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Abstract

Background: Copy number variation (CNV) is a potential contributing factor to many genetic diseases. Here we
investigated the potential association of CNV with nonsyndromic cryptorchidism, the most common male
congenital genitourinary defect, in a Caucasian population.

Methods: Genome wide genotyping were performed in 559 cases and 1772 controls (Group 1) using Illumina
HumanHap550 v1, HumanHap550 v3 or Human610-Quad platforms and in 353 cases and 1149 controls (Group 2)
using the Illumina Human OmniExpress 12v1 or Human OmniExpress 12v1-1. Signal intensity data including log R
ratio (LRR) and B allele frequency (BAF) for each single nucleotide polymorphism (SNP) were used for CNV
detection using PennCNV software. After sample quality control, gene- and CNV-based association tests were
performed using cleaned data from Group 1 (493 cases and 1586 controls) and Group 2 (307 cases and 1102
controls) using ParseCNV software. Meta-analysis was performed using gene-based test results as input to identify
significant genes, and CNVs in or around significant genes were identified in CNV-based association test results.
Called CNVs passing quality control and signal intensity visualization examination were considered for validation
using TaqMan CNV assays and QuantStudio® 3D Digital PCR System.

Results: The meta-analysis identified 373 genome wide significant (p < 5X10−4) genes/loci including 49 genes/loci
with deletions and 324 with duplications. Among them, 17 genes with deletion and 1 gene with duplication were
identified in CNV-based association results in both Group 1 and Group 2. Only 2 genes (NUCB2 and UPF2)
containing deletions passed CNV quality control in both groups and signal intensity visualization examination, but
laboratory validation failed to verify these deletions.

Conclusions: Our data do not support that structural variation is a major cause of nonsyndromic cryptorchidism.
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Background
Nonsyndromic cryptorchidism, or isolated undescended
testis, is one of the most common pediatric congenital
anomalies, affecting 2-3 % of boys, and is associated with
infertility and testicular malignancy later in life [1]. The
etiology is largely unknown and likely multifactorial.
Familial clustering suggests moderate genetic contribu-
tion to the disease [2].
A candidate approach to gene discovery has revealed

some potential risk genes, but the results are inconsistent
and population-specific [3–10]. Recently we performed a
genome-wide association study (GWAS) in 912 nonsyn-
dromic cryptorchidism cases and 2921 controls [11, 12] to
identify common allelic variants across the genome associ-
ated with the disease. No variant reached genome-wide
significance (p ≤ 7X10−9) in full analysis, and one vari-
ant (rs55867206, near SH3PXD2B, p = 2X10−9) passed
this threshold in a subgroup analysis of proximal testis
position. Pathway analysis of suggestive association
markers (p ≤ 10−3) using several bioinformatics tools
identified overrepresentation of genes/functions linked to
cytoskeleton-dependent processes, syndromic cryptorchid-
ism and hypogonadotropic hypogonadism.
Over the past decade, evidence has shown that copy

number variation (CNV) plays an important role in the
occurrence of many diseases [13]. Analysis of CNVs using
array comparative genomic hybridization found VAMP7
duplication and OTX1 deletion in individuals with con-
genital genitourinary defects [14, 15], with cryptorchidism
as one of the primary traits. However, the association of
CNVs with nonsyndromic cryptorchidism has not been
explored. Through analysis of GWAS data [11, 12], we
hypothesized that CNV is a significant cause of nonsyn-
dromic cryptorchidism in Caucasian males.

Methods
Subjects and genotyping
Cases were self-reported Caucasian subjects with non-
syndromic cryptorchidism who underwent surgical re-
pair at Nemours/Alfred I. DuPont Hospital for Children
(Nemours) or The Children’s Hospital of Philadelphia
(CHOP). Subjects with multiple congenital anomalies or
diagnosis of any syndrome, other genital anomalies
(hypospadias, chordee or other penile anomalies) or
abdominal wall defects were excluded from the study.
Control subjects were recruited through the CHOP
Health Care Network. They were self-reported Cauca-
sian males who were at least 6 years old with no known
history of testicular disease, penile anomaly, diagnosis of
a syndrome or any additional medical disorder associ-
ated with cryptorchidism. Basic demographic and
phenotypic data collected include age of diagnosis, race,
ethnicity, laterality and the position of affected testes.

