-level set and, according to the previous reasoning, they should keep this
property as time evolves. Consequently, also in this case we can de�ne

c̃(x, y, v, vx, vy) = c

(
x− d(v)

vx
|∇v|

, y − d(v)
vy
|∇v|

)
. (4.10)

More details on the function d(v) will be given in the next section. Notice that in the
last construction we assumed, for simplicity of presentation, the representation function
to be centered in the origin, but it is straightforward to extend the same procedure to
more general situations. Notice also that if we have only one object to be segmented
(or we are considering the shrinking from the frame of the picture) we can always use a
representation function centered in the origin since we can freely choose the domain of
integration, which represents the pixels of the image.

Remark 4.1. We noticed through extensive numerical tests that this simple structure
of the model, governed essentially by the speed function c̃, needs a slight modi�cation
in order to stabilize the asymptotic solution. More precisely, since the velocity does
not exactly vanish on the edges of the objects (but it is only fairly close to 0), in some
cases the front may keep expanding even if the edge has been reached. This happens
especially if some portion of the boundary is not heavily marked, then to stabilize the
results we can simply introduce a cutting level for the values of c̃, considering equal to
0 all the velocities below this prescribed level. In the case of an expansion, for example,
the velocity becomes

c(x, y, v, vx, vy) :=

{
c̃(x, y, v, vx, vy) if c̃ > cmin
0 otherwise,

(4.11)

with an analogous de�nition in the shrinking case. Recalling the discussion at the end of
the previous section, it is not surprising that this problem is more evident if the velocity
is de�ned initially by c2, while c1 usually gives stable results without the need of this
last tuning.

4.2.2. Motivations of the new velocity function

Since the idea behind the modi�cation of the velocity c(x, y) into

c̃(x, y, v, vx, vy) = c

(
x− d(v)

vx
|∇v|

, y − d(v)
vy
|∇v|

)
,

with d(v) = 0 if v = 0, is to follow the evolution of the 0-level set and then to de�ne
accordingly the evolution on the other level sets, we can see the new de�nition, in some
sense, as a characteristic based velocity. Consequently, in order to justify our approach,
as a �rst step we inspect the characteristics of the equation, assuming the regularity
necessary for the computations.
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4.2. Level Set Method for Segmentation

Therefore, we have to assume v ∈ C2(Ω) (or at least C2 in space and C1 in time)
and c(x, y) ∈ C1(Ω), although the original problem does not satisfy (in general) these
requirements, and clearly that the characteristics do not cross each other during the
evolution. We will try to loosen these assumptions in a second moment.

Remark 4.2. To avoid to introduce new variables we will use the familiar notation

H(x, v, p) = c̃(x, v, p)|p|, (4.12)

for the arguments of the hamiltonian, since it should not cause confusion in the compu-
tations. We will also drop the line over x and p, which highlights the vector nature of
the arguments, if not strictly necessary.

Let us begin, by the method of characteristics, writing the usual system (see (1.6))
ẋ(s) = ∇pH
v̇(s) = ∇pH · p−H
ṗ(s) = −∇xH −Hvp,

(4.13)

which, since in our case

∂H

∂vx
=− d(v)c̃x

 |∇v|− v2
x
|∇v|

|∇v|2

 |∇v|−d(v)c̃yvy

(
−

vx
|∇v|

|∇v|

)
|∇v|+c̃ vx

|∇v|

=− d(v)c̃x
v2
y

|∇v|2
+ d(v)c̃y

vxvy

|∇v|2
+ c̃

vx
|∇v|

,

and analogously for ∂H
∂vy

, we have that

∇pH =

(
d(v)vy
|∇v|2 (vxc̃y − vy c̃x) + c̃ vx

|∇v|
d(v)vx
|∇v|2 (vy c̃x − vxc̃y) + c̃

vy
|∇v|

)
⇒ ∇pH · p = c̃(x, v, p)|p|, (4.14)

it simply reads
ẋ(s) = ∇pH
v̇(s) = c̃(x, v, p)|p|−c̃(x, v, p)|p|= 0
ṗ(s) = −∇xc̃(x, v, p)|p|+d′(v)∇xc̃(x, v, p)|p|2= ∇xc̃(x, v, p)|p|(d′(v)|p|−1)

(4.15)

then, from the third equation, if we now de�ne d(v) such that

d′(v) = |p|−1, (4.16)

we have the �nal system 
ẋ(s) = ∇pH
v̇(s) = 0
ṗ(s) = 0

(4.17)

which states that, as long as the function c̃ remains smooth enough (c̃x ≈ 0 and c̃y ≈ 0),
the characteristics are basically directed in the normal direction and that along them
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4. Segmentation of images via the Level Set Method

both the height and the gradient are preserved. These last two properties remain valid
even when c̃ is no longer smooth. Moreover, a deeper inspection into the third relation
of (4.17) and (4.16) reveals that, since p(s) ≡ p0 = ∇v0 along the characteristics, we
can choose more simply

d′(v) = |∇v0|−1, (4.18)

which is indeed the case, trivially, for the function d(v) = v and also for d(v) given by
(4.9) de�ned in the previous section. In fact, using the inverse function theorem we have

d′(v) =
d

dv

(
v−1

0 (v)
)

=
1

v′0(z)
,

with z such that v0(z) = v. Moreover, recalling the de�nition (4.8) we can compute,

|∇v0(x, y)| =
∣∣∣∇v0

(√
x2 + y2

)∣∣∣
=

∣∣∣∣∣∣
v′0

(√
x2 + y2

)
x√

x2 + y2
,
v′0

(√
x2 + y2

)
y√

x2 + y2

∣∣∣∣∣∣
=
v′0

(√
x2 + y2

)
√
x2 + y2

√
x2 + y2 = v′0

(√
x2 + y2

)
,

then it is enough to consider (x, y) such that z =
√
x2 + y2.

Remark 4.3. From a numerical point of view the equations (4.16)-(4.18) give two
di�erent means to compute the velocity at each time step. If we prefer to compute the
function d(v) analytically, through the knowledge of the initial datum v0, we have to use
(4.18), while if we prefer to compute d(v) independently on v0 we can use, for example,
a numerical integration for

d(v) =

∫
1

|∇v|
dx, (4.19)

where the integral is taken on the projected characteristic x(s). The latter choice would
probably produce an even more stable scheme, assuming to be able to compute a rea-
sonably good approximation of (4.19).

