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Abstract. We propose a stochastic model in evolutionary game theory where
individuals (or subpopulations) can mutate changing their strategies randomly

(but rarely) and explore the external environment. This environment affects

the selective pressure by modifying the payoff arising from the interactions
between strategies. We derive a Fokker-Plank integro-differential equation and

provide Monte Carlo simulations for the Hawks vs Doves game. In particular

we show that, in some cases, taking into account the external environment
favors the persistence of the low-fitness strategy.

1. Introduction

Evolutionary Dynamics describes biological systems subject to Darwinian Evo-
lution by taking into account the main mechanisms and phenomena of Evolution
itself. In [11], Maynard Smith and Price propose an instance of this approach by
considering a population modified according to the replicator dynamics. A popu-
lation is formed by d types, or behaviors, E1, . . . , Ed, with fractions corresponding
to relative abundance in the vector x = (x1, . . . , xd), which corresponds to a point
in the simplex

Sd =
{
x = (x1, . . . xd) ∈ Rd : xk ≥ 0,

d∑
k=1

xk = 1
}
.

The selection and adaptation mechanism is described by means of a system of
differential equations in the following form:

(1.1)
ẋk
xk

= fk(x)− f̄(x),

as k = 1, . . . d. The rate of increment ẋk/xk of the type Ek is given by its absolute
fitness, denoted with fk, balanced with the average fitness of the population f̄ ,
which has the form

f̄(x) =

d∑
k=1

xkfk(x).

In evolutionary matrix game theory the vector of absolute fitness f = (f1, . . . , fd)
is defined as

f(x) = U(x)x,

where U(x) is the matrix of payoff that rules the interplay between different strate-
gists (and possibly depends by the frequencies of different species themselves). In

Key words and phrases. Evolutionary game theory; mutations; spatial games; Monte Carlo
simulation.

The first author is member of the GNAMPA group of the Istituto Nazionale di Alta Matematica
(INdAM).

1



2 A.L. AMADORI, R. NATALINI, D. PALMIGIANI

this regard, the fitness of the type Ek is defined as the result that an individual of
that type gets colliding against another individual on average, i.e.

fk(x) = [U(x)x]k =

d∑
i=1

uki(x)xi.

However, it is clear that the basic element for the generation of evolutionary nov-
elties are mutations. The quasispecies equation, dating back to the 1970s, modifies
the growth rate of each species by considering the dispersion due to the birth of
mutated offspring.

The same underlying idea has been included in the evolutionary games setting
in [16] with the replicator-mutator equation:

(1.2) ẋk =

d∑
i=1

fi qik xi − f̄xk.

Here the coefficient qik express the proportion of offspring of k-type from a pro-
genitor i, which shows up at any procreation. An important aspect of mutations
stands in their randomness, which is quite underrated in (1.2). Since then many
more refined models have been proposed to put into the right light randomness;
we refer for instance to [5] showing that one single stochastic microscopic process
can generate different macroscopic models of adaptive evolution. More recently, in
[2], it has been proposed a macroscopic stochastic model where mutations occur
at a different time scale than selection. This approach goes into the direction of
adaptive dynamics, but differentiates from trait substitution sequence because it is
not assumed that there is complete adaptation (namely invasion or extinction of
the mutant trait) between subsequent mutations. Within the framework of social
dilemma, where the types Ei are read as strategies, a ”mutation” happens when
a player changes his strategy. The model in [2] assumes that such events happen
on rare and random occasions, even more than once before the system reaches its
stable state. See also the numerical paper [3], focused on Prisoner’s Dilemma.

In this paper we take a step further and address our attention to the environ-
ment, seen as a place where individuals can evolve but also as a factor that can
influence the dynamics of interaction between strategists. The model presented in
[2] is then expanded to take into account how the natural environment can modify
the interactions between individuals, changing selective pressures; we add a new
variable y ∈ RN to the variable x, in the simplex, so that the status of the popu-
lation is described by the pair (x, y). The new variable y stands for the position of
the population or, more widely, for an external parameter that affects the results
of the interplay between strategies. It changes according to a velocity, partly de-
terministic, partly stochastic, and influences the selection mechanism because the
payoff matrix depends on y.

In the following Section 2 we recall the stochastic model for replicator dynamics
with point-type mutations introduced in [2]. With the aim of performing Monte-
Carlo simulations, we give an alternative (but equivalent) description of the process
by using a single Poisson random measure. Starting from this description, we
generate an algorithm to simulate our process. Next, the spatial environment is
introduced as a further stochastic variable, whose dynamics is ruled by a SDE.
Therefore, we end up with two coupled SDE for the character-position variables
(x, y): see (2.5), (2.6).

In Section 3 we derive a Fokker-Plank integro-differential equation for (2.5),
(2.6), (see (3.4) later on). The classical regularity assumptions requested by the
Hormander theory are not satisfied because of the presence of a non-local term,
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which is the deterministic counterpart of the point process modeling mutations.
We therefore read it in the viscosity sense, even if the problem (3.4) does not
fit plainly in the standard framework of viscosity solutions for integro-differential
equations: the main difficulty comes from the domain where it is set, which is
closed. Actually, the model does not justify any attempt to impose a boundary
condition. Moreover the nonlocal term does not depend continuously on x. These
difficulties are overcome by extending in a suitable way the problem to the whole
space (3.5) and noticing that the produced solution can actually be interpreted as
a probability density for the couple character-position (x, y).

Finally Section 4 provides numerical simulations concerning the two strategist
game Hawks vs Doves, used by Maynard Smith to explain the high frequency of
conventional displays, rather than all-out fight, among animals (especially within
heavily armed species) [7]. We modify the standard model by assuming that the
cost for fighting changes according to the location, and perform various simulations
for the probability density obtained both by a Monte-Carlo method starting from
the stochastic system (2.5), (2.6), and by a finite difference scheme based on the
Fokker-Plank equation (3.5). The equilibrium of the standard replicator-mutator
dynamics can be disrupted by effect of either random motion or mutations. In
some particular cases, the environment itself allows for the survival of the low
fitness species.

