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Abstract. The recurrence analysis is a promising tool for diagnostics of periodic and chaotic solutions, as 
well as identifying bifurcations. This paper deals with the application of this analysis for the first time to 
identify regular and non-regular motions of a superelastic shape memory alloy oscillator. The numerical 
analyses show that the method is capable of distinguishing periodic and chaotic trajectories. Recurrence 
quantities are applied, showing that different approaches are possible to establish the distinction between 
periodic and chaotic signals. Basically, recurrence entropy, trapping time, and characteristic recurrence time 
are considered. 

1 Introduction 
Shape Memory Alloys (SMAs) exhibit a complex 
thermomechanical behaviour determined by the occurrence 
of phase transformation between solid phases, namely 
austenite and martensite, at the microscopic scale [1, 2]. 
This produces several functional properties, like 
superelasticity (or pseudoelasticity) and shape memory 
effects, which are largely utilized nowadays, for several 
applications in various fields. In particular, the superelastic 
behaviour is characterized by hysteretic loops without 
residual displacements (Figure 1). 

The force-displacement curves (Figure 1a) are 
characterized by two plateaus associated with the 
occurrence of the Forward A→M transformation (FwT) 
and Reverse M→A transformation (RvT). The hysteresis 
loops can, in general, have different shape in tension and 
compression. Figure 1b also shows the temperature 
dependence of the four transformation forces that 
characterize the hysteresis loop, as well as the force-
temperature path that corresponds to the pseudoelastic 
loop in (a). In particular, FwT is associated with 
temperature rises, while RvT to temperature decreases. 
The intersections of the various lines with the 
temperature axis in (b), show four transformation 
temperatures – MS, Mf, AS, Af – that characterize a specific 
SMD. By and large, depending on the specific SMA, 
each of the main properties that characterize the 
pseudoelastic loops can assume different values in 
tension and compression. 

When employed in dynamical systems, superelastic 
SMA elements may induce non-regular chaotic responses, 
as shown for example in [3-11]. 

Fig. 1. General features of the superelastic behavior: 
a pseudoelastic loop (a), the intersections of the various lines 
with the temperature axis (b). 

The eventual presence of such chaotic motions may 
be an important aspect considered in the design of 
application and, for this reason, it is very important to be 
able to detect them. Due to the hysteretic behaviour 
induced by the non-smoothness of underlying differential 
equations, the most typical tool for chaos diagnosis, 
namely Lyapunov exponents, is difficult to employed. 
Therefore, various, alternative diagnostic methods have 
been proposed, as for example, 0-1 test [12, 13] and the 
method of wandering trajectories [10, 11].  

This work investigates the opportunity to apply 
recurrence analysis that has not been utilized yet for 
SMA oscillators. This approach includes Recurrence 
Plots (RP) and Recurrence Quantification Analysis 
(RQA) that have been of interest to characterize the non-
linear dynamics of many dynamical systems [14], 
including solutions and bifurcation identification in 
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mechanical systems [15, 16] and smart material 
structures [17]. In this method, the periodicity of the 
underlying dynamics can be investigated by means of 
recurrences that are calculated for each point of the 
reconstructed trajectory. This method was originally 
developed by Eckmann et al. [18] and directly extended 
by Webber and Zbilut [18, 19], Casdagli [20], and 
finally, by Marwan et al. [14]. The application of 
recurrence analysis can be applied for both short 
deterministic and noisy experimental data (see [15, 21]). 

2 Modelling of the shape memory alloy 
oscillator 
An oscillator, composed by a mass m and a restoring force 
provided by a superelastic SMA device, is considered. 
The oscillator is subjected to a harmonic excitation 
represented by F(t) (Figure 2). 

Fig. 2. Typical layout of a superelastic SMA oscillator. 

The thermomechanical constitutive model, proposed 
in [22], has been adapted in [23] as a model for the 
restoring force of SMA devices, suitable for the use in 
the analysis of nonlinear dynamics of Shape Memory 
Oscillators (SMO) [10, 11]. 