Thanks to the previous computations, we reached a good understanding of the nature
of the evolution given by (4.1)-(4.10), but we still have not justi�ed the main motivation
that led us to de�ne (4.10), that is to make all the level sets of v evolve according to
the same law. More precisely, we have to show that, if we consider the evolution of
two points on the same characteristic but on two di�erent levels sets, say the 0-level set
x0(s) and a generic level set xv(s), then their relative distance (along the characteristic)
does not change during the evolution. This fact would imply that, if we choose the level
sets of v0 to be such that

x0(0) = xv(0)− d(v0)
∇v0

|∇v0|
, (4.20)
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than the points x(s) = xv(s) − d(v) ∇v|∇v| are always on the 0-level set of v. In order to
prove this last statement, let us proceed by a simple di�erentiation

ẋ(s) =ẋv(s)−
d

ds

(
d(v)

p

|p|

)
=ẋv(s)−

[
d′(v)v̇(s)

p

|p|
+
d(v)

|p|2

(
ṗ(s)|p|− d

ds
(|p(s)|)p

)]
=ẋv(s) +

d(v)

|p|2

(
p · ṗ
|p|

)
p

=ẋv(s), (4.21)

where we have used the second and third relation of (4.17) in the last two equalities of
the chain. This last computation states that all the level sets evolve according to the
same law along characteristics. As a consequence, if we assume (4.20), then x(s) ≡ x0(s)
till the characteristics do not cross, as we wanted.
One of the main consequences of this property, which will be very useful in the nu-

merical implementation, is that the points
(
x− d(v) ∇v|∇v|

)
are on the 0-level set of v as

long as the gradient is preserved. Then, assuming to have a coherent way to recover the
point on the associated characteristic, we can approximate the problem by previously

computing the points x =
(
x− d(v) ∇v|∇v|

)
and then updating the solution considering

the simpli�ed problem with (locally in time) isotropic velocity

vt + c(x)|∇v|= 0, (t, x, y) ∈ (tn, tn+1)× R2. (4.22)

This can be done in a very simple and direct manner, with only a slight increase in the
computational cost, as we will see in the next section. Otherwise, we should consider
the full problem (4.1)-(4.10) and treat numerically all the dependence of H(x, v,∇v).

4.3. Numerical implementation

In this section we discuss the problems that can arise when appoximating the solution
of (4.1)-(4.10) and how we can partially avoide them by assuming the simpli�ced problem
(4.22). The main problems come from the fact that we do not have an analytical
expression for the velocity c(x, y), so we can not compute a priori the derivatives of c̃
with respect to the variables x, y and v.
Before illustrating the numerical tests, let us �rst give some comments on the nu-

merical schemes composing the Adaptive Filtered Scheme adopted for the tests in Sect.
4.4. The main issue concerning the local Lax-Friedrichs and the Lax-Wendro� schemes
de�ned by (3.49) and (3.57), respectively, is the need to compute the one-directional
velocities Hp and Hq which depend also on c̃x and c̃y, as visible in (4.14). Moreover, in
order to implement the local Lax-Friedrichs scheme we should be able to compute the
maximum of |Hp| (resp. |Hq|) uniformly w.r.t. vy (resp. vx), which is a very intricate
matter due to the (possible) low regularity of c̃. In fact, if we focus on the usual be-
havior of c̃(x, y) in the proximity of a relevant edge, we can expect the derivatives c̃x
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4. Segmentation of images via the Level Set Method

and c̃y to be really big. This is not surprising since the front decelerates rapidly in the
neighborhood of an edge. Therefore, we could not use the simple relation

max
vx

max
vy
|Hp(·, vx, vy)|= max

vx
|Hp(·, vx, 0)|, (4.23)

where the maximums are taken over all the possible values of vx and vy, which is instead
valid in the classical model with isotropic velocity. Analogous comment holds for Hq.
More importantly, from the numerical point of view this simpli�cation brings another

fundamental consequence. In fact, when we apply the numerical schemes to solve (4.22),
we are considering, formally, a problem with bounded velocities max{|Hp|, |Hq|} ≤ 1.
This implies that we can choose the following CFL condition:

λ := max

{
∆t

∆x
,

∆t

∆y

}
≤ 1

2
max

{
|Hp|−1, |Hq|−1

}
, (4.24)

using the relation (4.23). This condition is less restrictive with respect to the original
one, for which it is necessary to compute max{|Hp|, |Hq|} with the full formula (4.14).
Consequently, as already noted, λ could be excessively small due to the low regularity of
c̃(x, y). In the latter case we would clearly need an adaptive mesh re�nement technique
to reduce the computational cost.
Lastly, when using the full model (4.1)-(4.10), we should take into account also the

remaining dependence of H(x, y, v, ·, ·) when deriving the second-order Lax-Wendro�
scheme and, clearly, the formula to compute the threshold εn.
In order to avoid most of these complications in the numerical implementation, we

choose to approximate the solution of the simpli�ed problem (4.22), adjusting the ve-
locity c̃ according to (4.10) at each time step. In the following we will use the same
notations introduced in Sect. 3.4, except for the number of time steps NT , which will
be replaced by the total number of iterations Ni used by the scheme, since now we are
looking for an asymptotic solution (in some stationary sense). The maximum number
of iterations, which is �xed at the beginning of the procedure, will be denoted by Nmax.
Let use give some details on the precise numerical implementation, commenting the

main procedures involved in the (sketched) Pseudo-code 1.

Fixed the parameters of the simulation, which are the power p in (4.2) or in (4.5),
the number of iterations N of the heat equation for the Gaussian �lter, the tolerance
tol > 0 of the stopping rule, the amplitude of the pixels (∆x,∆y) and, subsequently,
the time step ∆t according to the CFL condition (4.24).
Then, at each iteration n = 0, . . . , Ni, which has to be interpreted in the sense �until

convergence� (notice that Ni is not known a priori, but depends on the stopping rule
described in Step 3), we repeat the following steps.
Step 1. We precompute the matrix c̃(xj , yi, ui,j ,∇ui,j) at the beginning of every iteration
using central �nite di�erence approximations for the �rst order derivatives ux and uy
(notice that the quantities depend only on (i, j) also through u). Clearly, this method
is valid only as long as the representation u remains smooth at all the level sets, and
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Pseudo-code 1 Segmentation via the LSM

Input: p, N , tol, Nmax, I, u0;
E0 = 1, n = 0;
regularize the matrix I (apply the Gaussian �lter);
compute the velocity matrix c using (4.2) or (4.5);
store the position of the front in the matrix F 0;
while (En > tol) and (n < Nmax) do

Step 1: compute the modi�ed velocity matrix c̃n using (4.10);
Step 2: update the solution un → un+1;
n = n+ 1;
Step 3: store the front Fn;

compute the error En;

Ni = n;
Output: Ni, u

Ni .

should be justi�ed in the case of singular edges (although we will not pursue this precise
matter). Moreover, in general the point

(xju , yiu) :=

xj − d(ui,j)
Dxu√

(Dxu)2 + (Dyu)2
, yi − d(ui,j)

Dxu√
(Dxu)2 + (Dyu)2


is not a point of the grid (xj , yi). To reconstruct the correct value (or at least a reasonable
approximation) we propose two di�erent implementations. The �rst one is a simple
bilinear reconstruction from the neighboring values

Nu :=
{(
xbjuc, ybiuc

)
,
(
xdjue, ydiue

)
,
(
xdjue, ybiuc

)
,
(
xbjuc, ydiue

)}
,

where we used the notation,

djue := j −
⌈
xju − xj

∆x

⌉
and biuc := i−

⌊
yiu − yi

∆y

⌋
,

with the other cases following an analogous de�nition. The second possibility, which we
use in the numerical examples since it seems to give nicer results in terms of the shape
of the approximate representation u, consists only in taking as (xju , yiu) the point such
that

|uiu,ju |:= min
(xj ,yi)∈Nu

|ui,j |.