2. A stochastic model for mutations in heterogeneous environment

We propose to describe the frequencies of different phenotypes in the population
according to a stochastic differential equations (SDE) in the general framework

(2.1) Xt = X0 +

∫ t

0

a (Xs) ds+

∫ t

0

b(Xs)dW (s) +

∫ t

0

∫
E

K(Xs− , ξ)N (ds× dξ).

Here Xt is a process on a probability space (Ω,F ,P), where a, b,K are Borel mea-
surable functions of appropriate dimensions. W (s) is a standard Brownian motion
and P (s) is a Poisson point process with random measure N (ds× dξ) on R+ ×E,
with mean measure l × ν, l Lebesgue measure on R+, ν a σ-finite measure on a
measurable space (E, E).

The process of classic replicator dynamics (1.1) is obtained when X = (x1, . . . xd)
is the vector of relative frequencies of d various phenotypes, a is the vector of relative
fitness, i.e. a(X) = (. . . , ak(X), . . .), with

ak(X) = xk
(
fk(X)− f̄(X)

)
,

and b and K are null, so that (2.1) is totally deterministic.
In [2], mutations are described by means of a pure point process that alters

replicator dynamics and the Brownian motion term is zero (b = 0). Any mutation

has a fixed progenitor (type i) and a unique descendant (type j): this gives 2
(
d
2

)
=

d(d− 1) different mutations, precisely all those that transform a type i in a type j
as

(i, j) ∈ I =
{

(i, j) ∈ {1, . . . , d}2 ; i 6= j
}
.

The mutation from type i to type j is driven by a non-homogeneous point process
N ij
t with stochastic intensity λijfi(Xt−). The process N ij

t makes unit jumps with
a frequency depending on the process itself, according to the “genetic distance”
between the types i and j (λij) and the fitness of i (fi): the higher the fitness, the
higher the rate of reproduction of individuals of that kind, the more they will suffer
mutations. A further coefficient γij ∈ (0, 1) measures the proportion of individuals
involved in mutations: the population of type i decreases by a fraction γijxi , while
the population of type j increases by the same amount. This yields a jump of the



4 A.L. AMADORI, R. NATALINI, D. PALMIGIANI

population frequency vector of size γijxi(ej − ei), ei standing for the unit vector
pointing in the direction i. The resulting SDE is

(2.2) xk,t = xk(0) +

∫ t

0

ak(Xs)ds+
∑
i6=k

∫ t

0

γikxi,tdN
ik
t −

∑
i6=k

∫ t

0

γkixk,tdN
ki
t .

Let us notice by now that the number of variables depicting the character can be

reduced by observing that xd = 1−
d−1∑
i=1

xi and setting the problem in the closed set

Σd = {(x1, . . . xd−1) : xi ≥ 0,

d−1∑
i=1

xi ≤ 1}.

With a little abuse of notations we shall continue to write x ∈ Σd and

fk(x) =fk(x1, . . . xd−1, 1−
d−1∑
i=1

xi),

ak(x) =ak(x1, . . . xd−1, 1−
d−1∑
i=1

xi) = (fk − fd)(1− xk)xk −
d−1∑
i=1
i 6=k

(fi − fd)xixk.

In the same paper [2], a Kolmogorov integro-differential equation describing the
expected frequencies is derived and investigated analytically, with particular atten-
tion to the long term equilibrium. Analytical investigation is satisfactory in the
case of constant fitness (quasispecies equation), but there are some gaps concerning
variable fitness, that has been tackled by a numeric approach in the subsequent pa-
per [3]. In the present work we are mainly concerned with Monte-Carlo simulations.
That is why, before enriching the model by including the effect of heterogeneous
environment, it is worth giving an alternative description and present an algorith-
mic approach.
The SDE (2.2) can be written in standard form (2.1) by taking d(d − 1) indepen-
dent Poisson random measures Nij(ds× dξ) on R+ × R+, defining the amplitudes
of jumps as

(2.3) Kij(X, ξ) = γijxi(ej − ei)1[0,λijfi(X))(ξ),

and then invoking the Poisson embedding [6].
It is possible to set up an equivalent mode (i.e. with the same probability

distribution) with only one random measure N (ds × dξ) on R+ × E with E =
R+ × [0, 1]. To this aim we look at the sum of the stochastic intensity of each
individual process

Λ(X) =
∑
i 6=j

λijfi(X),

split the unit interval into d(d− 1) disjoint intervals Iij of length λijfi(X)/Λ(X),
and take the amplitude of jumps as

(2.4) K (X, ξ) = K (X,u, θ) = 1[0,Λ(X))(θ)
∑
i 6=j

[
γijxi (ej − ei) 1Iij (u)

]
.

The two processes just described coincide indeed.

Lemma 2.1. The processes (2.3) and (2.4) have the same infinitesimal generator,
so they have the same probability distribution.
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Proof. The generator of 2.4 is∫
(0,1)

∫
R

φ
X + 1(0,Λ(X)](θ)

∑
i 6=j

γijxi(ej − ei)1Iij (u)

− φ(X)

 du dθ
= Λ(X)

∫
(0,1)

φ
X +

∑
i6=j

γijxi(ej − ei)1Iij (u)

− φ(X)

 du
= Λ(X)

∑
i 6=j

∫
Iij

[φ (X + γijxi(ej − ei))− φ(X)] du

= Λ(X)
∑
i 6=j

|Iij | [φ (X + γijxi(ej − ei))− φ(X)]

=
∑
i6=j

λijfi(X) [φ (X + γijxi(ej − ei))− φ(X)] ,

i.e. the same infinitesimal generator of (2.3), as in [2].
�

This alternative construction, albeit equivalent to the first one, can be turned into
a simulation more easily and with a more compact and efficient code, because it
involves only one jump process instead of d(d − 1) independent ones. In view of
Monte Carlo approximations, we therefore give an intuitive interpretation of this
last process, based on the existence theorem for Poisson random measures in [9].