This model is employed to form the SMO analysed in 
this paper, considering a dimensionless form discussed 
in the sequence. Specifically, quantities with the 
dimensions of a temperature are normalized with respect 
to a reference value θref, greater than the transformation 
temperature Af, typical for each specific SMA. On the 
other hand, quantities with the dimensions of time, 
length and force are normalized, respectively, to the 
elastic fundamental period 1/ω of the oscillator and to 
the displacement xMs and force fMs at the beginning of the 
forward A  M transformation at the temperature θref. 
The SMO is subjected to a harmonic excitation 
Φ(t) = FcosΩt, and operates in a thermomechanical 
environment, where a convective rate of heat exchange 
Q(t) = h(θe-θ(t)) takes place. Here, F and Ω are the 
normalized excitation amplitude and frequency, θe the 
environment non-dimensional temperature and h the 
coefficient of convective heat transfer. 

At each time t, the state of the SMO is described by 
displacement x(t), velocity v(t) and temperature θ(t) of 
the device, as well as the martensitic fraction 
ξ(t)  [0,1]. Moreover, to model the complex hysteretic 
behaviour of SMA related to internal subloops, the state 
of the device also depends on the value ξ0(t), that 
represents the martensitic fraction ξ, attained at the 

beginning of the last phase transformation, occurred 
before time t. As discussed in [8] Bernardini and Rega 
(2005), time evolution of the SMO is described by the 
following system of 5 differential equations: 
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The constitutive functions Λ and Z take different 
expressions, depending on the fulfillment of suitable 
transformation criteria that detect the occurrence of the 
phase transformations [8]. Subscripts F and R indicate 
the expressions relative to the upper and lower plateaus, 
respectively, that correspond to the forward (A  M) 
and reverse (M  A) transformations: 
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where ΨF,R are constitutive functions that determine the 
shape of the upper/lower pseudoelastic plateaus and 
the other quantities are model parameters. Whereas 
various choices at different levels of refinement are 
possible, the following one is adopted: 
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Here b is a parameter that determines the smoothness of 
the transition between the elastic branch and the 
transformation plateaus.  

The second law of thermodynamics expresses the 
non-negativity of the rate of energy dissipation Γ. In this 
framework Γ=Λ . Since Λ=ΛF when >0 and Λ=ΛR

when 0 , the second law requires: ΛF ≥ 0, ΛR ≤ 0.
Such constraints impose limitations on the range of 
variations of model parameters. For example, while 
evaluating ΛF at the beginning of the upper plateau, the 
following constraint among λ, J, q2 is obtained: 

     0
2

110,0 2 



qJ

F  . (4) 

Considering (1) and (2), the system response depends 
on 7 model parameters, besides the above-mentioned b: 
q1, q2, q3, λ, L, h, J. 

The first four parameters determine the shape of the 
outer pseudoelastic loop. In particular: q1 and q3, 
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respectively, influence the slopes of the isothermal upper 
and lower plateaus. Physically meaningful ranges of values 
may be identified with q1  [0.7, 1.0] and q3  [1.0, 1.5]. 
On the other hand, q2 determines the position of the 
isothermal lower plateau with respect to the upper one 
hence, determines the size of the hysteresis loop. 
Finally, λ directly influences the length of both 
plateaus. The remaining three parameters characterize 
the thermomechanical properties. 

In particular, a parameter L determines the amount of 
heat which is produced or absorbed during mechanical 
loading, and the parameter h characterizes the rate at 
which the involved heat can flow out from the system to 
the environment by convection. Physically meaningful 
ranges of values may be identified with L  [0.0, 0.5] 
and h  [0.0 ,0.2]. The limit case L = 0 corresponds to 
shape memory materials which transformations produce 
negligible amounts of heat, while the limit case h = 0 
models an adiabatic environment in which all the heat 
produced remains in the system. 

The thermo-mechanical parameter J determines the 
slope of the linear dependence of the transformation 
forces on the temperature. A physically meaningful 
range of values may be identified with J  [1.0, 4.0]. 

3 Recurrence analysis 
In early beginning, the concept of recurrences was 
applied to study the nonlinear dynamics and bifurcations 
in terms of stroboscopic phase diagrams, namely 
Poincare maps [24]. The method of the Recurrence 
Plot (RP), introduced by Eckmann et al. [17], was 
generalization on all the states along the trajectory [14, 
24]. RP is based on identification of the same states in 
the phase space of the dynamical system. The recurrence 
of the state xi at time i, at a different time j, xj ≈ xi, is 
counted within a two-dimensional squared matrix R with 
ones and zeros, i.e. 