Notice that this construction is well de�ned only if |∇ui,j |6= 0. Therefore, we de�ne the
updated velocity matrix as

c̃ni,j =

{
ciu,ju if |∇ui,j |6= 0,
ci,j otheriwse,

(4.25)

and we use c̃n as an isotropic velocity in the next step.
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Step 2. We approximate the problem

vt + c̃n(x, y)|∇v|= 0, (t, x, y) ∈ (tn, tn+1)× R2, (4.26)

using the Adaptive Filtered Scheme (3.44), with the local Lax-Friedrichs scheme (3.49)
as SM and the Lax-Wendro� scheme (3.57) as SA.

Step 3. The last step of the iteration is to �test� the approximated solution according
to the prescribed stopping criterion. In our implementation we use one of the following
stopping rules.
The idea is simply to stop the iterations as soon as the 0-level, or more precisely a

neighborhood of the front Γt of radius δ = max{∆x,∆y}, ceases to move. In order
to apply this procedure, at each time step we store in a matrix Fn the values of the
points (xj , yi) such that uni,j changes sign (we use the closest points on the grid, that are
(i± 1, j± 1) and (i± 1, j∓ 1)), and set Fni,j = 0 otherwise. In this way we automatically
store also the position of the front, or more precisely its disposition with an error of
order δ = max{∆x,∆y}. Consequently, the iterations stop whenever

E∞ := ||un+1 − un||L∞(θδ)= max
i,j
|Fni,j − Fn−1

i,j |< τ(∆x,∆y),

where τ > 0 is the prescribed tolerance, which depends also on the discretization
parametrs, and δ > 0 the radius of the neighborhood θδ around the front Γt. An-
other possible choice for the stopping rule, which seems also preferable numerically, is
to compute the error between two consecutive iterations in the L1-norm and then stop
the iterations as soon as

E1 := ||un+1 − un||L1(θδ)= ∆x∆y
∑
i,j

|Fni,j − Fn−1
i,j |< τ(∆x,∆y).

4.4. Numerical tests

In this section we present a series of numerical experiments on both synthetic and real
images, comparing the results obtained with the Adaptive Filtered scheme and with the
basic monotone scheme. The �rst aim is to show the possible improvements of the
modi�ed model w.r.t. the classical formulation. After extensive numerical simulations
in fact, we noticed that the classical model is not well de�ned when using high-order
schemes, since they can produce heavy oscillations as soon as a discontinuity in the
representation appears. This e�ect causes the stopping rule to be practically ine�ective
(in both norms) in most cases tested when using the Adaptive Filtered Scheme, while
the simple monotone scheme seems to give always stable results. Notice that, when the
singularity develops, the �neighborhood� of the front becomes more and more vertical
as time �ows, creating additional di�culties in tracking the 0-level set.
In the case of the classical model, consequently, we present only the results obtained

with the choices of the parameters for which we were able to achieve convergence and,
for comparison reasons, most of the tests with the modi�ed model will be presented
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using the same parameters. We would like to remark that, using the new model, we
were able to obtain convergence for the Adaptive Filtered Schemes in almost all cases
tested. Therefore, the most complex (and interesting) cases with real images will be
approximated using exclusively the modi�ed model.
The following tests will be focused also on the comparison of the results varying the

initial datum, when using the modi�ed velocity, or varying the norm of the stopping
rule, when using the classical model, and �nally, in the case of synthetic images, also
varying the size ∆x = ∆y (and number) of the pixels.

Remark 4.4. Since for real images the number of pixels is �xed and we would be
forced to change also the �arti�cial� range of (x, y), there is not much sense in doing
computations varying the size ∆x of the pixels. It is clear that, in such a case, we would
need also to tune again the parameters p, N and tol (also in the L∞ norm) according to
the new setting. Notice that the values of ∆x and ∆y control the sensitivity of |∇I(x, y)|
as smoothness indicator of the data.

Next, we specify the initial condition used in each case. When the velocity is de�ned
by the classical model, in the expansion case (Case a) we use the paraboloid

u0(x, y) = min

{
x2 + y2 − r2,

1

2
r2

}
, (4.27)

where r > 0 is the radius of the initial circle and 1
2r

2 a value chosen in order to cut
the surface from above (therefore we have a �at surface at the numerical boundary),
while in the shrinking case (Case b) we use the truncated pyramid (tent) with a square
(rectangular) base, that is

u0(x, y) = min{2(x− bx), 2(ax − x), 2(y − by), 2(ay − y),−0.2}, (4.28)

where [ax, bx] × [ay, by] is the the frame of the image, −0.2 is the value at which we
truncate the pyramid (tent) and 2 is the steepness of the faces of the surface (higher the
value the more steep the faces). With this choice we use a slightly more regular front
w.r.t. the discontinuous representation that simply changes value crossing the frame of
the image, still being able to keep the whole surface outside the region occupied by the
objects to segment.
On the other hand, when using the modi�ed velocity, in the expansion case (Case a)

we use again the paraboloid (4.27) (Datum 1 ) or the following distance function (Datum
2 )

u0(x, y) = dist{(x, y),Γ0}, (4.29)

with Γ0 the usual circle centered in (0, 0) with radius r = 0.5, while in the shrinking
case (Case b) we use only the distance function (4.29), with Γ0 representing the frame
of the image.
In the reported tables we will compare the results in terms of number of iterations Ni

and relative error, de�ned as

P -Errrel =
|Pex − Pa|

Pex
, (4.30)
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4. Segmentation of images via the Level Set Method

where Pex and Pa are the number of pixels inside, respectively, the exact and approxi-
mated boundaries. Notice that we can compute the �exact� boundary only if the back-
ground is really smooth (in the numerical tests it is always uniform), because we usually
use a comparison with a �threshold� for the values of I(x, y) in order to select the regions
occupied by the object (exact boundary). Whereas, for the approximated boundary we
will clearly consider the region such that ui,j ≤ 0. Moreover, we measure the error also
with a closely related quantity, that is

P -Err1 = |Pex − Pa|∆x∆y, (4.31)

in order to show some dependence on the discretization parameters. This latter error will
be of some interest only in the synthetic case, for which we have the freedom to choose
the number of pixels (therefore their size, �xing the ranges for the x and y values).
If the schemes do not arrive to convergence in the �xed maximum number of iterations,

we will put a �−� inside the tables, in place of Ni. For all our tests, we will �x Nmax =
2000. Moreover, in the case the front does not stop correctly on the boundary of the
object, thus giving an unstable and unusable result, we will put an �X� in correspondence
of the errors column. For each test we specify the main parameters involved (p, N , tol
and ∆x = ∆y), the norm used in the stopping rule and the chosen velocity function.
More precisely, we use the notation c for the velocity function in the classical model
and c̃ for the modi�ed velocity. For all numerical tests presented in this thesis, we
used the velocity function c1 (4.2), with cmin or cmax = 0 in (4.11), and CFL number
λ = max{λx, λy} = 1

2 .

