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Abstract

Fullerene are cage-like hollow carbon molecules graph of pseudospherical sym-
metry consisting of only pentagons and hexagons faces. It has been the object
of interest for chemists and mathematicians due to its widespread application
in various fields, namely including electronic and optic engineering, medical sci-
ence and biotechnology. A Fullerene molecular, Γn of n atoms has a multiplicity
of isomers which increases as Niso ∼ O(n9). For instance, Γ180 has 79,538,751
isomers. The Fries and Clar numbers are stability predictors of a Fullerene
molecule. These number can be computed by solving a (possibly NP -hard)
combinatorial optimization problem. We propose several ILP formulation of
such a problem each yielding a solution algorithm that provides the exact valued
of the Fries and Clar numbers. We compare the performances of the algorithm
derived from the proposed ILP formulations. One of this algorithm is used to
find the Clar isomers, i.e., those for which the Clar number is maximum among
all isomers having a given size. We repeated this computational experiment for
all sizes up to 204 atoms. In the course of the study a total of 2 649 413 774
isomers were analyzed.
The second essay concerns developing an iterative primal dual infeasible path
following (PDIPF) interior point (IP) algorithm for separable convex quadratic
minimum cost flow network problem. In each iteration of PDIPF algorithm, the
main computational effort is solving the underlying Newton search direction
system. We concentrated on finding the solution of the corresponding linear
system iteratively and inexactly. We assumed that all the involved inequalities
can be solved inexactly and to this purpose, we focused on different approaches
for distributing the error generated by iterative linear solvers such that the
convergences of the PDIPF algorithm are guaranteed. As a result, we achieved
theoretical bases that open the path to further interesting practical investiga-
tion.
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Introduction

This doctoral thesis offers a contribution to the study of two combinatorial
optimization problems, namely, finding the Clar number in Fullerene graph and
Distributing the errors in iterative interior point methods.

The problem of computing the Clar number for Fullerene graph consists in
finding the maximum number of saturated hexagons that are pairwise indepen-
dent over all possible perfect matching of Fullerene graph.

It has been studied in the literature so far that there is a significant cor-
relation between the Clar number and the stability of Fullerene molecule. A
Fullerene molecule of n atoms has a multiplicity of isomers which increases as
∼ O(n9). Not all isomers of a given size have the same Clar number. Thereafter,
since a high Clar number denotes a higher molecule stability, it is of great inter-
est to identify Clar isomers, for each Fullerene molecule, which are the isomers
for which the Clar number has the maximum possible value among all isomers.

The task of finding the Clar isomers of Fullerene graphs with sizes in a given
interval can be accomplished by solving quite a large number of optimization
problems. For example, for Fullerene molecule with 200 atoms even a solution
algorithm that would take a second of computing time per isomer, would take
almost seven years on a single processor to examine all the isomers. There-
fore, it is necessary to design efficient solution algorithms for improving the
methods proposed so far in the literature which is the purpose of the present
doctoral thesis. To do so, we are interested in computing Clar number as (pos-
sibly NP−hard) combinatorial optimization problem and taking a theoretical
approaches that exploits the theory of Polyhedral Combinatorics as opposed to
approximate solution. To this purpose, we propose several integer linear pro-
gramming formulations and we try to strengthen the already proposed integer
linear formulation in Ahmadi et.al (2015) by finding sets of valid inequalities
that can be added to the formulation either “statically”, if their number is small,
or “dynamically” by a suitable separation algorithm.
Each of our established formulations results in a solution algorithm that provides
an exact value of Clar number. These algorithms are applied under the frame-
work of the well-knowing branch-and-cut method. Branch-and-Cut method is a
generic solution technique whose performance for a given type of optimization
problem is mainly determined by two key elements: a close but manageable
approximation of the associated polyhedron and secondly, efficient methods to
solve the corresponding separation problem which is to decide for an arbitrary
point in the ambient space whether or not it lies inside the polyhedron just
mentioned.