  NjiR jiij ,,1,,  xx , (5)

where N is the number of considered state states xi, along 
the embedding space trajectory, defined in a discrete 
sampling time ti=iΔt, ε is a threshold distance, || || 
indicates a norm (usually the L2 norm) and Θ (.) 
represents the Heaviside step function. 

The graphical representation of such a matrix, where 
ones and zeros are represented by black and white dots 
respectively, is called recurrence plot (RP). In other 
words, information provided by the RP can be described 
as follows: 
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where xi ≈ xj indicate the points from the neighbourhood 
of radius ε (defined according to the applied norm). 

In order to calculate the RP representing properties of 
the considered system, it is necessary to determine the 

embedding space and define values threshold ε. 
Embedding parameters include the time delay, τ, to 
introduce missing independent variables as vectors 
xi =[xi(1), xi(2), xi(3), …, xi(m) ], where xi(n) = xi-(n-1)τ with 
the appropriate embedding dimension, m, where n ≤ m [26]. 

To estimate the smallest sufficient embedding 
dimension m, the false nearest neighbours’ algorithm is 
frequently used [27]. Appropriate time delay τ can be 
determined with the use of the auto-correlation or mutual 
information function [28, 29]. In the original definition 
of the method, the neighbourhood is specified with the 
use of the L2 norm and its radius is chosen in such a way 
that it contains a fixed amount of states. For such 
a vicinity, the radius εi changes for each xi (i = 1, …, N). 
This neighbourhood is often denoted as fixed number of 
nearest neighbours (FAN). Other commonly used 
neighbourhood is that of a fixed radius, firstly used by 
Zbilut and Weber [30]. 

During research, carried out over the last few years 
[15, 31-33], it has been proven that the recurrence-based 
methods are particularly sensitive to changes in the 
dynamic behaviour of mechanical systems. In this paper, 
the methodology based on the recurrence plots (RP) 
method was applied to analyse regular and chaotic 
motions of the superelastic shape memory oscillator. In 
all computations, FAN definition of the neighbourhood 
was used [25]. The smallest sufficient embedding 
dimension (m = 3) was estimated with the application of 
the false nearest neighbours’ algorithm [25]. Appropriate 
time delay (τ = 11) was determined by searching for the 
first minimum of the mutual information function [29], 
while the phase space of the considered systems has 
been reconstructed by delay embedding [30, 34]. For the 
purposes of consistency, for both signals, the same value 
of threshold (ε = 0.09) was assumed. All the necessary 
computations were performed with the use of the CRP 
Toolbox for MATLAB [35]. 

Recurrence Quantification Analysis (RQA) [14, 30] is 
a method of nonlinear data analysis which quantifies the 
number and duration of recurrences of a dynamical system, 
represented by its state space trajectory. Definitions of the 
most popular RQA measures, such as: The Recurrence Rate 
(RR), Determinism (DET), Laminarity (LAM), Averaged 
diagonal line length (L), Trapping Time (TT), Longest 
diagonal line (Lmax), Longest vertical line (Vmax), Divergence 
(DIV), Entropy (ENTR) can be found in [30,36]. Extended 
discussion, including recurrence times of the first and 
second orders as T1 and T2, can be found in Marwan et al. 
2007. On the other hand, the additional topological 
measures, as transitivity or causality (TRAN) and clustering 
coefficient (CC), were given in [37].  

The simplest measure of the RQA analysis is the 
recurrence rate (RR): 

   ,1
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defined as a ratio of all recurrence states (points) to all 
possible system states. Therefore, RR describes the 
probability that a state recurs in its ε - neighbourhood in 
phase space. 
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Definition of another measure – DET – is based on 
the observation that processes with uncorrelated or 
weakly correlated, stochastic or chaotic behaviour, cause 
none or very short diagonals, while deterministic 
processes result in longer diagonals. Therefore, the ratio 
of recurrence points forming diagonal lines to all 
recurrence points is treated as a measure for determinism 
(predictability) of the system: 
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where lmin often is fixed to the shortest line length lmin =2 
and P(l) denotes a histogram of diagonal lines of the 
length l: 

         .11,
1

0
,,

1,
1,1 







 

l

k
kjkiljli

N

ji
ji RRRlP  (9) 

A diagonal line of length l denotes that a segment of 
the trajectory is rather close during l time steps to 
another segment of the trajectory at a different time; 
thus, these lines are related to the divergence of the 
trajectory segments. The average diagonal line length L: 
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stands for the average time that two segments of the 
trajectory are close to each other. This parameter is 
the longest for periodic behaviour.  