As described in detail in previous publications [11, 12],
two groups of cases were genotyped at the Center for
Applied Genomics at CHOP to match available control
genotype data. In Group 1, 559 cases and 1772 controls
were genotyped using the Illumina HumanHap550 v1,
HumanHap550 v3 or Human610-Quad platforms that
share over 535 K single nucleotide polymorphisms (SNPs)
in common. In Group 2, 353 cases and 1149 controls were
genotyped using the Illumina Human OmniExpress 12v1
or Human OmniExpress 12v1-1 platforms that share over
719 K SNPs. The global SNP and gene coverage of our
SNP arrays are approximately 85 % and 80 %, respectively
[16], and the average distance between probes is 4 kbp-5.5
kbp. At SNP genotype calling, cluster files (.egt) provided
by Illumina were used as a common reference.

CNV detection and sample quality control
Due to differences in SNP coverage and less than 310 K
intersection of SNPs between platforms used in the 2
case–control groups, CNV detection, sample quality con-
trol (QC), and association tests were performed separately
in Groups 1 and 2. We used the PennCNV software
package [17–20] to make CNV calls based on signal inten-
sity data from genotyping arrays including log R ratio
(LRR) and B allele frequency (BAF) for each SNP.
Adjacent CNV calls were then automatically examined
and merged using PennCNV software.
We used sample QC criteria from our prior genome-

wide genotyping data analysis in PLINK [11, 12, 21–23].
Individuals were excluded from further analysis if one of
below criteria were met: (1) discordance between
reported sex and sex chromosome SNP data; (2) missing
genotype rate >3 %; (3) potential duplicates or relatives
(based on estimate of proportion of alleles shared identi-
cal by descent >0.1875); and (4) non-Caucasian ancestry
based on multidimensional scaling (MDS) analysis using
data from the Stanford Human Genome Diversity
Project (HGDP) [24, 25]. We removed all samples that
deviated from the means of the first or second MDS
components by more than 3 standard deviations (SD).
We also used a sample quality control function imple-
mented in the ParseCNV software package [26, 27] and
removed samples with (1) high intensity noise (measured
by SDLRR (SD of LRR) >mean +3 SD); (2) extreme in-
tensity waviness (measured by more than 3 SD of mean
of GCWF (Guanine-Cytosine base pair wave factor)) and
(3) high number of CNV counts per sample (measured
by CNV count number > mean + 3 SD).

Gene based association analysis, meta-analysis and CNV
based association analyses
Given that SNP overlap is low between the genotyping plat-
forms used in Group 1 and 2, and the uncertainty of CNV
boundary data from different platforms, we were unable to
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directly merge CNV from the two groups. Therefore, after
removing individuals not passing samples QC, we per-
formed gene-based association tests separately in Group 1
and 2 samples using the ParseCNV software package. We
then performed meta-analyses of gene-based association
results with METAL software [28, 29] using gene names as
markers to identify significant genes (p < 5X10−4, a conser-
vative bar for CNV genome-wide significance suggested by
ParseCNV). We also performed CNV-based association
tests in cleaned Group 1 and 2 samples using ParseCNV
software package. CNVs in or around significant genes
from the gene-based meta-analyses were identified by
searching the “gene” column in CNV-based association
tests results. The CNVs were considered not passing CNV
QC and removed if one of below criteria were met: average
number of probes in CNV (AvgProbes) < 5, worst p-value
in the span of CNV calls contributing to the significant
CNV region (PenMaxP) > 0.5 and high frequency (Freq
>0.5), nearly identical segmental duplications (SegDups) >
10, any locus frequently found in multiple studies such as
T-cell receptor gene, human major histocompatibility com-
plex gene etc. (Recurrent), the same inflated sample driving
multiple CNV association signals (FreqInflated), the HMM
confidence score in PennCNV calling (AvgConf) < 10, and
allele A or B banding (ABFreq) in BAF low for duplications.
Additionally, if more than three of below criteria were met,
the CNV also was not considered for further analysis: CNV
residing at centromere or telomere regions (TeloCentro),
high or low GC content regions (AvgGC <30 or >60), CNV
regions with high population frequency (PopFreq) >0.01, a
large gap in probe coverage exists within CNV association
signals (Sparse) >50 kbp, and average length of CNV <10
kbp [27].