In the second essay, we investigate a nonlinear optimization problem on solv-
ing convex quadratic programming problem by iterative primal-dual infeasible
path following interior point algorithm. This part of the thesis is dedicated to
analyzing possible iterative approaches for solving inexactly the linear system
of Newton directions one has to face in each outer iteration of primal dual inte-
rior point algorithm. Indeed, in our study, we consider a generic Newton linear
system with the assumption that each of the involved equation can be solved
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inexactly. Thereafter, the idea is to transform this generic system of equations
to various subsystems through the Gaussian elimination procedure and to solve
the obtained linear subsystems by exploiting appropriate inexact linear solvers.
Our final contribution will be the proposal of two innovative methods for redis-
tributing the corresponding error generated by inexact linear solver such that
the convergence of iterative primal-dual infeasible path following algorithm is
guaranteed.

In this study, we try to explain and discuss all the required theoretical bases
of the proposed approaches. Though, due to the limitation of time, our research
could not go deeper. In particular, the fully presents of the solution method
and computational results including implementing the proposed algorithms on
minimum quadratic cost flow problem instances will be the aim of the future
research.

It is worth mentioning that, the motivation behind this study was to ful-
fill the purpose of Mixed Integer Nonlinear Optimization (MINO), European-
founded Marie Sklodowska Curie, Initial Training Network, 7th Framework
project. The internship opportunity I had with MINO project was a great
chance for learning and researching development.
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Chapter 1

Preliminaries of
Combinatorial Optimization

This chapter introduces the terminology and basic concepts used in this doctoral
thesis. We start with a few notations. An introduction into some definitions
in the field of graph theory is given in Section 1.1. Section 1.2 deals generaly
with the concepts of polyhedral theory. Thereafter, the rough ideas of Integer
Programming (IP) are discussed in Section 1.3. In order to solve IP problems
we introduce the Branch & Cut algorithm in Section 1.3.2. Section 1.4 and 1.5
are describing briefly the matching and stable set polytopes. For an extended
exposition of these arguments. see, e.g., Cornforti, Cornujols & Zambelli[3],
Grotschel, Lovsz & Schrijver [4].

1.1 Graphs

In this section we deal with several definitions and notations in the field of graph
theory which are based on [5, 6].

An undirected graph G is a pair (V,E) consisting of a nonempty, finite set
V of nodes and a finite (possibly empty) set E of edges which are unordered
pairs of distinct nodes. Unless otherwise stated, the graphs in this thesis are
generally assumed to be undirected.An edge e = {u, v} is usually written as uv,
which is equal to vu. In our context the edge set E contains no multiple edges.
The order of a graph G is the cardinality of its node set V , which is the
number of elements of V . It is denoted by |G|.

A graph is called finite if both V and E are finite. In the scope of this thesis
we are just dealing with finite graphs.

A node v is incident to an edge e if e = uv. The two nodes incident to an edge
are its endnodes. Two nodes u, v of a graph G are adjacent or neighbors if
uv is an edge of G. For a node set W ⊆ V , we define the set of neighbors Γ(W )
as the set of all nodes in V W which are adjacent to at least one node in W
and call it the neighborhood. For a single node we write Γ(v) instead of Γ(v).

5
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The degree of a node v, denoted by δ(v), in a graph G is the number of edges
incident with v, or equivalently the number of adjacent nodes to v, which is the
cardinality of Γ(v). A node is called isolated if its degree is zero.

1.1.1 Cuts and Degree

Let U,W ⊆ V be two node sets. We call the set of edges with precisely one
end in U a cut of G and denote it by δ(U). In this context, the set U and its
complement U := V U are referred to as the shores of the cut. We write δ(v)
instead of δ(v) for a node v ∈ V and call δ(v) the star of v. We will also use
the abbreviation (U : W ) := δ(U)∩ δ(W ) for the set of edges with one end in U
and the other end in W . The degree deg(v) of a node v is the number of edges
incident with v, |δ(v)|.

