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Abstract4

We prove a general version of the amenability conjecture in the unified setting of a Gromov5

hyperbolic group G acting properly cocompactly either on its Cayley graph, or on a CAT(-1)-6

space. Namely, for any subgroupH of G, we show thatH is co-amenable in G if and only if their7

exponential growth rates (with respect to the prescribed action) coincide. For this, we prove8

a quantified, representation-theoretical version of Stadlbauer’s amenability criterion for group9

extensions of a topologically transitive subshift of finite type, in terms of the spectral radii of10

the classical Ruelle transfer operator and its corresponding extension. As a consequence, we11

are able to show that, in our enlarged context, there is a gap between the exponential growth12

rate of a group with Kazhdan’s property (T) and the ones of its infinite index subgroups. This13

also generalizes a well-known theorem of Corlette for lattices of the quaternionic hyperbolic14

space or the Cayley hyperbolic plane.15
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1 Introduction9

Amenability has a large number of equivalent formulations. In a seminal work dating back to 1959,10

Kesten proved that a finitely generated group Q is amenable if and only if 1 is the spectral radius11

of the Markov operator associated to a symmetric random walk on Q whose support generates Q12

[28]. Given a finite generating set S of Q, Grigorchuk [24] and Cohen [9] independently related the13

spectral radius ρ for the random walk with uniform probability measure supported on S ∪ S−1, to14

the exponential growth rates of the free group F(S) and the kernel N of the canonical projection15

F(S)� Q. Recall that the exponential growth rate of a discrete group G of isometries of a proper16

metric space X, denoted by ω(G,X), (or simply ωG if there is no ambiguity) is17

ω(G,X) = lim sup
r→∞

1

r
ln |{g ∈ G | d(gx, x) 6 r}| ,18

where x is any point of X. The Cohen-Grigorchuck formula states that19

ρ =

√
eωF(S)

1 + eωF(S)

(√
eωF(S)

eωN
+

eωN

√
eωF(S)

)
, (1)20

where ωN and ωF(S) are the respective growth rates of N and F(S) acting on the Cayley graph21

of F(S) with respect to S. This immediately yielded, by Kesten’s criterion, a characterization of22

amenability for a group Q generated by a subset S, in terms of the growth of the relator subgroup:23

the quotient Q = F(S)/N is amenable if and only if ωN = ωF(S) = log(2|S| − 1).24

Almost at the same time, a geometric version of Kesten’s criterion, in terms of the bottom25

of the L2-spectrum of the Laplace operator, was discovered in Riemannian geometry by Brooks26

[5, 6] (see also [7]): for any normal, Riemannian covering M̂ → M of a Riemannian manifold M27

of finite topological type, if the automorphism group of M̂ is amenable, then λ0(M̂) = λ0(M);28

moreover, when M̂ = M̃ is the universal covering of a convex-cocompact hyperbolic manifold M29

(or any Riemannian manifold M of finite topological type satisfying a “Cheeger-type” condition [6,30

Theorem 2]), then the converse implication also holds. Realizing the base manifold as M = M̃/G31

and the cover as M̂ = M̃/N with N normal in G, this precisely says that the λ0(M̂) = λ0(M)32

whenever the quotient group Q = G/N is amenable. Coupling this with Sullivan’s formula relating33

λ0(M) to ωG for discrete subgroups of isometries of the hyperbolic space Hn, it yields34

λ0(M) =


ωG(n− 1− ωG) if ωG >

n− 1

2

λ0(Hn) if ωG 6
n− 1

2

, (2)35



1 Introduction 3

(where ωG is computed, this time, with respect to the action of G on the hyperbolic space).1

Brooks then derived an analogue of Cohen-Grigorchuk statement for particular, discrete groups2

of isometries of Hn: for any normal Riemannian covering M̂ = M̃/N of a convex-cocompact hy-3

perbolic manifold M = M̃/G with ωG > (n − 1)/2, the automorphism group Q = G/N of M̂ is4

amenable if and only if ωG = ωN . This holds, for instance, for uniform lattices. The result was also5

extended to hyperbolic, non-uniform lattices in [35].6

Beyond the evident formal analogies of these results – negatively curved cocompact groups look7

like free groups at large scale, while the bottom of the Laplacian ofM can be related to the spectral8

radius of the Markov operator associated to particular random walks on G = π1(M), induced by9

the heat kernel of M̃ [5] – the two statements did not live on a common ground. This opened the10

door to intensive research for a unifying, generalized setting, and a deeper understanding of the11

relations between these results in dynamical terms.12

The first statement in a general setting was given in 2005 by Roblin [34]. Given a discrete group13

G of isometries of a CAT(−1) space, he proved, using Patterson-Sullivan theory, that amenability14

of the quotient G/N always implies the relation ωG = ωN . In this generality, it is worth to remark15

that the reciprocal is not true. Indeed, there exist Kleinian, geometrically finite groups G – even16

lattices in pinched, variable negative curvature [19, 20] – admitting a parabolic subgroup P with17

ωP = ωG. Such groups give easy counterexamples to the converse implication, by taking for N the18

normal closure of P in G. Indeed in most of these cases G/N contains free subgroups and is not19

amenable. The most accredited version of the Amenability Problem in the last decade can be stated20

as follows. Given a group G acting properly on a hyperbolic space X and a normal subgroup N of21

G, under which circumstances does the equality ωN = ωG imply that the quotient group Q = G/N22

is amenable?23

Clearly, for a group G acting on a general space X, an exact formula as (1) or (2) is hopeless.24

Rather, one should expect that the equality ωN = ωG reflects the qualitative behavior of the25

dynamics of G/N on the space X/N . Nevertheless an exact relation, in terms of the asymptotic26

behavior of the spectral radii of random walks on G/N with probability measure supported by large27

spheres, resists to this general setting, allowing to show the “easy part” of the implication above28

even in the generality of cocompact group actions on Gromov-hyperbolic spaces (see for instance29

Propositions B.5 and B.6 in Appendix B).30

A substantial step forward in the solution of the Amenability Problem is due to Stadlbauer [36],31

who generalized Kesten’s amenability criterion in terms of group extensions of topological Markov32

chains. More precisely, he considered a topologically mixing subshift of finite type (Σ, σ) together33

with a topologically transitive extension (Σθ, σθ) of this system by a locally constant evaluation34

map θ : Σ → Q into a discrete group Q. He proved that Q is amenable if and only if the Gurevič35

pressures of the two systems (with respect to a weakly symmetric potential with Hölder variations)36

coincide1. As an application, Stadlbauer solved the Amenability Problem for the class of essentially37

free groups G of isometries of Hn, for the first time without assuming that ωG > (n − 1)/2.38

This result was recently generalized by Dougall and Sharp, using Stadbauer’s criterion, to the39

class of convex-cocompact groups of isometries of pinched, negatively curved Cartan-Hadamard40

manifolds [22].41

1Actually Stadlbauer’s criterion works in a slightly more general context which allow to consider symbolic dy-
namical systems over an infinite alphabet. Nevertheless in the context of hyperbolic groups a subshift of finite type
is sufficient to conclude.
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The first result of this paper solves the Amenability Problem in an enlarged context encompass-1

ing two very different cases. The first one, of algebraic nature, concerns the growth of groups with2

respect to the word metric. The second case, coming from the geometry, focuses on the action of a3

group on a negatively curved Riemannian manifold or a CAT(−1) space. The aim is two-fold: to4

give a self-contained proof of all these results in a unified setting, and to make clear the minimum5

algebraic and geometric structure needed.6

Theorem 1.1 (see Theorem 5.1). Let G be a group acting properly co-compactly by isometries on7

a Gromov hyperbolic space X. We assume that one of the following holds. Either8

(i) X is the Cayley graph of G with respect to a finite generating set, or9

(ii) X is a CAT(−1) space.10

Let H be a subgroup of G, and let ωG and ωH denote the exponential growth rates of G and H11

acting on X. The subgroup H is co-amenable in G if and only if ωH = ωG.12

Recall that the action of a group G on a space X is amenable if X admits a G-invariant mean, and13

that H is called co-amenable in G if the action of G on the left coset space H\G is amenable. When14

the subgroup H is normal in G then H is co-amenable in G if and only if G/H is an amenable15

group. Notice however that in the above theorem we do not assume that H is a normal subgroup.16

Note that the CAT(−1) case in the above theorem extends the Riemannian convex-compact17

situation studied by Dougall and Sharp [22]. Nevertheless, going from negatively curved manifolds18

to CAT(−1) spaces is a substantial generalization. Indeed, Dougall and Sharp explicitly use the19

Riemannian structure to encode the geodesic flow via Markov sections. To the best of our knowledge20

there is no such coding for the geodesic flow on CAT(−1) spaces. We explain at the end of the21

introduction our strategy to bypass this difficulty.22

The easy part of Theorem 1.2 is the “only if” implication. As we mentioned before, this direction23

was proved for normal subgroups of discrete groups acting on CAT(−1) spaces by Roblin [34]. In24

[35] Roblin and Tapie sketched how to extend the argument to the case of groups acting on a25

Gromov hyperbolic space. Nevertheless, we decided to report in Appendix B a complete proof of26

this fact via random walks, for general subgroups of Gromov hyperbolic groups, since this also gives27

an exact formula which is similar to Sullivan’s one for the bottom of the Laplacian of hyperbolic28

quotients (see Theorem B.1).29

On the other hand, our proof of the converse implication is strongly inspired by Stadlbauer’s30

work [36] and relies on a variation of his amenability criterion. However, our approach makes an31

explicit use of representation theory and operator algebra, which was somehow hidden in [36]. We32

hope that this point of view can enlighten the key conceptual arguments and clarify the exposition.33

More precisely we take advantage of the Hulanicki–Reiter criterion for amenable actions: the action34

of a discrete group G on a set Y is amenable if and only if the induced regular representation35

λ : G→ U(`2(Y )) admits almost invariant vectors [3, Theorem G.3.2]. Assume now that (Σθ, σθ) is36

the extension of a subshift of finite type (Σ, σ) by a locally constant map θ : Σ→ G. We associate37

the classical Ruelle transfer operator L to the original system (Σ, σ). On the other hand, given an38

action of G on a set Y , we endow the extended system (Σθ, σθ) with a twisted transfer operator Lλ39

which is naturally related to the induced unitary representation λ : G→ U(`2(Y )) (see Section A.3).40

The twisted transfer operator acts on a subspace of the space of continuous functions C(Σ, `2(Y ))41

(the appropriate, Hölder regularity will be described in Section A.1). Using the uniform convexity of42
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Hilbert spaces, we relate the difference between the spectral radii ρ and ρλ of L and Lλ respectively,1

to the existence of almost invariant vectors for the representation λ.2

Theorem 1.2 (see Theorems A.23 and A.25). Let (Σ, σ) be a topologically transitive subshift of3

finite type. Let F : Σ → R∗+ be a potential with α-bounded Hölder variations (for some α ∈ R∗+),4

and L be the Ruelle transfer operator associated with F . Let G be a finitely generated group and5

θ : Σ → G a locally constant map. Assume that the extension (Σθ, σθ) of (Σ, σ) by θ has the6

visibility property. Then the following holds.7

(i) For every finite subset S of G and every ε ∈ R∗+, there exists η ∈ R∗+ with the following8

property: if G acts on a set Y , and Lλ is the corresponding twisted transfer operator, the9

condition ρλ > (1 − η)ρ implies that the representation λ : G → U(`2(Y )) admits an (S, ε)-10

invariant vector.11

(ii) In particular, if ρλ = ρ then the action of G on Y is amenable.12

The second statement of this theorem easily follows from the first point, and is very similar13

to the one obtained by Stadlbauer [36] when (Σ, σ) is a subshift of finite type. Let us highlight14

a few important differences though. Unlike Stadlbauer’s proof, our approach does not really use15

the Gibbs measure but simply the Perron-Frobenius theorem. Therefore we do not ask the original16

system (Σ, σ) to be topologically mixing, but just topologically transitive (this is much weaker, as in17

many situations one can always reduce to an irreducible component of the system). Secondly, we18

consider an extension (Σθ, σθ) of the initial system by the whole group G, and only assume that it19

has the visibility property (which means that the extended flow visits almost the whole group G),20

whereas Stadlbauer extends the initial system by the quotient Q, and assumes that this extension21

is topologically transitive. This is one of the key points which allows us to consider any subgroup22

of a hyperbolic group and not only normal subgroups. Moreover, as we state our result in terms of23

spectral radius instead of pressure, we do not need any kind of symmetry for the potential F (this24

was already observed by Jaerisch [27]).25

More importantly, our approach provides a quantitative version2 of Stadlbauer’s statement.26

In this perspective, the first statement in the above theorem is close to some results of Dougall in27

[21], which also includes more concrete representation theory (nevertheless she assumes mixing of28

the initial system, and considers only normal subgroups to ensure the transitivity of the extended29

system, as well as a condition called linear visibility with reminders, a bit stronger than ours, to30

control the return times of the flow in a fixed cylinder). The quantitative version of the amenabil-31

ity criterion (see Theorem A.28) makes apparent the following consequence for groups satisfying32

Kazhdan’s property (T).33

Theorem 1.3 (see Theorem 5.2). Let G be a group with Kazhdan’s property (T) acting properly34

co-compactly by isometries on a hyperbolic space X. We assume that one of the following holds:35

(i) either X is the Cayley graph of G with respect to a finite generating set,36

(ii) or X is a CAT(−1) space.37

2In the proof of Theorem 1.2 (i), we choose to work with ultra-limit of Banach spaces: this has the advantage of
simplifying the arguments involving almost invariant vectors. As a consequence, we do not provide a precise formula
for η in terms of S and ε; nevertheless, a careful reader could go through the arguments and make the relation
between these quantities explicit.
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Then, there exists η > 0 with the following property. Let H be a subgroup of G, and let ωG, ωH1

denote the exponential growth rates of G and H acting on X. If ωH > ωG − η, then H is a finite2

index subgroup of G.3

We stress the fact that also in this statement H is not assumed to be normal. So, this gives the4

following generalization of Corlette’s celebrated growth gap theorem [17] for subgroups of lattices5

of rank one symmetric spaces of negative curvature possessing Kazhdan’s Property (T), i.e. the6

quaternionic hyperbolic space Hn
H or the Cayley hyperbolic plane H2

O. Corlette’s theorem was7

generalized by Dougall [21] for convex-cocompact groups of isometries of pinched, negatively curved8

Cartan-Hadamard manifolds. Our statement is an even further generalization which unifies the9

combinatorial and the geometric point of views. Recall that, for a Gromov hyperbolic space, the10

visual dimension dimvis(∂X) is defined analogously to the Hausdorff dimension, but with respect11

to the natural visual measures of ∂X, and it coincides with the exponential growth rate of any12

cocompact group G of isometries of X – see for instance [32, 33]. We then have:13

Corollary 1.4. Let X be a CAT(−1) metric space admitting uniform lattices, whose isometry14

group possesses Kazhdan’s property (T). Then, there exists η > 0 such that for any subgroup H of15

Isom(X), either H is a lattice, or the exponential growth rate of H is at most dimvis(∂X)− η.16

An similar statement holds if X is the Cayley graph of a hyperbolic group. This result shall be17

added to the list of geometric and dynamical rigidity consequences of property (T), such as Serre’s18

fixed point-edge property for actions on trees [29, 38], or the local C∞-conjugacy rigidity of isometric19

actions on compact Riemannian manifolds [23].20

Let us now give an overview of the proof of Theorems 1.1 and 1.3. The main idea is to apply21

our amenability criterion (Theorem 1.2) to the geodesic flow on X. However the criterion requires a22

coding of this dynamical system, which may not exist for CAT(−1) spaces. To bypass this difficulty23

we consider a geodesic flow not on the space X but rather on the Cayley graph Γ of the group G24

with respect to a finite generating set S. More precisely, if GΓ stands for all bi-infinite geodesics25

γ : R → Γ, the flow φt acts on GΓ by shifting the time parameter by t. The issue is that this26

dynamical system is rather pathological. Generally, any two points in the boundary at infinity ∂Γ27

of Γ are joined by infinitely many orbits of the flow.28

As Gromov explained in [25] – see also Coornaert and Papadopoulos [15, 16] – one can restrict our29

attention to an invariant subset of GΓ: roughly speaking, all the bi-infinite geodesics whose labels30

are minimal for the lexicographic order induced by some fixed, arbitrary order on the symmetric,31

generating set S of G. Formally the system that we consider is the following. One introduces a32

space H0(Γ) of horofunctions on Γ (which generalize the Busemann functions) on which the group33

G acts. Any horofunction h ∈ H0(Γ) naturally comes with a preferred gradient line starting at 1,34

i.e. whose labelling is minimal for the fixed lexicographic order. Calling θ(h) the first letter of our35

preferred gradient line, the transformation T : H0(Γ) → H0(Γ) is defined by sending h to θ(h)−1h.36

Remarkably, the system (H0(Γ), T ) is conjugated to a subshift of finite type (Σ, σ). Geometrically,37

the suspension of (Σ, σ) should be thought of as analogue of the geodesic flow on the unit tangent38

bundle of compact, negatively curved manifold M , while the suspension of the extension (Σθ, σθ)39

plays the role of the geodesic flow on the unit tangent bundle of its universal cover M̃ . Nevertheless,40

unlike in the Riemannian setting, this flow is neither mixing nor, a-priori, topologically transitive.41

This reflects the fact that two points in the boundary at infinity of Γ can still be joined by finitely42

many orbits of the flow.43
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Actually, the dynamical properties of (H0(Γ), T ) are very sensitive to the choice of the order on S.1

For instance, if G is the direct product of the free group with a finite group, then H0(Γ) naturally2

splits into several disjoint “layers” I0, . . . ,In, where I0 is invariant under the action of T . Moreover,3

depending on the choice of the order on S, the other layers Ii are either invariant under the action4

of T , or mapped into I0. For more details, we refer the reader to Example 4.9.5

To circumvent this difficulty, we are forced to restrict our study to an irreducible component I6

of the system (H0(Γ), T ). The price to pay though, is that the extension of (I, T ) by the map7

θ : H0(Γ) → G may not “visit” the whole Cayley graph Γ of G. If it misses a large portion8

of Γ, then this system will be useless for counting purposes. However, we show that there ex-9

ists an irreducible component I whose extension has the visibility property (see Definition 2.1).10

Our strategy to produce such an irreducible component is inspired by an idea of Constantine, La-11

font and Thompson [10], and based on a construction of Gromov. Namely, in [25] Gromov build12

from (GΓ, φt) a new flow (ĜΓ, ψs) with enhanced properties – see also [30, 8]. The space ĜΓ is13

quasi-isometric to Γ, hence its boundary at infinity is homeomorphic to ∂Γ; every two points in ∂Γ14

are joined by a unique orbit of the flow ψs; there is a natural projection GΓ→ ĜΓ which send every15

φt-orbit homeomorphically onto a ψs-orbit. It turns out that the new flow (ĜΓ, ψs) is topologically16

transitive. In particular, it admits a dense orbit. The irreducible component I is, roughly speaking,17

the closure of a lift of this dense orbit. The transitivity of (ĜΓ, ψs) tells us that the the extension18

of (I, T ) passes uniformly near every point of Γ, hence ensuring the visibility property.19

