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ABSTRACT
Online labor market places (e.g., UpWork) allowed us to observe
the practical bene�ts of crowdsourcing, the practice of outsourcing
a task to a large number of workers. At the same time, there is
clear evidence that tasks can bene�t from expert collaboration. �is
observation has led to research and practices of team formation.
In this paper, we propose a new model that incorporates elements
of crowdsourcing and team formation. We call this model team
formation with outsourcing.

In our model, tasks arrive in an online fashion; i.e., the number
and the composition of the tasks is not known a-priori. At any
point in time, there is a core team of hired workers. �is team
is dynamic: new members can be hired and existing members
can be �red. Additionally, some parts of the arriving jobs can be
outsourced and thus completed by non-team members. �e key
contribution of our paper is an e�cient online cost-minimizing
algorithm for hiring, �ring and outsourcing. Moreover, using a
primal-dual scheme, we are able to prove that our algorithm has
logarithmic competitive-approximation ratio. Our experiments
with data from three large online labor marketplaces demonstrate
the e�ciency and the e�cacy of our algorithms in practice.
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1 INTRODUCTION
Self-employment is an increasing trend, for instance, between 10%
and 20% of workers in OECD countries are self-employed [21]. �is
is due in part to business downsizing and employee dissatisfaction,
as well as to the existence of online labor markets (e.g., Upwork,
Amazon Mechanical Turk). �is trend has enabled independent
experts to work remotely in specialized tasks. Observations from
online labor markets have allowed researchers and practitioners to
explore the bene�ts of outsourcing and crowdsourcing [11, 12, 19,
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25]. Essentially, crowdsourcing is driven by the assumption that
problems can be decomposed into parts that can be addressed by
distributed, independent workers.

A key problem in crowdsourcing environments is to split an
input task into smaller separate sub-tasks that can be addressed by
independent workers. Consistent with these assumptions, recent
work in computer science has focused on developing advanced
tools for crowdsourcing that break complex projects into parts and
facilitate their recombination in a manner that maximizes output
quality [14, 22]. Although there are clear bene�ts from crowd-
sourcing, recent work suggests that crowdsourcing results can be
improved by introducing some degree of collaboration between
workers [17, 23]. From the computer-science perspective, the idea
of combining collaboration with crowdsourcing, led to multiple def-
initions of the team formation problem [1–3, 6, 7, 9, 13, 15, 16, 18, 24].
In that problem, the goal is to identify a group of workers that can
perform together a given task or a sequence of tasks while incurring
small communication cost between them. �at is, team-formation
problems focus on �nding teams whose members can collaborate
e�ectively.

In this paper, we propose a new model for team formation that
is a middle ground between pure crowdsourcing1 and pure team
formation. We call this model team formation with outsourcing. In
this model, tasks arrive online and at any point in time there is a
team of hired workers. �is team is dynamic: new members can be
hired and existing members can be �red. Additionally, some parts
of the incoming tasks can be completed by non-team members,
who are outsourced. We consider the problem of �nding an online
cost-minimizing algorithm for hiring, �ring and outsourcing. We
call this general problem the TFO problem (Team Formation with
Outsourcing).

To the best of our knowledge, we are are the �rst to consider
this problem and study some of its variants. In order to solve it, we
use the primal-dual scheme in order to design e�cient online algo-
rithms [4]. Our problem turns out to be an original combination
of online set cover and online ski-rental, two of the most paradig-
matic online problems. In fact TFO has elements that make it more
complex. First, there are two options for covering the skills of a
task: either by hired or by outsourced workers. Secondly, one has
to decide when it is a good time for a hired worker to be �red. As
in the previous problems, all these decisions need to be made in an
online fashion.

1�is de�nition refers to central cases of crowdsourcing where peer visibility and
accessibility to peer contributions is low or non-existing [8], leaving aside cases
such as Wikis, that are also considered crowdsourcing by some authors, but where
contributions are not independent.
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Our analysis results in polynomial-time algorithms that have log-
arithmic competitive approximation ratios. �is means that despite
the fact that our algorithms work in an online fashion and they do
not have any knowledge of the number and the composition of fu-
ture tasks, we can guarantee that the cost they will incur will be –at
any point – only a logarithmic factor worse than the cost incurred
by an optimal algorithm that knows the set of requests a-priori.
Our experimental results with real data from three large online
labor marketplaces demonstrates the e�ciency and the e�cacy of
our methods in practice.

2 PRELIMINARIES
In this section we describe our se�ing, our problem and also give
some necessary background.

2.1 Notation and Setting
�e high-level goal is to design algorithms that are able to complete
tasks requiring some particular skills by teams of workers who
possess the required skills. Let us now de�ne these notions.
Skills: We consider a set S of skills with |S | =m. Skills can be any
kind of quali�cation a worker can have or a task may require. For
example, video editing, technical writing, Python programming, or
even acting and nursing, may be examples of skills.
Tasks: We consider a set of T ⇤ tasks (or jobs), J = {� t ; t =
1, 2, . . . ,T ⇤}, which arrive one-by-one in a streaming fashion; � t is
the t-th task that arrives. Every task � 2 J requires a set of skills
from S , therefore, � ✓ S . We use � t to refer to both the task and the
skills that it requires.
Workers: �roughout we assume that we have a setW of n work-
ers:W = {W r ; r = 1, . . . ,n}. Every worker r possesses a set of
skills (W r ✓ S). Similarly to the tasks, we useW r to characterize
both the worker and his skills. Finally, we de�ne P` to be the subset
of workers possessing a given skill `: P` = {r ; ` 2W r }.