A path is a nonempty graph P = (V,E) with the node set

V = {vi|i = 0, . . . k} (1.1)

of a pairwise distinct nodes and the edge set

E = {vivi+1|i = 0, . . . , k1} (1.2)

E = {vivi+1|i = 0, . . . , k1}. The nodes v0 and vk are linked by P and are called
its ends. The remaining nodes v1, . . . , vk1 are called the inner nodes of P . A
path is often referred to by the sequence of its nodes,i. e., P = v0, v1 . . . vk , and
is called a path from v0 to vk or simply a (v0, vk)-path. The number of edges of
a path is its length.

If P = v0, . . . , vk1 is a path of length at least 2 then the graph C :=
(V,E ∪ vk−1v0) is called a cycle. As with paths, a cycle is often referred to
by the (cyclic) sequence of its nodes, e. g., the above cycle C could be written
as v0 . . . vk1v0. The length of a cycle is the number of its edges (or nodes) and
a cycle of length k is also called a k-cycle. A chord of a cycle C is an edge that
joins two nodes of C which are not adjacent in the cycle.

Two nodes u, v in a graph G are connected if they are linked by a path in
G. The graph G itself is connected if this is true for any two of its nodes. The
distance between two nodes u and v in a graph G is the length of a shortest
(u, v)-path in G; if no such path exists, we set the distance to infinity.

1.1.2 Sub(Sup)graphs and contractibility

Let G = (V,E) and G′ = (V ′, E′) be two graphs. If V ′ ⊆ V and E′ ⊆ E then
G′ is a subgraph of G (G a supergraph of G′ ), written as G′ ⊆ G.

If G′ ⊆ G and G′ contains all the edges uv ∈ E with u, v ∈ V ′ then G′ is an
induced subgraph of G. We say that V sp′ induces or spans G′ in G and
write G′ = G [V ′]. Thus, for any node set U ⊆ V , the (node-)induced subgraph
G [U ] is the graph on U whose edges are exactly the edges of G with both ends
in U . Finally, G′ ⊆ G is a spanning subgraph of G if V ′ spans all of G, i.
e., if V ′ = V .
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A graph is said to be complete if it contains an edge to each pair of its
nodes. A complete graph with n nodes is denoted by Kn . A clique is the node
set of a complete subgraph. If it has n nodes, it is called n−clique, whereas a
3-clique is called triangle. We call a graph G bipartite if its node set V can
be partitioned into two disjoint sets V1 , V2 with V = V1 ∪ V2 such that neither
two nodes of set V1 nor two nodes of set V2 are neighbors. The node sets V1 ,
V2 are called bipartition of V .

We call the operation of identifying a pair of adjacent nodes while preserving
all other adjacencies between nodes an elementary contraction, or simply a
contraction. We assume that multiple edges arising from a contraction are
replaced by single edges. A graph G is called contractible to another graph
G′ if G′ can be obtained from Gb by a sequence of contractions.

1.1.3 Complement, isomorphism and subtraction

The complement G of a graph G is the graph with the same node set as G
and the complement edge set E, containing only the edges which are not in
E. For a node set W ⊆ V , the graph G −W denotes the graph obtained by
removing all nodes of W and all edges adjacent with at least one node of W . In
the special case when W contains only one node v, we simply write Gv.

1.1.4 Selected Classes of Graphs

A graph G = (V,E) is bipartite if its node set V can be partitioned into two
nonempty subsets V1 and V2 such that each edge has one end in V1 and the other
end in V2 . G is complete bipartite if each node in V1 is joined to each node
in V2 . We denote the complete bipartite graph with |V1| = m and |V2| = n by
Km,n .

A graph is planar if it can be drawn in a plane without any edges crossing,
i. e., if it has genus 0. We call a nonplanar graph G almost planar if it contains
a node v such that G becomes planar by removing v and all its incident edges.

A graph is k-regular if all its nodes have the same degree k. A 3-regular
graph is called cubic.