In order to apply our criterion (Theorem 1.2) to the system (I, T ) we finally need to define a20

potential F : I→ R∗+ with bounded Hölder variations. Recall that the dynamical system (I, T ) was21

not build directly from the metric space X we are interested in: thus, the role of the potential is22

to reflect the geometry of X. If X coincides with the Cayley graph of Γ (which corresponds to the23

first case of Theorem 1.1), we simply take for F the constant map equal to 1. In this situation we24

prove that the spectral radius of the corresponding Ruelle transfer operator L is ρ = eωG , whereas25

the one of the twisted transfer operator satisfies ρλ > eωH . Hence the conclusion of Theorem 1.126

directly follows from our amenability criterion. If X is a CAT(−1) space (which corresponds to27

the second case of Theorem 1.1) we use a quasi-isometry between Γ and X to define a potential F28

describing the geometry of X. In this situation the CAT(−1) geometry is crucial to ensure that F29

has bounded Hölder variations. Once this is done, we provide as before estimates of the spectral30

radii ρ and ρλ in terms of ωG and ωH and conclude by the amenability criterion.31
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Agence Nationale de la Recherche under Grant Dagger ANR-16-CE40-0006-01. The first and second34

authors are grateful to the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive35

mathematical environment. Many thanks also go to the referees for their helpful comments and36

corrections.37

2 Preliminaries38

2.1 Subshift of finite type39

Vocabulary. Let A be a finite set. We write A∗ for the set of all finite words over the alphabet40

A. The length of a word w ∈ A∗ is denoted by |w|. Given n ∈ N, the set of all words of length n is41
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denoted by An. The set AN is is endowed with a distance d defined as follows: given x, y ∈ Σ, we1

let d(x, y) = e−n where n is the length of the longest common prefix of x and y. Let σ : AN → AN
2

be the shift operator, i.e. the map sending the sequence (xi)i∈N to (xi+1)i∈N. Let Σ be a subshift3

i.e. a closed σ-invariant subset AN. A word w ∈ A∗ is admissible if it is the prefix of a sequence4

x = (xi) in Σ. We denote by W the set of all finite admissible words. For every n ∈ N, we write5

Wn =W∩An for the set of admissible words of length n. Given w ∈ W, the cylinder of w, denoted6

by [w], is the set of sequences x ∈ Σ such that the prefix of length |w| of x is exactly w. We refer7

to |w| as the length of the cylinder. From now on we assume that Σ is a subshift of finite type, i.e.8

there exists N ∈ N with the following property: a sequence x ∈ AN belongs to Σ if and only if9

every subword of length N of Σ belongs to WN . We say that (Σ, σ) is irreducible or topologically10

transitive if (Σ, σ) admits a dense orbit. As (Σ, σ) is a subshift of finite type it is equivalent to ask11

that one of the following holds.12

(i) For every x, y ∈ Σ, for every ε ∈ R∗+, there exists k ∈ N and x′ ∈ Σ such that d(x, x′) 6 ε13

and σkx′ = y14

(ii) For every w,w′ ∈ W, there exists w0 ∈ W such that the concatenation ww0w
′ is admissible15

Irreducible components. We associate to (Σ, σ) an oriented graph Γ = (V,E) labeled by A16

describing the dynamics of the shift. We still denote by N the integer given by the definition of17

a subshift of finite type. The vertex set V of Γ is simply WN . Given two words w1, w2 ∈ WN
18

and a letter a ∈ A, there is an edge from w1 to w2 labelled by a if w1 is the prefix of length N of19

aw2. It follows from the definition of N , that the labelling of Γ induces a one-to-one correspondance20

between Σ and the set of infinite oriented paths in Γ. We now define an equivalence relation onWN
21

seen as the vertex set of Γ. Two vertices w,w′ ∈ WN are communicating and we write w ∼ w′ if22

there exists an oriented loop in Γ passing through w and w′. The corresponding equivalence classes23

V1, . . . , Vm are called communicating classes.24

Given i ∈ J1,mK, we write Γi for the full subgraph of Γ associated to Vi. The subspace Σi ⊂ Σ is25

defined as the set of all sequences of AN labeling an infinite path in Γi. Observe that Σi is a closed26

σ-invariant subset of Σ and (Σi, σ) is a subshift of finite type. It follows from the construction that27

(Σi, σ) is irreducible.28

We observe that for every sequence x ∈ Σ, there exists n0 ∈ N, and a unique i ∈ J0,mK such29

that for all integers n > n0, the sequence σnx belongs to Σi. Indeed one can derive from the relation30

∼ a new graph Γ/∼ defined as follows. Its vertex set is the set of communicating classes V1, . . . , Vm.31

There is an edge in Γ/∼ from Vi to Vj , if Γ contains an edge joining a vertex in Vi to a vertex in32

Vj . The graph Γ/∼ comes with a natural projection Γ→ Γ/∼. It follows from the definition of ∼33

that Γ/ ∼ does not contain any oriented loop. Hence if c is an infinite path in Γ, its projection in34

Γ/∼ is ultimately constant. This means that there exists i ∈ J1,mK such that the path obtained35

from c by removing its first edges is contained in Γi. Hence if x is the sequence labelling c, there36

exists n0 ∈ N, such that for all integers n > n0, the sequence σnx belongs to Σi. We say that Σi37

is the asymptotic irreducible component of x.38

Group extension. Let G be a finitely generated group. Let θ : Σ → G be a continuous map.39

We denote by Σθ the direct product Σθ = Σ×G endowed with the product topology. We define a40

continuous map σθ : Σθ → Σθ by41

σθ(x, g) = (σx, gθ(x)) , ∀(x, g) ∈ Σθ.42
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The dynamical system (Σθ, σθ) is called the extension of (X,σ) by θ. For every n ∈ N, for every1

x ∈ Σ we define the cocycle θn(x) by2

θn(x) = θ(x)θ(σx) · · · θ
(
σn−1x

)
. (3)3

By convention θ0 : Σ→ G is the constant map equal to 1 (the identity of G). Hence we have4

σnθ (x, g) = (σnx, gθn(x)) .5

Definition 2.1. We say that the extension (Σθ, σθ) has the visibility property if there exists a finite6

subset U of G with the following property: for every g ∈ G, there is a point x ∈ Σ, an integer7

n ∈ N and two elements u1, u2 ∈ U such that g = u1θn(x)u2.8

Remark. This definition is somewhat reminiscent of Dougall’s linear visibility with remainder9

property [21, Definition 3.1]. Nevertheless our notion is more flexible as we do not ask to control10

the value of n in terms of the word length of g.11

2.2 Hyperbolic geometry12

The four point inequality. Let (X, d) be a geodesic metric space. The Gromov product of13

three points x, y, z ∈ X is defined by14

〈x, y〉z =
1

2
{d(x, z) + d(y, z)− d(x, y)} .15

We assume that the space X is δ-hyperbolic, i.e. for every x, y, z, t ∈ X,16

〈x, z〉t > min {〈x, y〉t , 〈y, z〉t} − δ, (4)17

The boundary at infinity. Let x0 be a base point of X. A sequence (yn) of points of X18

converges to infinity if 〈yn, ym〉x0
tends to infinity as n and m approach to infinity. The set S of19

such sequences is endowed with a binary relation defined as follows. Two sequences (yn) and (zn)20

are related if21

lim
n→+∞

〈yn, zn〉x0
= +∞.22

If follows from (4) that this relation is actually an equivalence relation. The boundary at infinity23

of X denoted by ∂X is the quotient of S by this relation. If the sequence (yn) is an element in the24

class of ξ ∈ ∂X we say that (yn) converges to ξ and write25

lim
n→+∞

yn = ξ.26

Note that the definition of ∂X does not depend on the base point x0. For more details about the27

Gromov boundary, we refer the reader to [13, Chapitre 2]. The notation ∂2X stands for28

∂2X = ∂X × ∂X \ diag(∂X),29

where diag(∂X) = {(ξ, ξ) | ξ ∈ ∂X} is the diagonal.30
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Quasi-geodesics. One major feature of hyperbolic spaces is the stability of quasi-geodesics also1

known as Morse’s Lemma.2

Definition 2.2. Let κ ∈ R∗+ and ` ∈ R+. Let f : X1 → X2 be a map between two metric spaces.3

We say that f is a (κ, `)-quasi-isometric embedding, if for every x, x′ ∈ X1 we have4

κ−1d(x, x′)− ` 6 d(f(x), f(x′)) 6 κd(x, x′) + `.5

A (κ, `)-quasi-geodesic of X, is a (κ, `)-quasi-isometric embedding of an interval of R into X.6

Given a (κ, `)-quasi-geodesic γ : R+ → X, there exists a point ξ ∈ ∂X such that for every7

sequence (tn) diverging to infinity, we have8

lim
n→+∞

γ(tn) = ξ,9

see for instance [13, Chapitre 3, Théorème 2.2]. In this situation we consider ξ as the endpoint10

at infinity of γ and write γ(∞) = ξ. If γ : R → X is a bi-infinite (κ, `)-quasi-geodesic, we define11

γ(−∞) in the same way.12

Proposition 2.3 ([13, Chapitre 3, Théorèmes 1.2 et 3.1]). Let κ ∈ R∗+ and ` ∈ R+. There exists13

D = D(κ, `, δ) in R+ such that the Hausdorff distance between any two (κ, `)-quasi-geodesics with14

the same endpoints (possibly in ∂X) is at most D.15

Group action. Let x0 be a base point of X. Let G be a group acting properly by isometries on16

X. The exponential growth rate of G acting on X is the quantity17

ω(G,X) = lim sup
r→∞

1

r
ln |{g ∈ G | d(gx0, x0) 6 r}| . (5)18

Note that ω(G,X) does not depend on x0. It can also be interpreted as the critical exponent of the19

Poincaré series20

PG(s) =
∑
g∈G

e−sd(gx0,x0).21

If there is no ambiguity, we simply write ωG instead of ω(G,X).22

3 Horofunctions23

In this section we recall the definition of horofunctions and gradient lines introduced by Gromov in24

[25, Section 7.5]. We follow the exposition given by Coornaert and Papadopoulos in [14, 15]. Let25

(X,x0) be a pointed geodesic δ-hyperbolic space and G be a group acting by isometries on X.26

Horofunctions. Let ε ∈ R+. A map f : X → R is ε-quasi-convex if for every geodesic γ : I → X,27

for every a, b ∈ I, for every t ∈ [0 , 1] we have28

f ◦ γ (ta+ (1− t)b) 6 tf ◦ γ(a) + (1− t)f ◦ γ(b) + ε.29

The map f is quasi-convex if there exists ε ∈ R+ such that f is ε-quasi-convex.30
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Definition 3.1. A horofunction is a quasi-convex map h : X → R satisfying the following distance-1

like property: for every x ∈ X, for every r ∈ R, if r 6 h(x), then2

h(x) = r + d
(
x, h−1(r)

)
. (6)3

A cocycle is a map c : X ×X → R of the form c(x, y) = h(x)− h(y) where h is a horofunction. In4

this situation, h is called a primitive of c.5

Let C(X) be the set of all continuous function f : X → R endowed with the topology of uniform6

convergence on compact subsets. We denote by C∗(X) the quotient of C(X) by the 1-dimensional7

closed subspace of constant functions. The space C∗(X) is endowed with the quotient topology. It8

can be identified with the set of all continuous functions f : X → R vanishing at x0. This is the9

point of view that we adopt here. The action of G on X induces an action on C(X) and thus on10

C∗(X). More precisely g ∈ G, and f ∈ C∗(X) the map g · f is defined by11

[g · f ] (x) = f(g−1x)− f(g−1x0), ∀x ∈ X.12

A horofunction is automatically 1-Lipschitz, hence continuous [15, Proposition 2.2]. Moreover, given13

a cocycle c, any two primitives h1 and h2 of c differ by a constant, i.e. there exists a ∈ R, such14

that for every x ∈ X, we have h2(x)− h1(x) = a. Hence the set of all cocycles, or equivalently all15

horofunctions vanishing at x0, embeds in C∗(X). We denote it by H(X). It is a compact subspace16

of C∗(X) [15, Proposition 3.9].17

Gradient lines. The gradient lines are an important tool to track the behavior of horofunctions.18

Definition 3.2. Let h ∈ H(X) be a horofunction. A gradient line for h or an h-gradient line is a19

path γ : I → X parametrized by arc length such that for every t, t′ ∈ I we have20

h(γ(t))− h(γ(t′)) = t′ − t.21

If the interval I has the form I = R+ we say that γ a h-gradient ray.22

Let us recall a few properties of gradient lines. Let h ∈ H(X). Every h-gradient line is a geodesic23

[15, Proposition 2.10]. If γ : I → X be an h-gradient line, then for every g ∈ G, the path gγ is a24

gradient line for gh [15, Proposition 2.14]. For every x ∈ X, there exists an h-gradient ray starting25

at x [15, Proposition 2.13].26

Let γ : R+ → X be a geodesic ray. The Busemann function associated to γ is the map bγ : X →27

R defined by28

bγ(x) = lim
t→∞

[
d(x, γ(t))− t

]
, ∀x ∈ X.29

The map cγ : X ×X → R defined by cγ(x, y) = bγ(x) − bγ(y) is a cocycle [14, Chapter 3, Propo-30

sition 3.6]. Moreover γ is a gradient ray starting at γ(0) for this cocycle. However, one has to31

be careful that cγ may admit other gradient lines starting at γ(0). Similarly, given a horofunction32

h ∈ H(X), the Busemann function associated to an h-gradient ray starting at x0 is not necessarily33

h.34
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Comparison with the Gromov boundary. Recall that ∂X is the Gromov boundary of X.1

Proposition 3.3 (Coornaert-Papadopoulos [15, Proposition 3.1]). Let h ∈ H(X) be a horofunction.2

Let γ1 : R+ → X and γ2 : R+ → X be two h-gradient rays. Then γ1(∞) = γ2(∞).3

This gives rise to a map π : H(X) → ∂X which associates to any h ∈ H(X) the endpoint at4

infinity of any h-gradient ray.5

Proposition 3.4 (Coornaert-Papadopoulos [15, Proposition 3.3 and Corollary 3.8]). The map6

π : H(X) → ∂X is continuous, G-equivariant and onto. More precisely for every geodesic ray7

γ : R+ → X starting at x0 the corresponding Busemann function bγ is a preimage of γ(∞) in8

H(X). Two horofunctions h, h′ ∈ H(X) have the same image in ∂X if and only if ‖h−h′‖∞ 6 64δ.9

4 Dynamics in a hyperbolic group10

In this section we introduce a few dynamical systems to describe the “geodesic flow” of a hyperbolic11

Cayley graph. Let G be a hyperbolic group and A a finite generating set of G. For simplicity we12

assume that A is symmetric, i.e. A−1 = A. We denote by Γ(G,A) or simply Γ the Cayley graph of13

G with respect to A. We identify G with the vertex set of Γ. We consider 1 as a base point in Γ.14

For every n ∈ N, we write S(n) for the sphere of radius n in Γ centered at the identity, i.e. the set15

of all elements g ∈ G such that dΓ(1, g) = n. Similarly we write B(n) for the closed ball of radius16

n.17

4.1 Transitivity of Gromov’s geodesic flow18

We denote by GΓ the set of all parametrized bi-infinite geodesic γ : R→ Γ of Γ. This set is endowed19

with a distance defined as follows: given two bi-infinite geodesics γ1, γ2 : R→ Γ we let20

d(γ1, γ2) =

∫ ∞
−∞

e−|t|d(γ1(t), γ2(t)) dt. (7)21

The action of G on Γ induces an action by isometries of G on GΓ. One checks easily that the map22

GΓ→ Γ sending γ to γ(0) is a G-equivariant quasi-isometry. The space GΓ also comes with a flow23

φ = (φs)s∈R defined as follows: for every γ ∈ GΓ, for every s ∈ R, the geodesic φs(γ) : R → Γ is24

given by25

φs(γ)(t) = γ(s+ t), ∀t ∈ R.26

Starting from GΓ, Gromov build a new hyperbolic space ĜΓ that is quasi-isometric to Γ. In27

particular it is hyperbolic and its boundary at infinity is homeomorphic to ∂Γ. Moreover ĜΓ comes28

with a flow so that any two distinct points of ∂Γ are joined by a unique orbit of the flow. The29

construction is given in [25, Section 8.3], the details can be found in [8, 30]. We recall here the30

main properties of this space.31

(F1) The space ĜΓ is geodesic and proper. It is endowed with a proper co-compact action by32

isometries of G as well as a flow ψ = (ψs)s∈R. The flow and the action of G commute, i.e.33

for every γ̂ ∈ ĜΓ, for every s ∈ R and g ∈ G we have ψs(gγ̂) = gψs(γ̂).34
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(F2) There exists a continuous G-equivariant quasi-isometric projection p : GΓ� ĜΓ. In particular1

p induces a homeomorphism p∞ from ∂Γ onto the boundary at infinity of ĜΓ. In addition,2

for every geodesic γ ∈ GΓ, the projection p maps the φ-orbit of γ ∈ GΓ homeomorphically3

onto the ψ-orbit of γ̂ = p(γ).4

(F3) For every point γ̂ ∈ ĜΓ, the map R→ ĜΓ sending s to ψs(γ̂) is a quasi-isometric embedding5

of R into ĜΓ. Hence for every point γ̂ ∈ ĜΓ one can associate two distinct points in the6

boundary at infinity of ĜΓ defined by7

γ̂(∞) = lim
s→∞

ψs(γ̂) and γ̂(−∞) = lim
s→−∞

ψs(γ̂).8

By construction for every geodesic γ ∈ GΓ, the homeomorphism p∞ maps γ(∞) and γ(−∞)9

to γ̂(∞) and γ̂(−∞), where γ̂ = p(γ).10

(F4) The map ĜΓ→ ∂2Γ sending γ̂ to (γ̂(−∞), γ̂(∞)) induces a homeomorphism from ĜΓ/R onto11

∂2Γ. Actually ĜΓ is homeomorphic to ∂2Γ×R.12

It is important to notice that in general p does not conjugate the flow, i.e. p ◦ φs 6= ψs ◦ p.13

Since the flow ψ and the action of G commute, the flow ψ induces a flow on ĜΓ/G that we denote14

ψ = (ψs)s∈R.15

Proposition 4.1. The flow ψ on ĜΓ/G is topologically transitive, i.e. given any two non-empty16

open subsets U and V of ĜΓ/G, there exists s ∈ R such that ψs(U) ∩ V is non-empty.17

The remainder of the section is dedicated to the proof of this proposition. We follow mostly the18

strategy used in [2, Chapter III].19

Lemma 4.2. Let γ, γ′ ∈ GΓ such that γ(∞) 6= γ′(−∞). There are sequences (νn) of geodesics20

in GΓ, (gn) of elements in G and (tn) of numbers in R diverging to infinity with the following21

properties.22

(i) (νn) converges to a geodesic with the same endpoints at γ.23

(ii) (gnφtn(νn)) converges to a geodesic with the same endpoints as γ′.24

Proof. For simplicity we write ξ+ and ξ− for γ(∞) and γ(−∞). Similarly we define ξ′+ and ξ′−.25

Since ξ+ 6= ξ′−, there exists a sequence (gn) of elements of G such that for some (hence any) x ∈ Γ26

the sequence (gnx) and (g−1
n x) respectively converge to ξ′− and ξ+ – see for instance [18, Chapter III,27

Lemma 2.2.]. Nevertheless, the action of G on Γ ∪ ∂Γ is a convergence action. Up to replacing28

(gn) by a subsequence, we can assume that for every for every ξ ∈ ∂Γ \ {ξ+}, the sequence (gnξ)29

converges to ξ′− and for every ξ ∈ ∂Γ\{ξ′−}, the sequence (g−1
n ξ) converges to ξ+ [37, Theorem 3A].30