4.4.1. Synthetic images

Let us begin by presenting some simple synthetic examples, in which we compare the
performance of the �ltered and monotone scheme for both the velocities. The main aim
here is to show the convergence of the scheme varying the size ∆x of the pixels. This
is indeed the case for all the test cases, as can be seen in the following tables, with the
relative error decreasing with ∆x. For the synthetic tests below we decided to perform
the simulations only in the case of an expansion, since these situations are even more
easily handled by a shrinking front and the results do not vary evidently changing the
schemes or the velocity.
Comparing the results obtained by the two schemes, we can see that, if we use the

classical model, both schemes give the exact same results, while using the modi�ed
velocity more di�erences can be noted, with the �ltered scheme performing usually
better in terms of number of iterations Ni or, more often, in terms of computed error.
More evidently, if we compare the results varying the model, we can see that the modi�ed
velocity c̃ gives usually more stable results. In fact, the model that uses c̃ converges to
the solution sooner and in a more accurate way with the same tolerance chosen in all
simulations. The only exception is the synthetic vase (Test 3), where we probably should
use a more restrictive tolerance when using c̃.
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4.4. Numerical tests

Test 1. Ellipse

The �rst two tests that we propose are constructed by simple discontinuous functions I
(that de�ne the information given by the image) that are equal to 1 inside the geometrical
�gure considered, and 0 otherwise. In the �rst test the �gure is an ellipse centered in
the origin, that is

x2

a2
+
y2

b2
= 1, (x, y) ∈ [−2, 2]2, (4.32)

with a = 3
2 and b = 3

4 . For this very regular example, in Tables 4.1, 4.2 and 4.3 we
can recognize the behavior described in the introduction of the section. When using the
classical model we have the same results using the �ltered and the monotone schemes,
whereas some di�erences are visible when using the modi�ed velocity. In the latter case,
the AF-LW scheme, shown in Figure 4.1, performs usually better than the monotone
scheme and we obtain better results w.r.t. the classical model in terms of number of
iterations and errors. The only exception is the case ∆x = 0.04 with Datum 1 (see Table
4.2), where the monotone schemes performs particularly well and much better than all
the other cases tested.

Figure 4.1.: (Test 1a) Datum 1. Plots of the �nal front using the AF-LW scheme with velocity
c̃ varying ∆x.

Table 4.1.: (Test 1a) Errors and number of iterations varying ∆x.

c Norm || ||∞ Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.0001 2 0 83 0.0744 0.2624 74 0.0744 0.2624
0.02 0.0005 2 0 156 0.0376 0.1328 146 0.0376 0.1328
0.01 0.001 2 0 316 0.0189 0.0668 300 0.0189 0.0668

Table 4.2.: (Test 1a) Errors and number of iterations varying ∆x (L∞ norm).

c̃ Datum 1 Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.00005 2 0 51 0.0545 0.1920 52 0.0654 0.2304
0.02 0.0001 2 0 103 0.0321 0.1136 102 0.0292 0.1032
0.01 0.0005 2 0 202 0.0160 0.0564 200 0.0155 0.0548
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4. Segmentation of images via the Level Set Method

Table 4.3.: (Test 1a) Errors and number of iterations varying ∆x (L∞ norm).

c̃ Datum 2 Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.00005 2 0 51 0.0599 0.2112 50 0.0581 0.2048
0.02 0.0001 2 0 102 0.0297 0.1052 106 0.0285 0.1008
0.01 0.0005 2 0 202 0.0145 0.0512 200 0.0155 0.0548

Test 2. Rhombus

The second test presents similar behaviors to the previous one. The picture visible in
Figure 4.2 is given by the equation

|x|
2

+ |y|= 3

4
, (x, y) ∈ [−2, 2]2, (4.33)

that produces a �nal front which presents some heavily marked corners, where the
normal direction is not well de�ned. This causes some serious problems when using the
classical model (see Tables 4.4 and 4.5), at least if the �ltered scheme is involved. In
fact, the AF-LW scheme is clearly unstable, as it can be seen in Table 4.4, not being able
to stop correctly at the boundary of the object for any re�nement.This is because, as
the representation approaches the region of the domain characterized by the boundary
of the object, discontinuities start to develop and the surface becomes more and more
vertical. Consequently, small oscillations begin to appear and cause the front to keep
expanding, since they prevent the ful�llment of the condition on consecutive iterations,
even though the solution seems to remain overall stable. In fact, when using the L1 the
scheme seems to converge for some appropriate choice of the tolerance and gives also
pretty nice results.
On the other hand, if we use the modi�ed velocity c̃, both the schemes always converge

and give again better results in terms of both errors and number of iterations w.r.t.
the correspondent results using the classical velocity. We notice also that the �ltered
scheme performs usually better, at least when using the paraboloid (Datum 1) as initial
condition (see Table 4.6).

Table 4.4.: (Test 2a) Errors and number of iterations varying ∆x.

c Norm || ||∞ Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.005 2 1 67 0.1208 0.2720 479 X X
0.02 0.001 2 1 203 0.0600 0.1368 1390 X X
0.01 0.0005 2 1 436 0.0396 0.0896 1378 X X

Table 4.5.: (Test 2a) Errors and number of iterations varying ∆x.

c Norm || ||1 Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.0016 2 1 40 0.1692 0.3808 40 0.1663 0.3744
0.02 0.0004 2 1 93 0.0859 0.1960 130 0.0782 0.1784
0.01 0.0001 2 1 182 0.0481 0.1090 180 0.0480 0.1088
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4.4. Numerical tests

Figure 4.2.: (Test 2a) Datum 2. Plots of the �nal front using the Monotone scheme (top) and
the AF-LW scheme (bottom) with velocity c̃ varying ∆x.

Table 4.6.: (Test 2a) Errors and number of iterations varying ∆x (L∞ norm).

c̃ Datum 1 Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.0005 2 1 60 0.1137 0.2560 80 0.1059 0.2384
0.02 0.0001 2 1 143 0.0607 0.1384 130 0.0635 0.1448
0.01 0.00005 2 1 207 0.0389 0.0881 242 0.0380 0.0861

Table 4.7.: (Test 2a) Errors and number of iterations varying ∆x (L∞ norm).

c̃ Datum 2 Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.0005 2 1 56 0.1137 0.2560 84 0.1052 0.2368
0.02 0.0001 2 1 140 0.0614 0.1400 200 0.0558 0.1272
0.01 0.00005 2 1 226 0.0392 0.0889 283 0.0306 0.0830

Test 3. Synthetic vase

Finally, we conclude our synthetic simulations by considering a more intricate example,
that is the synthetic vase. To de�ne the brightness function I associated to the �gure,
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4. Segmentation of images via the Level Set Method

we �rst compute the function

f(x, y) =

{ √
P (ȳ)2 − x2 if P (ȳ)2 > x2 and |y|< 2,

0 otherwise,
(4.34)

where ȳ = y/4, (x, y) ∈ [−1.5, 1− 5]× [−3, 3] and

P (ȳ) = 4(−10.8ȳ6 + 7.2ȳ5 + 6.6ȳ4 − 3.8ȳ3 − 1.375ȳ2 + 0.5ȳ + 0.25).

Then, we simply take I(x, y) =

(√
1 + |∇f(x, y)|2

)−1

, which comes from the shape

from shading problem when considering a Lambertian model with a vertical light source.
See [FT16], [DFS08] for more details on Shape-from-Shading.
For this particular test the comparison between the models is rather more interesting.

In fact, as we can observe in Tables 4.8, 4.9 and 4.10, the classical model gives always
better result than the modi�ed velocity, although it usually requires more iterations
to achieve convergence. It is worth to notice also that using the modi�ed velocity the
di�erence between the monotone and the �ltered scheme is more marked, with the
latter performing better for all re�nements. The overall results are satisfying using both
models.
In Figure 4.4 we show the good properties of the new model, by some contour plots of

the initial conditions and the �nal representations obtained using the monotone scheme.
In fact, it is clear that the representations preserve the steepness of the gradient and
that the level sets do not collide during the evolutionary process, as desired.