1.2 Polyhedra

For pursing this thesis some basic knowledge of polyhedral theory is essential.
Here we give an overview of the relevant concepts of affine geometry and poly-
hedral theory. These definition are made based on the introductory chapter of
[7].

Let , x1, . . . , xn ∈ Rd and let 1 denote the appropriately sized vector of all
ones. We call the linear combination

n∑
i=1

λixi (1.3)
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an affine combination if the scalar product 1Tλ =
∑n
i=1 λi equals 1. Further-

more 1.3 is called a conic combination if λ ≥ 0 and a convex combination
if it is both conic and affine. The vectors x1, . . . , xn are affinely independent if
(1.3) with 1Tλ = 1 can only have the value 0 when λ = 0. In other words, none
of the vectors is an affine combination of the remaining ones.

These combinations are called proper if neither λ = 0 nor λ = ej for all

j ∈ {1, 2, . . . , k} with λ = (λ1, . . . , λn)
T

.
For any set I ⊆ Rd the affine rank of I, denoted by arank(I), is the

cardinality of the largest affinely independent subset of I. For any subset I ⊆ Rd
the dimension of I, denoted by dim(I), is the cardinality of a largest affinely
independent subset of I minus one, dim(I) = rank(I) − 1. A set I ⊆ Rd with
dim(I) = d is called full-dimensional.

The set of convex combinations of some points is called convex hull and is
written as conv(x1, . . . , xn).

1.2.1 Hyperplane, Halfspace, Polyhedra and polytopes

For a ∈ Rd and α ∈ R, we denote the hyperplane defined by the equation
aTx = α by

H(a, α) := {x ∈ Rd|aTx = α}. (1.4)

The corresponding inequality aTx ≤ α defines a closed halfspace

K(a, α) := {x ∈ Rd|aTx ≤ α}. (1.5)

which is bounded by the hyperplane H(a, α). In other words, the bounding
hyperplane is the collection of all points for which the inequality is tight, i.
e., for which the inequality is satisfied with equality. For a given inequality
aTx ≤ α, we call aTx the left hand side and α the right hand side. Where
appropriate, we will use the abbreviation (a, α) instead of aTx ≤ α.

The intersection of a finite number of closed halfspaces is called a polyhe-
dron. Every polyhedron is closed and convex. The convex hull of a nonempty
finite set is called a polytope.

A polytope is a bounded polyhedron. Consequently, there are two ways
of describing a polytope: as the convex hull of a nonempty finite set, also
called ν-representation, or as the bounded intersection of finitely many closed
halfspaces, also called H-representation.

Let P be a polyhedron in Rd and let K := K(a, α) be a closed halfspace
in Rd with the corresponding bounding hyperplane H. We say that K and
its defining inequality aTx ≤ α, respectively, are valid for P if P ⊆ K. If,
in addition, P ∩ H 6= ∅, we call K and H a supporting halfspace and a
supporting hyperplane of P , respectively. If a supporting hyperplane H of
P does not contain the entire polyhedron P , we call it a proper supporting
hyperplane.

A face F of a polyhedron P is the intersection of P and the bounding
hyperplane of a valid halfspace K(a, α) of P , i. e.
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F = P ∩H(a, α). (1.6)

We also say that the inequality aTx ≤ α defines the face F .

If H(a, α) is a proper supporting hyperplane of P , we call F proper.

If v is a point in a polyhedron P such that {v} is a face of P , then v is called
a vertex of P . A facet is a nonempty face of P with dimension dim(P ) − 1
and its inequality is called facet-defining inequality for P . Let x be a vector
satisfying (β, b0). In this case the slack of (β, b0) is defined as the difference
between b0 and βTx .

The dimension dim(F ) of a face F of P is the dimension of its affine hull
aff(F ). The faces of dimension 0, 1, dim(P ) − 1 are called the vertices, edges
and facets of P, respectively

1.2.2 Polynomial-time algorithm

An algorithm is defined as a finite set of basic arithmetical and logica oper-
ations that, given as input the encoded instance of the problem, produces as
output the answer or the solution of such problem.