We partition the set of available workers W into the set of
workers that are hired at time t , denoted by H t , and the set of
workers that are not hired, denoted by F t (we sometimes refer to
these workers as “freelancers”), so that H t \ F t = ; andW =

H t [ F t . �e hired workers can be thought of as the workers
that belong to the workforce of a company. On the other hand,
the unhired workers or freelancers do not have any obligations to
a speci�c company; any company can outsource tasks to them at
some—usually high—cost.
Costs: Every worker W r is associated with the following non-
negative fees paid to him: (i ) the hiring fee (Cr ), (ii ) the outsourcing
fee �r and (iii ) the worker’s salary �r . �e hiring fee is worker-
speci�c and in practice it refers to expenses associated with hiring
(or �ring) a worker, such as signup bonuses (or severance payments).
We assume that hiring fees are paid at the moment of hiring.

Workers in F t are workers that are not hired when task � t

arrives. �erefore, these workers can be outsourced for � t . For
workerW r 2 F t we use �r � 0 to denote the payment required
by this worker when a task is outsourced to him. Note that �r
depends on the worker but does not depend on the task. A running
assumption will be that �r < Cr .

Once a worker r is hired, he is paid a recurring salary salary
�r � 0, which recurs for every t that the worker is hired. A running

assumption we make is that �r < �r ; that is, once a worker is hired
then the cost of his work is lower than the his outsourcing cost,
due to reduced transaction costs – the very basis of why �rms are
created [5].

Remark: In order to avoid making the model overly complicated,
we assume that the salary periods are de�ned by the arriving tasks;
i.e., we have one task per salary period.

�e above notation is summarized in Table 1.

Table 1: Notation

S Set of skills, sizem.
J Set of tasks, size T ⇤.
T Number of tasks till current time.
� t �e t-th task arriving.

� t
`
= 1 if task t requires skill `, 0 otherwise.

W Set of workers, size n.
W r

`
= 1 if worker r possess skill `, 0 otherwise.

P` Subset of workers possessing skill `.

Cr Hiring fee, paid when worker r is hired.
�r Outsourcing fee, paid every time r performs a task.
�r Salary paid to a hired worker r .

Completion of tasks: Whenever task � t ✓ S arrives an algorithm
has to create a team of workers that covers it. We say that � t can be
completed or covered by a set (team) of workers Q ✓W if for every
skill required by � t , there exists at least one worker in Q that has
this skill. Formally: � t ✓ [W 2QW . We assume that the problem
instance is such that each input taks can be covered by some set of
workers, that is, for each � 2 J we have that � ✓ [W 2WW .

2.2 Problem De�nition
We now de�ne the problem that we study:

P������ 1 (TFO). �ere exists a set of skills S . We have a pool
of workersW , where each workerW r is characterized by (1) the
subset of skillsW r ✓ S , (2) a hiring cost Cr 2 R�0, (3) a salary cost
�r 2 R�0, and (4) an outsourcing cost �r 2 R�0. Given a set of tasks
J ={�1,�2,. . . ,�T ⇤ }, with � t ✓ S , which arrive in a streaming fashion,
the goal is to design an algorithm that when task � t arrives decides
which workers to hire (paying cost Cr + �r ), keep hired (paying cost
�r ), and outsource (paying cost �r ), such that all the tasks are covered
by the workers that are hired or outsourced and the total cost paid
over all the tasks is minimized.

Online-algorithm design goals: Note that the TFO—as de�ned
above—is an online problem. �at is, the total number of tasks T ⇤
as well as the skill-composition of the tasks that will arrive are
unknown. �erefore, our goal in terms of algorithm design is to
provide a guarantee that for any number of tasks T = 1, 2, . . . ,T
the total cost of our algorithm is only a small factor greater than the
total cost of the optimal algorithm that knows the number and the
skill-composition of tasks apriori. Note that the above statement
should be true for any T as the input stream may terminate a�er
any task. �is factor is called the competitive ratio of the algorithm.
Formally the competitive ratio of an algorithm is de�ned as:
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max
J

Cost of an alg. that does not know J in advance
Cost of an optimal alg. that knows J in advance

.

We solve the TFO problem in Section 4. Because the algorithm
and the analysis are complicated, we introduce them gradually by
�rst solving a simpli�ed version of TFO, which we describe and
solve in Section 3.

2.3 Background Problems
Two very simple cases of our problem are the set cover and the
ski-rental problems. We present them here as we need to refer to
them in subsequent sections.

S��C����: �e single-task, multiple-skill case. �e set-
cover problem is an instance of our problem when there is a single
task � ✓ S and for each workerW r , Cr = 1. �en, as soon as the
task � arrives the algorithm nees to cover all skills in � by selecting
a set of workers Q ✓ W such that Q covers � and

P
r 2Q �r is

minimized. In this case, our problem can be solved using the greedy
algorithm for the set-cover problem (see [26, Chapter 2]). :

S��R�����: the single-skill, single-worker case. �e ski-
rental problem is an instance of our problem when the sequence
of tasks J consists of a repetition of the same single-skill task �
and the workforceW consists of a single workerW r that posesses
the same one skill, and has �r = 0 and some Cr , �r . In this ski-
rental version of our problem [20], the question is the following:
without knowledge of the total number of tasks that will arrive,
when should workerW be hired so that the total cost paid to him
in outsourcing plus hiring fees is minimized?