For every n ∈ N, we denote by νn : R → Γ a bi-infinite geodesic joining ξ− to g−1
n ξ′+. We observe31

that32

I νn(−∞) and νn(∞) respectively converge to ξ− and ξ+, whereas33

I gnνn(−∞) and gnνn(∞) respectively converge to ξ′− and ξ′+.34
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Geodesic triangles in Γ ∪ ∂Γ are 24δ-thin [13, Chapitre 2 Proposition 2.2]. Up to passing again1

to a subsequence we may assume that d(γ(0), νn) 6 24δ and d(γ′(0), gnνn) 6 24δ. By shifting if2

necessary the origin of νn we can assume that for every n ∈ N, there exists tn ∈ R, such that3

d(γ(0), νn(0)) 6 24δ and d(γ′(0), gnνn(tn)) 6 24δ. According to the Azelà-Ascoli theorem (νn)4

converges to a geodesic ν. It follows from our choice of (gn) that ν has the same endpoints as γ.5

Similarly we obtain that (gnφtn(νn)) converges to a geodesic with the same endpoints as γ′. Note6

also that d(νn(tn), g−1
n γ′(0)) and d(νn(0), γ(0)) are uniformly bounded. As (g−1

n γ′(0)) converges to7

ξ+, the sequence (tn) has to diverge to ∞.8

Proof of Proposition 4.1. It suffices to show that for every non-empty open subset Û and V̂ of ĜΓ,9

there exists s ∈ R, and g ∈ G such that gψs(Û) ∩ V̂ 6= ∅. Let Û and V̂ be two non-empty open10

subsets of ĜΓ. We denote by Û(∞) the following subset of ∂Γ11

Û(∞) =
{
γ̂(∞)

∣∣∣ γ̂ ∈ Û} .12

The set V̂ (−∞) is defined in a similar way. It follows from (F4) that Û(∞) and V̂ (−∞) are open13

non-empty subsets of ∂Γ. In particular they are not reduced to a point. Hence there exists γ̂ ∈ Û14

and γ̂′ ∈ V̂ such that γ̂(∞) 6= γ̂′(−∞). Let γ, γ′ ∈ GΓ be respective preimages of γ̂ and γ̂′.15

According to (F3), γ(∞) 6= γ′(−∞). Applying Lemma 4.2, there are sequences (νn) of geodesics16

in GΓ, (gn) of elements in G and (tn) of numbers in R diverging to infinity with the following17

properties: the geodesic νn converges to a geodesic ν with the same endpoints as γ; the geodesic18

ν′n = gnφtn(νn) converges to a geodesic ν′ with the same endpoints as γ′.19

We now push these data in ĜΓ using the projection p : GΓ � ĜΓ. For every n ∈ N, we let20

ν̂n = p(νn) and ν̂′n = p(ν′n). We define ν̂ and ν̂′ in the same way. Since p maps homeomorphically21

φ-orbits onto ψ-orbits, there exists a sequence (sn) of numbers in R, diverging to ∞ such that for22

every n ∈ N, we have23

p (φtn(νn)) = ψsn (ν̂n) .24

By construction the endpoints of ν̂ are the same as those of γ̂. However there is a unique orbit of25

the flow ψ joining two distinct point of ∂Γ – see (F4). Thus there exists s ∈ R such that γ̂ = ψs(ν̂).26

Recall that νn converges to ν. Since the projection p is continuous, ν̂n converges to ν̂, hence ψs(ν̂n)27

converges to γ̂. Similarly we prove that there exists s′ ∈ R such that ψs′(ν̂′n) = gnψsn+s′(ν̂n)28

converges to γ̂′. As Û and V̂ are open, there exists n0 ∈ N such that for every n > n0, the point29

ψs(ν̂n) belongs to Û while gnψsn+s′(ν̂n) belongs to V̂ . Hence30

gnψsn+s′−s(Û) ∩ V̂ 6= ∅, ∀n > n0,31

which completes the proof of the proposition.32

Corollary 4.3 (Compare Dal’bo [18, Chapter III, Theorem 4.2]). There exists a point γ̂ ∈ ĜΓ such33

that the image of {ψs(γ̂) | s ∈ R+} in ĜΓ/G is dense.34

4.2 Dynamics on the space of horofunctions35

Definition 4.4. A horofunction h ∈ H(Γ) is integral if its restriction to the vertex set G takes36

integer values. We write H0(Γ) (or simply H0) for the subset of H(Γ) consisting of all integral37

horofunctions.38
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Note that H0 is closed, G-invariant subset of H(Γ). Moreover, the Busemann function of any1

geodesic ray starting at 1 is an integral horofunction. Consequently Proposition 3.4 leads to the2

following statement3

Proposition 4.5. The projection π : H(Γ)→ ∂Γ maps H0 onto ∂Γ.4

We now define a map T : H0 → H0 which can be thought as an analogue of the first return map5

for a section of the geodesic flow. To that end we endow the generating set A with an arbitrary6

total order. The map θ : H0 → G is the one sending h to the smallest element a ∈ A such that7

h(a) = h(1)− 1. The existence of such a generator a ∈ A is ensured by [15, Lemma 5.1].8

Definition 4.6. The map T : H0 → H0 is the one sending h to θ(h)−1h.9

This map is continuous [15, Proposition 5.6]. Before speaking of coding, let us recall a few10

properties of the dynamical system (H0, T ). Recall that the edges of Γ are labelled by elements11

of A. Let h ∈ H0 be a horofunction and x a vertex of Γ. The lexicographic order on AN induces12

a total order on the set of h-gradient rays starting at x. This set admits a smallest element [15,13

Proposition 5.2] that we call the minimal h-gradient ray starting at x. Assume that γ : R+ → Γ is14

the minimal h-gradient ray starting at x. We have the following properties:15

(i) for every n ∈ N, the path γn : R+ → Γ defined by γn(t) = γ(t+ n) is the minimal h-gradient16

ray starting at γ(n) [15, Proposition 5.3];17

(ii) for every g ∈ G, gγ is the minimal gh-gradient ray starting at gx [15, Proposition 5.4].18

As usual we define for every n ∈ N, the cocycle θn : H0 → G by19

θn(h) = θ(h)θ(Th) · · · θ(Tn−1h). (8)20

It follows from the previous two observations, that this cocycle has the following geometric inter-21

pretation: if γ : R→ Γ is the minimal h-gradient line starting at 1, then γ(n) = θn(h).22

Connection with Gromov’s geodesic flow. We relate here (H0, T ) to Gromov’s geodesic flow23

on Γ. Let h ∈ H0 be an integral horofunction. A bi-infinite h-gradient line γ : R → Γ is called24

primitive if the following holds25

(i) γ(0) is a vertex of Γ, and thus γ(Z) is contained in G.26

(ii) For every integerm ∈ Z, the path γm : R+ → Γ sending t to γ(m+t) is the minimal h-gradient27

ray starting at γ(m).28

Observe that in this case, for every k ∈ Z, the path φk(γ) is also a primitive h-gradient line. Similarly29

for every g ∈ G, the path gγ is a primitive gh-gradient line [16, Lemma 2.5]. Given h ∈ H0 and30

ξ ∈ ∂Γ, there is always a primitive h-gradient line such that γ(−∞) = ξ [16, Proposition 5.2].31

Let HR be the subset of H0 × GΓ that consists of all pairs (h, γ) where h ∈ H0 is an integral32

horofunction and γ ∈ GΓ a geodesic in the φ-orbit of a primitive h-gradient line [16, Definition 4.1].33

We endow HR with the topology induced by the product topology on H0 ×GΓ. The set HR comes34

with a flow, that we still denote φ = (φt)t∈R, defined as follows: for every (h, γ) ∈ HR,35

φt(h, γ) = (h, φt(γ)), ∀t ∈ R.36
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We call the dynamical system (HR, φ) the horoflow of Γ. This system shall not be confused with the1

horocyclic flow on a hyperbolic surface. The group G acts on HR as follows: for every (h, γ) ∈ HR2

we let3

g(h, γ) = (gh, gγ), ∀g ∈ G.4

Note that the horoflow and the action of G commutes. In order to compare (HR, φ) with (ĜΓ, ψ),5

we define a G-equivariant continuous map6

q : HR → ĜΓ,7

by composing the map HR → GΓ and the projection p : GΓ → ĜΓ. By construction, given any8

(h, γ) ∈ HR, the map q maps homeomorphically the φ-orbit of (h, γ) onto the ψ-orbit of q(h, γ) =9

p(γ).10

Proposition 4.7. The map q : HR → ĜΓ is onto.11

Proof. Let η and ξ be two distinct points of ∂Γ. According to Proposition 3.4 there exists an integral12

horofunction h ∈ H0 such that π(h) = ξ. On the other hand, there exists a primitive h-gradient13

line γ : R→ Γ such that γ(−∞) = η [16, Proposition 5.2]. Being an h-gradient line, γ is such that14

γ(∞) = ξ. Hence q maps the φ-orbit of (h, γ) to the (unique) ψ-orbit in ĜΓ joining η to ξ. This15

works for any two distinct points η, ξ ∈ ∂Γ. Hence q is onto.16

Discretization of the flow. We denote by HZ the closed subset of HR containing all the pairs17

(h, γ) where γ is a primitive h-gradient line. Observe that HZ is G-invariant. Moreover the time18

1 flow φ1 on HR induces a homeomorphism of HZ onto itself [16, Definition 2.6]. The system19

(HZ, φ1) is called the discrete horoflow of Γ. Let H̄Z and H̄R the quotients HZ/G and HR/G20

respectively. As the flow φ and the action of G commute, φ induces a flow φ̄ = (φ̄t)t∈R on the21

space H̄R = HR/G. Moreover φ̄1 induces a homeomorphism of H̄Z onto itself H̄Z. One can check22

that (H̄R, φ̄) is the suspension of the system (H̄Z, φ̄1) [16, Proposition 4.8]. Let r : HZ → H0 be the23

map sending (h, γ) to γ(0)−1h (recall that γ is a primitive gradient line, hence γ(0) is a vertex of Γ24

which corresponds to a unique element of G). We observe that r induces a map r̄ : H̄Z → H0 such25

that r̄ ◦ φ̄1 = T ◦ r̄. Actually (H̄Z, φ̄1) is conjugated to the canonical two sided shift induced by26

(H0, T ) [16, Propositions 2.5 and 2.22].27

4.3 Gromov’s coding28

In [25, Theorem 8.4.C] Gromov explains that (H0, T ) is conjugated to a subshift of finite type. We29

recall here Gromov’s coding as it is detailed by Coornaert and Papadopoulos in [15].30

The alphabet. Fix a real number R0 > 100δ + 1 and an integer L0 > 2R0 + 32δ + 1. Given a31

subset S of Γ and a number r ∈ R+, we denote by Nr(S) the r-neighborhood of S, i.e. the set32

Nr(S) = {x ∈ Γ | d(x, S) 6 r} .33

Let h ∈ H0 be a horofunction and γ : R+ → Γ the minimal h-gradient line starting at 1. The set34

V (h) is the R0-neighborhood of γ restricted to [0 , L0]. In addition we define the map35

b(h) : V (h)→ R,36

to be the restriction of h to V (h) (recall that our horofunctions vanish at 1). The alphabet B is the37

set of functions b(h) : V (h)→ R where h runs over H0. It is a finite set [15, Proposition 6.2].38
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The coding. Let σ : BN → BN the shift map, i.e. the map sending the sequence (bn)n∈N to1

(bn+1)n∈N. We define a map  : H0 → BN by sending a horofunction h ∈ H0 to the sequence (bn)2

defined by3

bn = b(Tnh), ∀n ∈ N.4

Let Σ be the image of . One observes that ◦T = σ ◦  [15, Lemma 6.3]. Moreover  : H0 → BN in-5

duces a homeomorphism from H0 onto Σ, which is a subshift of finite type of BN [15, Theorem 7.18].6

Remark 4.8. From now on we implicitly identify H0 with its image Σ. In particular, we say that7

h1, h2 ∈ H0 belong to the same cylinder of length n, if (h1) an (h2) coincide on the first n letters.8

We endow H0 with the canonical distance on BN: for every h1, h2 ∈ H0, we let d(h1, h2) = e−n9

where n is the largest integer such that h1 and h2 belong to the same cylinder of length n.10

Let h ∈ H0. By construction b(h) completely determines the restriction of h to the ball of radius11

R0 centered at 1. Hence θ(h) only depends on b(h), i.e. the first letter of (h). Consequently, if12

h1, h2 ∈ H0 belong to the same cylinder of length n, then θn(h1) = θn(h2), or said differently the13

minimal h1- and h2-gradient line starting at 1 coincide on [0 , n].14

Choice of an irreducible component. Unlike the geodesic flow on a negatively curved compact15

surface the dynamical system (H0, T ) is a priori not topologically mixing and even not topologically16

transitive. This can be a major issue to study its properties. The difficulty comes from the fact17

that two points in Γ ∪ ∂Γ may be joined by multiple geodesics. This pathology can be illustrated18

by the following simple example.19

Example 4.9. Let G = F2×B be the direct product of the free group generated by {a1, a2} and20

a non-trivial finite group B. We choose for the generating set A = {a1, a
−1
1 , a2, a

−1
2 } ∪B and write21

Γ for the corresponding Cayley graph. One can check easily that H0(Γ), contains one copy of ∂F222

(the usual Gromov boundary of F2) for each element b ∈ B. Said differently there is an embedding23

of ∂F2 × B into H0(Γ). This subset is invariant under the action of G. More precisely, for every24

(h, b) ∈ ∂F2 ×B, for every g = (f, u) in G, we have25

g · (h, u) = (f · h, ub).26

Assume now that the order on A is such that the letters a1, a
−1
1 , a2, a

−1
2 are smaller that the one27

of B. Then for every b ∈ B, the “layer” ∂F2 × {b} is invariant under T . On the contrary if every28

letter of B is smaller than a1, a
−1
1 , a2, a

−1
2 , then T maps ∂F2 ×B onto ∂F2 × {1}.29

Nevertheless for our purpose, one does not need to work with the whole system (H0, T ). It is30

sufficient to restrict our attention to an irreducible component of the system, as long as it visits31

almost all the group G. This is formalized by the visibility property (see Definition 2.1). The goal32

of this section is to prove that such an irreducible component exists (see Proposition 4.10). Our33

main tool is the space of the geodesic flow introduced by Gromov in [25, Section 8.3]. From now34

on, Γ is the Cayley graph of any hyperbolic group, as in the previous section.35

We have seen that (H0, T ) is conjugated to a subshift of finite type. We write I1, . . . ,Im for36

the irreducible components of (H0, T ) (see Section 2.1). Recall that for every h ∈ H0, there exists37

i ∈ J1,mK and n0 ∈ N such that for every n > n0, the horofunction Tnh belongs to Ii (which we38

call the asymptotic irreducible component of h). We can now state the main result of this section:39
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Proposition 4.10. There exists an irreducible component Ii of H0 such that the extension of (Ii, T )1

by θ has the visibility property.2

Proof. According to Corollary 4.3 there exists γ̂ in ĜΓ such that the positive orbit defined by3

{ψs(γ̂) | s ∈ R+}4

has a dense image in ĜΓ/G. Recall that (HR, φ) is the horoflow of Γ introduced in Section 4.2.5

The map q : HR → ĜΓ being onto (Proposition 4.7), we can fix a pre-image (h, γ) ∈ HR of γ̂ by q.6

Without loss of generality we can assume that (h, γ) actually belongs to the space of the discrete7

horoflow HZ. We denote by h0 the image of (h, γ) by the map r : HZ → H0, i.e. h0 = γ(0)−1h. We8

choose for Ii the asymptotic irreducible component of h0. In particular there exists K ∈ N, such9

that for every integer k > K, we have T k(h0) ∈ Ii.10

We now study the properties of the map θ : H0 → G restricted to Ii. It is an exercise of hyperbolic11

geometry to prove that there exists R0 ∈ R+ with the following property: given any two points12

y, y′ ∈ Γ, there exists a bi-infinite geodesic ν ∈ GΓ such that d(y, ν) 6 R0 and d(y′, ν) 6 R0. Recall13

that the map GΓ→ Γ sending ν to ν(0) as well as the projection p : GΓ→ ĜΓ are quasi-isometries.14

Hence there exists κ > 1 and ε > 0 such that for every ν, ν′ ∈ GΓ we have15

d(ν(0), ν′(0)) 6 κd(p(ν), p(ν′)) + ε. (9)16

We define the finite set U by17

U = {u ∈ G | d(1, u) 6 κ+ ε+R0 + 1 + 50δ} .18

We are going to prove that for every g ∈ G, there exists a horofunction h ∈ Ii, an integer n ∈ N19

and two elements u1, u2 ∈ U such that g = u1θn(h)u2.20

Let g ∈ G. There exists a geodesic ν ∈ GΓ such that d(1, ν) 6 R0 and d(g, ν) 6 R0. Up to21

changing the parametrization of ν, we can assume that d(1, ν(0)) 6 R0 and d(g, ν(m)) 6 R0 + 122

for some integer m ∈ N. We denote by ν̂ the image of ν in ĜΓ. According to our choice of γ̂, there23

exist a sequence (gn) of elements of G and a sequence (sn) of times diverging to infinity, such that24

(gnψsn(γ̂)) converges to ν̂.25

The projection p : GΓ→ ĜΓ maps homeomorphically φ-orbits onto ψ-orbits. Hence there exists26

a sequence (tn) of times diverging to infinity such that for every n ∈ N, the map p sends gnφtn(γ)27

to gnψsn(γ̂). Combining (9) with the fact that (gnψsn(γ̂)) converges to ν̂ we get that for sufficiently28

large integer n29

d(gnγ(tn), ν(0)) 6 κ+ ε.30

The convergence taking place in ĜΓ also tells us that (gnγ(∞)) and (gnγ(−∞)) converge to ν(∞)31

and ν(−∞) respectively. Recall that the metric on Γ is 8δ-quasi-convex [13, Chapitre 10, Corol-32

laire 5.3] Combined with the previous inequality we get that for sufficiently large integer n33

d(gnγ(tn +m), ν(m)) 6 κ+ ε+ 50δ.34

For every n ∈ N we denote by kn the integer the closest to tn so that |tn − kn| 6 1. Recall that35

ν has been chosen to pass close by 1 and g. Combining all these facts together we finally get that36

there exists n1 ∈ N such that for all integer n > n1 we have37

d(1, gnγ(kn)) 6 κ+ ε+R0 + 1 and d(g, gnγ(kn +m)) 6 κ+ ε+R0 + 1 + 50δ.38
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Let n > n1. Recall that γ is a primitive h-gradient line, while kn and m are integers. Hence gnγ(kn)1

and gnγ(kn + m) are elements of G. We let un = gnγ(kn) and u′n = γ(kn + m)−1g−1
n g. The last2

inequalities tell us that un and u′n belong to U . In addition we claim that3

g = unθm
(
T kn(h0)

)
u′n.4

As we explained before, the map r : HZ → H0 induces a map r̄ : H̄Z → H0 such that r̄ ◦ φ̄1 = T ◦ r̄.5

It follows that the ray ρn : R+ → Γ defined by ρn(t) = γ(kn)−1γ(kn + t) is the (unique) minimal6

T kn(h0)-gradient ray starting at 1. Consequently7

θm
(
T kn(h0)

)
= ρn(m) = γ(kn)−1γ(kn +m) = u−1

n gu′n
−1
,8

which completes the proof of our claim. This decomposition of g holds for any integer n > n1.9

However kn is diverging to infinity. Hence if n is sufficiently large kn > K, thus T kn(h0) belongs10

to the irreducible component Ii. Thus g can be decomposed as announced in the proposition.11