Table 4.8.: (Test 3a) Errors and number of iterations varying ∆x.

c Norm || ||∞ Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.005 3 2 149 0.1305 0.8160 159 0.1310 0.8192
0.02 0.001 3 2 505 0.0657 0.4088 653 0.0502 0.3128
0.01 0.0005 3 2 1240 0.0433 0.2692 1507 0.0399 0.2482

Table 4.9.: (Test 3a) Errors and number of iterations varying ∆x (L∞ norm).

c̃ Datum 1 Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.001 3 2 132 0.1561 0.9760 163 0.1244 0.7776
0.02 0.0002 3 2 375 0.0923 0.5748 507 0.0669 0.4164
0.01 0.00004 3 2 1162 0.0487 0.3024 1276 0.0439 0.2726

4.4.2. Real images

Here, we present some real cases, repeating the comparison between the two models. A
quantitative comparison is done for Test 4 (real vase), Test 5 (grains) and Test 6 (chess
horse), for which we are also able to compute the errors, and for Test 7 (brain) and
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4.4. Numerical tests

Figure 4.3.: (Test 3a) Datum 1. Plots of the �nal front varying ∆x with error computed in
L∞ norm, using the monotone scheme (top) and the AF-LW scheme (bottom) and
velocity c̃.

Test 11 (hip bone fracture), for which we use an arti�cial mask to compute analogous
quantities. In such cases, looking at the relative tables, we can observe again that the

129



4. Segmentation of images via the Level Set Method

Figure 4.4.: (Test 3a) Contour plots of the initial datum and of the �nal representations, using
the monotone scheme and velocity c̃, for both choices of the initial datum.

Table 4.10.: (Test 3a) Errors and number of iterations varying ∆x (L∞ norm).

c̃ Datum 2 Monotone AF-LW

∆x tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.04 0.001 3 2 143 0.1433 0.8960 161 0.1254 0.7840
0.02 0.0002 3 2 505 0.0893 0.5560 496 0.0677 0.4216
0.01 0.00004 3 2 1176 0.0477 0.2962 1237 0.0454 0.2824

modi�ed velocity gives always better results (especially in terms of stability, since both
schemes converge sooner) and that the adaptive �ltered scheme has lower errors than
the monotone scheme in most situations.
Finally, we conclude this section with some examples using biomedical images. These

last tests will be performed only using the modi�ed model, since we were not able to
achieve convergence with the classical model, also considering a wide range of possible
choices for the parameters N , p and tol.

Test 4. Real vase

The �rst real image tested is rather common in the literature on the topic, that is the
real vase. Here we perform the simulation for both cases of an expanding (Case a) and
a shrinking front (Case b), referring to the introduction at the beginning of the section
for the choices of the initial conditions w.r.t. the model.
It it evident from the tables below that the schemes achieve good (but di�erent) results

in all simulations, for both velocities. In the case of the expanding front, for example,
the classical model gives better results in terms of error, but it usually needs many more
iterations to achieve convergence w.r.t. the modi�ed velocity, which produces more
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stable solutions, especially with the adaptive �ltered scheme (see Tables 4.11-4.12 and
Figure 4.6). Moreover, in Table 4.12 we can see that the AF-LW scheme has lower errors
w.r.t. the monotone scheme, with the exception of the �rst choice for the tolerance using
Datum 2, when it probably converges too soon. On the other hand, in Case b (Tables
4.13-4.14 and Figure 4.7), the new velocity improves the results in both errors and Ni, in
particular those of the monotone scheme, which performs even better than the AF-LW
scheme.
Moreover, as displayed in Figure 4.8, the properties of the modi�cation are preserved

even with non-analytical data, although some little oscillations (noise) are visible.

Figure 4.5.: (Test 4) Initial fronts for the two cases tested.

Table 4.11.: (Test 4a) Errors and number of iterations varying the stopping rule.

c ∆x = 0.02 Monotone AF-LW

Norm tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

|| ||∞ 0.0005 3 3 672 0.0332 0.2536 1359 0.0122 0.0956
|| ||1 0.0001 3 3 539 0.0361 0.2756 835 0.0285 0.2180

Table 4.12.: (Test 4a) Errors and number of iterations using L∞ norm.

c̃ ∆x = 0.02 Monotone AF-LW

Datum tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

1 0.0005 3 3 334 0.0451 0.3444 324 0.0454 0.3472
1 0.0001 3 3 454 0.0384 0.2932 482 0.0372 0.2844

2 0.0005 3 3 338 0.0445 0.3400 328 0.0449 0.3432
2 0.0001 3 3 463 0.0381 0.2916 479 0.0371 0.2836
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4. Segmentation of images via the Level Set Method

Figure 4.6.: (Test 4a) Plots of the �nal front using the monotone scheme (left) and the AF-
LW scheme (right) and velocity c̃, with L∞ norm and tol = 0.0001, Datum 1,
∆x = 0.02, p = 3 and N = 3.

Table 4.13.: (Test 4b) Errors and number of iterations varying the stopping rule.

c ∆x = 0.02 Monotone AF-LW

Norm tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

|| ||∞ 0.005 3 0 176 0.0311 0.2376 174 0.0267 0.2040
|| ||1 0.00001 3 0 186 0.0308 0.2352 176 0.0267 0.2040

Table 4.14.: (Test 4b) Errors and number of iterations using L∞ norm.

c̃ ∆x = 0.02 Monotone AF-LW

tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.0001 3 0 165 0.0218 0.1664 161 0.0235 0.1796

Figure 4.7.: (Test 4b) Plots of the �nal front using the monotone scheme (left) and the AF-LW
scheme (right) with velocity c̃, L∞ norm, tol = 0.0001, ∆x = 0.02, p = 3, N = 0.
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Figure 4.8.: (Test 4) Contour plots of the initial datum (left) and the �nal representations
(right), using the monotone scheme and velocity c̃. Top: Case a, bottom: Case b.

Test 5. Grains

The following test is focused on the problem of approximating the boundaries of
various separate objects in a picture. Clearly, using our (basic) approach, we can face
the problem only in the case of a shrinking from the frame of the picture, since we need
an initial condition such that the front envelopes all the objects. Looking at Tables 4.15-
4.16 and Figure 4.9 we can see that both schemes perform well in all the simulations.
Notice that in the case of the classical model we avoided to regularize the data, since
otherwise is very di�cult to have the scheme that achieves convergence, whereas using
the velocity c̃ we are forced to �lter the image, at least a little, in order to nullify some
spurious oscillations otherwise visible. We believe that this phenomenon is connected to
the de�nition of ∇u in the precomputation of the velocity c̃n, which should be adapted
to treat more coherently also singular (or separating) fronts. It is good to point out
that, when using the velocity c, the AF-LW scheme stops correctly on the boundary of
the objects only choosing at least p ≥ 5, even when not applying the gaussian �lter. In
fact, in all the other cases tested, it normally crosses the boundary of some less marked
grain and keeps shrinking.
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4. Segmentation of images via the Level Set Method

Figure 4.9.: (Test 5b) Plots of the �nal front using the monotone scheme (left) and the AF-LW
scheme (right) and velocity c̃, with L1 norm and tol = 0.0001, ∆x = 0.02, p = 2
and N = 2.

