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Geometry and Mechanics of Thin Growing Bilayers†

Matteo Pezzulla,a Gabriel P. Smith,a Paola Nardinocchi,b and Douglas P. Holmes∗a

We investigate how thin sheets of arbitrary shapes morph under the isotropic in-plane expansion
of their top surface, which may represent several stimuli such as nonuniform heating, local swelling
and differential growth. Inspired by geometry, an analytical model is presented that rationalizes
how the shape of the disk influences morphing, from the initial spherical bending to the final
isometric limit. We introduce a new measure of slenderness that describes a sheet in terms of
both thickness and plate shape. We find that the mean curvature of the isometric state is three
fourth’s the natural curvature, which we verify by numerics and experiments. We finally investigate
the emergence of a preferred direction of bending in the isometric state, guided by numerical
analyses. The scalability of our model suggests that it is suitable to describe the morphing of
sheets spanning several orders of magnitude.

Cylindrically curved thin structures result from the nano-scale
fabrication of semiconductor nanotubes1–4, and the nonuniform
heating5, local swelling6, and differential growth7 of thin sheets.
For laminated composites8, electrolytic thin film deposition9,10,
and concrete slabs11, this cylindrical curling presents an engi-
neering challenge, while recent work has utilized it as a mecha-
nism for stimuli responsive self-assembly12,13. The length scales
of these examples range from the nanometer to the meter, sug-
gesting that geometry dominates the deformation processes. Me-
chanically, these structures are bilayer disks in which one layer
expands relative to the other either isotropically or not14. In
this paper, we show that in the asymptotic limit of large bilayer
growth, any arbitrarily shaped disk will adopt a cylindrical shape
whose mean curvature is three-fourth’s the natural curvature. We
present an analytical model that captures both the bifurcation
from spherical to cylindrical curvature ∗ and the isometric limit,
verified by numerics and experiments.

1 Geometry and Mechanics

Let us consider a thin body subjected to a dome-like (elliptic) nat-
ural curvature – this may be thought of as the result of swelling,
growth, or heating of the top surface. Within the context of non-
Euclidean plates15, the body may be modeled as a shell having

a Department of Mechanical Engineering, Boston University, Boston, MA, 02215; E–
mail: dpholmes@bu.edu
b Sapienza Università di Roma, via Eudossiana 18, Roma, Italy.
† Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 10.1039/b000000x/
∗ For simple geometries, e.g. circles and ellipses, this shape evolution can be described

semi-analytically by making an assumption about either the potential function or
displacement field.

Fig. 1 (a) A bilayer disk and the beam cut from it. (b) Isometric limit. (c)
Measuring the natural curvature of the disk as the realized curvature of
the beam. (d) Isometric states obtained by residual swelling of disks
having different shapes.

the following first and second natural fundamental forms

ā = Λ2
o

(
1 0
0 1

)
, b̄ = κo

(
1 0
0 1

)
. (1)

The natural stretch Λo and natural curvature κo represent the lat-
eral distances and curvatures that would make the sheet locally
stress-free. However, as every surface in space must fulfill the
Gauss-Codazzi-Mainardi equations, it is not usually possible for
the sheet to realize the natural forms. Conversely, if a beam is cut
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from the sheet, its inherent 1D geometry will allow it to adopt a
three-dimensional shape with longitudinal axis stretch and curva-
ture equal to Λo and κo, respectively, without any need of satis-
fying additional constraints. This strong connection between the
sheet and the beam provides a simple means to evaluate the nat-
ural forms of the former by measuring the deformed shape of the
latter [see figure 1 (c)].

1.1 Theory and experiments

To fully exploit this idea, we fabricated bilayer disks by spin-
coating the two layers made of polyvinylsiloxane (PVS) Zhermack
Elite Double 32 and 8, respectively, as shown in figure 1 (a-b).
Free chains flow from the softer (pink) to the stiffer (green) poly-
mer by residual swelling16, corresponding to a dome-like nat-
ural curvature, and a conformal natural stretch. Mechanically,
this corresponds to a bilayer disk where the top layer has been
stretched homothetically by a factor λ−1 and then bound to the
bottom layer. This results in a discontinuous three-dimensional
natural metric ḡ that may be approximated17 as ḡ = ā− 2zb̄,
where z is the coordinate along the thickness. Approximate ex-
pressions for ā and b̄ as functions of pre-stretches were derived
in Ref. 17, albeit the natural curvature was then measured exper-
imentally as the curvature of very small strips cut along princi-
pal directions. We overcome the lack of a predictive expression
for the natural curvature by imaginarily cutting a beam from the
sheet, and determining its deformed shape analytically by follow-
ing Ref. 18 as Λo = Λo(λ ,m,n) and κo = κo(λ ,m,n)/h, where m
and n are top-to-bottom thicknesses and Young moduli ratios,
respectively, and h is the thickness of the sheet (see Appendix).
Therefore, the natural forms are determined analytically as func-
tions of λ and the material and geometrical ratios.