A folklore algorithm for solving this problem is the following:
for every instance of � t that arrives outsource � t to workerW r as
long as:

Pt
t 0=1 �r < Cr . �en, hire the worker when

Pt
t 0=1 �r � Cr .

�e above algorithm, achieves a competitive ratio of 2.

3 THE LUMPSUM PROBLEM
In this section we de�ne and solve a simpli�ed version of the TFO
problem, where for every workerW r , �r = 0. We call this problem
the L���S�� problem. In the L���S�� problem, a hired worker
W r is only paid hiring costCr themoment theworker is hired. �us,
we assume thus cost covers all future work done by the worker.
Instead, when a workerW r is outsourced, he is paid �r every time
she performs a task.

3.1 �e LumpSum-Heuristic algorithm
A natural algorithm for solving the L���S�� problem is to combine
ideas from S��C���� and S��R�����. Such an algorithm, works
as follows: �rst, it starts with no worker being hired. Additionally,
each workerW r is associated with variable �r initially set to 0.

For any T 2 {1, . . .T ⇤}, when task �T arrives the algorithm
proceeds as follows: �rst, it identi�es �TF to be the set of skills of �T

that cannot be covered by already-hired workers. �en, it covers
the skills in �TF using the greedy algorithm for set cover. �is way
it �nds QT ✓W such that

P
W r 2Q �r is minimized. Finally, for

each workerW r 2 QT , it sets �r = �r + �r . WorkerW r is hired if
�r � Cr . Clearly, since there are no salaries there is no motivation
to �re a worker once he is hired.

�e above algorithm, which we call LumpSum-Heuristic, is a
combination of existing algorithms for S��C���� and S��R�����
(see Section 2.3). �e running time of this algorithm per task � is
dominated by running the greedy set-cover algorithm and is thus
O (Rn |� |), where R is the number of iterations of greedy and thus
R = min{|� |,n}.

Although our experiments demonstrate that LumpSum-Heuristic
performs quite well in practice, one can show that its compet-
itive ratio can be arbitrarily bad. Consider an example where
W = {W 1,W 2} where both workers have the same skillW 1 =
W 2 = {`}. Further assume that �1 = 10, �2 = 10 + � and C1 = M ,
C2 = 11, where M is a really large value. For a sequence of tasks
�1 = �2 = . . . = �T

⇤
= {`}, it is clear that LumpSum-Heuristic will

always outsource toW 1 until he is hired and will incur worse-case
cost 2M while the optimal algorithm pays 11.

3.2 A primal-dual algorithm
In order to avoid worst-cases cases like the above we need to design
an algorithm with bounded competitive ratio. For this we deploy a
primal-dual scheme, which drives our algorithm design.

�e linear program: �e �rst step of the primal–dual approach,
is to de�ne an integer formulation for the problem. We assume
that the current task is the T th task and we use the following
variables:
• xr = 1 if workerW r is hired when task �T arrives; otherwise
and xr = 0.
• fr t = 1 if workerW r is outsourced for performing task � t ;
otherwise and fr t = 0.
Using this notation, the L���S�� can be expressed as follows:

Linear program for L���S��:

min
nX

r=1

*.
,
Crxr + �r

TX

t=1
fr t

+/
-

subject to: 8t = 1, . . . ,T , ` 2 � t :
X

W r 2P`
(xr + fr t ) � 1 (1)

8t = 1, . . . ,T , r = 1, . . . ,n:

xr , fr t � 0

�e above, in addition to the integrality constraint xr , fr t 2 N
form the integer program from L���S��.

In the above formulation, the objective function sums over all
workers the hiring costs (paid if the corresponding worker has been
hired by time t ) and the outsourcing cost for the tasks for which the
worker has been outsourced. �is is the total cost of the solution
until the current task �T .

Note that in this formulation of the problem there is no motiva-
tion for a worker that is hired to be �red. �erefore, once xr is set
to 1, it does not change its value to become 0 again.

�e �rst constraint is the covering constraint: it simply enforces
that for every skill required for each task, there exists a hired or
outsourced worker that has this skill. �is guarantees that the team
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selected for each task � t covers all the required skills. �e nonneg-
ativity and the integrality constraints, ensure that the solutions
that we obtain from the integer-program formulation can be trans-
formed to a solution to our problem: eventually, every variable will
take the value 0 or 1.2

To apply the online primal–dual approach, we �rst consider the
linear relaxation of the integer program, which simply drops the
integrality constraint xr , fr t 2 N. A solution to this linear program
(LP) gives a solution in which each variable takes values in [0, 1].
Given this LP, we can write its dual as follows:

�e dual version of the above LP is the following:

�e dual of the linear program for L���S��:

max
TX

t=1

X

`2� t
u`t

subject to: 8r = 1, . . . ,n:
TX

t=1

X

`2� t\W r

u`t  Cr (2)

8t = 1, . . . ,T , r = 1, . . . ,n:
X

`2� t\W r

u`t  �r (3)

8t = 1, . . . ,T , ` 2 � t :

u`t � 0,

Note that for every time point t 2 {1, . . . ,T }. we have such a
pair of primal–dual formulations for each time point t 2 {1, . . . ,T }.
We are now going to use these two formulations for designing and
analyzing our algorithm.
�e LumpSum algorithm: In this paragraphwe present the LumpSum
algorithm, which is designed and analyzed using the primal and
the dual linear programs.