Table 4.15.: (Test 5b) Errors and number of iterations varying the stopping rule.

c ∆x = 0.02 Monotone AF-LW

Norm tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

|| ||∞ 0.002 5 0 329 0.0807 0.2628 319 0.0507 0.1652
|| ||1 0.0001 5 0 315 0.0861 0.2804 308 0.0511 0.1664

Table 4.16.: (Test 5b) Errors and number of iterations varying the stopping rule.

c̃ ∆x = 0.02 Monotone AF-LW

Norm tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

|| ||∞ 0.001 2 2 319 0.0141 0.0460 354 0.0372 0.1212

|| ||1 0.0001 2 2 312 0.0097 0.0316 299 0.0074 0.0240

Figure 4.10.: (Test 5) Contour plots of the initial datum (left) and the �nal representations
(right), using the AF-LW scheme and velocity c̃.
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Test 6. Chess horse

The following test is devised in order to show the capability of the schemes (and
of the modi�ed model) of handling more complex shapes. We choose a picture of the
horse piece in the game of chess and we approximate its boundary from inside (Case
a), varying the initial datum, and outside (Case b). The simulations are performed
using only the modi�ed model, because of the usual stability problems of the solutions
obtained by the classical model (the main issue seems to be the approximation of the
mouth of the horse).

Figure 4.11.: (Test 6) Initial fronts for the two cases tested.

From Tables 4.17 and 4.18, it is clear the advantage of the adaptive �ltered scheme
over the monotone scheme, since it produces a more accurate segmentation whenever it
achieves convergence, in particular using the same tolerance. Notice that in the last test
of Table 4.17 the �ltered scheme does not give usable results, since the front overcomes
the boundary (in proximity of the neck) and keeps expanding, but it has better errors
than the monotone scheme even with similar number of iterations. We would like to
remark also that, if we reduce the tolerance even more (tol = 0.00001) then neither the
monotone scheme gives usable results, for the same reason.

Table 4.17.: (Test 6a) Errors and number of iterations using L1 norm.

c̃ ∆x = 0.02 Monotone AF-LW

Datum tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

1 0.00005 2 5 433 0.0794 0.6424 396 0.0672 0.5436
1 0.000025 2 5 508 0.0599 0.4848 544 0.0438 0.3544

2 0.00005 2 5 400 0.0925 0.7488 532 0.0511 0.4136
2 0.000025 2 5 501 0.0613 0.4960 1248 X X

Table 4.18.: (Test 6b) Errors and number of iterations using L1 norm.

c̃ ∆x = 0.02 Monotone AF-LW

tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.00005 2 3 187 0.0303 0.2452 197 0.0273 0.2212
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4. Segmentation of images via the Level Set Method

Figure 4.12.: (Test 6a) Datum 1. Plots of the �nal front using the monotone scheme, Ni =
508 (left), and the AF-LW scheme, Ni = 548 (right), with L1 norm and tol =
0.000025, p = 2 and N = 5, ∆x = 0.02 and velocity c̃.

Figure 4.13.: (Test 6a) Datum 2. Plots of the �nal front using the monotone scheme with
tol = 0.00005, Ni = 400 (left), and with tol = 0.000025, Ni = 501 (middle), and
using the AF-LW scheme with tol = 0.00005, Ni = 497 (right), in L1 norm, with
p = 2 and N = 5, ∆x = 0.02 and velocity c̃.

Figure 4.14.: (Test 6b) Plots of the �nal front using the monotone scheme (left) and the AF-
LW scheme (right) with velocity c̃, with L1 norm and tol = 0.0005, ∆x = 0.02,
p = 2 and N = 3.
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Figure 4.15.: (Test 6) Contour plots of the the �nal representations using the monotone scheme
and velocity c̃, for Case a with Datum 1 (left) and Datum 2 (middle), and for
Case b (right).

We conclude the section related to numerical tests by giving examples of possible
application of the proposed method in the biomedical �eld. We test the modi�ed model
on a series of biomedical images of di�erent nature, which we collected on the internet,
comparing the results obtained by the schemes mainly in terms of number of iterations
Ni and, clearly, qualitatively looking at the di�erent �gures reported. Whenever possible
we will also present the comparison in terms of error, where the precise sense will be
speci�ed case by case. In most cases, since we are not able to compute the error, we
avoid to collect the results in the tables, writing the details of the simulation in the
caption of the relative �gure.

Test 7. Brain

The �rst biomedical test proposed is a picture of a human brain. We approximate
the relevant boundary from both the inside (Case a) and the outside (Case b), varying
also the initial datum in the case of the expanding front. Moreover, in Case b, we are
also able to compute a �reasonable� error by constructing arti�cially (by hand) the mask
depicted in Figure 4.21.
The e�ectiveness of the modi�ed model is testi�ed by the �gures proposed below, in

which are clearly visible also the better results obtained with the �ltered scheme over
the monotone scheme. In particular, Figure 4.19 seems rather emblematic. Although
the expanding front may have a complex evolution due to non-smooth real data, the
gradient of the initial datum seems to keep being preserved, even if new relevant fronts
arise inside the surface. Even more clearly, this behavior can be seen also in Figure 4.21,
where the distance function to the 0-level set is still recognizable.
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4. Segmentation of images via the Level Set Method

Figure 4.16.: (Test 7) Initial fronts for the two cases tested.

Figure 4.17.: (Test 7a) Datum 1. Plots of the �nal front using the monotone scheme with
tol = 0.00001, Ni = 376 (left), and with tol = 0.000005, Ni = 468 (middle), and
using the AF-LW scheme with tol = 0.00001, Ni = 403 (right), all using L1 norm
in the stopping criterion, with p = 4 and N = 5, ∆x = 0.01 and velocity c̃.

Figure 4.18.: (Test 7a) Datum 2. Plots of the �nal front using the monotone scheme with
tol = 0.00005, Ni = 264 (left), and with tol = 0.00001, Ni = 495 (middle), and
using the AF-LW scheme with tol = 0.00005, Ni = 431 (right), all using L1 norm
in the stopping criterion, with p = 4 and N = 5, ∆x = 0.01 and velocity c̃.
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Figure 4.19.: (Test 7a) Contour plots of the the �nal representations using the monotone scheme
and velocity c̃, with Datum 1 (left) and Datum 2, Ni = 495, (right).

Table 4.19.: (Test 7b) Errors and number of iterations using L1 norm.

c̃ ∆x = 0.02 Monotone AF-LW

tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.00005 5 3 228 0.0118 0.2476 262 0.0078 0.1628

Figure 4.20.: (Test 7b) Plots of the �nal front using the monotone scheme (left) and the AF-LW
scheme (right) with velocity c̃.
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4. Segmentation of images via the Level Set Method

Figure 4.21.: (Test 7b) On the left, contour plot of the the �nal representations using the
monotone scheme, and on the right the �arti�cial� mask used to compute the
error..