Let T > 0 a fixed time horizon and

Λmax = max
X

Λ(X).

The evolution process can be simulated by the following steps:

i) Build a priori an homogeneous Poisson process with intensity Λmax, whose
jump times will be denoted by Tn lower than T ;

ii) Simulate the replicator dynamics till T1;
iii) Extract uniformly a random number ξ ∈ [0, 1];

iii.a) if Λmaxξ > Λ(XT−
1

) no jump occurs,

iii.b) if Λmaxξ ≤ Λ(XT−
1

) a jump occurs indeed.

To decide which kind of mutation occurs, extract another random number
u ∼ Unif(0, 1) and look at which interval Iîĵ it belongs (it is possible

because the sets Iij form a partition of [0, 1]).

Then shift a quantity γîĵxî,T−
1

from î to ĵ.

iv) Restart from step ii).

2.1. Heterogeneous environment. In the present model the only observed vari-
ables are the frequencies of the various phenotypes, as well as in the classical repli-
cator equation. The rules of the play are fixed once and for all by means of the
payoff matrix U , and nothing depends by the physical position of the population,
as if the individuals were not able to move, or if the environment were completely
homogeneous. A more realistic picture has to take into account that environmental
changes affect the results of interaction between different behaviors.
To introduce heterogeneous environment we increase the observed variables so
that the status of the population (or of a sub-population) is described by a pair
X = (x, y): as before x = (x1, . . . , xd−1) ∈ Σd stands for the character of the

population, each xi being the fraction of individuals of type Ei (and xd = 1−
d−1∑
i=1

xi
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the fraction of type Ed), while the new variable y ∈ RN stands for the position of
the population. More widely this new variable can be seen as an external param-
eter that affects the results of the interplay between strategies. The payoff matrix
depends by y, i.e. U = U(y), consequently also the respective fitness

fk(x, y) =

d−1∑
i=1

uki(y)xi + uid(y)(1−
d−1∑
i=1

xi)

varies with y.
The character x evolves according to a suitable version of equation (2.2):

(2.5) xt = x0 +

∫ t

0

a (xs, ys) ds+

∫ t

0

∫
E

K(xs− , ys, ξ)N (ds× dξ).

Here

• a ∈ Rd−1 stands for the vector field of the replicator dynamics. It has the
same structure as in the former case, but with an important difference: the
fitness are allowed to depend from y, so that

ak(x, y) = xk(f(x, y)− f̄(x, y)) as k = 1, . . . d.

• The jump amplitude K and the Random measure N describe the mutation
process as before. The location y affects the mutation process through the
fitness, as

Λ(x, y) =
∑
i6=j

λijfi(x, y),

K (x, y, u, θ) = 1[0,Λ(x,y))(θ)
∑
i 6=j

γijxi (ej − ei) 1Iij(x,y)(u),

where the intervals Iij(x, y) have length equal to λijfi(x, y)/Λ(x, y) and
form a partition of the unit interval, as i 6= j ∈ {1, . . . , d}.

The environmental variable y changes according to a diffusion with drift:

(2.6) yt = y0 +

∫ t

0

v (xs, ys) ds+

∫ t

0

σ (xs, ys) dWs,

where

• v ∈ RN stands for the velocity field of the population. For any given y,
v(ei, y) is the drift of the type Ei, while a composite population described
by the character x is inclined to move according to v(x, y).
• σ is an N × N matrix and Ws is an N -dimensional Brownian motion,

describing the random component of the displacement.

Notice that both the drift and the diffusion may depend by the frequency vector x,
allowing retro-actions of population on the environment itself.

The well posedness of the process (2.5), (2.6) is assured by classical arguments
(see [4], [8]). Monte-Carlo simulations do not require substantial changes compared
to the non-spatial case: the additional Brownian motion can be effectively simulated
in a standard way.

3. A Fokker-Plank equation for the probability density

The stochastic process (2.5), (2.6) can be described in a deterministic way by
means of two Kolmogorov integro-partial differential equations: the backward one,
also known as Feynman-Kac equation, (related to expected value) and the forward
one, also known as Fokker-Plank equation (related to the density).
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With minor changes from [2, Proposition 3.1], one easily sees that the infinites-
imal generator of the process (2.5) (settled in Σd), (2.6) is

(3.1) Lφ = a ·Dxφ+ v ·Dyφ+
1

2
Tr
(
σσtD2

yyφ
)

+ J φ.

Here Dx and Dy stand for the vectors of first derivatives w.r.t. x ∈ Rd−1 and y ∈
RN , respectively, D2

yy stands for the N ×N matrix of the second order derivatives
w.r.t. y, a, v, σ are the same functions appearing in (2.5), (2.6), and J is a non-local
functional related to a discrete measure:

J (x, y, φ) =

∫
Rd−1

(φ(x+ z, y, t)− φ(x, y, t)) dµx,y(z),

µx,y(z) =

d−1∑
i,j=1
i 6=j

λijfi(x, y)δ{γijxi(ej−ei)}(z) +

d−1∑
i=1

λidfi(x, y)δ{−γidxiei}(z)

+

d−1∑
i=1

λdifd(x, y)δ
{γdi(1−

d−1∑
k=1

xk)}
(z).

The expected value at time t of a population which is at state (x, y) at time t = 0
is described by u(x, y, t), the solution to the Feynman-Kac system

(3.2)


∂tuk − a ·Dxuk − v ·Dyuk − 1

2Tr
(
σσtD2

yyuk
)

= J uk,

uk(x, y, 0) =

{
xk as k = 1, . . . d− 1,

yk−d as k = d, . . . d+N − 1.