The next lemmas formalize the fact that the irreducible component “visits almost” all the group12

G. The statements are quite technical. Nevertheless the idea one has to keep in mind is the13

following. Given a horofunction h ∈ I, one can follows its trajectory in G by looking at the14

corresponding minimal h-gradient line γ : R+ → Γ. More precisely, given n ∈ N, the point γ(n)15

can be thought at the position in G at time n of the orbit of h. The next lemmas say that at time n16

the positions reached by the flow almost embed in (respectively almost cover) the sphere S(n) ⊂ G.17

These computations will be needed to estimate the spectral radii of various transfer operators (see18

Lemmas 5.6, 5.7 and 5.9). Before stating the lemmas we introduce a few notations. Let n ∈ N.19

For every h0 ∈ I, the set SI(h0, n) is20

SI(h0, n) = {h ∈ I | Tnh = h0} = T−n(h0) ∩ I.21

In addition we define a map22

pn : H0 ×G×G → G
(h, u1, u2) → u1θn(h)u2

23

Lemma 4.11. Let h0 ∈ I. For every n ∈ N, the map H0 → G sending h to θn(h) induces an24

embedding from SI(h0, n) into S(n).25

Proof. Let h ∈ I such that Tnh = h0. Let γ : R+ → Γ be the minimal h-gradient line starting at26

1. As we observed before θn(h) = γ(n). In particular θn(h) belongs to S(n). On the other hand,27

it follows from the definition of the map T that h = θn(h)Tnh = θn(h)h0. Hence h is completely28

determined by θn(h) which completes the proof of the lemma.29

Lemma 4.12. There exist R,N ∈ N with the following property. For every h0 ∈ I, for every30

n ∈ N, the sphere S(n) ⊂ G is contained in the image of the map31

n+N⊔
k=n

(
SI(h0, k)×B(R)×B(R)

)
→ G32

induced by the sequence (pk).33
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Proof. We start by defining the constants R and N . Recall that the extension of (I, T ) by θ : I→ G1

has the visibility property, i.e. there is a finite set U such that for every g ∈ G, there exist a2

horofunction h ∈ I, an integer n ∈ N, and two elements u1, u2 ∈ U satisfying g = u1θn(h)u23

(Proposition 4.10). We denote by L the maximal length (in Γ) of an element of U . As the system4

(I, T ) is an irreducible subshift of finite type, there exists K with the following property: for every5

h1, h2 ∈ I, for every n ∈ N, there exists h′1 ∈ I and k ∈ J0,KK such that Tn+kh′1 = h2 and h1 and6

h′1 belong to the same cylinder of length n. Finally we let7

R = 5L+K and N = 2L+K.8

We now fix a horofunction h0 ∈ I and an integer n ∈ N. Let g ∈ S(n). According to the visibility9

property there exist a horofunction h ∈ I, an integer m ∈ N and two elements u1, u2 ∈ U such10

that g = u1θm(h)u2. Recall that the length (in Γ) of θm(h) is m, hence |n−m| 6 2L. As (I, T ) is11

irreducible, there exists h′ ∈ I and k ∈ J0,KK such that h and h′ belongs to the same cylinder of12

length n+ 2L and13

Tn+2L+kh′ = h0.14

Since m 6 n+ 2L, we have θm(h′) = θm(h). It follows that15

θn+2L+k(h′) = θm(h′)θn+2L−m+k(Tmh′) = θm(h)θn+2L−m+k(Tmh′)16

Consequently17

g = u1θn+2L+k(h′)u′2,18

where19

u′2 =
(
θn+2L−m+k(Tmh′)

)−1

u2.20

Observe that u1 and u2 belong to B(L) ⊂ B(R). As we noticed n 6 m+ 2L, thus n−m+ 2L+k 621

4L+K. Consequently u′2 belongs to B(R). In other words pn+2L+k maps the element (h′, u1, u
′
2)22

of SI(h0, n+ 2L+ k)×B(R)×B(R) to g.23

5 Potential and transfer operator24

The goal of this section is to prove the following statements.25

Theorem 5.1. Let G be a group acting properly co-compactly by isometries on a hyperbolic space26

X. We assume that one of the following holds. Either27

(i) X is the Cayley graph of G with respect to a finite generating set, or28

(ii) X is a CAT(−1) space.29

Let H be a subgroup of G. We denote by ωG and ωH the exponential growth rates of G and H30

acting on X. The subgroup H is co-amenable in G if and only if ωH = ωG. In particular if H is a31

normal subgroup of G, the quotient G/H is amenable if and only if ωH = ωG.32

Theorem 5.2. Let G be a group with Kazhdan’s property (T) acting properly co-compactly by33

isometries on a hyperbolic space X. We assume that one of the following holds. Either34

(i) X is the Cayley graph of G with respect to a finite generating set, or35
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(ii) X is a CAT(−1) space.1

There exists ε > 0 with the following property. Let H be a subgroup of G. We denote by ωG and2

ωH the exponential growth rates of G and H acting on X. If ωH > ωG− ε, then H is a finite index3

subgroup of G.4

5.1 The data5

Let G be a a group acting properly co-compactly by isometries on a hyperbolic space X. As in the6

statement of Theorems 5.1 and 5.2 we consider two cases.7

Case 1. The space X is the Cayley graph of G with respect to a finite generating set A. In this8

situation we denote by Γ a copy of X.9

Case 2. The space X is CAT(−1). In this situation we fix an arbitrary finite generating set A of10

G and denote by Γ the Cayley graph of G with respect to A.11

In both cases we may assume without loss of generality that A is symmetric. As we work with12

two distinct metric spaces, namely the Cayley graph Γ and the space X, we use this section to13

emphasize which objects are related to one or the other space.14

Data related to X. The space X is the one that will carry the geometric information. We denote15

by δ its hyperbolicity constant. We fix a base point x0 ∈ X. This allows us to identify C∗(X) with16

the set of continuous maps vanishing at x0. We denote by πX : H(X)� ∂X the projection studied17

in Proposition 3.4. We denote by ωG the exponential growth rate of G acting on X.18

Data related to Γ. The role of Γ is to provide a support for coding the geodesic flow. The space19

H0 ⊂ H(Γ) refers to the integral horofunctions on the Cayley graph Γ. We denote by πΓ : H0 � ∂Γ20

the projection coming from Proposition 4.5. The maps θ : H0 � G and T : H0 → H0 are the ones21

defined at the beginning of Section 4.2. For simplicity we denote by I the irreducible component22

of (H0, T ) with the visibility property given by Proposition 4.10. Recall that for every n ∈ N, the23

sets S(n) and B(n) are respectively the sphere and the ball of radius n, measured in Γ.24

Comparing Γ and X. Since G acts properly co-compactly on X, the orbit maps G→ X sending25

g to gx0 leads a (κ, `)-quasi-isometric embedding f : Γ→ X. This map induces a homeomorphism26

∂Γ → ∂X between the respective Gromov boundary of Γ and X. For simplicity we implicitly27

identify ∂Γ and ∂X.28

5.2 Transfer operator for the irreducible component29

Comparing horofunctions. The first task is to define a potential F : H0 → R∗+. This potential30

defined on the dynamical system (H0, T ) should reflect to geometry of X. In the first case – when31

X is actually the Cayley graph Γ of X – the geometry coincides with the dynamics, and we can32

simply take for F the constant function equal to e−ωG . In the second case – when X is an arbitrary33

CAT(−1) space – the situation is more subtle. Indeed H(X) does not necessarily coincide with H(Γ)34

nor H0. As the space X is CAT(−1), the set H(X) coincides with the usual visual boundary of X.35

More precisely the map πX : H(X)→ ∂X is a homeomorphism. On the other hand the projection36

πΓ : H0 → ∂Γ is not always injective. Nevertheless we are going to build a map comparing H0 – the37
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horofunctions used for coding – to H(X) – the horofunctions capturing the geometry of X. This1

is the purpose of the next proposition. Actually we develop a framework that covers both cases2

simultaneously.3

Recall that we identify (H0, T ) with an appropriate subshift of finite type of (BN, σ). This4

identification induces a distance on H0 (Remark 4.8) as defined at the beginning of Section 2.1.5

Namely the distance between two horofunctions h, h′ ∈ H0 is d(h, h′) = e−n, where n is the largest6

integer such that the respective images of h and h′ in BN have the same first n letters. We denote7

by C(H0,C) for the space of continuous maps from H0 to C while H∞α (H0,C) stands for the space8

of functions with bounded α-Hölder variations (see Section A.1).9

Proposition 5.3. There exists a G-equivariant comparison map H0 → H(X) which we denote10

h 7→ hX with the following properties.11

(i) The following diagram commutes12

H0 H(X)

∂Γ ∂X

πΓ πX13

(ii) There exists α ∈ R∗+ such that the evaluation map defined by14

ϕ : H0 → R

h → hX

(
θ(h)x0

)
15

belongs to H∞α (H0,R).16

Proof. We distinguish two cases depending whether X is a Cayley graph or a CAT(−1) space.17

Case 1. Assume first that X is the Cayley graph of G with respect to the generating set A. In18

this situation we defined Γ to be exactly X. In particular H0 can be see as a subset of H(X). We19

simply define the comparison map H0 → H(X) as the corresponding embedding. Point (i) becomes20

obvious. It follows from the very definition of θ that ϕ is constant equal to −1. Thus it belongs to21

H∞α (H0,R) for every α ∈ R∗+.22

Case 2. Assume now that X is a CAT(−1) space. In this situation Γ is the Cayley graph of G23

with respect to an arbitrary finite generating set. Given h ∈ H0 we define hX to be the Busemann24

function at ξ = πΓ(h) vanishing at x0. By construction the diagram of Point (i) commutes.25

Let D = D(κ, `, δ) be the parameter given by the Morse lemma (Proposition 2.3). Let h, h′ ∈ H026

such that d(h, h′) < 1. We denote by n ∈ N∗ the largest integer such that h and h′ belong to the27

same cylinder of length n, so that d(h, h′) = e−n. We write γ : R+ → Γ for the minimal h-gradient28

ray starting at 1 and let ξ = γ(∞). Let c : R+ → X be the ray starting at x0 such that c(∞) = ξ.29

Recall that the map f : Γ → X induced by the orbit map is a (κ, `)-quasi-isometry. In particular30

f ◦ γ is a (κ, `)-quasi-geodesic between x0 and ξ. It follows from the stability of quasi-geodesics31

(Proposition 2.3) that the Hausdorff distance between f ◦ γ and c is bounded above by D. In a32

similar way we associate to h′ a gradient ray γ′ : R+ → Γ as well as a geodesic ray c′ : R+ → X.33
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Since h and h′ belong to the same cylinder of length n, the paths γ and γ′ coincide on [0 , n]1

(see Remark 4.8). In particular, for every k ∈ J0, nK, the point yk = f ◦ γ(k) = f ◦ γ′(k) lies in the2

D neighborhood of both c and c′. As f is a (κ, `)-quasi-isometric embedding, we also observe that3

κ−1k − ` 6 d(x0, yk) 6 κk + `.4

It follows that there exists t ∈ R+, such that d(c(t), c′(t)) 6 2D and t > κ−1n− `−D. A standard5

exercise of CAT(−1) geometry shows that6

d(c(t/2), c′(t/2)) 6 C1e
− 1

2 t,7

where C1 is a parameter that only depends on D. Recall that d(x0, y1) 6 κ + `. Another exercise8

of CAT(−1) geometry shows that9 ∣∣∣hX(y1)−
[
d(c(t/2), y1)− t/2

]∣∣∣ 6 C2e
− 1

2 t and
∣∣∣h′X(y1)−

[
d(c′(t/2), y1)− t/2

]∣∣∣ 6 C2e
− 1

2 t,10

where C2 only depends on κ and `. Consequently11

|hX(y1)− h′X(y1)| 6 C3e
− 1

2 t 6 C4e
− 1

2κ
−1n 6 C4d(h, h′)

1
2κ
−1

.12

where C3 and C4 only depends on D, κ and `. Nevertheless y1 is the point θ(h)x0 = θ(h′)x0. Hence13

the previous inequality exactly says that14

|ϕ(h)− ϕ(h′)| 6 C4d(h, h′)
1
2κ
−1

.15

This inequality holds for every h, h′ such that d(h, h′) < 1. Consequently ϕ belongs to the space16

H∞α (H0,R) where α = κ−1/2, which proves Point (ii).17

The potential F . From now on, we fix the comparison map H0 → H(X), h 7→ hX given by18

Proposition 5.3. We keep the notations introduced in this statement. In particular the evaluation19

map ϕ : H0 → R sending h to hX(θ(h)x0) belongs to H∞α (H0,R). The potential F : H0 → R∗+ is20

the map defined by21

F (h) = exp
(
ωGϕ(h)

)
= exp

(
ωGhX

(
θ(h)x0

))
, ∀h ∈ H0. (10)22

It directly follows from the previous proposition that lnF belongs to H∞α (H0,R)23

Remark. If X is simply the Cayley graph Γ of X, we previously observed that the evaluation24

map ϕ is constant equal to −1. Hence the potential becomes F (h) = e−ωG .25

Lemma 5.4. For every n ∈ N, for every h ∈ H0, we have26

Fn(h) = exp

(
ωGhX

(
θn(h)x0

))
.27

Proof. Let h ∈ H0. It is sufficient to prove that for every n ∈ N, we have28

n−1∑
k=0

ϕ ◦ T k(h) = hX

(
θn(h)x0

)
.29
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The proof is by induction on n. By convention θ0(h) = 1. Since hX vanishes at x0 the statement1

obviously holds for n = 0. Assume now that the claim holds for some n ∈ N. It follows from the2

definition of T that Tn(h) = θn(h)−1h. As the comparison map H0 → H(X) is G-equivariant we3

get4

ϕ ◦ Tn(h) =
[
θn(h)−1hX

] (
θ (Tn(h))x0

)
= hX

(
θn(h)θ (Tn(h))x0

)
− hX

(
θn(h)x0

)
= hX

(
θn+1(h)x0

)
− hX

(
θn(h)x0

)
.

The statement for n+ 1 now follows from the induction hypotheses.5

Lemma 5.5. There exists a constant C ∈ R∗+, such that for every h ∈ H0, for every n ∈ N, we6

have7

1

C
6

Fn(h)

exp
(
−ωGd(θn(h)x0, x0)

) 6 C.8

Proof. According to Lemma 5.4, it suffices to show that there exists C ′ ∈ R∗+ such that for every9

h ∈ H0, for every n ∈ N we have10 ∣∣∣hX (θn(h)x0

)
+ d
(
θn(h)x0, x0

)∣∣∣ 6 C ′.11

By the stability of quasi-geodesics, there exists D ∈ R+ such that the Hausdorff distance between12

two (κ, `)-quasi-geodesics of X joining the same endpoints (possibly in ∂X) is at most D. Let13

h ∈ H0. Let c : R+ → X be geodesic ray between x0 and ξ = πX(hX). We write b : X → R for the14

corresponding Busemann function vanishing at x0. Note that hX and b are two horofunctions of15

X whose image by πX : H(X)→ ∂X is ξ. It follows that ‖hX − b‖∞ 6 64δ [15, Corollary 3.8]. Let16

γ : R+ → Γ be the minimal h-gradient line starting at 1. Observe that f ◦γ is a (κ, `) quasi-geodesic17

of X. Hence the Hausdorff distance between f ◦ γ and c is at most D.18

Let n ∈ N. By construction the element θn(h) lies on γ. Thus there exists t ∈ R+, such that19

d(θn(h)x0, c(t)) 6 D. It follows that20

|d(θn(h)x0, x0) + b(c(t))| 6 D. (11)21

Recall that the Busemann function b is a 1-Lipschitz. Combined with the fact that ‖hX−b‖∞ 6 64δ22

we get23

|hX (θn(h)x0)− b(c(t))| 6 D + 64δ.24

Hence (11) becomes25

|hX (θn(h)x0) + d(θn(h)x0, x0)| 6 C ′,26

where C ′ = 2D+64δ. Observes that C ′ neither depends on h of n, hence the proof is complete.27

The transfer operator. The transfer operator associated to the potential F is the operator28

L : C(I,C)→ C(I,C) defined by29

LΦ(h0) =
∑

Th=h0

F (h)Φ(h), ∀Φ ∈ C(I,C), ∀h0 ∈ I. (12)30
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Note that the restriction map C(H0,C) → C(I,C) induces a 1-Lipschitz map from H∞α (H0,C) →1

H∞α (I,C). Hence lnF restricted to I belongs to H∞α (I,C). As we observed in the appendix L2

induces a bounded operator of H∞α (I,C). Since the system (I, T ) is irreducible, the spectral radii3

of L seen as an operator of C(I,C) or H∞α (I,C) are the same (Theorem A.6). We denote it by ρ.4

According to (18) it can be computed as follows5

ρ = lim sup
n→∞

n

√
‖Ln1‖∞. (13)6

Computing ρ. The goal of this section is to prove that ρ = 1 (Proposition 5.8).7

Lemma 5.6. There exists A1 ∈ R∗+ such that for every n ∈ N, we have8

‖Ln1‖∞ 6 A1

∑
g∈S(n)

e−ωGd(gx0,x0).9

Proof. We denote by C the constant given by Lemma 5.5. Let n ∈ N. Let h0 ∈ I. According to10

Lemma 5.4 we have11

Ln1(h0) =
∑

Tnh=h0

Fn(h) =
∑

Tnh=h0

exp

(
ωGhX

(
θn(h)x0

))
.12

Applying Lemma 5.5 we get13

Ln1(h0) 6 C
∑

Tnh=h0

exp

(
− ωGd

(
θn(h)x0, x0

))
. (14)14

By Lemma 4.11 the map H0 → G sending h to θn(h) induces an embedding of {h ∈ I | Tnh = h0}15

into S(n). It follows that16

Ln1(h0) 6 C
∑

g∈S(n)

e−ωGd(gx0,x0).17

This inequality holds for every h0 ∈ I, thus18

‖Ln1‖∞ 6 C
∑

g∈S(n)

e−ωGd(gx0,x0).19

Lemma 5.7. There exists A2 ∈ R∗+ such that for every n ∈ N, we have20 ∑
g∈S(n)

e−ωGd(gx0,x0) 6 A2 ‖Ln1‖∞ .21

Proof. We write C ∈ R∗+, and R,N ∈ N, for the constants given by Lemma 5.5 and Lemma 4.1222

respectively. Recall that the map f : Γ → X induced by the orbit map is a (κ, `)-quasi-isometric23

embedding. Let h0 ∈ I. Let n ∈ N. Let k ∈ N. Applying Lemma 5.5 we observe that24 ∑
Tkh=h0

exp

(
− ωGd

(
θk(h)x0, x0

))
6 C

∑
Tkh=h0

exp

(
ωGhX

(
θk(h)x0

))
6 CLk1(h0). (15)



5 Potential and transfer operator 26

On the other hand if (u1, u2) belongs to B(R)×B(R), the triangle inequality tells us that1

|d(u1θk(h)u2x0, x0)− d(θk(h)x0, x0)| 6 d(u1x0, x0) + d(u2x0, x0) .2

However the map f : Γ→ X being a (κ, `)-quasi-isometric embedding, we get3

|d(u1θk(h)u2x0, x0)− d(θk(h)x0, x0)| 6 2(κR+ `).4

Summing (15) when (u1, u2) runs over B(R)×B(R) and k over Jn, n+NK gives5

n+N∑
k=n

∑
(u1,u2)∈B(R)×B(R)

∑
Tkh=h0

exp

(
− ωGd

(
u1θk(h)u2x0, x0

))

6 |B(R)|2 e2ωG(κR+`)
n+N∑
k=n

∑
Tkh=h0

exp

(
− ωGd

(
θk(h)x0, x0

))

6 C |B(R)|2 e2ωG(κR+`)
n+N∑
k=n

Lk1(h0).