A comparison of the energies for stretching and bending sug-
gests that a sheet exposed to such stimuli should adopt an iso-
metric deformation in the limit of large stretch. We analytically
describe the realization of this asymptotic isometry, corresponding
to a zero Gaussian curvature K and a nearly stretch-free sheet.
The dimensionless energy of the shell may be written as17

U =
∫
[(1−ν)|a− ā|2 +νtr 2(a− ā)]

√
|ā|dA+

+
h2

3

∫
[(1−ν)|b− b̄|2 +νtr 2(b− b̄)]

√
|ā|dA ,

(2)

where a and b are the first and second fundamental forms of the
mid-surface of the deformed sheet, respectively. In the isometric
limit, we have a = ā and the stretching energy is zero. To find the
deformation of the disk we then minimize the bending energy un-
der the constraint that the mid-surface be flat, since a = ā = Λ2

oI.
We write b in cartesian coordinates (u,v) so that the second fun-
damental form is Ldu2 + 2Mdudv + Ndv2, and impose the con-
straint of a flat mid-surface by enforcing that its Gaussian cur-
vature Λ−4

o (LN−M2) be zero through a Lagrange multiplier.

2 Isometric limit
For the characterization of the isometric limit, we assume that the
energy density is homogenous. Consequently, for the total energy
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Fig. 2 (a) Dimensionless mean curvature versus dimensionless
rescaled natural curvature: the three-fourth law excellently captures
numerical and experimental data regardless of initial shape. Numerical
data (blue) refers to circle, square, leaf-like, triangle, cross and ellipse,
each for different thicknesses, and experimental data (red) refers to a
square, cross, triangle, and circle. (b) Dimensionless mean curvature
versus λ : the isometric limit is expressed in terms of the stretch of the
top layer. Three different master curves are shown, each corresponding
to different thicknesses ratios m. (c) Isometric shapes from COMSOL
with the color code representing the mean curvature.

to be minimized, it suffices to minimize its density augmented by
the constraint on the Gaussian curvature imposed by the Lagrange
multiplier. The minimization gives L+N = κo(1+ ν) and K = 0,
a solution solely in terms of the principal invariants of the cur-
vature tensor, and independent of the shape of the sheet: if a
homogeneous energy density is assumed, no information on the
bending direction can be obtained19. The result of the minimiza-
tion may be rewritten in terms of the mean curvature H of the
sheet as H = 1

2 aαβ bαβ = 1
2 āαβ bαβ = 1

2 Λ−2
o (L+N). If the material

is incompressible (ν = 1/2), it becomes

H =
3
4

κo

Λ2
o
, (3)

that is, in the limit of large stretch, the mean curvature of the
sheet is three-fourth of the rescaled natural curvature κ?

o = κo/Λ2
o,

regardless of the shape of the sheet. Equivalently, the sheet
morphs into a cylinder of radius R = 1/(2H). Since κo ∼ 1/h
whereas Λo does not depend on the thickness, we derive H ∼ 1/h.

2.1 Experiments and numerics
To verify our analytical prediction, we carried out experiments
and numerical simulations. In the experiments, we measured
the curvatures of disks of several shapes and the corresponding
beams during residual swelling [figure 1 (a-b)] by image anal-
ysis performed using Matlab. Numerical simulations were per-
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formed to solve the geometrical problem within the context of
finite (incompatible) tridimensional elasticity with large distor-
tions using a Neo-Hookean incompressible material model20 im-
plemented in the commercial software COMSOL Multiphysics.
The sheets were made of two layers: as the top one was pre-
stretched by λ−1, it was subjected to a distortion field Fo =