For the presentation of the algorithm, we assume that task �T for
T 2 {1, . . . ,T ⇤} has just arrived and the algorithm must act before
task T + 1 arrives (or the stream �nishes if T = T ⇤). Note all the
variables used in our algorithm are initialized to 0 before the arrival
of the �rst task. �us, when task �T arrives the algorithm proceeds
as follows:

(1) Let F T andHT represent the workers that are not hired
and hired, respectively, at the time that �T arrives. Clearly,
when the �rst task arrives (T = 1), then F T = W and
HT = ;. ForT > 1, the values ofHT and F T are updated
in the last step (step 11) of the previous round.

(2) Let �TH = �T \ [W r 2HTW r be the skills from �T that are
covered by already-hired workers and �TF = �T \ �TH .

(3) For every skill ` 2 �TF let P F
`
= P` \ F T be the set of

workers in F T such that every worker in P F
`

has skill `.
Also let

P FT = [`2�TF P
F
`

be the set of unhired workers that possesses at least one
skill required.

2A solution in which some variables take values greater than 1, can be transformed to
another feasible solution with lower cost by se�ing these variables to 1.

(4) foreachW r 2 P F
`
: Set x̃ 0r  x̃r

(5) for each skill ` 2 �TF :
while

P
W r 2P`

⇣
x̃r + f̃rT

⌘
< 1:

u`t  u`t + 1
for eachW r 2 P` : x̃r  x̃r

⇣
1 + 1

Cr

⌘
+ 1

nCr
for eachW r 2 P` : f̃rT  f̃rT

⇣
1 + 1

�r

⌘
+ 1

n�r
(6) for eachW r 2 P F

`
: Set �x̃r  x̃r � x̃ 0r

(7) SetH 0  ;.
(8) repeat � times:

for eachW r 2 P FT
with probability �x̃r :

hire workerW r (set xr  1,H 0  H 0 [ {r })
with probability f̃rT :

outsource workerW r (set frT  1)
(9) for each skill ` 2 �TF :

if skill ` is not covered:
hire workerW r 2 P F

`
with minimum cost Cr

(set xr  1,H 0  H 0 [ {r })
(10) HT+1  HT [H 0, F T+1  W \HT+1.
For T = 1, the LumpSum starts with no worker being hired. In-

tuitively, as tasks arrive, the algorithm tries to gauge two things:
(a) the usefulness of every worker for the task at hand �T and
(b) the overall usefulness of the worker for tasks �1, . . . , �T . �is
is done in step (5) and via variables f̃rT and x̃r respectively. �e
more useful the worker proves for this task and over time, the
larger the values of these variables. Subsequently, in step (8) every
worker is outsourced or hired based on the increase in the values
of f̃rT and x̃r observed in step (5). 3 Finally, for every skill that
remains uncovered a�er step (8) (which is randomized), LumpSum
hires workerW r with the minimum Cr that covers the skill. Note
that the increase of the variables u`T in step (5) is not required for
solving the L���S��, but it is used in our analysis and thus we
leave it in the description above.

Our analysis requires to set the value of � in step (8) to

� = lnm + lnC⇤,
where C⇤ = maxW r 2W Cr .

Note that although one may think that an additive update of
variables in step (5) would seem more natural, such an update
would introduce an O (m) factor in the competitive ratio. On the
other hand, the multiplicative update we adopt enables us to state
�eorem 3.1 below.
Analysis: We have the following result for LumpSum.

T������ 3.1. LumpSum is anO (logn (logm + logC⇤))- competi-
tive algorithm for the L���S�� problem, whereC⇤ = maxW r 2W Cr .

Our analysis and proof follows the approach in [4] and it consists
in three steps: (1) First, we show the feasibility of the primal solution
a�er the arrival of �T and the assignment of values to the variables
according to LumpSum. (2) �en, we show that a�er the completion
of �T , the expected value of the obective function of the primal
LP (which we denote by PT ) is at most 3(lnm + lnC⇤) times the
expected value of the objective function of the dual LP (denoted by
3Note that the larger the initial x̃ 0r , the larger the increase �x̃ will be observed in
step (5).
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DT ). In particular we show that E
f
PT

g
 3(lnm+ lnC⇤)E

f
DT

g
+1.

�is expectation is taken over the random choices of the algorithm
when rounding the fractional solution. (3) Finally, we show that
the dual solution is almost feasible, in particular, we show that each
dual constraint is violated by a factor of at most 2 logn.

�en, as shown in [4], it follows that the algorithm maintains a
feasible solution at an expected cost that is at most a factor [3(lnm+
lnC⇤) ·2 logn higher than the optimal o�ine solution. Due to space
constraints, we defer the analysis in the full version of the paper. 4

Running time: �e running time of LumpSum per task is domi-
nated by the execution of step (5). Using binary search, one can de-
termine inO (logC⇤) steps the minimum increase of ul t that makes
false the condition of the while loop for at least one uncovered skill
`. �erefore, the running time of this step is O

⇣����T ��� (logC⇤ + n)
⌘
.