Otherwise, one can be interested into the macroscopic function %(x, y, t) ∈ [0, 1],
measuring the probability of finding a population distribution (x1, . . . xd−1, 1 −
d∑
i=1

xi) ∈ Sd in the position y ∈ RN at time t. For instance at time t > 0 the

quantity

Pi(t) =

∫∫
(Bε(ei)∩Σd)×RN

%(x, y, t)dxdy

depicts the probability of having an high proportion of individuals of type i, while

Pi(t, δ) =

∫∫
(Bε(ei)∩Σd)×Bδ(0)

%(x, y, t)dxdy

depicts the probability of finding an high proportion of individuals of type i near
at the origin.
This can be done if the starting point is one population with character x in the
position y (that is the initial datum is a Dirac mass centered at (x, y)), or if the
initial status is a random variable with density function %0(x, y).

A rigorous deduction of the Fokker-Plank equation requests a-priori regularity
of the density function. The topic of regularity can be addressed by the classical
Hormander theory (see, for instance, the book [13]) and requests some technical as-
sumptions, also in the diffusive setting (i.e. in absence of mutations). In the present
setting there is no reason to expect that the density function is smooth enough,
due to the anisotropy of diffusion and to the point process modeling mutation. We
therefore choose to write the Fokker-Plank equation formally and then to settle it
in the framework of viscosity solution theory. This approach has the advantage of
asking very few a-priori regularity and producing well-posed solutions even in the
degenerate elliptic, integro-differential setting arising from rare mutations.
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Following Pavliotis [14] we compute L∗, the dual operator in L2(Σd×RN ) of the
infinitesimal generator:

(3.3) L∗φ =
1

2

N∑
h,k=1

∂2
yhyk

(
(σσt)hkφ

)
− divx (φa)− divy (φv) +

d∑
i=1

J ∗i (fiφ),

where now

J ∗i (x, y, φ) =

∫
Rd−1

(φ(x+ z, y, t)− φ(x, y, t)) dµix,y(z),

dµix,y(z) =

d−1∑
j=1
j 6=i

λij(1 + γ∗ij) 1Σd(x+ γ∗ijxi(ei − ej))δ{γ∗
ijxi(ej−ei)}(z)

+ λid(1 + γ∗id) 1Σd(x+ γ∗idxiei)δ{−γ∗
idxiei}(z),

as i = 1, . . . d− 1 and

dµdx,y(z) =

d−1∑
j=1

λdj(1 + γ∗dj) 1Σd(x− γ∗dj(1−
d−1∑
k=1

xk)ej)δ
{γ∗
dj(1−

d−1∑
k=1

xk)ej}
(z),

for γ∗ij = γij/(1− γij). It turns out that, if %0(x, y) is the probability density of the
random variable X0 = (x0, y0) describing the initial distribution of subpopulations,
and if the solution Xt = (xt, yt) to (2.5), (2.6) has a sufficiently smooth probability
density %(x, y, t) for t > 0, then it solves the initial value problem

(3.4)

∂t%−
1
2

N∑
h,k=1

∂2
yhyk

((σσt)hk%) + divx (%a) + divy (%v) =
d∑
i=1

J ∗i (fi%)

%(x, y, 0) = %0(x, y),

in the closed set (x, y) ∈ Σd × RN and t > 0.
Let us explicitly remark that nonlocal operators J ∗i are not continuous w.r.t. x:

this fact may have a huge instability effect. We therefore switch to another problem
which is settled into all Rd−1 × RN and is continuous. To this end we extend the
fitness functions fi, the drift v and the diffusion σ in a bounded smooth way to
all Rd × RN so that fi ≥ 0 have support contained in a cylinder, say BR(0)× RN .
Concerning the initial datum %0, it can be extended as %0 ≡ 0 outside Σd × RN .
We thus look into the problem

(3.5)

∂t%−
1
2

N∑
h,k=1

∂2
yhyk

((σσt)hk%) + divx (%a) + divy (%v) + c% = J̃ %

%(x, y, 0) = %0(x, y),

for (x, y) ∈ Rd × RN and t > 0, where now

J̃ (x, y, φ) =

∫
Rd−1

(φ(x+ z, y, t)− φ(x, y, t)) dµx,y(z),

dµx,y(z) =

d−1∑
i,j=1
j 6=i

mij(x, y)δ{γ∗
ijxi(ej−ei)}(z)

+

d−1∑
i=1

mid(x, y)δ{−γ∗
idxiei}(z) +

d−1∑
j=1

mdj(x, y)δ
{γ∗
dj(1−

d−1∑
k=1

xk)ej}
(z),

mij(x, y) =(1 + γ∗ij)λijfi(x+ γ∗ijxi(ei − ej), y),
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as i, j = 1, . . . d− 1, with i 6= j, and

mid(x, y) =λid(1 + γ∗id)fi(x+ γ∗idxi, y),

mdi(x, y) =λdi(1 + γ∗di)fd(x− γ∗di(1−
d−1∑
k=1

xk)ei, y),

as i = 1, . . . d− 1,

c(x, y) =

d∑
i,j=1
i6=j

(λijfi(x, y)−mij(x, y)) .

It is worth clarify that the equation in (3.5) does not coincide with the one in
(3.4) even if x ∈ Σd. Although they do coincide for that functions % which are zero
for x outside Σd. On the other hand if the support of %0 is contained in Σd × RN
and %(t) ∈ L1(Rd−1×RN ) is nonnegative, then also the support of %(t) is contained
in Σd × RN .