Another RQA measure refers to the length Lmax of the 
longest diagonal line found in the RP (excluding 
diagonal line): 

  Nl
lllL 2max max  , (11) 

where Nl is the total number of diagonal lines. 
Depending on the system character divergence of the 
dynamical system can be associated 1/Lmax or 1/Lmean, 
where Lmean is an average length of diagonal lines, can be 
used to distinguish the chaotic and periodic systems. 
Periodic systems would have long lines and chaotic 
broad spectrum of line lengths resulting with increase of 
divergence.  

The ratio between the recurrence points forming the 
vertical structures and all the recurrence points is called 
laminarity (LAM). A value of LAM decreases if the RP 
consists of more separated recurrence points than 
vertical structures: 
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Trapping time, TT, expresses the average length of 
vertical structures: 

 

 
.

min

min







 N

vv

N

vv

vP

vvP
TT

(13) 

It can be interpreted as the time during which the system 
stays in a particular state.  

Transitivity, TRAN, is a network topological 
parameter defined on the recurrence matrix, R, elements: 
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In general TRAN is a measure which refers to the 
binary relations between three given points i, j, and k, and 
it is sensitive to the dynamical system attractor geometry 
[16, 38]. On the other hand, the maximal length of the 
vertical structures in the RP, denoted as Vmax: 

  Nv
llvV 1max max  (15) 

is a measure, which is the analogue to the standard RQA 
measure Lmax (here, Nv denotes the absolute number of 
vertical lines). 

In contrast to the RQA measures based on diagonal 
lines, the measures based on vertical lines can find 
chaos–chaos and chaos–order transitions. 

Furthermore, the recurrence times of the first, T1, and 
of the second, T2, type define the average time distances 
between the recurrence structures. T1 includes the 
average horizontal space between subsequent structures, 
in terms of the white points, while T2 corresponds to the 
full periods including white and black points. Both 
parameters give an idea on system periodicity given in 
RP by the lengths between (basically diagonal) lines.  

4 Results 
As discussed in detail in [8], the SMO can undergo 
chaotic motions. For the purposes of the presented 
comparison, two specific trajectories are shown: one 
chaotic and the other – periodic. Both trajectories are 
obtained after numerical integration of the system for 
500 periods by means of a standard 4th order Runge-
Kutta algorithm with 4000 steps per periods. The output 
is then sampled to get time series of 200,000 points. Model 
parameters are summarized in Table 1 corresponding to 
devices with a hysteresis loop of medium-high size and 
low hardening. The latent heat of transformation is low 
so that thermal phenomena are small, and the resulting 
conditions are close to the isothermal ones. 

Table 1. Model parameters. 

q1 q2 q3 λ L h J B 

0.980 1.200 0.980 8.125 0.001 0.080 3.1742 0.030 
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The two trajectories differ for the features of the two-
forcing excitation (Tab. 1). The simulation results using 
the above presented model are given in Figure 3. Time 
histories and corresponding spectra are plotted in 
Figures 3a, c, and 3b, d for periodic and chaotic signals, 
respectively. 

(a) PERIODIC 

(b) CHOATIC 

(c) PERIODIC 

(d) CHAOTIC 

Fig. 3. Time histories and spectra of the considered periodic 
(a, c) and chaotic (b, d) signals. The sampling was 400 points 
per excitation period 2π/Ω. 

Table 2. Forcing parameters related to different kinds of response. 

 F 
Chaotic 0.227 1.000 
Periodic 0.400 1.000 

Note that Fourier spectrum of the periodic response 
is given by a singular spectrum (Figure 3c), while the 
chaotic response is characterized by a continuous 
spectrum with additional singular peaks of higher 
amplitude. Occurrence of higher singular periods (with 
respect to excitation frequency Ω/2π) in the spectrum is 
a consequence of system nonlinearities (see Eq. 1).  