A polynomial-time algorithm, or simply polynomial algorithm, is an
algorithm that terminates after anumber of elementary steps that is bounded
by a polynomial in the size of the input.

A problem is called polynomial-time solvable, or polynomial, if it can be
solved by a polynomial algorithm.

1.2.3 Complexity of Optimization Problem

A decision problem is a problem having only two possible answer, either ”yes”
or ”no”. For collections of certain decision problems, there are two Complexity
classes, P and NP. The class P is the collection of all polynomial-time solvable
decision problems. If each positive / negative answer of a decision problem can
be checked in polynomial time then the decision problem is in the class NP.

A decision problem Π1 is a polynomially reducible to Π2 if there exists a
polynomial algorithm which, given any encoded instance π1 of Π1, produce in
a polynomial time an encoded instance π2 of Π2 such that the answer to π1 is
”yes” if and only if π2 has positive answer.

A decision problem Π in NP is called NP-complete if each problem in NP
is polynomially reducible to it. In the other word, the NP-complete problems
are the most difficult problems in NP. An optimization problem is defined to be
NP-hard if there exists an NP-complete decision problem that is polynomially
reducible to it.This means that all the decision problems in NP have to be
polynomially reducible to it.
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1.3 Integer and Binary Programming

We define the linear integer programming problem, or simply integer pro-
gram (IP) as follows:

max cTx

s.t. Ax ≤ b
x ∈ Zn

where Zn denotes the set of n-dimensional integral vectors. One may notice
that the IP feasible set S := {x ∈ Zn|Ax ≤ b} is not a polyhedron. We define
the associate polyhedron to (IP) as the convex hull of the feasible set S.
Furthermore, binary program is obtained by restricting the variables to be
either 0 or 1.

max cTx

s.t. Ax ≤ b
x ∈ {0, 1}n

1.3.1 Combinatorial Optimization

Combinatorial optimization problems are concerned with the optimization of an
objective function over collections of subsets of a finite set. Let E be a finite set
of n elements and let c ∈ R be the vector of the weight assigned to the elements
of the E.

For an arbitrary subset F ⊂ E its aggregate weight is defined as c(F ) =∑
j∈F cj . Suppose we are given a collection F of subsets F ⊂ E, the corre-

sponding combinatorial optimization problem is defined as follows:

max
F∈F

c(F ) (1.7)

Moreover, the associated polytope PF of the combinatorial optimization
problem is defined as the the convex hull of the incidence vectors χF of all
F ∈ F , i. e.,

PF = conv{χF |F ∈ F}. (1.8)

Now the combinatorial optimization problem can be reformulated as

max cTx

s.t. x ∈ PF
x ∈ {0, 1}n
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There is no any efficient algorithm for solving the above optimization prob-
lem whose feasible set is only described by a V-representation.However, the-
oretically the combinatorial optimization problem can be transformed into a
binary program because every polytope also has an H-representation, there ex-
ists a linear description which is a finite set of inequalities Ax ≤ b such that
PF = {x ∈ Rn|Ax ≤ b}. There are techniques such as the Fourier-Motzkin
elimination, to transform the different representations of the polytope PF into
one another. However, these techniques are only practical for very small prob-
lem instances. In general, an explicit linear description of a combinatorial op-
timization problem is either not completely known or it compromise too many
inequalities. Yet, for finding an optimum solution, a complete linear description
is not necessarily needed and determining the local facet structure of the near
the optimal vertex is sufficient. This is the idea behind the branch & cut
method.