To see this fact, let

Ak ={x ∈ Rd−1 : xk < 0} as k = 1, . . . d− 1,

Ad ={x ∈ Rd−1 :

d−1∑
k=1

xk > 1},

Ik(t) =

∫∫
Ak×RN

%(t)dxdy as k = 1, . . . d.

It suffices to check that
d

dt
Ik(t) ≤ 0. For simplicity we perform computations only

in the case d = 2. Integrating the equation in (3.5) on A1 × RN gives

d

dt
I1(t) =−

∫
RN

(a1%)(0, y)dy + λ12

∫∫
A1×RN

((1 + γ∗12)(f1%)((1 + γ∗12)x, y, t)− (f1%)(x, y, t)) dxdy

+ λ21

∫∫
A1×RN

((1 + γ∗21)(f2%)(x− γ∗21(1− x), y, t)− (f2%)(x, y, t)) dxdy

remembering that a1(0, y) ≡ 0 and performing the obvious transformations in the
second and third integrals yields

=− λ21

∫
RN

dy

∫ 0

−γ∗
21

dx(f2%)(x, y, t) ≤ 0

because f2% ≥ 0. Similarly, since a1(1, y) ≡ 0 one gets

d

dt
I2(t) =− λ12

∫
R
dy

∫ 1+γ∗
12

1

dx(f1%)(x, y, t) ≤ 0.

It has also to be stressed that, in order to read the solution %(t) as a probability
density, its total mass has to be 1, that is

M(t) =

∫∫
Rd−1×RN

%(x, y, t)dxdy = 1 for all t > 0,
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provided that M(0) =
∫∫

Σd×RN
%0(x, y)dxdy = 1. Again, integrating the equation in

(3.5) gives

d

dt
M(t) =λ12

∫∫
R×RN

((1 + γ∗12)(f1%)((1 + γ∗12)x, y, t)− (f1%)(x, y, t)) dxdy

+ λ21

∫∫
R×RN

((1 + γ∗21)(f2%)(x− γ∗21(1− x), y, t)− (f2%)(x, y, t)) dxdy = 0

after a trivial change of variables. Hence the total mass is preserved in the modified
problem (3.5).

In view of these remarks, we can read as the probability density of the process
(2.5), (2.6) a solution %(t) to the Cauchy problem (3.5) with the properties %(t) ∈
L1(Rd−1 × RN ) and %(t) ≥ 0 for t > 0. The existence of such a solution is assured
in the viscosity framework.

Theorem 3.1. Assume that fi, v ∈ C1,1(Rd−1 × RN ), σ ∈ C2,1(Rd−1 × RN ) are
bounded together with their derivatives, with fi ≥ 0 and σ ≥ ε > 0. Take %0 a
Lipschitz-continuous, bounded function whose support is compact and contained in
the interior of Σd × RN such that %0 ≥ 0 and

∫∫
%0dxdy = 1. Then there exists a

unique viscosity solution to (3.5). Moreover %(t) ∈ L1(Rd−1 × RN ) and %(t) ≥ 0
for all t > 0.

Proof. First of all the equation in (3.5) has to be written in the standard form of
the viscosity solution framework, which is nonvariational. This can be done if the
coefficients fi, v, σ have the regularity requested by hypothesis. So we write

(3.6) ∂t%+ a∂x%+ b∂y%+ c%− 1

2
σ2∂2

yy% =

2∑
i=1

λ̃iIi (%)

where now

λ̃1(x, y) =λ12(1 + γ∗1 )f1(x+ γ∗1x, y),

λ̃2(x, y) =λ21(1 + γ∗2 )f2(x− γ∗2 (1− x), y),

and consequently

c(x) =∂xa+ ∂yv −
1

2
∂2
yyσ

2 +

2∑
i=1

(λifi − λ̃i)

are continuous and bounded. This problem satisfies the assumptions in [1, The-
orems 1.1, 1.2], therefore it has a unique continuous viscosity solution %(x, y, t)
which is Lipschitz-continuous w.r.t. x, y and bounded. Moreover comparison prin-
ciple holds, in particular one can find suitable parameters c1, c2, c3 so that

(3.7) 0 ≤ % ≤ exp(c1t− c2
√

1 + x2 − c3y2) in R2 × [0,∞).

In particular %(t) ∈ L1(R2) for all t. �

Remark 3.1. The assumption σ ≥ ε > 0 has only been used to obtain the estimate
from above in (3.7) and infer the integrability of the solution and the equation into
all R2. The hypothesis can be removed by asking something more to the drift v in
order to assure some decay w.r.t. y.

In view of the biological applications, it is suitable to allow the initial density %0

to be a probability measure. For instance modeling the evolution of one population
whose initial state (x, y) is known deterministically requests to take a ρ0 as a Dirac
mass centered at (x, y). This would hugely increase the mathematical difficulty. The



A RARE MUTATION MODEL IN HETEROGENEOUS ENVIRONMENT 11

recent paper [10] presents interesting results in this direction, which are modeled
on the fractional Laplacian and therefore do not include the discrete non-local
operator appearing here. We also mention [15] for some transport problem involving
measures.

4. Hawks and Doves: a numerical study

In this section we take as a case study the two strategy game Hawks vs Doves
(d = 2), with the following payoff matrix:

U =

(
G−C

2 G
0 G

2

)
,

where the coefficients are both positive. The fitness functions for Hawks (x1) and
Doves (x2), are respectively

f1 = (G− C)x1/2 +Gx2, f2 = Gx2/2,

then the replicator dynamics (reducing the coordinates only to x ∈ [0, 1], fraction
of hawks) is

ẋ = x (1− x) (f1 − f2) = x (1− x) (G− Cx) /2.