Test 8-9 Wrist fractures

We continue with the biomedical examples by testing a series of fractures of human
bones. For evident reasons we approach the problem only in the case of the front
shrinking from the frame of the image, trying to capture the relevant (in some sense)
boundaries of the considered pro�les. The aim is the same, that is to show the reliability
of the modi�ed model and the implementation proposed, trying also to exploit some
advantage using the adaptive �ltered scheme over the monotone scheme.
In the �rst two tests we work on images of wrist fractures, for which the �relevant�

boundary to be segmented it is not very clear. In any case, since it seems a rather
interesting situation, we perform the simulation and report the results in Figures 4.22
and 4.23. In both tests, the AF-LW scheme inspects the boundary more deeply, being
able to segment also some bones of the wrist in the �rst case, and with higher accuracy,
as can be noted focusing on the area of the �ngers in both cases. In the �gures we also
reported the contour plots of the �nal representations, from we can observe that the
gradient of the initial data is preserved, except in proximity of the protrusions between
the �ngers, where the level set collapse into each other. This behavior is most probably
due to the non-convexity of the level sets.

140



4.4. Numerical tests

Figure 4.22.: (Test 8b) From left to right: �nal representation and plot of the �nal front using
the monotone scheme (Ni = 160), and �nal front using the AF-LW scheme (Ni =
246), with L1 norm and tol = 0.00008, p = 4, N = 5, ∆x = 0.01 and velocity c̃.

Figure 4.23.: (Test 9b) From left to right: �nal representation and plot of the �nal front using
the monotone scheme (Ni = 191), and �nal front using the AF-LW scheme (Ni =
223), with L1 norm and tol = 0.00002, p = 5, N = 3, ∆x = 0.01 and velocity c̃.
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4. Segmentation of images via the Level Set Method

Test 10. Foot fracture

The following test concerns the image of a foot, where the boundary to be recovered is
much more clear. It is noteworthy that also in this case we have another boundary clearly
visible (the shape of the entire foot), although it is less marked w.r.t. the previous tests
on wrist fractures. Consequently, choosing the parameters in an appropriate manner
(especially N), we are able to recover almost the full shape of the bones, at least using
the AF-LW scheme, whereas the monotone scheme stops the evolution too soon, being
more sensitive to the slowing e�ects of the shaded (not relevant) boundary (see Figure
4.24).

Figure 4.24.: (Test 10b) Plots of the �nal front using the monotone scheme (Ni = 156), and
the AF-LW scheme (Ni = 243), with L1 norm and tol = 0.00005, p = 4, N = 5,
∆x = 0.02 and velocity c̃.

Test 11. Hip bone fracture

The last test is concerning a hip bone fracture. Here we simply approximate the shape
of the bones from the outside, then we compute the error using the same trick of Test
7, as shown in Figure 4.26. In the same �gure we have also the contour plot of the
�nal representation. It is interesting to notice that the gradient of the representation is
preserved in most part of the surface, except for the deep protrusion, where the level
sets collapse into each other.
From Table 4.20 we can detect a rather clear behavior. For the tested choices of

the parameters, the monotone scheme is clearly more stable, achieving convergence
for all tolerance cases. Nevertheless, if we compare the (best) results which are, in
particular, comparable in terms of Ni, we see that the adaptive �ltered schemes has
a better accuracy in terms of our computed error. On the other hand, for the second
choice of the tolerance the front keeps shrinking loosing the entire shape. It is worth to
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point out that if tol = 0.00001 neither the front governed by the monotone scheme is
able to stop correctly.

Table 4.20.: (Test 11b) Errors and number of iterations using L1 norm.

c̃ ∆x = 0.01 Monotone AF-LW

tol p N Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

0.00004 3 4 176 0.0271 0.3571 305 3.87e-04 0.0051

0.00002 3 4 306 0.0034 0.0444 − X X

Figure 4.25.: (Test 11b) Plots of the �nal front using the monotone scheme, Ni = 306 (left)
and the AF-LW scheme, Ni = 306 (right).

Figure 4.26.: (Test 11b) On the left, contour plot of the the �nal representations using the
monotone scheme. On the right the �arti�cial� mask used to compute the error.
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4. Segmentation of images via the Level Set Method

Test 12. Pneumonia

Finally, we conclude our numerical tests by proposing a more complex disposition of
the initial condition, which naturally leads to collapsing and merging fronts. The initial
datum here is composed by four equal paraboloids (each de�ned as Datum 1) or cones
(de�ned as Datum 2), placed as shown in Figure 4.27, with 0-level sets composed by
circles of radius r = 0.125.
From Figures 4.28 and 4.29 it is evident that the AF-LW scheme produces better re-

sults using both initial conditions. Moreover, for both schemes the results vary changing
the initial condition, with better results coming from the distance function. The good
behavior of the scheme and of the modi�ed model in the case of a merging fronts is,
again, testi�ed by the contour plots of the �nal representations, shown in Figure 4.30.

Figure 4.27.: (Test 12a) Initial front composed of four separate circles of radius r = 0.125.

Figure 4.28.: (Test 12a) Datum 1. Plots of the �nal front using the monotone scheme (Ni =
185), and the AF-LW scheme (Ni = 194), with L1 norm and tol = 0.00001, p = 4,
N = 5, ∆x = 0.02 and velocity c̃.
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Figure 4.29.: (Test 12a) Datum 2. Plots of the �nal front using the monotone scheme (Ni =
413), and the AF-LW scheme (Ni = 589), with L1 norm and tol = 0.00001, p = 4,
N = 5, ∆x = 0.02 and velocity c̃.

Figure 4.30.: (Test 12a) Contour plots of the initial datum (left) and the �nal representations
(right), using the monotone scheme. Top: Datum 1, bottom: Datum 2.
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4.5. Conclusions

In this chapter we have presented an e�cient procedure for the segmentation of syn-
thetic and real images, based on the level set method. Thanks to the new de�nition
of the velocity c̃ we were able to achieve interesting results in many complex situa-
tions, mainly regarding biomedical applications. The modi�cation of the velocity is
rather straightforward and has been justi�ed by the method of characteristic. More-
over, our preliminary implementation, although clearly needs some improvement, has
given promising responses. The modi�ed model let us choose the numerical scheme
more freely, since it allows continuous solutions, and then show the possible advantages
o�ered by the high-order Adaptive Filtered Scheme with respect to the basic monotone
scheme.
Future developments will involve a deeper inspection of the evolution, trying to relax

the assumption on the non-intersection of the characteristics. Probably, one way to
overcome this shortcoming is to de�ne the function d(u) according to (4.19). Moreover,
a more stable procedure to reconstruct the point used to de�ne c̃ is to be inspected,
mainly w.r.t. the computation of ∇u (which is not well de�ned if the surface develops
a singularity). Finally, it would be ideal to devise a formula for the computation of the
tolerance of the stopping criterion, eventually dependent only on the initial condition.
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A. Technical results

For completeness we also give the proofs of the properties of the undivided di�erences
and the binomial coe�cients we used in the proof of Proposition 2.1.