Lemma 4.12 provides a lower bound of the triple sum in the left hand side of the inequality, leading6

to7 ∑
g∈S(n)

e−ωGd(gx0,x0) 6 C |B(R)|2 e2ωG(κR+`)
n+N∑
k=n

Lk1(h0).8

As the potential F and the function 1 are positive we observe that for every k > n,9

Lk1(h0) 6
∥∥Lk1

∥∥
∞ 6

∥∥Lk−n∥∥∞ ‖Ln1‖∞ .10

Hence the previous inequality becomes11

∑
g∈S(n)

e−ωGd(gx0,x0) 6 C |B(R)|2 e2ωG(κR+`)

(
N∑
k=0

∥∥Lk∥∥∞
)
‖Ln1‖∞ ,12

which is exactly the required inequality.13

Proposition 5.8. The spectral radius of L is ρ = 1.14

Proof. We form the series15

Υ(s) =

∞∑
n=0

e−sn ‖Ln1‖∞ .16

It follows from (13) that the critical exponent Υ(s) is ln ρ. Hence it suffices to prove this critical17

exponent is 0. Let s ∈ R∗+. According to Lemmas 5.6 and 5.7 there exists A1, A2 such that for18

every n ∈ N19

A1

∑
g∈S(n)

e−ωGd(gx0,x0) 6 ‖Ln1‖∞ 6 A2

∑
g∈S(n)

e−ωGd(gx0,x0).20
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Multiplying theses inequalities by e−sn and summing over n gives1

A1

∞∑
n=0

∑
g∈S(n)

e−sne−ωGd(gx0,x0) 6 Υ(s) 6 A2

∞∑
n=0

∑
g∈S(n)

e−sne−ωGd(gx0,x0).2

The map f : Γ→ X being a (κ, `)-quasi-isometric embedding, for every n ∈ N, for every g ∈ S(n)3

we have4

κ−1 [d(gx0, x0)− `] 6 n 6 κ [d(gx0, x0) + `] .5

Consequently6

A1e
−sκ`

∑
g∈G

e−(ωG+sκ)d(gx0,x0) 6 Υ(s) 6 A2e
sκ−1`

∑
g∈G

e−(ωG+sκ−1)d(gx0,x0).7

This can be reformulated using the Poincaré series of G as8

A1e
−sκ`PG(ωG + sκ) 6 Υ(s) 6 A2e

sκ−1`PG(ωG + sκ−1).9

Recall that s → PG(ωG + s) converges if s > 0 and diverges if s < 0. It follows that the critical10

exponent of Υ(s) equals 0.11

5.3 Twisted transfer operator associated to a subgroup12

Data associated to a subgroup. Let H be a subgroup of G. We denote by Y the space of13

left cosets of H in G, i.e. Y = H \ G. We write y0 for the image of 1 in Y . In other words y0 is14

the coset H. We denote by H = `2(Y ) the space of square summable functions from Y to C. The15

group G acts on Y by right translations. It induces a unitary representation λ : G→ U(H) defined16

[λ(g)φ] y = φ(y · g), ∀g ∈ G, ∀φ ∈ H.17

We call λ the the regular representation of G relative to H. We denote by ωH the exponential18

growth rate of H acting on X.19

Twisted transfer operator. We denote by C(I,H) the set of continuous function from I to20

H. Similarly H∞α (I,H) stands for the space of functions with bounded α-Hölder variations (see21

Section A.1). As explained in this appendix, the representation λ leads to a twisted transfer operator22

Lλ : C(I,H)→ C(I,H) defined by23

LλΦ(h0) =
∑

Th=h0

F (h)λ(θ(h))−1Φ(h), ∀Φ ∈ C(I,H), ∀h0 ∈ I.24

This operator induces a bounded operator of H∞α (I,H) (Proposition A.8). We write ρλ for the25

spectral radius of Lλ seen as an operator of H∞α (I,H).26

Computing ρλ. Our goal is to provide an estimate of ρλ in terms of ωG and ωH . Let us first27

remark that ρλ 6 ρ (Corollary A.9) that is in our setting ρλ 6 1 (Proposition 5.8). We now provide28

a lower bound for ρλ. The proof follows the same strategy as the one of Proposition 5.8.29
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Lemma 5.9. There exist B2 ∈ R∗+ and a function Ψ ∈ H∞α (I,H) such that for every n ∈ N, we1

have2 ∑
g∈S(n)∩H

e−ωGd(gx0,x0) 6 B2 ‖LnλΨ‖∞ .3

Proof. We write C ∈ R∗+, and R,N ∈ N, for the constants given by Lemma 5.5 and Lemma 4.124

respectively. Recall that the map f : Γ → X induced by the orbit map is a (κ, `)-quasi-isometric5

embedding. We denote by Z the following finite subset of Y .6

Z = {y0 · u | u ∈ B(R)} .7

The map Ψ: I → H is the constant function equal to the characteristic function 1Z of Z. One8

observes easily that Ψ belongs to H∞α (I,H).9

We now fix h0 ∈ I and n ∈ N. Let k ∈ N and u2 ∈ B(R). Let us compute LkλΨ(h0) at the10

point y0 · u−1
2 . By definition we have11 [

LkλΨ(h0)
] (
y0 · u−1

2

)
=

∑
Tkh=h0

Fk(h)
[
λ
(
θk(h)−1

)
Ψ
] (
y0 · u−1

2

)
=

∑
Tkh=h0

Fk(h)1Z
(
y0 · u−1

2 θk(h)−1
)
.12

Recall that Z = y0 ·B(R). Hence the term13

1Z
(
y0 · u−1

2 θk(h)−1
)

14

equals 1 if there exists u1 ∈ B(R) such that u1θk(h)u2 belongs to H and zero otherwise. Hence15 ∑
u1∈B(R)

∑
Tkh=h0,

u1θk(h)u2∈H

Fk(h) 6 |B(R)|
[
LkλΨ(h0)

] (
y0 · u−1

2

)
.16

Recall that the potential F and the vector 1Z are non-negative. It follows that17 ∑
u1∈B(R)

∑
Tkh=h0,

u1θk(h)u2∈H

Fk(h) 6 |B(R)|
∥∥LkλΨ(h0)

∥∥
`2(Y )

6 |B(R)|
∥∥LkλΨ

∥∥
∞ .18

Applying Lemma 5.5 to the previous inequality, we observe (as in the proof of Lemma 5.7) that19 ∑
u1∈B(R)

∑
Tkh=h0,

u1θk(h)u2∈H

exp

(
− ωGd

(
θk(h)x0, x0

))
6 C |B(R)|

∥∥LkλΨ
∥∥
∞ . (16)20

On the other hand given (u1, u2) ∈ B(R)×B(R), the triangle inequality tells us that21

|d(u1θk(h)u2x0, x0)− d(θk(h)x0, x0)| 6 d(u1x0, x0) + d(u2x0, x0) .22

The map f : Γ→ X being a (κ, `)-quasi-isometric embedding, we get23

|d(u1θk(h)u2x0, x0)− d(θk(h)x0, x0)| 6 2(κR+ `).24
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Summing (16) when u2 runs over B(R) and k over Jn, n+NK yields1

n+N∑
k=n

∑
(u1,u2)∈B(R)×B(R)

∑
Tkh=h0,

u1θk(h)u2∈H

exp

(
− ωGd

(
u1θk(h)u2x0, x0

))

6 C |B(R)|2 e2ωG(κR+`)
n+N∑
k=n

∥∥LkλΨ
∥∥
∞ .

Lemma 4.12 provides a lower bound of the triple sum in the left hand side of the inequality, leading2

to3 ∑
g∈S(n)∩H

e−ωGd(gx0,x0) 6 C |B(R)|2 e2ωG(κR+`)
n+N∑
k=n

∥∥LkλΨ
∥∥
∞ .4

Observe that for every k > n we have,5 ∥∥LλkΨ
∥∥
∞ 6

∥∥Lk−nλ

∥∥
∞ ‖L

n
λΨ‖∞ .6

Hence the previous inequality becomes7 ∑
g∈S(n)∩H

e−ωGd(gx0,x0) 6 C |B(R)|2 e2ωG(κR+`)

(
N∑
k=0

∥∥Lkλ∥∥∞
)
‖LnλΨ‖∞ ,8

which is exactly the required inequality.9

Proposition 5.10. The spectral radius ρλ of Lλ satisfies the following inequality10

ρλ > exp

(
ωH − ωG

κ

)
.11

Proof. According to Lemma 5.9 there exist B2 ∈ R∗+ and a function Ψ ∈ H∞α (I,H) such that for12

every n ∈ N we have13 ∑
g∈S(n)∩H

e−ωGd(gx0,x0) 6 B2 ‖LnλΨ‖∞ . (17)14

Recall that the canonical map H∞α (I,H) → C(I,H) is 1-Lipschitz (see Section A.1). Hence for15

every n ∈ N, we have16

‖LnλΨ‖∞ 6 ‖L
n
λΨ‖∞,α 6 ‖L

n
λ‖∞,α ‖Ψ‖∞,α .17

Hence18

lim sup
n→∞

1

n
ln ‖LnλΨ‖∞ 6 lim sup

n→∞

1

n
ln ‖Lnλ‖∞,α 6 ln ρλ.19

The left hand side of the inequality can be interpreted as the critical exponent of the series20

ΥH(s) =

∞∑
n=0

e−sn ‖LnλΨ‖∞ .21

We use (17) exactly as we did in Proposition 5.8 to prove that for every s ∈ R,22

PH(ωG + sκ) 6 B2e
sκ`ΥH(s),23

where PH stands for the Poincaré series of H. Recall that s → PH(s) diverges whenever s < ωH .24

Consequently the critical exponent of ΥH(s) is bounded below by (ωH−ωG)/κ, hence the result.25
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Corollary 5.11. If ωH = ωG, then ρλ = 1.1

Proof. It directly follows from the observation that ρλ 6 1.2

Remark. The converse statement actually holds. It is a consequence of Theorems A.25 and3

B.1. Indeed if ρλ = 1, then the group H is co-amenable in G (Theorem A.25), hence ωH = ωG4

(Theorem B.1). Nevertheless we are not aware of an upper bound of the spectral radius ρλ in the5

spirit of Proposition 5.10 which would directly leads to the converse direction (and an alternative6

proof of Roblin’s theorem).7

5.4 Proofs of the theorems8

We are now in position to prove Theorems 5.1 and 5.2.9

Proof of Theorem 5.1. The Cayley graph Γ of G is defined as in Section 5.1. This provides a subshift10

of finite type (H0, T ) as detailed in Section 4.3 together with the labelling map θ : H0 → G defined11

in Section 4.2. We extract from this dynamical system an irreducible component I, such that the12

extension of (I, T ) by θ has the visibility property (Proposition 4.10). Using the strategy developed13

in Section 5.2 we define a potential F : I→ R∗+ which belongs to H∞α (I,R) for some α ∈ R∗+. We14

denote by L : H∞α (I,C) → H∞α (I,C) the corresponding transfer operator. Its spectral radius is15

ρ = 1 (Proposition 5.8).16

Let H be a subgroup. We consider the set Y of left H-cosets of G. The group G acts on Y by17

right translations. If the action is amenable, then it follows from Roblin’s Theorem (Theorem B.1)18

that ωH = ωG. Let us assume now that ωH = ωG. The action of G on Y induces a unitary19

representation λ : G → U(H) where H stands for `2(Y ). This leads to a twisted transfer operator20

Lλ : H∞α (I,H)→ H∞α (I,H). Since ωH = ωG, Corollary 5.11 tells us that the spectral radius of Lλ21

is ρλ = 1. In particular ρλ = ρ. It follows from the amenability criterion (Theorem A.25) that the22

action of G on Y is amenable.23

Proof of Theorem 5.2. The dynamical system (I, T ), the extension map θ : I → G, the potential24

F ∈ H∞α (I,R) as well as the transfer operator L : H∞α (I,C) → H∞α (I,C) are build as in the25

previous proof. In particular the spectral radius of L is ρ = 1. Let η ∈ R∗+, be the constant given26

by Theorem A.28.27

LetH be an infinite index subgroup of G. We consider the set Y of leftH-cosets of G. The group28

G acts transitively on Y by right translations. It induces a unitary representation λ : G → U(H)29

where H stands for `2(Y ). This leads to a twisted transfer operator Lλ : H∞α (I,H) → H∞α (I,H).30

Since H has infinite index in G, Theorem A.28 tells us that the spectral radius ρλ of Lλ is bounded31

above by 1− η. However Proposition 5.10 provides a lower bound for ρλ in termes of ωG and ωH .32

It yields ωH 6 ωG − ε where33

ε = κ |ln(1− η)| .34

Note that ε does not depends on H, which completes the proof of the theorem.35
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A An extension of Kesten’s criterion1

As explained in the introduction, this appendix is deeply inspired by the work of Stadlbauer. We2

prove a variation of his amenability criterion. Our approach makes an explicit use of representation3

theory and operator algebra, which were somehow hidden in [36]. In addition it provides precise4

estimates that can be use to analyse groups with Kazhdan’s property (T) (see Theorem A.28).5

Similar results were also obtained by Dougall in [21].6

In this section (Σ, σ) is a subshift of finite type of the alphabet A. We use the same notations7

as in Section 2.1.8

A.1 Function spaces9

In order to study the dynamical system (Σ, σ) and its extensions, we define a family of function10

spaces. To that end, we fix a Banach space (E, ‖ . ‖). We endow the space C(Σ, E) of continuous11

function Φ: Σ→ E with the norm ‖ . ‖∞ defined by12

‖Φ‖∞ = sup
x∈Σ
‖Φ(x)‖ .13

For our purpose, it will be rather convenient to work with smooth functions. Given α > 0 we14

measure the α-Hölder variations of Φ by the quantity15

∆α(Φ) = sup
x 6=y

‖Φ(x)− Φ(y)‖
d(x, y)α

.16

We define the norm ‖ . ‖∞,α of Φ by17

‖Φ‖∞,α = ‖Φ‖∞ + ∆α(Φ).18

Definition A.1 (Functions with bounded variations). Let α > 0. The space H∞α (Σ, E) is the set19

of all maps Φ: Σ→ E satisfying ‖Φ‖∞,α <∞.20

It is a standard exercise to prove that H∞α (Σ, E) is a Banach space. Moreover the canonical21

map H∞α (Σ, E) → C(Σ, E) is a 1-Lischitz embedding. Sometimes it is more convenient to focus on22

the local α-Hölder variations of a function. Given r ∈ R∗+ and Φ ∈ C(Σ, E) we let23

∆α,r(Φ) = sup
d(x,y)<r,
x 6=y

‖Φ(x)− Φ(y)‖
d(x, y)α

.24

The next lemma explains how ∆α,r(Φ) depends on r.25

Lemma A.2. Let α > 0 and r ∈ R∗+. For every Φ ∈ C(Σ, E) we have26

∆α(Φ)− 2r−α ‖Φ‖∞ 6 ∆α,r(Φ) 6 ∆α(Φ).27

Remark A.3. In particular ∆α(Φ) is finite if and only if so is ∆α,r(Φ) for some (hence any)28

r ∈ R∗+.29
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Proof. Let Φ ∈ C(Σ, E). The second inequality is obvious. Let us focus on the first one. Let1

x, y ∈ Σ. If d(x, y) < r, then by definition we have2

‖Φ(x)− Φ(y)‖ 6 ∆α,r(Φ)d(x, y) α.3

On the other hand if d(x, y) > r, the triangle inequality yields4

‖Φ(x)− Φ(y)‖ 6 2 ‖Φ‖∞ 6 2r−α ‖Φ‖∞ d(x, y) α.5

Consequently for every distinct x, y ∈ Σ we have6

‖Φ(x)− Φ(y)‖
d(x, y)α

6 ∆α,r(Φ) + 2r−α ‖Φ‖∞ .7

The next lemmas are straightforward. Their proof is left to the reader.8

Lemma A.4. Let Φ ∈ C(Σ,R) such that Φ(x) > 0, for every x ∈ Σ. The map Φ belongs to9

H∞α (Σ,C) if and only if so does ln Φ.10

Lemma A.5. Let f ∈ H∞(Σ,R) and Φ ∈ H∞α (Σ, E). The pointwise product function fΦ belongs11

to H∞α (Σ, E). Moreover12

‖fΦ‖∞,α 6 ‖f‖∞,α ‖Φ‖∞,α .13

A.2 Ruelle’s Perron Frobenius Theorem14

Transfer operator. We fix a potential F : Σ → R∗+ and assume that there exists α > 0 such15

that lnF ∈ H∞α (Σ,R). For every n ∈ N, for every x ∈ Σ, we let16

Fn(x) = F (x)F (σx) · · ·F
(
σn−1x

)
.17

By convention F0 = 1. To such a potential we associate a transfer operator L : C(Σ,C)→ C(Σ,C)18

defined by19

LΦ(x) =
∑
σy=x

F (y)Φ(y) =
∑
a∈A

1σ[a](x)F (ax)Φ(ax).20

One checks easily that the powers of L are given by the following formula21

LnΦ(x) =
∑
σny=x

Fn(y)Φ(y) =
∑
w∈Wn

1σn[w](x)Fn(wx)Φ(wx).22

It is a standard fact that L defines a bounded operator of both C(Σ,C) and H∞α (Σ,C) [26, Sec-23

tion XII.2]. We write ρ∞ and ρ for the spectral radius of L seen as an operator of C(Σ,C) and24

H∞α (Σ,C) respectively. One observes easily (see for instance [26, Section XII.2]) that25

ρ∞ = lim
n→∞

n

√
‖Ln1‖∞. (18)26

Recall that by the Riesz representation theorem, the dual space of C(Σ,R) can be identified with27

the set of measures on Σ. We write L∗ for the dual operator of L. From now on, unless mentioned28

otherwise, we see L as an operator on H∞α (Σ,C) rather than C(Σ,C). For a proof of the following29

version of the Ruelle Perron-Frobenius Theorem we refer the reader to [26, Theorem XII.6] or [1,30

Theorem 1.5].31
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Theorem A.6 (Ruelle’s Perron-Frobenius Theorem). If (Σ, σ) is topologically transitive, then the1

following holds2

(i) ρ = ρ∞ is positive.3

(ii) There exists a probability measure µ on Σ whose support is Σ such that L∗µ = ρµ.4

(iii) ρ is an eigenvalue of L; the corresponding eigenspace has dimension 1; it is spanned by a5

function h ∈ H∞α (Σ,C) such that h(x) > 0, for every x ∈ Σ and6 ∫
Σ

hdµ = 1.7

(iv) L has only finitely many eigenvalue of modulus ρ; the corresponding eigenspaces are finite8

dimensional; the rest of the spectrum of L is included in a disc of radius strictly less than ρ.9

A.3 Twisted transfer operator10

Let G be a finitely generated group. We fix a locally constant map θ : Σ → G. For every n ∈ N,11

for every x ∈ Σ we write12

θn(x) = θ(x)θ (σx) · · · θ
(
σn−1x

)
.13

By convention θ0 is the constant map sending x to the identity 1 ∈ G. We use this data to produce14

an extension (Σθ, σθ) of (Σ, σ) as follows. We let Σθ = Σ×G and define σθ : Σθ → Σθ by15