Besides the pure-strategies equilibria x = 0 (all Doves) and x = 1 (all Hawks), a
mixed strategies equilibrium can occur, x̄ = G/C, when C > G: in this case the
real Hawks vs Doves game occurs, with x̄ attractive and the other two values 0
and 1 which become unstable equilibria. Notice that when the cost of the fight C
increases, the percentage of hawks at the equilibrium x̄ decreases; instead, when
the cost of fighting is less or equal than the gain, C ≤ G, the only equilibria are the
pure-strategies ones, with x = 1 attractive; the population tends to become only
hawks.

We add to the two strategies game also the space component, with y ∈ R (N =
1). In particular we assume that the cost for fighting depends by y as

C(y) =
3G

2

[
1 +

2

π
arctan(y)

]
.

The function C is designed so that, at y = 0, the cost for fighting is C = 3G/2 > G
and we have a coexistence equilibrium x̄ = 2/3. At y < 0 the cost lowers untill it

becomes equal to the gain for y = −
√

3/3, so for smaller values of y the coexistence
equilibrium disappears, hawks increase and the only attracting equilibrium is x̄ =
1. Otherwise if y > 0 environment is more favorable to doves, because the cost
increases up to 3G, so that the fraction of hawks at equilibrium x̄(y) is a decreasing
function of y, tending towards 1/3 as y → +∞. Summing up, for any fixed y, the
standard replicator dynamics has its equilibrium at

(4.1) x̄(y) =

{
1 y < −

√
3/3,

G/C(y) y ≥ −
√

3/3,

which is well known to be a global attractor. In particular the initial state (x0, y0) =
(2/3, 0) is an equilibrium for the standard replicator dynamics (i.e. neither muta-
tions or motions are allowed), and also when a deterministic motion with v(2/3, 0) =
0 is considered. All the simulations that follow represent the probability density
%(x, y, t) evolving from the same initial state (x0, y0) = (2/3, 0), and show that the
equilibrium can be disrupted by Brownian motion in an eterogeneous environment
and/or by mutations. They have been obtained in MATLAB using Monte-Carlo
methods and, in the last section, using a numerical method for the I.P.D.E. (3.5).
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Monte Carlo simulations. Roughly speaking, large number of independent runs
of the stochastic process is performed, to statistically estimate the density.

• Fixed the final time, T , we discretize the time interval [0, T ] in, at least,
N = 28 sub-intervals with the same length; fixed an accuracy α, the number
N increases up to make sure that the probability of the event “up to one
jump in each interval” is greater than (1− α)%;

• We choose the number of iterations of the method, itermax; we fix two
values, Nx, Ny and the interval [ymin, ymax] in which we want to display
the density; then we create a grid on [0, 1]× [ymin, ymax], dividing the first
interval in Nx parts, the second in Ny (ymin = −5, ymax = 5, Nx = Ny =
50); we define the array H in three dimensions, Nx × Ny × N , that will
contain the following information:

H(i, j, t) =
# {processes s.t. at time t are in the cell grid (i− 1, i)× (j − 1, j)}

itermax
;

• For each iteration, we generate a Brownian motion on the N time points;
then we generate a homogeneous Poisson process with intensity λmax ≥
maxx λ(x) on [0, T ]; let {T1, . . . , Tk} be the jump times;

• We simulate, with Euler-Maruyama method, the stochastic process without
jumps, until the nearest time Ti;

• Following the definition of the jump process and the intuitive interpreta-
tion presented before, we decide (acceptance-rejection) if the jump of the
homogeneous process should be counted or not for the non-homogeneous
one: if not, we continue Euler-Maruyama until the next jump; if so, we
modify the population fractions in appropriate manner;

• We update the array H.

Numerical methods for the Fokker-Planck equation. We implement a nu-
merical method for the equations (3.5), that in this case has the form:

∂t%−
1

2
σ2%yy + (%a)x + (%v)y = J1(%, x, y) + J2(%, x, y),

J1(%, x, y) = λ12

[
1

1− γ12
(f1%)

(
x

1− γ12
, y, t

)
1[0,1−γ12](x)− (f1%) (x, y, t)

]
,

J2(%, x, y) = λ21

[
1

1− γ21
(f2%)

(
x− γ21

1− γ21
, y, t

)
1[γ21,1](x)− (f2%) (x, y, t)

]
.

We obtain a finite differences scheme by discretizing with central difference the
second order diffusive term and the transport term in y, and with a upwind method,
that varies depending on the sign of the function a, for the transport term in x.
The time is discretized using an explicit method. We denote with ∆x and ∆y the
space steps, with ∆t the time step, with xi, yj the grid points and tn the discrete
times. Without considering the integral term (related to jumps) the method is
conservative, and has the following form:

%n+1
i,j − %ni,j

∆t
=

σ2

2 (∆y)
2

(
%ni,j+1 − 2%ni,j + %ni,j−1

)
− 1

2∆y

(
(v%)

n
i,j+1 − (v%)

n
i,j−1

)
− 1

2∆x

[
(a%)

n
i+1,j − (a%)

n
i−1,j −

(∣∣∣(a%)
n
i+1,j

∣∣∣− 2
∣∣∣(a%)

n
i,j

∣∣∣+
∣∣∣(a%)

n
i−1,j

∣∣∣)] ,
where %ni,j = %(xi, yj , tn).
Regarding the non-local jump terms J1, J2 the functions f1, f2 are well defined
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on non-grid points, but we have to approximate the value of %n in xi/(1− γ12), so
we follow [3], using linear interpolation between the grid points xî and xî+1, where

î = min{j : xj ≤ xi/(1− γ)}:

%n
(

xi
1− γ12

)
=

(
%n
î+1
− %n

î

)
∆x

(
xi

1− γ12
− xî

)
+ %n

î
.
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Figure 1. Replicator Dynamics perturbed by random motion,
simulated by 105 iterations of the Monte Carlo method. The
population moves randomly in space, subject to the selection of a
changing environment. The red line is the function x̄(y), fraction
of hawks at the equilibrium for the standard Replicator Dynamics
starting at y. The deterministic speed is zero, v = 0, jumps are
absent, the coefficient of the Brownian motion is σ = 0.2. Other
parameters: T = 30, N = 28, ymin = −5, ymax = 5, Nx = Ny =
50.