The spectrum criterion has a qualitative character. 
A standard way to categorize such solution would be 
using Lyapunov exponent or 0-1 test [12]. In the 
sequence, the recurrence analysis is performed, showing 
that it can be used as an alternative way to estimate the 
character of solutions [14, 15].  

The recurrence analysis includes recurrence plots 
(RPs) and estimation of the recurrence quantifiers 
(Equations 7-15). The RPs are presented in Figure 4. 
Note, that periodic response is characterized by the 
collection equally spaced diagonal straight lines (Figure 
3a). On the other hand, the chaotic response is based on 
the shorter curved lines with evident variable distances 
between them. This basic qualitative difference included 
in the RPs is mirrored in the recurrence parameters 
(Table 3). Namely, values of particular RQA measures, 
estimated for both cases, represent quantitative 
information sufficient to decide about the character of 
system response.  

Table 3. RQA measures computed for the considered periodic 
and chaotic signal for RPs from Figure 4. Assumed parameters: 
m = 3,  = 11, ε = 0.09, FAN criterion. Calculations were done 

using the numerical package [35]. 

State RR DET Lmax Lmean ENTRL LAM 
periodic 0.10 0.99 3977 38.02 1.42 1.00 
chaotic 0.10 1.00 3977 35.18 4.34 1.00 
State TT Vmax T1 T2 TRAN 
periodic 23.12 43 10.02 229.82 0.66 
chaotic 33.95 178 10.02 340.74 0.62 

Parameters RR, DET, Lmax, LAM, T1 are very similar. 
This occurs due to the chaotic solution being 
complemented by some periodic features. These features 
are related to the coexistence of the broad band of 
frequency and narrow peaks. This structure is mapped 
into RP (see Figure 4), where the line layout in Figure 4b 
follows, in some extend, the line structure of Figure 4b. 
However, it is possible to observe important deviations 
into the discontinuous and curved lines. This specific 
behaviour can show the intermittency on the system [16]. 
Different recurrence parameters support this possibility.  

Firstly, we notice the difference in Lmean. As expected, 
chaotic response shows larger divergence (defined as 
1/Lmean). Secondly, entropy ENTRL is 3 times bigger for 
chaotic system than regular one. Thirdly, Vmax is larger 
for chaotic system (4 times larger); this is due to the 
appearance of the curved lines characteristic for variable 
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frequency responses. This result, together with the 
results of the trapping time, TT, in much larger for 
chaotic system support a scenario of system persistence 
around a specific state mediated by more periodic motion. 
 

(a)    PERIODIC 

 
(b)    CHAOTIC 

 
Fig. 4. Recurrence plots computed for periodic (a) and chaotic 
(b) signals. Assumed parameters: m = 3,  = 11, ε = 0.09, FAN 
criterion. 
 

Finally, the additional arguments are provided by the 
T2 and TRAN parameter. Obviously, it can be noticed 
that the ratio T1/T2 indicates on some smearing in 
response phase (local decelerations or accelerations in 
the system response). TRAN shows the information about 
the reproduction of binary related between black points 
on RP. It is obvious, that the complexity of the studied 
system responses is different. 

5 Conclusions 
We have studied nonlinear dynamics of a pseudoelastic 
shape memory alloy oscillator. The hysteretic behaviour 
of the SMA element is described by a phenomenological 
model with internal variables. Numerical simulations are 
performed showing periodic and chaotic responses. 
Diagnostic analysis of the kind of response is performed 

considering recurrence plots. Recurrence plots and 
recurrence quantification analyses are considered. Using 
various recurrence measures, a successful distinction of 
regular and chaotic solutions has been obtained using the 
following parameters: Lmean, ENTRL, TT, T2, Vmax. Results 
are compared with Fourier spectra presenting coherent 
results. In general, it is possible to conclude that the 
recurrence analysis is capable of distinguishing periodic 
and chaotic responses from short intervals (ten cycles of 
excitation – see Fig. 4). 
 
The authors would like to acknowledge the support of Brazilian 
Research Councils CNPq, CAPES and FAPERJ. 
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