λ (e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3, whereas the bottom one was not
pre-stretched and therefore subjected to Fo = I. We simulated
several shapes and thicknesses, and verified that the mean cur-
vature H was homogeneous apart from boundary layers near the
edges. Then we plotted the product Hh as a function of the di-
mensionless natural curvature κ?

oh, or the stretch λ via the 1D
analytical model, in the limit of large stretch. The numerical data
referring to different thicknesses and the experimental data col-
lapse to a single master curve thus verifying the analytical pre-
diction that H ∼ 1/h and the three-fourth law excellently predicts
the mean curvature of the sheet regardless of its shape as shown
in figure 2 (a). Figure 2 (b) shows how the dimensionless mean
curvature varies with the stretch of the top layer and how it is
affected by the thicknesses ratio m, providing a design rule for
bilayer sheets; all the data corresponding to different thicknesses
and shapes collapses to master curves.

2.2 Energy comparison

To predict and explain the transition that turns a spherical growth
into a flat state19, we start from the energy in equation (2)
and compare the energies of the spherical and isometric states,
without any a priori assumptions of a stress state or displace-
ment. These assumptions usually rely on the consideration of
an Airy stress function, which is known only for a very small
number of sheet’s shapes, and on the account of a linearized ver-
sion of the Gauss’s theorem10,21–23. Away from large stretches,
the two principal curvatures are equal to each other and homo-
geneous throughout the sheet. However, the morphing into a
spherical cap (L = N) becomes too costly for the sheet when the
stretch, or the natural curvature, reaches a critical value. While
for small values of κo, it is convenient for the sheet to stretch
and increase its Gaussian curvature, above a critical threshold
of κo, it is cheaper to morph isometrically. Assuming a met-
ric with constant Gaussian curvature in Gaussian normal coor-
dinates as in 16, the dimensionless stretching energy may be
written as U s = (1/9)Λ6

oK2 ∫ r4dA, where r is the undeformed
radial coordinate, and we define S = (2/9

∫
r4dA/A)1/4 as the

shape factor. Also, as L = N, the dimensionless bending energy
is U b = h2Λ−2

o A(L−κo)
2, where A is the undeformed area of the

incompressible sheet. As K2 ' Λ−8
o L4 before bifurcation, the total

dimensionless energy for the spherical cap is

U bb = (1/9)L4Λ−2
o

∫
r4dA+h2AΛ−2

o (L−κo)
2 , (4)

while the total energy of the isometric shape is equal to

U ab = (1/4)h2AΛ−2
o κ2

o , (5)

which becomes smaller than the energy of the spherical cap above
a critical value of the natural curvature as figure 3 shows (see
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Fig. 3 Dimensionless energies before (blue) and after (red) bifurcation
versus the natural curvature. Our model predicts bifurcation as the
intersection between the two energies, which is in good agreement with
the numerical threshold determined in COMSOL (dashed line).

Appendix for the complete derivation). This analytical reasoning
suggests that a bifurcation between the two principal curvatures
must occur at a critical κob to drive the sheet into an isometric
shape.

2.3 Pre-bifurcation curvature
As our model does not rely on any a priori assumption on the
stress state or displacements, it is suitable to study the pre-
bifurcation morphing of the sheets, regardless of their shapes.
Minimization of the total energy U bb with respect to L yields

L3
+ γ4(L−κo) = 0 , (6)

where curvatures have been nondimensionalized by 1/h and de-
noted with bars. The geometrical dimensionless small parame-
ter γ = h/S encloses the shape of the sheet in the equilibrium
equation and may be computed easily by its definition. The
smaller γ is, the more slender the structure is in terms of both
thickness and plate shape. Equation (6) can be solved analyti-
cally and it admits just one real solution L(κo) or, equivalently via
the 1D model, L(λ ).

2.4 Bifurcation curvature
When the natural curvature reaches a value such that the energy
of the spherical cap coincides with the energy of the isometric
state, bifurcation occurs; the equality between the two energies
may be written as

1
2

L4
b + γ4

(
L2

b−2Lbκob +
3
4

κo
2
b

)
= 0 , (7)

where the subscript b denotes quantities at bifurcation. This is
a perturbation problem in the smallness parameter γ that multi-
plies the bending factor of equation (7). Seeking a perturbation
expansion solution in the form Lb = Lb0 + γ4Lb1 +O(γ8), we ob-
tain Lb ' κob/2, at the leading order. Moreover, by Taylor expand-
ing equation (7) in γ up to O(γ31/3), we derive a shape-dependent
formula for the bifurcation natural curvature