CNV visualization, examination and laboratory validation
CNVs passing QC in both Groups 1 and 2 were
examined by the plots of signal intensity (LRR/BAF)
generated using the CNV visualization function imple-
mented in the PennCNV package. Three CNVs passed
CNV quality control in both groups and signal intensity
visualization examination, and were chosen for further
validation using TaqMan CNV probes located in the central
region of each CNV (Hs04383175_cn, Hs06286795_cn and
Hs06269635_cn), TaqMan CNV reference assay (human
RNase P: 4403326) and QuantStudio® 3D Digital PCR
System (Thermo Fisher Scientific, Waltham, MA USA) by
the Nemours Biomolecular Core Laboratory, following the
manufacturer’s standard protocol.

Results
Based on sample quality control criteria, 66 cases and
186 controls were removed, leaving 493 cases and 1586
controls in Group 1. In Group 2, 46 cases and 47 con-
trols were removed, leaving 307 cases and 1102 controls.

In Group 1, 7,376 deletions and 4,313 duplications were
detected and 6,689 deletions and 6,635 duplications were
detected in Group 2.
In gene-based association tests, 25 and 106 genes/loci

with deletion, and 371 and 177 genes/loci with duplica-
tion reached genome-wide significance (p < 5x10−4) in
Group 1 and Group 2 (Additional file 1). After meta-
analysis, 49 genes/loci with deletion and 331 genes/loci
with duplication reached genome-wide significance
(Additional file 2). For 49 genes with deletion, the direc-
tion of effect was consistent in the two groups. The
direction of effect was inconsistent for 6 duplications
and no direction was given in one duplication which was
due to p = 1 for that gene in gene-based association test
of Group 2, and they were removed from further consid-
eration, leaving 324 genes/loci with duplication. Among
these 373 significant genes/loci, 17 with deletion and 1
with duplication were identified in CNV-based associ-
ation analysis in both Group 1 and Group 2 (Table 1).
Five genes/loci (TCR gamma alternate reading frame pro-
tein (TARP), tonsoku-like DNA repair protein (TONSL),
TONSL antisense RNA 1 (TONSL-AS1), nucleobindin 2
(NUCB2), and UPF2 regulator of nonsense transcripts
homolog (yeast) (UPF2)) with deletion passed CNV
quality control in both groups (Table 1). Signal intensity
plots of CNVs in NUCB2 and UPF2 (Fig. 1: Array plot of
Log R ratio and B allele frequency for NUCB2 and UPF2)
suggested heterozygous deletions: the LRR decrease below
0 and the BAF cluster around either 0 or 1, but not near
0.5. Signal intensity plots of CNVs in TARP and TONSL/
TONSL-AS1 did not pass visualization examination
(Additional file 3: Array plot of Log R ratio and B allele
frequency for TARP and TONSL/TONSL-AS1) due to LRR
close to 0, BAF cluster near 0.5, or both. Thus only CNVs
in NUCB2 and UPF2 were further considered in our study.
The CNVs detected in NUCB2 are around 20 kbp and