4 THE TFO PROBLEM
In this section, we provide an algorithm for the general version of
the TFO problem (Problem 1). �e only di�erence from the se�ing
we considered in the L���S�� problem is that now a hired worker
W r is paid salary �r � 0. �is complicates the problem signi�cantly
as it may now be bene�cial for hired workers to be �red.
�e linear program: Below we provide the linear program (LP)
for TFO. A key notion introduced in this new LP is the notion of
intervals, which ar required to model the fact that workers can
be hired, then �red and potentially hired again. For workerW r ,
we introduce the intervals Ir . �ese are the time intervals for
whichW r was hired.5. �erefore, the new LP uses the following
variables:
• x (r , I ) such that for I 2 Ir , x (r , I ) = 1 if workerW r is hired
during the entire interval I ; otherwise x (r , I ) = 0.
• �r t such that �r t = 1 if workerW r receives salary when task

� t arrives; otherwise �r t = 0. Note thatW r receives salary if
and only if r is hired.
• fr t such that fr t = 1 if workerW r is outsourced for performing

� t ; otherwise fr t = 0.
Hence, we formulate the following LP for TFO:

Linear program for TFO:

min
nX

r=1

2666664
X

I 2Ir
Crx (r , I ) +

TX

t=1
�r fr t +

TX

t=1
�r�r t

3777775
subject to
8t = 1 . . .T , ` 2 � t :

X

W r 2P`

*.
,
fr t +

X

I 2Ir :t 2I
x (r , I )+/

-
� 1. (4)

8t = 1 . . .T , r = 1 . . .n :
X

I 2Ir :t 2I
x (r , I )  �r t (5)

8t = 1 . . .T , r = 1 . . .n, I 2 Ir :

x (r , I ), fr t ,�r t � 0

4 An appendix can be found at: cs-people.bu.edu/evimaria/supplementary.pdf
5As before time units are de�ned by the arrivals of tasks.

It turns out that it is hard to design an approximation algorithm
using directly this program, mostly because it is hard to keep track
of the costs being paid for every worker when the intervals of him
being hired, outsourced and idle are of variable length. �erefore,
we resort to a di�erent approach: We consider an alternative prob-
lem, which we callA���TFO. InA���TFO, we restrict our solution to
allow each worker to be hired for intervals of �xed (worker-speci�c)
lengths. Not only is A���TFO easier to solve, every solution to A���
TFO is also a feasible solution to TFO.
Overall strategy: �erefore, our overall strategy is the following:
(i ) First, we de�ne the A���TFO problem. (ii ) �en, we design
an algorithm for this problem and prove that this algorithm has
good competitive ratio. (ii ) Finally, we prove that any solution of
the TFO problem can be transformed to a feasible solution of the
A���TFO problem that is only a factor of at most 3 times higher.
We proceed with these three steps in the next three sections.

4.1 �e A���TFO problem
�e only di�erence between A���TFO and TFO is that we restrict
the solutions of the former to have a speci�c structure; whenever
workerW r is hired he is then �red a�er �r

4
= dCr /�r e time units—

independently of whether he is used or not in tasks within these
�r time units.

In this case, every workerW r is associated with a new hiring
cost DCr , which is the summation of his original hiring cost Cr plus
the salaries paid to him for the �r time units he is hired. Obseve
that Cr + �r · �r  (2 + �r /Cr ) ·Cr  3Cr . �erefore, throughout
we will use: DCr 4= 3 ·Cr .

We can now write the LP for A���TFO. For each workerW r , we
denote byIr the set of intervals for whichW r was hired. Recall that
all these intervals are of �xed length �r . �e generic such interval
that starts at time t is also denoted by I tr . WorkerW r has x (r , I ) = 1
if and only if the worker is hired during the entire interval I . Hence,
the LP is the following:
Linear program for A���TFO:

min
nX

r=1

2666664
X

I 2Ir
DCrx (r , I ) +

TX

t=1
�r fr t

3777775
subject to
8t = 1 . . .T , ` 2 � t :

X

W r 2P`

*.
,
fr t +

X

I 2Ir :t 2I
x (r , I )+/

-
� 1. (6)

8t = 1 . . .T , r = 1 . . .n, I 2 Ir :

x (r , I ), fr t � 0

Note that this LP is very similar to the LP we showed for the
L���S�� problem.

4.2 Solving the A���TFO problem
In this section we design and analyze an algorithm for the A���TFO
problem. �e striking similarity between the LPs for A���TFO and
L���S�� (Section 3) translates into a similarity in the algorithms
(and their analysis) of the two problems.

cs-people.bu.edu/evimaria/supplementary.pdf
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�e Alt-TFO algorithm: �e Alt-TFO algorithm is a primal-dual
algorithm designed using the LP for A���TFO and its dual (which
we omit due to space constraints and because it is very similar to
the dual for L���S��). Alt-TFO has the exact same 11 steps as the
LumpSum. �e only di�erences are the following:
• In step (1) Alt-TFO additionally removes workers whose hiring
interval �nished in the previous step and thus sets:

F 0  {W r 2W ; x (r , IT��rr ) = 1}
HT  HT \ F 0, F T  W \HT

for eachW r 2 F 0: set x̃r  0
• In step (5), the update rule for varialbe x̃r uses DCr instead ofCr
and it thus becomes:

for eachW r 2 P` : x̃r  x̃r

✓
1 + 1DCr

◆
+ 1

nDCr
• In steps (8) and (9) variables x (r , ITr ), instead of xr , are set to 1.
• Due to the modi�ed step (1), step (10) becomes simply: HT+1 =
HT [H 0.
Our analysis requires to set

� = lnm + ln DC⇤ + lnT ⇤,
where DC⇤ = maxW r 2W DCr .
Analysis of Alt-TFO: Using methodology very similar to the one
we used for analyzing LumpSum, we prove the following result for
Alt-TFO.