κob =

√
20+14

√
2

27
γ2 . (8)
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Fig. 4 (a) Dimensionless natural curvature at bifurcation versus γ: the
analytical prediction given by (8) (solid line), in agreement with the
numerical solution (dashed) of (7), perfectly predicts the finite element
simulation results (symbols) obtained for different shapes (identified by
the shape of the symbol) and thicknesses. (b) Pre-bifurcation behavior
in terms of L(κo) for different shapes (circle, square, rectangle) obtained
by finite element simulations (symbols) and analytics (solid lines). The
two straight lines identify the upper and lower bounds corresponding to
a bending-dominated solution and the bifurcation point, respectively. (c)
Deformed shapes of a thin circular disk from COMSOL.

Differently from other works in the literature, this formula re-
markably predicts the natural curvature at bifurcation for thin
sheets having different shapes. While curvatures scale as 1/h as
we showed, this formula predicts that the bifurcation natural cur-
vature scales as h. The analytical solution L(κo), evaluated at
bifurcation through equation (8), yields Lb = 0.63κob, an analyt-
ical relation that does not depend on γ, and refines our previous
asymptotic estimate. Figure 4 (a) shows the dimensionless natu-
ral curvature at bifurcation for different geometries (different γ):
the analytical model excellently predicts the threshold for differ-
ent shapes and thicknesses that have been simulated in COMSOL
provided that the shape is convex. The dashed blue curve corre-
sponds to the numerical solution of equation (7), which justifies
the asymptotic analysis that led to equation (8). The model is
also capable of distinguishing the pre-bifurcation behavior that
sheets of different convex shapes exhibit as figure 4 (b) shows.
For clarity, we reported the pre-bifurcation solution for three
shapes. As γ→∞, bending dominates stretching and equation (6)
yields L = κo. This is also an upper-bound for all the shapes as
L′ = γ4/(γ4+3L2

) that is maximum at κo = 0 where it is equal to 1
regardless of the shape: the realized curvature never exceeds the
natural curvature. Also, we plotted the relation between realized
and natural curvatures at bifurcation, which sets a lower-bound

for L. Figure 4 (c) shows the numerical deformed shape of a cir-
cular disk as the stretch increases: the disk morphs from a flat
state to a spherical cap before bifurcating into a cylinder. The an-
alytical model is not capable of describing the spherical bending
and the bifurcation of concave shapes, whose topological defects
presumably affect their behavior24. Notably, the three-fourth law
holds regardless of the shape, whether convex or concave.

3 Bending direction

Finally, we investigate the emergence of a preferred direction
of bending following bifurcation by running several simulations
with different meshes. While it was shown that the principal
curvatures of an ellipse have no preferred orientation19, here
we show that nearly all shapes select a particular direction for
their generators immediately after symmetry is broken. Cylindri-
cal generators orient themselves along an axis which preserves
reflection symmetry. If multiple planes of reflection symmetry ex-
ist for a particular shape, bending will occur along the longest
length of the disk (Fig. 5a). For instance, a square of length a
and width b has two unique planes of reflection symmetry, and
has been observed to bend along its diagonal25. We show with a
series of simulations for a = 0.02 m and h = 0.4 mm that as a/b
is increased, and the disk transitions from square to rectangular,
the orientation of the generators transitions from the diagonal to
the short length b. Curiously, this transition does not occur imme-
diately once a/b > 1, as a logistic analysis of the orientation data
identifies a transition at a/b= 1.028±0.0025. A preferred bending
direction in rectangular sheets has been attributed to boundary
layers effects26 that lower the energy in the disk27. Our results
help generalize these findings for any arbitrary shape. The notion
of a preferred bending direction upon bifurcation does not contra-
dict Mansfield’s classical results, as the cylindrical generators can
be rotated to any arbitrary angle while remaining in equilibrium
when perturbed via mechanical or chemical stimuli6.
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Fig. 5 (a) Numerical statistics of preferred generators (blue) for different
shapes. (b) Logistic analysis of the orientation data of the transition from
a square to a rectangle.
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4 Conclusions