σθ(x, g) = (σx, gθ(x)).16

Recall that the extension (Σθ, σθ) has the visibility property if there exists a finite subset U of G17

such that for every g ∈ G, there exists two elements u1, u2 ∈ U , a point x ∈ Σ, and an integer18

n ∈ N, satisfying g = u1θn(x)u2.19

We now fix a Banach space (E, ‖ . ‖). We denote by B(E) the space of bounded operators on20

E endowed with the operator norm, while Isom(E) stands for the set of linear isometries of E.21

Let λ : G → Isom(E) be a homomorphism. As the θ : Σ → G is locally constant the composition22

λ ◦ θ : Σ → B(E) has α-Hölder bounded variations. For simplicity we make the following abuse of23

notations: given x ∈ Σ and n ∈ N, we write λ(x) for λ ◦ θ(x) and λn(x) for λ ◦ θn(x). In particular24

we have25

λn(x) = λ(x)λ (σx) · · ·λ
(
σn−1x

)
.26

The representation λ allows us to define a twisted transfer operator Lλ : C(Σ, E) → C(Σ, E) as27

follows28

LλΦ(x) =
∑
σy=x

F (y)λ(y)−1Φ(y) =
∑
a∈A

1σ[a](x)F (ax)λ(ax)−1Φ(ax).29

A standard computation shows that the n-th power of Lλ is given by30

LnλΦ(x) =
∑
σny=x

Fn(y)λn(y)−1Φ(y) =
∑
w∈Wn

1σn[w](x)Fn(wx)λn(wx)−1Φ(wx).31

If λ is the trivial representation of G in C, we recover the usual Ruelle Perron-Frobenius operator32

defined in the previous section.33
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Lemma A.7. The operator Lλ : C(Σ, E) → C(Σ, E) is bounded. More precisely for every n ∈ N,1

we have2

‖Lnλ‖∞ 6 ‖L
n1‖∞ .3

Proof. Let n ∈ N. Let Φ ∈ C(Σ, E). It follows from the triangle inequality that for every x ∈ Σ,4

‖LnλΦ(x)‖ 6
∑
w∈Wn

1σn[w](x)F (wx)
∥∥λn(wx)−1Φ(wx)

∥∥ 6 Ln1(x) ‖Φ‖∞ .5

Hence Lnλ is a bounded operator and its operator norm is at most ‖Ln1‖∞.6

Proposition A.8. For every n ∈ N, there exists Cn ∈ R∗+ such that for every linear representation7

λ : G→ Isom(E) into a Banach space (E, ‖ . ‖), for every Φ ∈ H∞α (Σ, E) we have8

∆α(LnλΦ) 6 e−nα ‖Ln1‖∞∆α(Φ) + Cn ‖Φ‖∞ .9

Proof. As (Σ, σ) is a subshift of finite type, there exists r > 0 with the following property: for10

every x, y ∈ Σ, if d(x, y) < r, then for every n ∈ N, for every w ∈ Wn, 1σn[w](x) = 1σn[w](y). Said11

differently the words that can be added in front of x or y are the same. We will take advantage12

of this fact to estimate the local Hölder variations of the twisted transfer operator. Recall that13

θ : Σ → G is locally constant. Hence there exists m ∈ N such that θ is constant on every cylinder14

of length m.15

Let λ : G → Isom(E) be a linear representation. Let n ∈ N. Let Φ ∈ H∞α (Σ, E). Let x, y ∈ Σ16

be two distinct points such that d(x, y) < r. We fix w ∈ Wn such that 1σn[w](x) = 1σn[w](y) equals17

1. A standard computation tells us that18

Fn(wx)λn(wx)−1Φ(wx)− Fn(wy)λn(wy)−1Φ(wy) = Fn(wx)λn(wx)−1 (Φ(wx)− Φ(wy))

+ Fn(wx)
(
λn(wx)−1 − λn(wy)−1

)
Φ(wy)

+ (Fn(wx)− Fn(wy))λn(wy)−1Φ(wy).

Recall that the image of λ is contained in the isometry group of E. On the other hand we observe19

that d(wx,wy) = e−nd(x, y). Hence the triangle inequality yields20 ∥∥Fn(wx)λn(wx)−1Φ(wx)− Fn(wy)λn(wy)−1Φ(wy)
∥∥

6
(
Fn(wx)∆α(Φ) + Fn(wx)∆α(λn) ‖Φ‖∞ + ∆α(Fn) ‖Φ‖∞

)
e−nαd(x, y) α.

This inequality holds for every w ∈ Wn such that 1σn[w](x) – which equals 1σn[w](y) – does not21

vanish. We sum these inequalities to get22

‖LnλΦ(x)− LnλΦ(y)‖
d(x, y)α

6 e−nα ‖Ln1‖∞∆α(Φ) + e−nα
(
|Wn|∆α(Fn) + ‖Ln1‖∞∆α(λn)

)
‖Φ‖∞ .23

Recall that θ is constant on any cylinder of length m. Hence θn is constant on any cylinder of24

length n+m. It follows from Lemma A.2 that ∆α(λn) 6 2e(n+m)α. Hence25

‖LnλΦ(x)− LnλΦ(y)‖
d(x, y)α

6 e−nα ‖Ln1‖∞∆α(Φ) +
(
e−nα |Wn|∆α(Fn) + 2emα ‖Ln1‖∞

)
‖Φ‖∞ .26



A An extension of Kesten’s criterion 35

This estimation holds for every distinct x, y ∈ Σ satisfying d(x, y) < r, hence the right hand side of1

the last inequality is an upper bound of ∆α,r(LnλΦ). Combined with Lemma A.2 we get that2

∆α(LλΦ) 6 e−nα ‖Ln1‖∞∆α(Φ) + Cn ‖Φ‖∞ ,3

where4

Cn = e−nα |Wn|∆α(Fn) + 2emα ‖Ln1‖∞ + 2r−α.5

Observe that the parameter Cn neither depends on λ nor on Φ, thus the proof of the proposition is6

complete.7

Combined with Lemma A.7, the previous proposition tells us that for every n ∈ N, for every8

Φ ∈ H∞α (Σ, E) we have9

‖LnλΦ‖∞,α 6 e
−nα ‖Ln1‖∞ ‖Φ‖∞,α + (Cn + ‖Ln1‖∞) ‖Φ‖∞ . (19)10

Hence we can view Lλ as a bounded operator on H∞α (Σ, E). This is the point of view that we will11

adopt in the remainder of this appendix. In particular we denote by ‖Lλ‖∞,α its corresponding12

operator norm and ρλ its spectral radius. Recall that ρ∞ stands for the spectral radius of L seen13

as an operator of C(Σ,C).14

Corollary A.9. The spectral radius ρλ of Lλ is bounded above by ρ∞.15

Proof. Let β > ln ρ∞. It follows from (18) that there exists n0 ∈ N, such that for every n > n0.16

‖Ln1‖∞ 6 e
nβ .17

We now fix n > n0. According to Proposition A.8 there exists C ∈ R+ such that for every18

Φ ∈ H∞α (Σ, E) we have19

‖LnλΦ‖∞,α 6 e
n(β−α) ‖Φ‖∞,α + C ‖Φ‖∞ .20

Let m ∈ N. We are going to estimate ‖Lnmλ ‖∞,α. To that end we choose Φ ∈ H∞α (Σ, E) and21

k ∈ J0,m− 1K. Applying the previous inequality to Lknλ Φ we get22 ∥∥∥L(k+1)n
λ Φ

∥∥∥
∞,α
6 en(β−α)

∥∥Lknλ Φ
∥∥
∞,α + C

∥∥Lknλ Φ
∥∥
∞ .23

which combined with Lemma A.7 becomes24 ∥∥∥L(k+1)n
λ Φ

∥∥∥
∞,α
6 en(β−α)

∥∥Lknλ Φ
∥∥
∞,α + Ceknβ ‖Φ‖∞ .25

We multiply these inequalities by e−(k+1)n(β−α) and sum them when k runs over J0,m−1K. It gives26

‖Lnmλ Φ‖∞,α 6 e
nm(β−α) ‖Φ‖∞,α + enmβ

Ce−n(β−α)

enα − 1
‖Φ‖∞ .27

Recall that ‖Φ‖∞ 6 ‖Φ‖∞,α. So we have proved that there exists Dn ∈ R∗+ such that for every28

m ∈ N, for every Φ ∈ H∞(Σ, E)29

‖Lnmλ Φ‖∞,α 6 e
nmβDn ‖Φ‖∞,α .30

Hence for every m ∈ N, we get31

‖Lnmλ ‖∞,α 6 e
nmβDn.32

Passing to the limit when m tends to infinity we obtain33

ln ρλ = lim
m→∞

1

nm
ln
(
‖Lnmλ ‖∞,α

)
6 β.34

This inequality holds for every β ∈ R such that β > ln ρ∞, thus ρλ 6 ρ∞.35



A An extension of Kesten’s criterion 36

A.4 Renormalization1

In this section we study how the transfer operators are affected when replacing the potential F by2

a rescaled and/or an homologous potential. This will allow us later to assume that L has spectral3

radius 1 and fixes the constant map 1, which will considerably lighten the notations.4

Rescaling a homologous potential. Assume that the system (Σ, σ) is topologically transitive.5

Let h ∈ H∞α (Σ,C) be the positive eigenvector given by Theorem A.6. We define a new potential6

F ′ : Σ→ R∗+ by7

F ′(x) =
1

ρ
· h(x)

h ◦ σ(x)
F (x), (20)8

so that9

lnF ′(x) = − ln ρ+ ln (h(x))− ln (h ◦ σ(x)) + lnF (x).10

We know that lnF belongs to H∞α (Σ,C). The same holds for h. It follows that lnF ′ belongs11

to H∞α (Σ,C) (Lemma A.4). In particular, F ′ satisfies the same assumptions as F . We write12

L′ : H∞α (Σ,C) → H∞α (Σ,C) and L′λ : H∞α (Σ, E) → H∞α (Σ, E) for the corresponding usual and13

twisted transfer operators.14

Comparing the operators. Let Φ ∈ H∞α (Σ, E). We observe that for every x ∈ Σ15

L′λΦ(x) =
∑
σy=x

h(y)

ρh(x)
F (y)λ(y)−1Φ(y) =

1

ρh(x)
Lλ(hΦ)(x).16

In particular, since h is a positive eigenvector of L for the eigenvalue ρ, we get that L′1 = 1. It17

follows from (18) combined with Theorem A.6 that the spectral radius of L′ is 1. Let Φ ∈ H∞α (Σ, E).18

A proof by induction shows that for every n ∈ N,19

ρnhL′λ
n
(Φ) = Lnλ(hΦ). (21)20

Since h is a positive continuous map on a compact set, there exists m,M ∈ R∗+ such that for every21

x ∈ Σ, we have m 6 h(x) 6 M . Hence 1/h also belongs to H∞α (Σ,C). Combining (21) with22

Lemma A.5 we observe that there exists A1, A2 ∈ R∗+ such that for every n ∈ N,23

A1 ‖Lnλ‖∞,α 6 ρ
n
∥∥L′λn∥∥∞,α 6 A2 ‖Lnλ‖∞,α .24

Hence the spectral radius of L′λ is ρλ/ρ.25

A.5 Invariant and almost invariant vectors26

In this section we suppose that the system (Σ, σ) is topologically transitive. In addition we as-27

sume that L has spectral radius 1 and fixes 1. Under these assumptions, the operator norm of28

Lλ : C(Σ, E)→ C(Σ, E) is at most 1 (Lemma A.7). Similarly Proposition A.8 yields29

Proposition A.10. There exists C1 ∈ R∗+ such that for every linear representation λ : G →30

Isom(E) into a Banach space (E, ‖ . ‖), for every Φ ∈ H∞α (Σ, E) we have31

∆α(LλΦ) 6 e−α∆α(Φ) + C1 ‖Φ‖∞ , (22)32
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We would like to understand the behavior Lλ when 1 is a spectral value. To that end we study1

invariant and almost invariant vectors of the twisted transfer operator. Given ε ∈ R∗+ we say that2

Φ ∈ H∞α (Σ, E) is an ε-invariant vector if3

‖LλΦ− Φ‖∞,α < ε ‖Φ‖∞,α .4

Almost invariant vectors. We start with some preliminary properties of almost invariants5

vectors for the twisted transfer operator.6

Proposition A.11. There exists D2, η ∈ R∗+ with the following property. For every linear repre-7

sentation λ : G→ Isom(E) into a Banach space (E, ‖ . ‖), if Φ ∈ H∞α (Σ, E) is an η-invariant vector8

of Lλ, then ∆α(Φ) 6 D2‖Φ‖∞.9

Proof. Let C1 be the parameter given by Proposition A.10. We fix η ∈ R∗+ such that η < 1− e−α.10

Let λ : G → Isom(E) be a linear representation into a Banach space (E, ‖ . ‖). Let Φ ∈ H∞α (Σ, E)11

be an η-invariant vector of Lλ. The triangle inequality combined with (22) yields12

∆α(Φ) 6 ∆α(LλΦ) + ∆α(LλΦ− Φ) 6 e−α∆α(Φ) + C1 ‖Φ‖∞ + η ‖Φ‖∞,α .13

Hence14

∆α(Φ) 6
C1 + η

1− (e−α + η)
‖Φ‖∞ .15

Invariants vectors. We now detail the behavior of invariant vectors for the twisted transfer16

operator.17

Lemma A.12. Let Φ ∈ H∞α (Σ, E). If LλΦ = Φ, then the map Σ → R sending x to ‖Φ(x)‖ is18

constant.19

Proof. We denote by Ψ: Σ→ R the map defined by Ψ(x) = ‖Φ(x)‖. It is an element of H∞α (Σ,R).20

Let x0 ∈ Σ such that21

Ψ(x0) = sup
x∈Σ

Ψ(x).22

Such a point exists as Ψ is a continuous function on a compact set. Let x ∈ Σ. Let ε ∈ R∗+.23

Since the system (Σ, σ) is topologically transitive, there exists n ∈ N and w0 ∈ Wn such that w0x024

belongs to Σ and d(x,w0x0) 6 ε. According to the triangle inequality we have25

Ψ(x0) 6 LnΨ(x0) 6
∑
w∈Wn

1σn[w](x0)Fn(wx0)Ψ(wx0).26

Recall that Ln1 = 1. Hence the right hand side is a convex combination of terms of the form27

Ψ(wx0), all of them being bounded above by Ψ(x0). Consequently Ψ(w0x0) = Ψ(x0). Since Ψ has28

bounded variations we get29

‖Ψ(x)−Ψ(x0)‖ = ‖Ψ(x)−Ψ(w0x0)‖ 6 ∆α(Ψ)d(x,w0x0)α 6 ∆α(Ψ)εα.30

This inequality holds for every sufficiently small positive ε hence Ψ(x) = Ψ(x0). This proves that31

Ψ is a constant function equal to Ψ(x0).32
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Lemma A.13. Assume that E is strictly convex. Let Φ ∈ H∞α (Σ, E). If LλΦ = Φ, then for every1

x ∈ Σ, for every n ∈ N, we have2

λn(x)Φ(σnx) = Φ(x).3

Proof. It follows from Lemma A.12 that for every x ∈ Σ, we have ‖Φ(x)‖ = ‖Φ‖∞. Let x ∈ Σ and4

n ∈ N. We let z = σnx. Observe that5

Φ(z) = LnλΦ(z) =
∑
σny=z

Fn(y)λn(y)−1Φ(y).6

Recall that Ln1 = 1. Hence the right hand side is a convex combination of vectors of the form7

λn(y)−1Φ(y). Since the image of λ is contained in the isometry group of E, their norm is the same as8

the one of Φ(z), namely ‖Φ‖∞. The space E being strictly convex, we get that Φ(z) = λn(y)−1Φ(y),9

for every y ∈ σ−n({z}). This holds in particular for y = x, hence the result.10

From the transfer operator to the representation. The goal is now to prove that if L and Lλ11

have the same spectral radius, then λ admits almost invariant vectors. We first cover the case when12

1 is an eigenvalue of Lλ (Proposition A.14). In this situation we combine a convexity argument13

taking place in E with the visibility property to prove the existence of a non-zero vector φ0 ∈ E14

that is fixed by a finite index subgroup G0 of G. The second step deals with the general situation,15

i.e. when Lλ admits almost invariant vectors (Proposition A.18). The proof of this proposition is16

by contradiction. Negating the statement provides a family of counterexamples. Then, using an17

ultra-limit argument, we are able two produce a new twisted transfer operator for which 1 is an18

eigenvalue, therefore reducing the general case to the previous one.19

Proposition A.14. We assume that the extension of (Σ, σ) by θ has the visibility property. There20

exists a finite index subgroup G0 of G such that for every representation λ : G → Isom(E) into a21

uniformly convex Banach space (E, ‖ . ‖) the following holds. If 1 is an eigenvalue of the twisted22

transfer operator Lλ, then the representation λ restricted to G0 has a non-zero invariant vector23

φ0 ∈ E.24

Proof. We start the proof by introducing a few auxiliary objects that will lead to the definition25

of G0. The most important point is that these objects do not involve the representation of G.26

Let D2 ∈ R be the constant given by Proposition A.11. We fix an integer m ∈ N such that27

e−mαD2 < 1/2. Up to increasing the value of m we can assume that θ : Σ → G is constant when28

restricted to any cylinder of length m. Since (Σ, σ) is an irreducible subshift of finite type, there29

exists a finite subset W0 ⊂ W with the following property: for every w,w′ ∈ W, there exists30

w0 ∈ W0 such that ww0w
′ is admissible. We denote by N the length of the longest word in W0.31

As θ is locally constant, the set32

U = {θk(x) | x ∈ Σ, k ∈ J0,m+NK}33

is finite. It follows from the visibility property, there exists a finite subset U ′ of G with the following34

property: for every g ∈ G, there exists two elements u′1, u′2 ∈ U ′, a point x ∈ Σ, and an integer35

n ∈ N, satisfying g = u′1θn(x)u′2. Finally, we let36

K = |U |2 |U ′|2 .37

Since G is finitely generated, it has only finitely many finite index subgroups whose index does not38

exceed K. We define G0 as the intersection of these subgroups. It is a finite index subgroup of G.39
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Let us now fix a representation λ : G→ Isom(E) into a uniformly convex Banach space (E, ‖ . ‖)1

such that 1 is an eigenvalue of the twisted transfer operator Lλ. We choose a non-zero eigenvector2

Φ ∈ H∞α (Σ, E) of Lλ, i.e. LλΦ = Φ. It follows that the map x→ ‖Φ(x)‖ is constant (Lemma A.12)3

and ∆α(Φ) 6 D2‖Φ‖∞ (Proposition A.11).4

We write v1, . . . , v` for the collection of admissible words of length m. Let i ∈ J1, `K. We denote5

by Ci the closure of the convex hull of Φ([vi]). Since E is uniformly convex, the zero vector 0 ∈ E6

admits a unique projection on Ci that we denote by φi. It follows from our choice of m, that for7

every x, x′ ∈ [vi], we have8

‖Φ(x)− Φ(x′)‖ 6 ∆α(Φ)e−mα <
1

2
‖Φ(x)‖ .9

Consequently Ci does not contains the zero vector and therefore φi is non-zero. We define Hi as10

the pre-image by λ : G→ Isom(E) of the stabilizer of φi. We are going to show that Hi is a finite11

index subgroup of G. To that end we start by proving the following lemma.12

Lemma A.15. For every x ∈ Σ, for every n ∈ N, there exists two elements u1, u2 ∈ U such that13

u1θn(x)u2 ∈ Hi.14

Proof. Let x ∈ Σ and n ∈ N. For simplicity we let g = θn(x). Let w be the prefix of length15

n+m of x. Since θ : Σ→ G is constant when restricted on any cylinder of length m, we note that16