T������ 4.1. Alt-TFO is anO ((logm + logC⇤ + logT ⇤) log(n))-
competitive algorithm for the A���TFO problem.

�e proof of this theorem is very similar to the proof of �eo-
rem 3.1 and due to space constraints we omit it from this version. 6

4.3 Solving TFO using A���TFO
Note that any solution output by Alt-TFO can be transofmed into
a feasible solution to the original TFO problem by se�ing �r t = 1
for each r , t 2 I for which x (r , I ) = 1, and �r t = 0 otherwise. We
call the algorithm that runs Alt-TFO and subsequently does this
transformation a its �nal step, the TFO algorithm.

Now the question is whether TFO has a bounded competitive
factor for the TFO problem. We answer this question a�rmatively
by showing that any solution for the TFO problem can be turned
into a feasible solution to of A���TFO at the expense of a small loss
in the approximation factor.

More speci�cally, we can prove the following:

L���� 4.2. If PAlt is the cost of any feasible solution to the A���
TFO and PTfo the cost of the same solution when transformed to
a solution of TFO using the last step of TFO, then we have that:
PAlt  3PTfo.

�e proof of this lemma is ommi�ed due to space constraints.
Combining�eorem 4.1 and Lemma 4.2 we obtain the following:

T������ 4.3. TFO is anO ((logm + logC⇤ + logT ⇤) log(n))- com-
petitive algorithm for the TFO problem.

6 An appendix with the proofs can be found at: cs-people.bu.edu/evimaria/
supplementary.pdf

Table 2: Characteristics of the three datasets used in our
experiments. Numbers in italics correspond to the semi-
synthetic workload generated for the Upwork dataset (D3),
as explained in Section 5.1.

D1 D2 D3
Dataset Freelancer Guru Upwork

Skills (m) 175 1,639 2,335
Workers (n) 1,211 6,119 18,000
Tasks (T ) 992 3,194 50,000
… distinct 600 2,939 50,000
… avg. similarity (Jaccard) 0.045 0.018 0.095

Skills/worker
.. average 1.45 13.07 6.29
.. median 1 10 6
Skills/task
.. average 2.86 5.24 41.88
.. median 3 4 41

5 EXPERIMENTS
We perform extensive experiments on real data from online mar-
ketplaces for freelance work, as well as on semi-synthetic data that
resembles it. Section 5.1 introduces our datasets, Section 5.2 the
baselines, and Section 5.3 presents the experimental results.

5.1 Datasets
In this section we introduce our datasets of freelancers, the work-
loads that we use (both real and semi-synthetic), and our choice of
cost parameters for experimentation.
Input data: We use datasets obtained from three large online mar-
ketplaces for outsourcing: Freelancer, Guru, and Upwork.7 All
three are in the top-30 of tra�c in their category (“consulting mar-
ketplaces”) according to data from Alexa;8 indeed, Freelancer and
Guru are respectively number 1 and number 3. In all these market-
places, graphic design and web development are popular categories
for freelance work, but they also include many other types of tasks
that can be done remotely, ranging from data entry to accounting,
virtual assistants, and legal consulting. In the following, we identify
these three datasets as D1, D2, and D3; their characteristics are
summarized on Table 2.

�e input data we obtained contains anonymized pro�les for
people registered as freelancers in these marketplaces. �is includes
their self-declared sets of skills, as well as the average rate they
charge for their services. We note there is a large variation in the
number of skills and the number of skills per worker across datasets.
Data was cleaned to remove skills that were not possessed by any
worker, or skills that were never required by any task. �e numbers
in the table refer to the clean datasets.
Workloads:For Freelancer (D1) and Guru (D2) we also obtained a
sample of tasks commissioned by buyers in the marketplace, they

7�e authors are not associated with any of these services: h�ps://www.freelancer.
com/, h�ps://www.guru.com/, h�ps://www.upwork.com/, accessed Feb. 2017.
8h�p://www.alexa.com/topsites/category/Top/Business/Business Services/
Consulting/Marketplaces, accessed Feb. 2017.

cs-people.bu.edu/evimaria/supplementary.pdf
cs-people.bu.edu/evimaria/supplementary.pdf
https://www.freelancer.com/
https://www.freelancer.com/
https://www.guru.com/
https://www.upwork.com/
http://www.alexa.com/topsites/category/Top/Business/Business_Services/Consulting/Marketplaces
http://www.alexa.com/topsites/category/Top/Business/Business_Services/Consulting/Marketplaces
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are included as tasks on Table 2. In order to be able to generate an
arbitrarily large workload, for these two datasets we sampled with
replacement from these tasks when a larger number of tasks was
required to determine the long-term behavior of some method.

In the case of Upwork, we generated a synthetic workload. �e
workload, denoted by D3 in Table 2, follows a method for data
generation used by previous work [3]. It corresponds to se�ing
aside a small number of workers (10% in our case), and then repeat-
edly sampling subsets of these workers in order to create tasks, by
interpreting the union of the skills of the workers in the subset as
the requirements of the task. �ese workers do not participate in
the pool, i.e., cannot be selected to satisfy the task. Given the large
number of di�erent skills in the data (over 2,000), in general the
created tasks tend to have disjoint sets of required skills.