In summary, we have derived a theoretical analytical model that
describes the morphing of disks subjected to dome-like natural
curvatures, regardless of their shape. We also showed the emer-
gence of an isometric limit with analytics, numerics and experi-
ments, underlying the importance of isometries in mechanics28.
The capability to morph 2D shapes into 3D shells by in-plane16

and transverse residual swelling opens intriguing avenues to-
wards the precise design of soft structures.
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A Natural axis stretch and curvature

For the sake of clarity, we explicitly write the expressions for Λo

and κo derived in 18:

Λo =
λ [λ +mn(3+λ +m(3+m+m2n+3(1+m)λ ))]

m4n2 +2m(2+m(3+2m))nλ +λ 2 , (9)

κo =−6
h
(λ −1)m(1+m)2n(m4n2 +2m(2+m(3+2m))nλ +λ 2)

λ [λ +mn(3+λ +m(3+m+m2n+3(1+m)λ ))]2
.

(10)

B Derivation of the energies away from the
isometric limit

In response to isotropic bilayer growth, a thin sheet will deform
into a spherical cap for low degrees of stretching. Therefore, its
two principal curvatures are equal and the metric must be axially
symmetric. In polar coordinates, ā may be expressed as

ā = Λ2
o

(
1 0
0 r2

)
.

Also, curvatures may be approximated as homogeneous through-
out the sheet so that the Gaussian curvature is constant and posi-
tive. As we did in Ref. 16, we look for metrics with constant Gaus-
sian curvature in Gaussian normal coordinates (ρ,θ) where the
first fundamental form may be expressed as ds2 = dρ2 + aθθ dθ 2

and
aθθ =

( 1√
K

sin
√

Kρ
)2

= ρ2− K
3

ρ4 +O(ρ5) ,

where we also Taylor expanded the metric around ρ = 0. We
recall that ρ(r)=

∫ r
0
√

arr(r′)dr′, where arr is the radial component
of the metric. Notice that, before bifurcation, curvatures are small
and the Taylor approximation can be applied. Finally, symmetry
yields arθ = ārθ = 0 and we approximate, as in Ref. 16, arr '
ārr. This approximation yields ρ(r) = Λor. Finally, the stretching
energy may be written as

U s =
∫

(aθθ −Λ2
or2)2

Λ2
or3 drdθ =

1
9

Λ6
oK2

∫
r4dA , (11)

where we computed the Gaussian curvature K = detb/deta
as Λ−4

o L2. This formula corresponds to detb/det ā and should be
used just in the isometric state. However, before bifurcation the
metric does not diverge much from the natural metric and this
expression of the Gaussian curvature is a good approximation.
Notably, the stretching energy does not depend on ν .

As the metric does not diverge much from the target metric be-
fore bifurcation, the second fundamental form may be expressed
as a homogeneous field. Consequently, the (dimensionless) bend-
ing energy may be written as

U b =
2
3
(1+ν)h2Λ−2

o A(L−κo)
2 , (12)

which in the limit ν → 1/2 coincides with the bending energy
presented in the main paper.

After bifurcation, the stretching energy drops to zero as the
stretch is increased slightly beyond the bifurcation threshold
while the bending energy does not. As the Gaussian curvature
in the isometric state is zero, we can take M = N = 0 and L such
that equation (14) holds, that is L = (1+ν)κo. The (dimension-
less) energy of the isometric states then reads

U ab =
h2

3
(1−ν2)AΛ−2

o κ2
o , (13)

which in the limit ν→ 1/2 coincides with the energy presented in
the main paper.

C Compressible materials
C.1 Isometric limit
When a = ā, the total energy is just of the bending type. The
functional to be minimized corresponds to the bending energy
augmented by a constraint in the form of a Lagrange multiplier,
η , placed on the Gaussian curvature to prevent stretching of the
mid–plane, it reads

f (L,M,N,η) = Λ−4
o

[
(1−ν)[(L−κo)

2 +2M2 +(N−κo)
2]+

+ν [(L−κo)
2 +(N−κo)

2 +2(L−κo)(N−κo)]−η(LN−M2)
]
.

Minimization yields

∂ f
∂η

= 0⇔ LN−M2 = 0 ,

∂ f
∂L

= 0⇔ 2(1−ν)(L−κo)+2ν(L−κo)+2ν(N−κo)−ηN = 0 ,

∂ f
∂N

= 0⇔ 2(1−ν)(N−κo)+2ν(N−κo)+2ν(L−κo)−ηL = 0 ,

∂ f
∂M

= 0⇔ η =−2(1−ν) .