6.7 kbp in Group 1 and Group 2, and they do not
overlap. The Database of Genomic Variants (DGV) in
The Hospital for Sick Children, a teaching hospital affili-
ated with the University of Toronto [30, 31] reported a
15 kbp deletion in 1 of 2026 individuals and a 719 bp
deletion in 2 of 2504 individuals at the CNV region of
Group 1 (chr11:17300844–17320797), and a 5 kbp
deletion in 1 of 17421 individuals at the CNV region of
Group 2 (chr11:17332461–17339127). Seven cases in
Group 1 and 3 cases in Group 2 contained NUCB2
deletions based on this analysis. The CNVs detected in
UPF2 were approximately 47.8 kbp and 13 kbp in
Groups 1 and 2, respectively, and the 13 kbp segment is
inside the 47.8 kbp segment. DGV reported a 47.8 kbp
deletion in 2 of 17421 individuals in this CNV region de-
tected in Group 1. Four cases in Group 1 and 9 cases in
Group 2 contained UPF2 deletions. The CNV confidence
scores of NUCB2 and UPF2 for each case generated
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during CNV calling by PennCNV are shown in Table 2.
The score range was 12 to 55, which is considered
borderline reliable for CNV detection.
We attempted to validate CNVs in NUCB2 and UPF2

in affected cases using TaqMan CNV assays and Quant-
Studio® 3D Digital PCR System (Table 2). After validat-
ing the TaqMan CNV assays using 2 control DNAs
without called CNVs in these regions, we tested 12 sam-
ples from Group 1 or 2 with called CNVs within these
genes of interest (Table 2, noted in case IDs with under-
line). All 12 tested samples were diploid (Additional file 4),
indicating that bioinformatically-called deletions were not
validated by TaqMan CNV assays.

Discussion
Cryptorchidism is the most common male congenital
genitourinary defect. While it is a manifestation of many
congenital defect syndromes [32–34], the majority of cases
are nonsyndromic and of unclear etiology. Our previous
genome-wide association analyses of SNP data suggest
that cryptorchidism is associated with significant genetic

heterogeneity [11, 12]. In the present study, we performed
genome-wide CNV association analysis to identify the
potential association of structural variation with the oc-
currence of nonsyndromic cryptorchidism, and our results
suggest that CNVs do not contribute to the genetic basis
of the nonsyndromic form of the disease.
In a previous report, Jorgez and colleagues identified a

2p15 deletion encompassing OTX1 in 6 subjects with
genitourinary defects [15]. Three of these individuals
had cryptorchidism and their genomic deletions also in-
cluded EHBP1 and WDPC. Other genitourinary anomal-
ies of the three patients with cryptorchidism were
variable including absent prepuce, micropenis, discon-
tinuous raphe, penile cyst, hypoplastic scrotum, kidney
stones or small testes. The three patients also had other
defects including developmental delay, vision problems
and dysmorphic facial features. Structural variations
were also identified in studies of subjects with nonob-
structive azoospermia or congenital genitourinary tract
masculinization disorders from the same research group
[14, 35]. In the study of nonobstructive azoospermia, 4

Fig. 1 Array plot of Log R ratio and B allele frequency for NUCB2 and UPF2

Table 2 Relevant validation information for genes (UPF2 and NUCB2) passed CNV QC and signal intensity examination

Group Gene Name CNV (hg19) Probe # in overlapping
CNV region

CNV size (bp) TaqMan CNV
assays and location

Cases with deletion
(CNV confidence score)

Group 1 UPF2 chr10:12028228–
12076043

10 47815 Hs04383175_cn;
Chr10:12063665

D10 (26)a, D29 (55)a, D34 (46), 1495 (27)

NUCB2 chr11:17300844–
17320797

5 19953 Hs06286795_cn;
Chr11:17306162

D8 (24), D10 (28)a, D24 (24), D29 (30)a,
D33 (26), D132 (27), D139 (30)

Group 2 UPF2 chr10:12062959–
12075960

3 13001 Same as UPF2
assay in group 1

7279 (15), 7334 (12)a, 7338 (23), 7339 (16),
7341 (14), 7370 (26)a, 7453 (16), 7475 (24),
7479 (17)

NUCB2 chr11:17332461–
17339127

4 6666 Hs06269635_cn;
Chr11:17336218

7334 (17)a, 7361 (14), 7370 (12)a

Case IDs with underline: samples tested by TaqMan CNV assays for validation
asamples with called deletions in both genes (UPF2 and NUCB2)