Cost parameters: We have data about the rates charged by work-
ers in each marketplace, which we directly interpret as their out-
sourcing costs �r . We have, however, no data regarding hiring costs
or salary costs. Hence, we need to produce realistic estimates for
these costs.

For hiring costs, which are characterized by Cr > �r , we set
Cr = �r �r , in which �r is drawn at random from a probability
distribution. We use two probability distributions that re�ect possi-
ble scenarios for �r : high hiring cost, and low hiring cost. �ese
scenarios correspond to interpreting the outsourcing cost as the
cost of a work that would take one hour to perform, and se�ing
the hiring cost as the equivalent of (i) between one and two days
of work, i.e., 8 to 16 hours; and (ii) between one and two weeks
of work, i.e., 40 to 80 hours. We then draw �r from a uniform
distribution in the range determined by the scenario (e.g., between
8 and 16 in the low-hiring-cost scenario). Due to space limitations
we present detailed results for the low hiring cost case; in the long
term, results with the high hiring cost are similar in terms of the
relative performance of di�erent methods, except that the number
of tasks required before hiring a worker is larger.

For salary costs, which are characterized by 0 < �r < �r , we
considered a scenario where salary per time unit is 10% of the
outsource cost.

5.2 Baselines and Implementation
We consider two baselines: Always-Hire and Always-Outsource.
For every task Always-Hire �nds the minimum cost set of work-
ers that are required to cover un-covered skills and hires them.
Always-Outsource never hires any worker and always outsources
to workers that cover the required skills for the task, via solving
a weighted set cover. In both cases, every incoming task is ful-
�lled. We also plot the performance of LumpSum-Heuristic and
TFO-Heuristic, which is the naive variant for the A���TFO prob-
lem and is identical to LumpSum-Heuristic, except that it uses for
every workerW r the value of DCr instead of Cr and it always �res
every hired workerW r every �r intervals.

�e implementation of the methods, done in Java, is a relatively
straightforward mapping of the algorithm to simple counters. It
takes about 5 to 8 seconds on average to process 10K incoming
tasks using commodity hardware. We recall that although our
formulation is a linear program, the method we propose does not
involve solving this linear program with a generic linear program

solver, but instead using the speci�c primal-dual method we have
described and analyzed. All the code is available upon request.

5.3 Results
�e main quantity of interest we measure is the total cost up to
time t , this is, the total amount paid in outsourcing costs, hiring
costs, and salaries by the time the t-th task arrives. All experiments
in this section are averages of 100 runs with di�erent permutations
of the incoming tasks.
Experiments for L���S��: Figure 1 summarizes our results for
L���S��. We can observe that across the di�erent datasets and
hiring cost scenarios, the behavior is the same. Always-Outsource
has cost proportional to the number of tasks. �e Always-Hire
strategy in the long run has a smaller cost than LumpSum by a factor
close to 2 in all the scenarios we tested. However, for short task
sequences our algorithm has lower cost, sometimes by an order of
magnitude. �is matches the analysis and the intuitions derived
from the S��R����� problem. Overall, in cases where the hiring
cost is larger, the advantage for our strategy is sustained for a longer
time period, i.e., for a larger number of tasks.
Experiments for TFO: In the implementation of TFO, we made
some choices to reduce the cost of the �nal solution. We adopted a
lazy approach for hiring and outsourcing workers and we also used
the greedy set cover algorithm to reduce the cost required to satisfy
the input task. For this, we collected all workers to hire and to
outsource in two di�erent sets. At the end of the rounding process
(step (8) of the algorithm), we ran the greedy set cover algorithm
to cover all skills of the input task, using workers in these two sets
together with not hired workers not contained in these sets. �e
generated cover is used to select which worker in the hiring set to
hire, which worker in the outsourcing set to outsource, and which
not hired workers not in these sets to hire, in order to totally cover
the input task (this last hiring part replaces step 10).

Results: Figure 2 summarizes the results. Always-Hire has the
worst performance. �is is expected as its cost is dominated by
salary costs that accumulate over time. TFO-Heuristic is able
to achieve a performance similar to Always-Outsource. In fact,
TFO-Heuristic exhibits be�er performance than the theoretically
justi�ed TFO algorithm.
Experiments with high task locality: We note that in general
the simple Always-Outsource strategy performs the best across
all datasets. �is is because of the diversity of workers and tasks in
each platform, which does not make it economical to hire anyone.
Instead, in this section we produce a stream of tasks for D1 and D2
in which the tasks change locally, i.e., a task is more likely to be
similar to the next task than if we were sampling at random.

In order to achieve this, we run the following procedure:
(1) Pick a random task as a pivot.
(2) With probability 1�p, pick the next task within those that

are similar enough to the pivot, i.e., those whose Jaccard
similarity with the pivot is larger than a threshold � .