4.1. Replicator Dynamics perturbed by random motion. In this Monte
Carlo simulation the population just moves randomly in space, subject to the se-
lection of a changing environment. To do this, we imagine that jumps are absent,
i.e. K = 0 in (2.5), and that (2.6) gives an homogeneous Brownian motion for the
variable y, i.e. the drift v is zero and the diffusion coefficient is σ = 0.2. If the
Brownian motion were absent, the character xt of a population starting at (x0, y0)
would tend as t → +∞ towards the attractor x̄(y0) introduced in (4.1) and de-
picted by a red line in Figure 1. But now yt follows (2.6), which reduces to an
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homogeneous Brownian motion, so that its marginal density is a Gaussian function
with expected value y0, kernel of the heat equation,

%(y)(y, t) =
1√

2πσ2t
exp

{
− (y − y0)

2

2σ2t

}
.

Meanwhile the SDE (2.5) reduces to the standard replicator dynamics and moves
xt towards the asymptotically stable equilibrium x̄(yt), which depends by yt and
therefore by time. We can see how, with t� 0, the density is approximately

%(x, y, t) ∼ x̄(y)%(y)(y, t)

with an expected global frequency of hawks given by
∫
R x̄(y)%(y)(y, t)dy, see Figure

1.
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Figure 2. Replicator Dynamics plus Brownian motion with drift,
simulated by 105 iterations of the Monte Carlo method. The vector
x evolves according to the game Hawks vs Doves with G function of
y. The red line represents the expected value of hawks for t→∞,
that is equal to the initial value of hawks. The deterministic speed
is chosen as v = 1 − 3

2x, jumps are absent, the coefficient of the

Brownian motion is σ = 0.2. Other parameters: T = 30, N = 28,
ymin = −5, ymax = 5, Nx = Ny = 50.

4.2. Replicator Dynamics plus Brownian motion with drift. We assume
again that the character xt follows the replicator dynamics with no jumps, i.e. we
take K = 0 in (2.5). But now the we take a nonnull drift in the environmental
dynamics (2.6), depending on the character of the population:

(4.2) v(x) = 1− 3x/2.
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The drift is decreasing as a function of x (the proportion of hawks): it has its
maximum, v = 1, at x = 0 (high concentration of Doves) and its minimum, v =
−1/2, in x = 1 (high concentration of Hawks). Moreover the drift is null at x = 2/3,
which is taken as the initial state. As noticed at the beginning of this section, if
the Brownian component were absent the initial state (x0, y0) = (2/3, 0) would
be an equilibrium and the resulting dynamics would be trivial. In the simulation
depicted in Figure 2 the dynamics is not trivial, and we can identify two different
behaviors of the process, because of the presence of the Brownian component with
σ = 0.1. The support of the probability density function splits in two different
regions, and it means that the population moves either towards negative values of y,
or towards positive values, respectively with probability p1 and p2. In the first case,
the proportion of hawks at the equilibrium increases (as a function of −y), until the

process oversteps the value y = −
√

3/3, after which x = 1 is the only equilibrium
(all hawks); we can see the gradual extinction of each dove. In the other case,
the cost of the fight increases with time, the density tends to concentrate toward
the coexistence of both strategies, with greater concentration of doves (x = 1/3).
However, the expected value of the proportion of hawks for t → +∞ (highlighted
by a red line in Figure 2) is the same as the initial one, 2/3. In fact, as we can see
numerically, each of the two regions have mass 1/2, so p1 = p2 and

lim
t→+∞

E[xt] = 1 · p1 +
1

3
· p2 =

2

3
.

4.3. Point-type mutations plus Brownian motion with drift. We take now a
point-type mutation process for xt, with λ12 = λ21 = 0.2; γ12 = γ21 = 0.1 in (2.4).
Concerning motion, we take here σ = 0.2 and v given by (4.2), so that the position yt
changes deterministically with speed v and stochastically because of the Brownian
motion. Let us remark that at each time that a mutation occurs, the probability
that hawks (respectively doves) suffer a mutation only depends by fitness. At the
initial state (2/3, 0), the probability that hawks are the first to suffer mutations is
1/2, just like doves. In this sense mutations produce random perturbations similar
to the Brownian motion introduced in the previous example 4.2. The simulations
presented in Figure 3 show two different regions also in this case. It is remarkable
that the fact that at the equilibrium hawks are more abundant than doves brings
as a consequence that mutations favor doves, so that the region of the probability
density moving rightwards will have higher mass (the ratio between right region
and left region is 2:1 ca.), i.e. the coexistence of both strategies occurs with higher
probability (p1 < p2), unlike example 4.2. The expected value of the proportion
of hawks for t → +∞ (highlightened by a blue line in Figure 3) is lower than the
initial one:

lim
t→+∞

E[xt] = 1 · p1 +
1

3
· p2 ≈

5

9
.

We therefore see that including the physical space can favour the persistence of the
low-fitness strategy, when mutations can happen in both directions.