This algebraic system yields K = Λ−4
o (LN−M2) = 0 and L+N =

(1+ν)κo. The mean curvature of the isometric state may be then
written as

H =
1
2

aαβ bαβ =
1
2

āαβ bαβ =
1
2

Λ−2
o (L+N) =

1+ν
2

κo

Λ2
o
, (14)

which in the limit ν → 1/2 coincides with the three–fourth law
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(equation (3) in the main paper).

Finally, the rescaled natural curvature κ?
o = κo/Λ2

o turns out to
be the natural curvature in the rescaled coordinate system ξ α =

Λoηα , where ξ α and ηα are the new and old curvilinear coor-
dinates, respectively. Indeed, the fundamental forms in the new
system are ā? = Λ−2

o ā = I and b̄? = Λ−2
o b̄ = κ?

oI. These coordinate
transformation demonstrates that the couple (ā, b̄) determines a
mean curvature in the isometric limit equal to the one determined
by (ā/Λ2

o, b̄/Λ2
o), when ā is Euclidean.

C.2 Bifurcation

Bifurcation occurs when the energy of the spherical cap becomes
equal to the energy of the cylinder, U bb = U ab. Enforcing this
equality, we get

1
9

L4
∫

r4dA+
2
3
(1+ν)h2A(L−κo)

2 =
h2

3
(1−ν2)Aκ2

o .

Recalling the definition of the shape factor S =

(2/9
∫

r4dA/A)1/4, γ = h/S and working in dimensionless
quantities, we get

1
2

L4
b +

1+ν
3

γ4
(

2L2
b−4Lbκob +(1+ν)κo

2
b

)
= 0 , (15)

which in the limit ν→ 1/2 coincides with equation (5) in the main
paper. Notice that the first term comes from the stretching energy
whereas the second one, multiplying γ4, is the difference between
bending energies before and after bifurcation.

By Taylor expanding equation (15) in γ up to O(γ31/3), we de-
rive a shape-dependent formula for the bifurcation natural (di-
mensionless) curvature κob = f (ν)γ2. The expression of f (ν) is
cumbersome, yet analytical. We report its plot in figure 6 (a). In
the limit ν→ 1/2, it coincides with equation (8) in the main paper

as f (1/2) =
√
(20+14

√
2)/27. Notice how material and geometry

couple in a multiplicative way: the function f depends just on the
material while γ depends just on geometry.

Equation (15) represents a perturbation problem in the small-
ness parameter γ that multiplies the bending factor. Seeking a
perturbation expansion solution in the form Lb = Lb0 + γ4Lb1 +

O(γ8), we obtain

Lb '
(

1−
√

1−ν
2

)
κob , (16)

at the leading order, which in the limit ν→ 1/2 coincides with the
asymptotic estimate given in the paper Lb ' κob/2. This result
comes from the leading order balance of energies that sets the
stretching energy aside, being just a balance of bending contents,
before and after the bifurcation. In the main text, when ν = 1/2,
we analytically refined this estimate getting Lb = 0.63κob. This
scalar pre-factor has been rounded off for simplicity, due to the
cumbersome analytical expression

Lb =
31/6(−31/6 +(3

√
2+
√

18+
√

3)2/3)

2
√

2(3
√

2+
√

18+
√

3)1/3
κob .

Furthermore, when ν 6= 1/2, we derived Lb = g(ν)κob where the
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Fig. 6 (a) The function f versus ν . (b) The function g versus ν (solid
line) and its asymptotic approximation (dashed line).

function g(ν) is analytical and depends just on material proper-
ties. As the expression of g(ν) is cumbersome, we report its plot
in figure 6 (b) as well as its asymptotic approximation shown in
equation (16). Notice that g(1/2) = 0.63.

C.3 Pre-bifurcation

To predict the pre-bifurcation morphing of the disk, we have to
minimize the total energy of the spherical cap

U bb =
1
9

L4Λ−2
o

∫
r4dA+

2
3
(1+ν)h2Λ−2

o A(L−κo)
2 .

By working in the dimensionless quantities, minimization yields

L3
+

2(1+ν)
3

γ4(L−κo) = 0 , (17)

which in the limit ν → 1/2 coincides with equation (6) in the
main paper. This equation can be solved analytically to get L(κo)

or, equivalently via the 1D model, L(λ ).
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