(3) With probability p, pick another random task as a pivot.
We considered a pivot as eligible only if it had at least one other

task that was similar enough to it. We experimented with various
values of p and � . Figure 3 shows results for � = 0.5, p = 0.1, 0.01.
In general, we observe that with a smaller value of p, which yields
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Figure 1: Performance of primal-dual algorithm for L���S��, compared to the Always-Hire, Always-Outsource and
LumpSum-Heuristic baselines, averaged over 100 permutation of the input stream of tasks. �e x-axis represents the task
number, while the y-axis represents the total cost paid. For each worker, the considered hiring cost is at least eight and at
most sixteen times the outsourcing cost: 8�r  Cr  16�r .
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Figure 2: Performance of primal-dual algorithm for TFO, compared to the Always-Hire, Always-Outsource and TFO-Heuristic
baselines, averaged over 100 permutation of the input stream of tasks. �e x-axis represents the task number, while the y-
axis represents the total cost paid. For each worker, the considered hiring cost is at least eight and at most sixteen times the
outsourcing cost (8�r  Cr  16�r ), while the salary cost is 10% of the outsourcing cost (�r = 0.1�r ).

longer subsequences of tasks similar to a pivot, generates a work-
load in which hiring becomes more e�cient than outsourcing.

6 RELATEDWORK
To the best of our knowledge, we are the �rst to introduce and
solve the Team Formation with Outsourcing (TFO) problem. How-
ever, our work is related to existing work on crowdsourcing, team
formation, and online algorithms design, which we outline next.

Crowdsourcing: Crowdsourcing is the process of completing a
task by deploying a large number of workers that work indepen-
dently, usually through a digital device and in a remote manner. Re-
cent work in computer science has focused on developing advanced
tools for crowdsourcing that break complex projects into small
sub-tasks and facilitate the recombination of work in a manner that
maximizes output quality and minimizes interaction requirements
among collaborators [14, 22]. �is previous work is orthogonal
to ours as the objectives are di�erent: we deal with the problem
of assembling teams and hiring/�ring workers, not with sub-task
design or work integration.

In the crowdsourcing domain, probably the most related to ours
is the work of Ho and Vaughan [10]. �eir goal is to assign indi-
vidual workers to tasks, based on the workers’ skills. Although
Ho and Vaughan also deploy the primal-dual technique in order
to solve the task-assignment problem, the tasks they consider can

be performed by individual workers and not by teams. As a result,
both their problem and their algorithm is di�erent from ours.

Team formation: A large body of work in team formation consid-
ers the following problem: given a social or a collaboration network
among the workers and a set of skills that needed to be covered,
select a team of experts that can collectively cover all the required
skills, while minimizing the communication cost between the team
members [1, 3, 6, 7, 13, 15, 16, 24]. Other variants of this problem
have also considered optimizing the cost of recruiting promising
candidates for a set of pre-de�ned jobs in an o�ine fashion [9]
and minimizing the workload assigned to each individual team
member [2, 18].

Although the concept of set-cover is common between our work
and previous work, the framework we propose on this paper is dif-
ferent in multiple dimensions. First, we do not focus on optimizing
the communication cost; in fact we do not assume any network
among the individual workers. Our goal is to minimize the overall
cost paid on hiring, outsourcing, and salary costs. �is di�erence
in the objectives leads to di�erent (and new) optimization problems
that we need to solve. Secondly, most of the work above focuses on
the o�ine version of the team-formation problem, where the jobs to
be completed are a-priori known to the algorithm. �e exception is
the work of Anagnostopoulos et al. [2, 3].However, in their se�ing
they aim to distribute the workload as evenly as possible among
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Figure 3: Results obtained using a stream of tasks with task
locality, selecting tasks that are similar to the current pivot
with probability 1�p, and selecting another pivot with prob-
ability p. In all cases, the similarity threshold is � = 0.5.

the workers, while our objective is to minimize the overall cost of
maintaining a team that can complete the arriving tasks. Moreover,
the option of outsourcing that we propose is new with respect to
the team formation literature. Finally, in the design of our online
algorithms we use the primal-dual framework, which was not the
case for previous work on online team formation.

Primal-dual algorithms for online problems: �e algorithms
we design for our problems use the primal-dual technique. A thor-
ough analysis on the applicability of this technique for online prob-
lems can be found in the book by Buchbinder and Naor [4]. Probably
themost closely related to problem are the ski-rental and the caching
problems. We have already discussed the connection of TFO to
ski-rental in Section 2. To draw the analogy with caching one can
think that bringing a page to the main memory is analogous to
hiring a person. �e main di�erences are that in the typical caching
problem we do not have covering constraints and there is a �xed
limit on the number of pages we can insert in the cache.

7 CONCLUSIONS
In this paper, we introduced a new paradigm of team formation
with outsourcing and studied online problems that appear within
this paradigm.

In practice, we have shown that decisions regarding hiring (and
�ring) of workers can be taken by an online algorithm that takes
several sources of cost into consideration: hiring/�ring costs, out-
sourcing costs, and salaries. �e algorithm is simple to describe and
implement, and experimentally, leads to cost savings with respect
to alternatives. �ese cost savings are more striking when hiring
costs are low, because then hiring becomes an a�ractive option,
and when the time horizon is long enough that we can �nd a core

pool of workers to stay hired and satisfy a large fraction of the
skills required by incoming jobs.

Technically, the problemswe have analyzed on this paper involve
embedding a set-cover problem in an online algorithm. In all the
variants we have analyzed, the primal-dual framework has shown
to be a powerful tool for describing and solving this problem. �e
main technical challenge in the analysis is to carefully consider the
various intervals at which a worker can be hired or not hired, as
they a�ect the salaries being paid to these workers.
Code and data. All of our code and data will be available for
research purposes with the camera-ready version of this paper.
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