θn(x′) = θn(x) for every x′ ∈ [w]. By the very definition of W0, there exists w1, w2 ∈ W0 such17

that viw1ww2vi is admissible. We denote by p and q the length of viw1 and ww2 respectively and18

observe that p 6 m+N and q 6 n+m+N .19

We now claim that there exist u1, u2 ∈ U such that for every y1 ∈ [vi], there exists y2 ∈ [vi]20

satisfying21

λ(u1gu2)Φ(y1) = Φ(y2).22

Choose y1 ∈ [vi]. It follows from our choice of w1 and w2 that y2 = viw1ww2y1 and z = ww2y1 are23

two well defined points of Σ. Moreover z = σpy2 and y1 = σqz. According to Lemma A.13 we have24

λp+q(y2)Φ(y1) = λp+q(y2)Φ(σp+qy2) = Φ(y2).25

Note that y2 belongs to [vi]. Hence it suffices to show that θp+q(y2) can be written u1gu2 where u126

and u2 do not depend on y1. The cocycle relation that θp+q satisfies yields27

θp+q(y2) = θp(y2)θn(σpy2)θq−n(σp+ny2) = θp(y2)θn(z)θq−n(σnz).28

By construction z belongs to [w], hence θn(z) = θn(x) = g. Observe that p and q − n are bounded29

above by m + N . Hence u1 = θp(y2) and u2 = θq−n(σnz) belong to U . The proof of the claim30

will be complete if we can prove that u1 and u2 do not depend on y1. Consider y′1 another element31

of [vi] and let as previously y′2 = viw1ww2y
′
1 and z = ww2y

′. We observe that z and z′ belong to32

the same cylinder, namely [ww2vi] whose length is bounded below by q +m. Hence σnz and σnz′33

coincide on the first q− n+m letters. Since θ : Σ→ G is constant on any cylinder of length m, we34

get θq−n(σnz) = θq−n(σnz′). The same argument shows that θp(y2) = θp(y
′
2), which completes the35

proof of our claim.36

It follows from the claim that λ(u1gu2) maps Ci into itself as well. In particular, λ(u1gu2)φi37

belongs to Ci. However λ(u1gu2) being a linear isometry we have ‖λ(u1gu2)φi‖ = ‖φi‖. Recall38
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that we defined φi as the projection of 0 onto Ci. By unicity of the projection (E is uniformly1

convex) we get λ(u1gu2)φi = φi. In other words u1gu2 = u1θn(x)u2 belongs to Hi which completes2

the proof of the lemma.3

As the extension of (Σ, σ) by θ satisfies the visibility property, the previous lemma has the4

following consequence:5

G =
⋃

u1,u2∈U,u′1,u′2∈U ′
u′1u
−1
1 Hiu

−1
2 u′2 =

⋃
u1,u2∈U,u′1,u′2∈U ′

[(
u′1u
−1
1

)
Hi

(
u′1u
−1
1

)−1
] (
u′1u
−1
1 u−1

2 u′2
)
.6

In other words G can be covered by finitely many cosets of conjugates of Hi. Moreover the number7

of these cosets is bounded above by8

K = |U |2 |U ′|2 .9

According to [31, Lemma 4.1], Hi is a finite index subgroup of G and [G : Hi] 6 K. It follows from10

its definition that G0 is a subgroup of Hi, thus the representation λ restricted to G0 has a non-zero11

invariant vector, namely φi.12

Definition A.16. We say that a collection E of Banach spaces is uniformly convex if for every13

ε > 0 there exits η > 0 such that for every space (E, ‖ . ‖) of E , for every unit vectors φ, φ′ ∈ E, if14

‖φ− φ′‖ > ε, then ‖φ+ φ′‖ 6 2(1− η).15

Remark. This definition not only asks that each space E ∈ E is uniformly convex, but also that16

the parameters quantifying their rotundity work for all spaces simultaneously.17

Definition A.17. Let λ : G→ Isom(E) be a representation of G into a Banach space. Let S be a18

finite subset of G and ε ∈ R∗+. A vector φ ∈ E is (S, ε)-invariant (with respect to λ) if19

sup
s∈S
‖λ(s)φ− φ‖ < ε ‖φ‖ .20

The representation λ : G→ Isom(E) almost has invariant vectors if for every finite subset S of G,21

for every ε ∈ R∗+ there exists an (S, ε)-invariant vector.22

Proposition A.18. We assume that the extension of (Σ, σ) by θ has the visibility property. There23

exists a finite index subgroup G0 of G with the following property. Let E be a uniformly convex24

collection of Banach spaces. For every finite subset S0 of G0, for every ε ∈ R∗+, there exists25

η ∈ R∗+, such that the following holds. Let λ : G → Isom(E) be a representation of G into a26

Banach space (E, ‖ . ‖) of E. If the twisted transfer operator Lλ has an η-invariant vector, then the27

representation λ admits an (S0, ε)-invariant vector.28

Before giving the proof, we recall some useful material regarding ultra-limit of Banach spaces.29

Ultra-limit of Banach spaces. Let ω : P(N) → {0, 1} be a non-principal ultra-filter, i.e. a30

finitely additive map which vanishes on any finite subset of N and such that ω(N) = 1. We say31

that a property Pn is true ω-almost surely (ω-as) if ω({n ∈ N | Pn holds}) = 1. A real sequence32

(un) is ω-essentially bounded (ω-eb) if there exists M ∈ R such that |un| 6 M ω-as. We say that33

the ω-limit of (un) is ` ∈ R and write limω un = `, if for every ε > 0, we have d(un, `) < ε ω-as.34

Any real sequence which is ω-eb admits an ω-limit [4].35
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Let (En, ‖ . ‖) be a sequence of Banach spaces. We define the ultra-product ΠωEn as the set1

ΠωEn = {(φn) ∈ ΠNEn | ‖φn‖ω-eb} .2

We endow ΠωEn with the following equivalence relation: (φn) ≡ (φ′n) if limω ‖φn − φ′n‖ = 0.3

Definition A.19. The ω-limit of the sequence (En, ‖ . ‖) that we denote limω En is the quotient4

of ΠωEn by the equivalence relation ≡.5

If (φn) is an element of ΠωEn we write limω φn for its image in limω En. The set limω En6

naturally comes with a structure of vector space characterized as follows.7

(i) (limω φn) + (limω φ
′
n) = limω(φn + φ′n), for every (φn), (φ′n) ∈ ΠωEn;8

(ii) c(limω φn) = limω(cφn), for every (φn) ∈ ΠωEn and c ∈ C.9

The space limω En carries also a norm characterized by10 ∥∥∥lim
ω
φn

∥∥∥ = lim
ω
‖φn‖ , ∀(φn) ∈ ΠωEn.11

One can check that (limω En, ‖ . ‖) is a Banach space. The next lemma is a straightforward exercise.12

Lemma A.20. If (En, ‖ . ‖) is a uniformly convex collection of Banach spaces, then (limω En, ‖ . ‖)13

is uniformly convex.14

Proof of Proposition A.18. We denote by G0 the finite index subgroup of G given by Proposi-15

tion A.14. We denote by D2 and η the parameters given by Proposition A.11. Let E be a uniformly16

convex collection of Banach spaces.17

A family of counterexamples. Let S0 be a finite subset of G0 and ε ∈ R∗+. Let (ηn) be a18

sequence of positive real numbers converging to zero. Assume that the proposition is false. It19

means that for every n ∈ N, there exists a representation λn : G → Isom(En) where (En, ‖ . ‖)20

belongs to E , with the following properties:21

(i) the twisted transfer operator Lλn
has an ηn-invariant vector Φn ∈ H∞α (Σ, En);22

(ii) the representation λn does not admit any (S0, ε)-invariant vector.23

In the remainder of the proof, we write for simplicity Ln instead of Lλn
.24

Almost invariant vectors for the twisted operator. Without loss of generality we can as-25

sume that ‖Φn‖∞ = 1, for every n ∈ N. Recall that D2, η ∈ R∗+ are the parameter given by26

Proposition A.11. Since (ηn) converges to 0, up to throwing away the first terms of the sequence,27

we can assume that ηn 6 η for every n ∈ N. It follows now from Proposition A.11 that for every28

n ∈ N, we have29

∆α(Φn) 6 D2 ‖Φn‖∞ 6 D2. (23)30

We now fix k ∈ N such that e−kαD2 < 1/2. We write v1, . . . , v` for the collection of all admissible31

words of length k. Up to passing to a subsequence we may assume that there exists i ∈ J1, `K such32

that the map x→ ‖Φn(x)‖ achieved its maximum in [vi]. By reordering the elements v1, . . . , v` we33

can actually assume that i = 1. In particular it follows from (23) and our choice of k, that for every34

n ∈ N, for every x ∈ [v1], we have ‖Φn(x)‖ > 1/2.35
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The Banach space E∞. We now fix a non-principal ultra-filter ω. The limit space E∞ = limω En1

is a uniformly convex Banach space (Lemma A.20). The next step is to define a representation2

λ∞ : G→ Isom(E∞). Given g ∈ G and a vector φ = limω φn of E∞, we let3

λ∞(g)φ = lim
ω

[λn(g)φn] .4

One easily checks that λ∞(g) is a well-defined linear isometry of E∞. Moreover that map λ∞ : G→5

Isom(E∞) obtained in this way is a homomorphism. In particular, one can consider the twisted6

transfer operator7

Lλ∞ : H∞α (Σ, E∞)→ H∞α (Σ, E∞).8

that for simplicity we denote L∞.9

The eigenvector Φ∞. We now use the sequence (Φn) to produce an eigenvector of L∞. Recall10

that for every n ∈ N, for every x ∈ Σ, we have ‖Φn(x)‖ 6 1. Hence we can define a map11

Φ∞ : Σ→ E∞ as follows12

Φ∞(x) = lim
ω

Φn(x), ∀x ∈ Σ.13

Note that Φ∞ is bounded. More precisely, ‖Φ∞‖∞ 6 1. Recall that for every ∆α(Φn) 6 D2 for14

every n ∈ N. It directly follows that ∆α(Φ∞) 6 D2. Hence Φ∞ belongs to H∞α (Σ, E∞). We also15

observe that Φ∞ is non-trivial. Indeed by construction ‖Φn(x)‖ > 1/2, for every n ∈ N, for every16

x ∈ [v1]. It follows that Φ∞ restricted to [v1] does not vanish. Finally, we claim that Lλ∞Φ∞ = Φ∞.17

Let x ∈ Σ. Since L1 = 1 we can write18

LnΦn(x)− Φn(x) =
∑
σy=x

F (y)
[
λn(y)−1Φn(y)− Φn(x)

]
, ∀n ∈ N19

and20

L∞Φ∞(x)− Φ∞(x) =
∑
σy=x

F (y)
[
λ∞(y)−1Φ∞(y)− Φ∞(x)

]
.21

It follows from the definition of λ∞ and Φ∞ that22

L∞Φ∞(x)− Φ∞(x) = lim
ω

[
LnΦn(x)− Φn(x)

]
= 0,23

which completes the proof of our claim.24

Almost invariant vector for λn. The previous discussion shows that 1 is an eigenvalue of25

L∞ : H∞α (Σ, E∞) → H∞α (Σ, E∞). It follows from Proposition A.14 that the limit representation26

λ∞ : G → Isom(E∞) restricted to the finite index subgroup G0 admits a non-zero invariant φ∞.27

Such a vector can be written φ∞ = limω φn, where (φn) ∈ ΠωEn. Since φ∞ is non zero, we can28

assume without loss of generality that ‖φn‖ = 1, for every n ∈ N. Since S0 is contained in G0, for29

every g0 ∈ S0, we have30

lim
ω

[λn(g0)φn] = λ∞(g0)φ∞ = φ∞ = lim
ω
φn.31

The set S0 being finite, the vector φn is an (S0, ε)-invariant vector (with respect to λn) ω-as. This32

contradicts our initial assumption and completes the proof of the proposition.33
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Corollary A.21. We assume that the extension of (Σ, σ) by θ has the visibility property. There1

exists a finite index subgroup G0 of G with the following property. Let E be a uniformly convex2

collection of Banach spaces. For every finite subset S0 of G0, for every ε ∈ R∗+ there exists η ∈ R∗+3

such that the following holds. Let λ : G → Isom(E) be a representation of G into a Banach space4

(E, ‖ . ‖) of E. If the spectral radius ρλ of the twisted transfer operator Lλ satisfies ρλ > 1− η, then5

there exists β ∈ R such that the representation eiβλ admits an (S0, ε)-invariant vector.6

Proof. Let λ : G → Isom(E) be a representation of G into a Banach space (E, ‖ . ‖). Let η > 0.7

We claim that if ρλ > 1 − η, then there exists β ∈ R, such that the operator eiβLλ admits an8

η-invariant vector. Since ρλ is the spectral radius of Lλ, there exists β ∈ R, such that ρλe−iβ is a9

point in the boundary of Spec(Lλ). According to [11, Proposition 6.7], there exists Φ ∈ H∞α (Σ, E)10

such that11 ∥∥LλΦ− ρλe−iβΦ
∥∥
∞,α < (ρλ − 1 + η) ‖Φ‖∞,α . (24)12

Combined with the triangle inequality, it yields13 ∥∥eiβLλΦ− Φ
∥∥
∞,α 6

∥∥LλΦn − ρλe−iβΦ
∥∥
∞,α + ‖ρλΦ− Φ‖∞,α

< (ρλ − 1 + η) ‖Φ‖∞,α + (1− ρλ) ‖Φ‖∞,α .

Hence ‖eiβLλΦ − Φ‖∞,α < η‖Φ‖∞,α, which completes the proof of our claim. Observe that the14

operator eiβLλ can be seen as the twisted transfer operator Lλ′ associated to the representation15

λ′ : G→ Isom(E) defined by λ′(g) = eiβλ(g). The corollary is now a direct consequence of Propo-16

sition A.1817

A.6 Amenability and Kazhdan property (T)18

In this section we focus on representations induced by a group actions. Let Y be a set. Let19

H = `2(Y ) be the set of functions φ : Y → C which are square summable. It carries a natural20

structure of Hilbert space. A vector φ ∈ H is non-negative, if φ(y) ∈ R+ for every y ∈ Y . Given21

any vector φ ∈ H, we defined its modulus to be the vector |φ| ∈ H defined by |φ|(y) = |φ(y)| for22

every y ∈ Y . Observe that ‖|φ|‖ = ‖φ‖.23

Let G be a group acting on Y . The action of G induces a unitary representation λ : G→ U(H)24

defined as follows: for every g ∈ G, for every φ ∈ H,25

[λ(g)φ] (y) = φ(g−1y), ∀y ∈ Y.26

Observe that for every φ ∈ H, for every g ∈ G we have |λ(g)φ| = λ(g)|φ|.27

Lemma A.22. Let Y be a metric space endowed with an action of G. Let H = `2(Y ) and λ : G→28

U(H) be the unitary representation induced by the action of G. Let β ∈ [0, 2π). Let S be a finite29

subset of G and ε ∈ R∗+. If φ ∈ H is (S, ε)-invariant with respect to eiβλ, then |φ| is non-negative30

and (S, ε)-invariant with respect to λ.31

Proof. Given any two vectors φ1, φ2 ∈ H, one checks easily that their modulus satisfies32

‖|φ1| − |φ2|‖ 6 ‖φ1 − φ2‖ .33
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Let φ ∈ H, be an (S, ε)-invariant with respect to eiβλ Combining our various observations on1

modulus vector, we get that for every g ∈ S,2

‖λ(g) |φ| − |φ|‖ =
∥∥∣∣eiβλ(g)φ

∣∣− |φ|∥∥ 6 ∥∥eiβλ(g)φ− φ
∥∥ 6 ε ‖φ‖ = ε ‖|φ|‖ .3

Hence |φ| is a non-negative (S, ε)-invariant with respect to λ4

The main result of this section is the following statement.5

Theorem A.23. Let (Σ, σ) be an irreducible subshift of finite type. Let F : Σ→ R∗+ be a potential6

with α-bounded Hölder variations for some α ∈ R∗+. Let L be the corresponding transfer operator7

and ρ its spectral radius. Let G be a finitely generated group and θ : Σ → G be a locally constant8

map. We assume that the corresponding extension (Σθ, σθ) has the visibility property. For every9

finite subset S of G and every ε ∈ R∗+ there exists η ∈ R∗+ with the following property.10

Let Y be a set endowed with an action of G and λ : G → U(H) be the induced unitary rep-11

resentation, where H = `2(Y ). Let ρλ be the spectral radius of the twisted transfer operator12

Lλ : H∞α (Σ,H) → H∞α (Σ,H). If ρλ > (1 − η)ρ, then the representation λ admits an (S, ε) in-13

variant vector.14

Proof of Theorem A.23. The strategy of the proof is the following. First we renormalize the po-15

tential so that we can assume that the spectral radius of L is ρ = 1 and 1 is an invariant vector of16

L. Applying Corollary A.21 we get a finite index subgroup G0 of G such that the representation λ17

when restricted to G0 admits a certain almost invariant vector φ. We finally take advantage of the18

structure of `2(Y ) to average the orbit of φ, and thus get an almost invariant vector with respect19

to λ.20

Renormalization of the potential. We start with a reduction argument: we claim that without21

loss of generality we can assume that L has spectral radius 1 and fixes 1. Assume indeed that22

the result has be proved in this context and let us explain how to deduce the general case. Let23

h ∈ H∞α (Σ,C) be the positive eigenvector of L given by the Ruelle Perron-Frobenius Theorem24

(Theorem A.6). Following the strategy of Section A.4 we define a new potential F ′ : Σ→ R∗+ by25

F ′(x) =
1

ρ
· h(x)

h ◦ σ(x)
F (x).26

We write L′ for the corresponding transfer operator. As we observed L′ has spectral radius 1 and27

fixes 1. It follows from our assumption that we can apply Theorem A.23 to this operator.28

Let S be a finite subset of G and ε ∈ R∗+. Let η ∈ R∗+ be the parameter given by Theorem A.2329

(with the additional assumption that the transfer operator has spectral radius 1 and 1 as an30

eigenvector) applied to the potential F ′. Suppose now that Y is a space endowed with an action of31

G and denote by λ : G→ U(H) the induced unitary representation, where H = `2(Y ). Assume that32

the spectral radius of Lλ satisfies ρλ > (1− η)ρ. It follows from the discussion of Section A.4 that33

the spectral radius ρ′λ of L′λ satisfies ρ′λ = ρλ/ρ. In particular ρ′λ > 1 − η. Theorem A.23 applied34

to the potential F ′ tells us that λ admits an (S, ε) invariant vector, which completes the proof of35

our claim.36
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Finite index subgroup with almost invariant vectors. From now on we assume that L has1

spectral radius 1 and fixes 1. Let S be a finite subset of G and ε ∈ R∗+. We denote by G0 the finite2

index subgroup of G given by Corollary A.21. We denote by u1, . . . , um a set of representatives of3

G/G0. For every g ∈ S, there exists a permutation σg : J1,mK→ J1,mK such that for all i ∈ J1,mK,4

we have5

u−1
σg(i)gui ∈ G0.6

We now define a finite subset S0 of G0 as7

S0 =
{
u−1
σg(i)gui

∣∣∣ g ∈ S, i ∈ J1,mK
}
.8

Note that the set of all Hilbert spaces is a uniformly convex collection of Banach spaces. According9

to Corollary A.21, there exists η ∈ R∗+ with the following property. Let λ : G→ U(H) be a unitary10

representation of G. If the spectral radius of the twisted transfer operator Lλ is larger than 1− η,11

then there exists β ∈ R such that the representation eiβλ admits an (S0, ε/
√
m)-invariant vector.12