4.4. Monte Carlo and Finite Differences simulations. Here we compare the
Monte Carlo algorithm, showed in the previous cases, and the finite differences
approximation, presented at the beginning of Section 4. Let us take as study case
the same problem as above, in Subection 4.3. After the flattening of the initial
datum (Dirac delta), which is slightly faster in the I.P.D.E. approximation, the
two simulations run parallel (see Figure 4) creating the two regions with different
masses, moving towards opposite directions. In the I.P.D.E. case, as in the Monte
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Figure 3. Point-type mutations plus deterministic and Brownian
motion, simulated by 105 iterations. The vector x evolves accord-
ing to the game Hawks vs Doves with G function of y. The red
line, as in Figure 2, represents the initial value of hawks and the
expected value of hawks for t → ∞ in absence of mutations. The
blue line is the same expected value for t → ∞ in presence of
mutations. The deterministic speed is chosen as v = 1− 3

2x, Brow-
nian motion has σ = 0.2, the parameters of the jump process are
λ12 = λ21 = 0.2, γ12 = γ21 = 0.1, that is one tenth of the popula-
tion mutate each jump and we have fair jumps. Other parameters:
T = 30, N = 28, α = 0.1, ymin = −5, ymax = 5, Nx = Ny = 50.

Carlo one, the ratio between the right region and left region masses is 2:1 ca.
Even if we choose a thick grid for the I.P.D.E. algorithm (500 cells of size ∆x,
1000 cells of size ∆y, 6000 time steps), its execution is about 5 times faster than
the Monte Carlo simulation with 104 iterations. However, despite the speed, this
algorithm, approximating the non-local jump term with linear interpolation, do not
preserve the mass for the whole simulation; in a simulation, the mass at time T = 15
is 90% ca. of the initial one. Then, the choice of a singular initial point as a Dirac
delta causes numerical dissipation in the transport terms, especially noticeable in
simulations in which the Brownian motion is absent. For these reasons, Monte
Carlo simulations have been privileged in sections 4.1,4.2 and 4.3.

5. Conclusions and further developments

We presented the mathematical framework for a stochastic model in evolutionary
dynamics which describes the dynamics of population frequencies according to
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Monte Carlo, t=12
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Finite Differences, t=12
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Figure 4. Replicator Dynamics plus Brownian motion, with drift
and jumps, with different algorithms, both at time t = 12. On
the left the graphic for Monte Carlo method, simulated by 104

iterations (the grid is dense, to show the single runs). On the right
the scheme for the partial difference equation, with ∆x = ∆y =
0.02.

• selection, which is ruled by game theory,
• mutation, depicted by a multi-dimensional pure point process,
• environment, seen as another stochastic variable that modifies the game

matrix and therefore the selection rules.

As the stochastic dynamics for the environment depends by the population frequen-
cies, this model can in principle take into account retro-effects of the population on
the environment itself.
We have also proposed an alternative formulation of the same process (with the
same probability distribution) which allows to describe mutations by means of only
one point process, and we have introduced a modified Fokker-Plank equation that
relates the probability density to a degenerate-elliptic integro-differential equation
and settled it in the framework of viscosity solutions. The Fokker-Plank formulation
is far from standard because the same nature of the stochastic process (anisotropic
diffusion plus a pure jump process) causes two obstructions: (i) the probability
density is generally non-smooth, so that standard Theorems do not apply, (ii) the
-formally derived- Fokker-Plank equation contains a non-local term and therefore
has to be suitably extended from effective state space (a simplex) to the whole
space.
We then have performed simulations by Monte Carlo methods, using the alternative
formulation of the process, for a classical Hawks and Doves game. We compared
the results with a finite difference method for the Fokker Planck equation, showing
that they represent the same phenomenon.
Starting from this model it may be also possible to describe the evolution of a pop-
ulation composed by subpopulations that live in distinct environmental patches,
initially distributed according to a density %0(x, y), evolving according to different
selection pressures. From this viewpoint it is expected that, when two subpopu-
lations get at the same location, they interact by means of the selection rule. In
addition migration of some indivividuals from one subpopulation to another may
happen. To describe such phenomena it is nedeed to add to the frequencies dynam-
ics two terms which give account of the melting of different subpopulations, and
this in turn requests to follow not only the frequencies of various species, but also
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their abundance. This aspect certainly deserves a further investigation, and shall
be the subject of a future work.
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[5] N. Champagnat, R. Ferrière, S. Méléard. (2006) Unifying evolutionary dynamics: From in-
dividual stochastic processes to macroscopic models Theoretical Population Biology, 69 (3):

297-321. DOI: 10.1016/j.tpb.2005.10.004

[6] D. J. Daley and D. Vere-Jones. (2008) An Introduction to the Theory of Point Processes.
Springer

[7] J. Hofbauer and K. Sigmund. (1998) Evolutionary games and population dynamics. Cam-

bridge: Cambridge University Press.
[8] N. Ikeda and S. Watanabe. (1981) Stochastic Differential Equations and Diffusion Processes.

North-Holland, Amsterdam.

[9] Ken-Iti Sato. (1999) Levy Processes and Infinitely Divisible Distributions. Cambridge: Cam-
bridge University Press.

[10] T. Kuusi, G. Mingione, Y. Sire. (2015) Nonlocal Equations with Measure Data. Communi-

cations in Mathematical Physics, 337 (3): 1317-1368. DOI: 10.1007/s00220-015-2356-2
[11] J. Maynard Smith and G. R. Price. (1973)The logic of animal conflict.Nature, 246:15–18.

[12] M. A. Nowak. (2006) Evolutionary dynamics. Exploring the equations of life. Cambridge,
MA: The Belknap Press of Harvard University Press.

[13] D. Nualart. (2006) The Malliavin Calculus and Related Topics New York, Springer Sci-

ence+Business Media.
[14] G. A. Pavliotis. (2014) Stochastic Processes and Applications. New York, Springer Sci-

ence+Business Media.

[15] B. Piccoli, F. Rossi. (2014) Generalized Wasserstein Distance and its Application to Transport
Equations with Source Archive for Rational Mechanics and Analysis, 211 (1): 335-358.DOI:

10.1007/s00205-013-0669-x

[16] P. Stadler and P. Schuster. (1992) Mutation in autocatalytic reaction networks.Journal of
mathematical biology, 30(6):597–632.

1Dipartimento di Scienze Applicate, Università di Napoli “Parthenope”
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