Wang et al. BMC Urology  (2016) 16:62 Page 5 of 8



patients with microduplications and 4 with microdele-
tions of E2F1 were identified among 110 affected indi-
viduals, but not among 78 fertile controls [35]. Two of
the 8 patients with CNVs had cryptorchidism. Two non-
synonymous mutations of E2F1 (Ala102Thr and Gly393-
Ser) were also identified in three other patients, and one
synonymous mutation (Leu415Leu) was identified in a
patient with microduplication of E2F1. The patient with
the Ala102Thr variant also had cryptorchidism. In the
congenital genitourinary tract masculinization disorders
study [14], copy number gains on Xq28 encompassing
VAMP7 were found in 4 of 296 patients. Two of them
had idiopathic cryptorchidism, and the other two had
hypospadias. They also found 1 case of hypospadias with
VAMP7 copy number gain in 28 distinct primary
cultures of genital skin fibroblasts. All of the above three
studies used array comparative genomic hybridization, a
technology that enables efficient screening for CNVs, to
discover the genomic variants. Other studies from
Europe have also reported the microdeletions (2p14-p15,
2p15-16.1) in boys with cryptorchidism [36, 37]. How-
ever, all of these patients presented with other features
besides cryptorchidism, including intellectual disability,
developmental delay and/or dysmorphic features. In our
study, subjects were excluded if there was evidence for
other genital anomalies and/or other clinical features in
addition to undescended testes.
Only autosomal CNVs were called and analyzed in our

study, which may have led us to miss associated CNVs
on the X or Y chromosome. The significant genes in our
meta-analysis with CNVs that also passed QC in both
groups and signal intensity visualization examination are
NUCB2 and UPF2, located at chromosome 11 and
chromosome 10, respectively. However, these deletions
were not validated by QuantStudio® 3D Digital PCR
System with TaqMan CNV assays in our study samples,
despite the signal intensity plots suggesting the presence
of heterozygous deletions. The confidence score range of
detected cases for these deletions is 12 to 55 (Table 2).
The score numbers are lower in Group 2 cases with
most of them less than 20. A confidence score of 10 has
been suggested as a threshold to classify reliable CNV
calls while the higher scores are more reliable and more
likely to be replicated [38]. Most of our scores were less
than the median score of 27.7 that was reported for
deletions that could be replicated in the study of Ku et
al. [38]. Due to different platforms with low overlapping
SNP coverage that were used in genotyping Group 1 and
Group 2 samples, we performed association tests
separately in the two groups. Consequently, the whole
study power was reduced compared to what it would have
been if all samples had been genotyped on the same
platform and some CNVs associated with disease may
have been missed, even though we used meta-analysis to

combine the two data sets. The use of SNP genotyping
array data for CNV analysis is a common and acceptable
approach [39–42], but the global CNV coverage of our
SNP arrays varies. Cooper GM et al. [43] reported
approximately 40 % and 80 % CNV coverage for Illumina
chips of HumanHap550 and Human 1 M. Besides
HumanHap550, the other chips we used, Human610-
Quad and Human OminiExpress, have fewer SNPs
compared to the Human 1 M, and therefore likely have
less than 80 % global CNV coverage. Cooper GM et al.
also reported that only two-thirds of detected CNVs by
SNP data from Human 1 M could be validated in
independent experiments [43], indicating that using SNP
array data for CNV analysis may result in false positives,
as may be the case in the present analysis.

Conclusions
A sample size (800 cases and 2688 controls) greater than
that of any other CNV analysis of nonsyndromic crypt-
orchidism failed to identify any associated variants, but
weak effects at multiple genomic loci may still contribute
to the etiology of this disease. It is also possible that CNVs
are present but were not detected due to insufficient cover-
age by the SNP arrays we used and/or, the present analysis
was underpowered to identify rare, strong effect CNVs that
contribute to disease risk. Whole genome or exome
sequencing, and comparative genomic hybridization are
alternative approaches for discovery of disease-associated
SNPs and CNVs, but beyond the scope of the present
studies. It is possible that structural variation is more
commonly associated with syndromic cryptorchidism, but
our inability to validate the candidate CNVs in this analysis
suggests that these variants are not a major cause of
nonsyndromic cryptorchidism.
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