Representation induced by an action. Let Y be a set endowed with an action of G and13

λ : G→ U(H) be the induced unitary representation, where H = `2(Y ). Assume that the spectral14

radius ρλ of the twisted transfer operator Lλ is at least 1 − η. According to the very definition15

of η, there exists β ∈ R, such that the representation eiβλ admits an (S0, ε/
√
m)-invariant vector16

φ. It follows from Lemma A.22 that |φ| is an (S0, ε/
√
m)-invariant vector with respect to the17

representation λ. We now let18

φ̄ =
1

m

m∑
i=1

λn(ui) |φ| .19

Let g ∈ S. The computation yields20

mλ(g)φ̄ =

m∑
i=1

λ (gui) |φ| =
m∑
i=1

λ
(
uσg(i)

)
λ
(
u−1
σg(i)gui

)
|φ| .21

On the other hand, reindexing the sum defining φ̄ gives22

mφ̄ =

m∑
i=1

λ
(
uσg(i)

)
|φ|23

Recall that for every i ∈ J1,mK, the element u−1
σg(i)gui belongs to S0. Thus the triangle inequality24

yields25 ∥∥λ(g)φ̄− φ̄
∥∥ 6 1

m

m∑
i=1

∥∥∥λ(u−1
σg(i)gui

)
|φ| − |φ|

∥∥∥ < ε√
m
.26

This inequality holds for every g ∈ G. Observe that φ̄ is obtained by averaging non-negative vectors27

of H all of them having norm 1. It follows that the norm of φ̄ is bounded below by 1/
√
m. Hence28

φ̄ is an (S, ε)-invariant vector with respect to λ.29
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Amenability. There are numerous equivalent definition of amenability. The one that is the most1

adapted four our purpose can be formulated in terms of regular representation.2

Definition A.24. The action of G on Y is amenable if and only if the representation λ : G→ U(H)3

admits almost invariant vectors. The group G is amenable if its action on itself is amenable.4

Theorem A.25 (Amenability criterion). Let (Σ, σ) be an irreducible subshift of finite type. Let5

F : Σ → R∗+ be a potential with α-bounded Hölder variations for some α ∈ R∗+. Let L be the6

corresponding transfer operator and ρ its spectral radius. Let G be a finitely generated group and7

θ : Σ→ G be a locally constant map. We assume that the corresponding extension (Σθ, σθ) has the8

visibility property. Let Y be a set endowed with an action of G and λ : G → U(H) be the induced9

unitary representation, where H = `2(Y ). Let ρλ be the spectral radius of the twisted transfer10

operator Lλ : H∞α (Σ,H)→ H∞α (Σ,H) defined by11

LλΦ(x) =
∑
σy=x

F (y)λ(y)−1Φ(y).12

The following statements are equivalent.13

(i) The action of G on Y is amenable.14

(ii) ρ belongs to Spec(Lλ).15

(iii) ρλ = ρ.16

Proof. Reasoning as in the beginning of the proof of Theorem A.23 we observe that without loss17

of generality we can assume that L has spectral radius 1 and fixes 1. We start with (ii)⇒(iii)18

Recall that ρλ 6 1 (Corollary A.9). Hence if 1 belongs to Spec(Lλ), then ρλ = 1. We now focus19

on (iii)⇒(i). Assume that ρλ = 1. It follows from Theorem A.23 that λ almost admits invariants20

vectors. Hence the action of G on Y is amenable. We are left to prove (i)⇒(ii). Assume that the21

action of G on Y is amenable. According to Corollary A.9 it is sufficient to prove that ρλ > 1. Let22

n ∈ N. Let ε > 0. Since θ : Σ→ G is locally constant, the set23

S = {θn(x) | x ∈ Σ}24

is finite. Since the action of G is amenable, there exists an (S, ε)-invariant vector φ ∈ H \ {0}.25

Without loss of generality we can assume that ‖φ‖ = 1. We define a map Φ: Σ → H by letting26

Φ(x) = φ, for every x ∈ Σ. Obviously ‖Φ‖∞ = 1 and ∆α(Φ) = 0, hence Φ belongs to H∞α (Σ,H).27

Using the fact that L1 = 1, we can write for every x ∈ Σ,28

‖LnλΦ(x)− Φ(x)‖ 6
∑
σny=x

Fn(y)
∥∥λn(y)−1Φ(y)− Φ(x)

∥∥ =
∑
σny=x

Fn(y) ‖λn(y)φ− φ‖ < ε.29

This proves that ‖LnλΦ− Φ‖∞ < ε. In particular, we get30

‖LnλΦ‖∞,α > ‖L
n
λΦ‖∞ > ‖Φ‖∞ − ε > 1− ε.31

Recall that ‖Φ‖∞,α = 1. Thus we have proved that the norm of Lnλ – see as an operator ofH∞α (Σ,H)32

– is larger than 1− ε. This holds for every ε > 0. Hence for every n ∈ N, we have33

‖Lnλ‖∞,α > 1.34

Consequently35

ρλ = lim
n→∞

n

√
‖Lnλ‖∞,α > 1.36
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Kazhdan property (T). Let us recall first the definition of property (T).1

Definition A.26. A discrete group G has Kazhdan property (T), if there exists a finite subset S2

of G and ε ∈ R∗+ with the following property. Any unitary representation π : G → U(H) into a3

Hilbert space which admits (S, ε)-invariant vectors has a non-zero invariant vector. Such a pair4

(S, ε) is called a Kazhdan pair.5

Let us also recall the following useful statement.6

Lemma A.27. Assume that the action of G on Y is transitive. The set Y is finite if and only if7

the representation λ : G→ U(H) admits a non-zero invariant vector.8

Theorem A.28. Let (Σ, σ) be an irreducible subshift of finite type. Let F : Σ→ R∗+ be a potential9

with α-bounded Hölder variations for some α ∈ R∗+. Let L be the corresponding transfer operator10

and ρ its spectral radius. Let G be a finitely generated group with Kazhdan property (T) and11

θ : Σ→ G be a locally constant map. We assume that the corresponding extension (Σθ, σθ) has the12

visibility property. There exists η > 0 with the following property.13

Let Y be an infinite set endowed with an transitive action of G and λ : G→ U(H) be the induced14

unitary representation, where H = `2(Y ). Let ρλ be the spectral radius of the twisted transfer15

operator Lλ : H∞α (Σ,H)→ H∞α (Σ,H) defined by16

LλΦ(x) =
∑
σy=x

F (y)λ(y)−1Φ(y).17

Then ρλ 6 (1− η)ρ.18

Proof. Let (S, ε) be a Kazhdan pair of G. Let η > 0 be the constant given by Theorem A.23.19

Let Y be a set endowed with an transitive action of G and λ : G → U(H) be the induced unitary20

representation, where H = `2(Y ). Let Lλ be the corresponding twisted transfer operator. Assume21

that ρλ > (1− η)ρ. It follows from Theorem A.23 that λ has an (S, ε)-invariant vector. Since (S, ε)22

is a Kazhdan pair, it follows that λ has a non-zero invariant vector. However the action of G on Y23

is transitive. Hence Y is finite (Lemma A.27).24

B Roblin’s theorem25

In this appendix, we provide a proof of Roblin’s Theorem. Note that the statement below does not26

require H to be a normal subgroup. The proof is probably well-known from the specialists in the27

field, however we did not find it in the literature. It relies on a rather simple counting argument in28

a hyperbolic space.29

Theorem B.1 (compare with Roblin [34, Théorème 2.2.2]). Let G be a group acting properly30

co-compactly on a hyperbolic space X. Let H be a subgroup of G. We denote by ωG and ωH the31

exponential growth rates of G and H acting on X. If H is co-amenable in G, then ωH = ωG.32

Let G be a group acting properly co-compactly on a hyperbolic space. Let ωG be the exponential33

growth rate of G acting on X. We fix a base point o ∈ X. Given r ∈ R+ we define the ball of34

radius r to be35

B(r) = {g ∈ G | d(go, o) 6 r} .36
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Coornaert [12] proved that there exists C1 ∈ R∗+ such that for every r ∈ R+,1

eωGr 6 |B(r)| 6 C1e
ωGr. (25)2

Let δ ∈ R+ be the hyperbolicity constant of X. Up to increasing the value of δ we can always3

assume that the following holds:4

(i) The diameter of X/G is at most δ. In particular, for every x, y ∈ X, there exists g ∈ G such5

that d(x, gy) 6 δ.6

(ii) 1− C1e
−ωGδ > 0.7

For every r ∈ R+, we denote by S(r) = B(r) \B(r − δ) the sphere of radius r.8

Lemma B.2. There exists C2 ∈ R∗+ with the following property. Given `, r ∈ R+ and x ∈ X, we9

denote by U the set of elements g ∈ B(`) such that 〈go, x〉o > r. The cardinality of U is bounded10

above by11

|U | 6 C2e
ωG(`−r).12

Proof. We fix a geodesic [o, x] from o to x and write y for the point of [o, x] at distance r from o.13

According to our choice of δ that there exists h ∈ G such that d(y, ho) 6 δ. Note that d(ho, o) > r−δ.14

Let g ∈ U . It follows from the four point inequality (4) that15

〈go, o〉ho 6 〈go, o〉y + δ 6 2δ16

Consequently17

d
(
h−1go, o

)
= d(go, ho) = d(go, o)− d(ho, o) + 2 〈go, o〉ho 6 `− r + 5δ.18

Thus h−1U is contained in B(`− r + 5δ) and the result follows from (25).19

Let ` ∈ R+. We denote by µ` the probability measure on G which is uniformly distributed on20

S(`). It follows from (25) that for every g ∈ S(`) we have21

1

C1
e−ωG` 6 µ`(g) 6

1

C3
e−ωG`, (26)22

where C3 = 1−C1e
−ωGδ. Our first task is to provide an estimate for the n-th convolution product23

of µ`. Later we will let ` tends to infinity. Thus we will be particularly careful to control these24

estimates in terms of `. More precisely we are going to prove the following statement.25

Proposition B.3. There exists D ∈ R∗+ such that for every ` ∈ R+, for every n ∈ N, for every26

g ∈ G, we have27

µ∗n` (g) 6 Dn

(
`

δ
+ 1

)n
exp

(
−ωG

n`+ d(go, o)

2

)
.28

In order to prove this proposition, we introduce the following sets that will allow us to track the29

orbits of the random walk. For every ` ∈ R+, for every n ∈ N, for every g ∈ G, we let30

O`(g, n) = {(u1, . . . , un) ∈ S(`)n | u1 · · ·un = g} .31

Note that if d(go, o) > n`, then O`(g, n) is empty. We adopt the convention that a product of32

elements of G indexed by the empty set is trivial. It follows that O`(g, 0) is empty if g is non trivial33

and reduced to a single element (the empty tuple) if g = 1.34
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Lemma B.4. There exists D0 ∈ R∗+ such that for every ` ∈ R+, for every n ∈ N, for every g ∈ G,1

we have2

|O`(g, n)| 6 Dn
0

(
`

δ
+ 1

)n
exp

(
ωG

n`− d(go, o)

2

)
.3

Proof. Let C2 be the constant given by Lemma B.2. We let4

D0 = C2e
2ωGδ.5

Let ` ∈ R+. We are going to prove the result by induction on n. If n = 0, it follows from our6

convention that for every g ∈ G, the set O`(g, 0) contains at most 1 element, hence the result.7

Assume now that the statement holds for some n ∈ N. Let g ∈ G. For every element u =8

(u1, . . . , un+1) of O`(g, n + 1) we let gu = u1 · · ·un = gu−1
n+1 (according to our convention gu9

is trivial is n = 0). For every k ∈ N such that kδ 6 `, we denote by Pk the set of elements10

u ∈ O`(g, n+ 1) such that11

kδ 6 〈guo, o〉go < (k + 1)δ.12

Note that if u = (u1, . . . , un+1) is an element of O`(g, n + 1), then 〈guo, o〉go 6 d(un+1o, o) 6 `.13

Hence the collection (Pk) forms a partition of O`(g, n + 1). We are now going to estimate the14

cardinality of each of these sets.15

Let k ∈ N such that kδ 6 `. We write Uk for the image of Pk by the projection Pk → S(`)16

sending (u1, . . . , un+1) to un+1. It follows from Lemma B.2 that17

|Uk| 6 C2e
ωG(`−kδ) 6 D0e

−ωG(k+2)δeωG`.18

Let un+1 be an element of Uk and u = (u1, . . . , un+1) a pre-image of un+1 in Pk. By definition19

(u1, . . . , un) is an element of O`(gu−1
n+1, n), whose cardinality can be bounded from above using the20

induction hypotheses. It follows that21

|Pk| 6
∑

un+1∈Uk

∣∣O`(gu−1
n+1, n)

∣∣
6

∑
un+1∈Uk

Dn
0

(
`

δ
+ 1

)n
exp

(
ωG

n`− d(gu−1
n+1o, o)

2

)
.

(27)22

Observe that for any un+1 ∈ Uk we have 〈gu−1
n+1o, o〉go < (k + 1)δ Hence23

d
(
gu−1

n+1o, o
)
> d(go, o) + d(un+1o, o)− 2

〈
gu−1

n+1o, o
〉
go
> d(go, o) + `− 2(k + 2)δ.24

Consequently (27) becomes25

|Pk| 6
∑

un+1∈Uk

eωG(k+2)δDn
0

(
`

δ
+ 1

)n
exp

(
ωG

(n− 1)`− d(go, o)

2

)

6 |Uk| eωG(k+2)δDn
0

(
`

δ
+ 1

)n
exp

(
ωG

(n− 1)`− d(go, o)

2

)
.

We now use the above estimate of |Uk| to get26

|Pk| 6 Dn+1
0

(
`

δ
+ 1

)n
exp

(
ωG

(n+ 1)`− d(go, o)

2

)
.27
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Note that this estimate does not depends on k. Moreover there are at most `/δ + 1 integer k ∈ N1

such that kδ 6 `. Since (Pk) forms a partition of O`(g, n+ 1) we obtain2

|O`(g, n+ 1)| 6
∑
kδ6`

|Pk| 6 Dn+1
0

(
`

δ
+ 1

)n+1

exp

(
ωG

(n+ 1)`− d(go, o)

2

)
.3

Hence the statement holds for n+ 1, which completes the proof of the proposition.4

Proof of Proposition B.3. We denote by C3 and D0 the constants given by (26) and Lemma B.45

respectively and let D = D0/C3. Let ` ∈ R+. Let n ∈ N and g ∈ G. It follows from the definition6

of the convolution that7

µ∗n` (g) =
∑

(u1,...,un)∈O`(g,n)

µ`(u1) · · ·µ`(un).8

Combining (26) and Lemma B.4, the previous equality becomes9

µ∗n` (g) 6

(
D0

C3

)n(
`

δ
+ 1

)n
exp

(
−ωG

n`+ d(go, o)

2

)
6 Dn

(
`

δ
+ 1

)n
exp

(
−ωG

n`+ d(go, o)

2

)
.

We now fix a subgroup H of G and write ωH for the exponential growth rate of H acting on10

X. We denote by Y the set of left H-cosets in G. The group G acts on Y by right translations.11

We write H = `2(Y ) for the set of square summable functions from Y to C and λ : G → U(H)12

for the regular representation of G relative to H. Given ` ∈ R+, we consider the random walk13

on Y associated to the probability measure µ`. Said differently for every y ∈ Y and g ∈ G the14

probability of going from y to y ·g is µ`(g). Let y0 be the point of Y corresponding to H. Note that15

its stabilizer is exactly H. Hence the probability p`(n) that after n-step, the random walk starting16

to y0 goes back to y0 is exactly17

p`(n) = µ∗n` (H).18

We associate to this random walk a Markov operator M` on H.19

M`φ =
∑
g∈G

µ`(g)λ(g)φ, ∀φ ∈ H.20

Since µ` is symmetric, M` is a self-adjoint operator. It follows that its spectral radius ρ` can be21

computed as follows – see for instance [39, Lemma 10.1].22

ρ` = lim sup
n→∞

n
√
p`(n) = lim sup

n→∞

n

√
µ∗n` (H).23

The next proposition relates the spectral radius ρ` to the critical exponents ωH and ωG.24

Proposition B.5. The growth rates of H and G acting on X satisfy the following inequality25

ln ρ∞ 6 max

{
−1

2
ωG, ωH − ωG

}
,26

where ρ∞ = lim sup`→∞
√̀
ρ`.27
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Proof. We fix ε ∈ R∗+ such that if ωH < ωG/2, then ωH + ε < ωG/2. It follows from the definition1

of exponential growth rate that there exists A ∈ R∗+ such that for every r ∈ R+,2

|H ∩ S(r)| 6 |H ∩B(r)| 6 Ae(ωH+ε)r. (28)3

We write D for the constant given by Proposition B.3. Let ` ∈ R+ and n ∈ N. Our first task is to4

bound µ∗n` (H) from above. To that end we partition H according to the length of its elements.5

µ∗n` (H) =
∑
k∈N

∑
h∈H∩S(kδ)

µ∗n` (h).6

Note that if n` > kδ, then the probabilities µ∗n` (h) vanish. Using Proposition B.3, we get7

µ∗n` (H) 6
∑
kδ6n`

|H ∩ S(kδ)|Dn

(
`

δ
+ 1

)n
exp

(
−ωG

n`+ (k − 1)δ

2

)
.8

Combined with (28) it yields9

µ∗n` (H) 6 Ae
1
2ωGδDn

(
`

δ
+ 1

)n
e−

1
2ωGn`

∑
kδ6n`

e(ωH+ε− 1
2ωG)kδ. (29)10

We now distinguish two cases. Assume first that ωH < ωG. It follows from our choice of ε that11

ωH + ε− ωG/2 < 0. Hence a (rather brutal !) majoration in (29) gives12

µ∗n` (H) 6 Ae
1
2ωGδDn

(
`

δ
+ 1

)n(
n`

δ
+ 1

)
e−

1
2ωGn`.13

Consequently14

ln ρ` 6 lnD + ln

(
`

δ
+ 1

)
− 1

2
ωG`.15

This inequality holds for every ` ∈ R+. Consequently16

ln ρ∞ = lim sup
`→∞

1

`
ln ρ` 6 −

1

2
ωG,17

which completes the first case. Assume now that ωH > ωG/2. Computing the sum in (29) we get18

µ∗n` (H) 6 Ae
1
2ωGδDn

(
`

δ
+ 1

)n
e−

1
2ωGn`

e(ωH+ε− 1
2ωG)(n`+δ) − 1

e(ωH+ε− 1
2ωG)δ − 1

.19

Consequently20

ln ρ` 6 lnD + ln

(
`

δ
+ 1

)
+ (ωH + ε− ωG)`.21

Since this inequality holds for every ` ∈ R+, we get ln ρ∞ 6 ωH + ε − ωG. This last inequality22

holds for every ε > 0, hence the result.23

Proof of Theorem B.1. Assume now that H is co-amenable in G. According to Kesten’s criterion,24

the spectral radius of any of the Markov operator M` is 1. It follows from Proposition B.5 that25

ωH > ωG. The other inequality is obvious.26
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Remark. The exact same strategy can be used to provide a lower bound for µ∗n` of the same kind1

than the one given in Proposition B.3. This leads to the more general version of Proposition B.52

Proposition B.6. The limit ρ∞ = lim`→∞
√̀
ρ` exists. Moreover3

ln ρ∞ = max

{
−1

2
ωG, ωH − ωG

}
.4
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