Lemma A.1. Let us assume i ≥ 1 and write fh[·] for the undivided di�erence of a
function f . Then, it holds

fh[0, . . . , i] =
i−l∑
j=0

(
i− l
j

)
(−1)i−l−jfh[j, . . . , j + l], for l = 0, . . . , i. (A.1)

Moreover, we have that
n∑
j=0

(
i

j

)
(−1)i−j =

{ (
i−1
n

)
(−1)i−n for n < i

0 for n = i.
(A.2)

Proof. Let us start from the proof of (A.1) and let us proceed by induction on i.
Firstly, let us notice that for l = i the identity is trivially satis�ed, whence the case

i = 0 follows directly. Then, for any l = 0, . . . , i − 1, suppose that the statement holds
for i− 1 and for i > 0 let us compute,

fh[0, . . . , i] = fh[1, . . . , i]− fh[0, . . . , i− 1] by de�nition offh[·]

=
i−l−1∑
j=0

(
i− l − 1

j

)
(−1)i−l−1−jfh[j + 1, . . . , j + 1 + l]

−
i−l−1∑
j=0

(
i− l − 1

j

)
(−1)i−l−1−jfh[j, . . . , j + l] by inductive hyp.

= fh[i− l, . . . , i] + (−1)i−lfh[0, . . . , l]

+
i−l−1∑
j=1

(
i− l − 1

j − 1

)
(−1)i−l−jfh[j, . . . , j + l]

+
i−l−1∑
j=1

(
i− l − 1

j

)
(−1)i−l−jfh[j, . . . , j + l]

= fh[i− l, . . . , i] + (−1)i−lfh[0, . . . , l]

+
i−l−1∑
j=1

(
i− l
j

)
(−1)i−l−jfh[j, . . . , j + l]

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)

=

i−l∑
j=0

(
i− l
j

)
(−1)i−l−jfh[j, . . . , j + l],
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as we wanted.

Remark A.1. To simplify the notation we have stated the result for fh[0, . . . , i] but
the proof clearly holds for fh[k, . . . , k + i], ∀k. In the second identity of the previous
chain we have assumed this fact applying the inductive hypothesis on both terms.

Let us focus now on the second relation of the lemma (A.2) and proceed again by
induction, but this time on n : 0 ≤ n < i. For n = 0 we have (−1)i = (−1)i, than the
identity holds. Suppose that (A.2) holds for n− 1 < i− 1 and compute

n∑
j=0

(
i

j

)
(−1)i−j =

n−1∑
j=0

(
i

j

)
(−1)i−j +

(
i

n

)
(−1)1−n

=

(
i− 1

n− 1

)
(−1)i+1−n +

(
i

n

)
(−1)i−n by inductive hyp.

=

(
i− 1

n− 1

)
(−1)i+1−n −

[(
i− 1

n

)
+

(
i− 1

n− 1

)]
(−1)i+1−n

=

(
i− 1

n

)
(−1)i−n.

For n = i instead, from what we have just seen we can easily compute

i∑
j=0

(
i

j

)
(−1)i−j =

i−1∑
j=0

(
i

j

)
(−1)i−j + (−1)i−i

=

(
i− 1

i− 1

)
(−1)i−i+1 + 1

= −1 + 1 = 0.

For the last result is better to prove �rst the following technical lemma.

Lemma A.2. Let x ∈ R and n ∈ N, n ≥ 1. Then, for t ∈ N, t ≥ 1

(x+ n)t =
t−1∑
j=0

(x+ j)(x+ n)t−j−1(n)j + (n)t, (A.3)

where (x)k = x(x−1) · · · (x−k+1) is the falling factorial ((x)0 = 1). Whence it follows
directly that, for i, t ∈ N : i ≥ 1,

i∑
n=0

(
i

n

)
(−1)i−n(x+ n)t =

{
0 for 0 ≤ t < i
i! for t = i.

(A.4)

Moreover, for t > i,

i∑
n=0

(
i

n

)
(−1)i−n(x+ n)t =

min{t−i,i}∑
j=0

(x+ j)(i)j

i−j∑
n=0

(
i− j
n

)
(−1)i−n−j((x+ j) + n)t−1−j .
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Proof. Let us proceed again by induction, this time on t. For t = 1 we have x+n = x+n
so the identity is veri�ed. Then suppose the (A.3) true for t > 1 and compute

(x+ n)t+1 = (x+ n)t(x+ n)

=

 t−1∑
j=0

(x+ j)(x+ n)t−1−j(n)j + (n)t

 (x+ n) by inductive hyp.

=
t−1∑
j=0

(x+ j)(x+ n)t−j(n)j + (n)t(x+ t+ n− t)

=

t∑
j=0

(x+ j)(x+ n)t−j(n)j + (n)t+1,

as we wanted.
Let us pass to the relation (A.4) and proceed by induction on t < i. For t = 0 the

identity holds by Lemma A.1. Suppose that (A.4) holds for t− 1 < i− 1 and compute

i∑
n=0

(
i

n

)
(−1)i−n(x+ n)t =

i∑
n=0

(
i

n

)
(−1)i−n

 t−1∑
j=0

(x+ j)(x+ n)t−1−j(n)j + (n)t


=

t−1∑
j=0

(x+ j)(i)j

i∑
n=j

(
i− j
n− j

)
(−1)i−n(x+ n)t−1−j

+ (i)t

i∑
n=t

(
i− t
n− t

)
(−1)i−n

=

t−1∑
j=0

(x+ j)(i)j

i−j∑
n=0

(
i− j
n

)
(−1)i−n−j((x+ j) + n)t−1−j

︸ ︷︷ ︸
=0 by inductive hypothesis

+ (i)t

i−t∑
n=0

(
i− t
n

)
(−1)i−n−t︸ ︷︷ ︸

=0 by Lemma A.1

= 0.

Finally, for t = i and repeating the same computations we notice that the last term it
is not null but

(i)i

i∑
n=i

(
i− i
n− i

)
= (i)i = i(i− 1) · · · (i− i+ 1) = i! ,

as we wanted.
For the last relation it su�ces to repeat again the same expansions we have just done

and notice that if j > i, then (n)j = 0 for n = 0, . . . , i, and moreover if t− i < i,

i−j∑
n=0

(
i− j
n

)
(−1)i−n−j((x+ j) + n)t−1−j = 0 per t− i < j ≤ i,
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for what we have seen in the previous case.

Corollary A.3. Let f ∈ Cr+1([xj+k−r, xj+k]) for k ∈ {0, . . . , r − 1}, r > 1. Then, for
i = 1, . . . , r and s = 0, . . . , i,

fh[(k − r + s), . . . , (k − r + s+ i)] = hif (i)(xj) + o(hi). (A.5)

Proof. De�ning x = k − r + s, if we write the (A.1) for l = 0 we have

fh[x, . . . , x+ i] =
i∑

n=0

(
i

n

)
(−1)i−nfh[x+ n]

=

i∑
n=0

(
i

n

)
(−1)i−nf(xj + (x+ n)h).

Then, developing with Taylor up to order r we can write

f(xj + (x+ n)h) =
r∑
t=0

f (t)(xj)
[h(x+ n)]t

t!
+ o(hr),

whence

fh[x, . . . , x+ i] =

i∑
n=0

(
i

n

)
(−1)i−n

r∑
t=0

f (t)(xj)
[h(x+ n)]t

t!
+ o(hr)

=

r∑
t=0

f (t)(xj)
ht

t!

i∑
n=0

(
i

n

)
(−1)i−n(x+ n)t + o(hr)

= hif (i)(xj) +
r∑

t=i+1

f (t)(xj)
ht

t!

i∑
n=0

(
i

n

)
(−1)i−n(x+ n)t + o(hr)

= hif (i)(xj) + o(hi),

having exploited (A.4) in the third identity of the chain.
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