1.3.2 Branch & Cut method

As we already now there are polynomial time algorithms for linear programs.The
reason why we can solve LPs in polynomial time even they have an infinite
number of solutions, is the concept that we only have to consider the ver-
tices of its polytope. If we want to adopt this idea to Integer Program(IP),
we have to find the convex hull of all feasible solutions of the IP, which is
PI := conv{x ∈ Zn|Ax ≤ b}. If we can describe this polytope with a poly-
nomially sized list of inequalities, we can compute the optimum in polynomial
time. Unfortunately, in general the number of facets of a polytope PI increases
exponentially. But in order to compute the optimal solution of IP, there is no
need to know all facets. To compute only such necessary facets is one principle
idea of the Branch & Cut algorithm. The use of that method was first pub-
lished by Grotscel, Junger and Reinelt [8] in 1984. Its name was introduced by
Padberg and Rinaldi [9]. In order to solve the IP system, we omit the condition
of the integrality of variables and obtain a so-called LP-relaxation. The LP-
relaxation solution may be fractional, but it provides an upper bound (UP) of
IP. By adding special inequalities to the system Ax ≤ b, the LP-relaxation poly-
tope gets more and more close to PI .Here ”special” means that, if x∗ is a vector
satisfying Ax∗ ≤ b, we want a valid inequality (β, b0), a so-called cutting-
plane, separating x∗ from PI . The task to decide if such an inequality exists
and to compute one if possible, is called the separation problem.There exist
an important theorem in this context which declars that under some technical
conditions, the optimization problem can be solved in polynomial time, iff the
separation problem is polynomial [4]. In order to solve an IP, one could generate
such cutting-planes until the optimal solution is found. In practice, however, it
turned out that a combination of cutting-planes with the Branch & Bound
technique is more successful. Its conjunction is called Branch & Cut. Af-
ter the initialization and preprocessing, this algorithm uses a tree to maintain
the subproblems generated during the process. It begins the bounding pro-
cess with its root. After solving the LP-relaxation, it is checked whether the
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solution is LP feasible. In the case of feasibility the Local Upper Bound
(LUB) is updated. If the LUB is smaller than the Lower Bound(LB), which is
at the beginning minus infinity, the subproblem is fathomed. Otherwise, the
algorithm checks if the solution is integer feasible. Clearly, if it is an integer
solution, the best solution for this subproblem has been computed and this node
of the tree can be fathomed. If improvement of the LP solution after adding
new constraints is too small (tailing off) or the separation routine could not
compute a new constraints, the algorithm branches in new subproblems, e.g.
by setting a variable to an integer value. If the selection of a subproblem of the
tree is successful, which means that the tree is not empty and that the UB is
greater than the LB, the algorithm reenters the bounding phase. If the selected
subproblem does not bring new information, we fathom it and select a new one.
This process terminates when the tree is empty.

While the LP-relaxation of the initial system provides a Global Upper
Bound (GUB), each subproblem computes a local upper bound which is only
valid for all its sons in the tree. In some cases the problems are too difficult to
solve them exactly and therefore it is a good idea to stop the algorithm after
a certain number of iterations. The advantage of a Branch & Cut algorithm is
that this algorithm provides next to a solution also a quality of it. This quality
is measured by the gap, which is calculated by

GUB − LB
GUB

(1.9)

It turns out that it is not helpful to add more and more inequalities to the LP-
relaxation. The inequality system Ax b may grow too big, which slows down
the computation time. Therefore after each separation phase, some inequalities
are eliminated and stored in a pool. This pool can also be checked once in a
while, if it contains a violated constraint which is added again. This process is
called pool separation.

1.4 Perfect Matching Problem

The perfect matching problem in a graph G = (V,E) is to determine whether
there exists a set of edges meeting each node exactly once. More precisely,
finding a set M of edges such that

|M ∈ δ(u)| = 1 for all u ∈ V (1.10)

If c ∈ ZE is a vector of edge weights, then the the perfect matching problem
is to find a perfect matching of G of maximum total weight

∑
e∈M ce. There is

a proof of Padberg and Rao [10] that maximum weight perfect matching can be
computed in polynomial time.
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Figure 1.1: The red edges define a perfect matching of the hexagons

With every perfect matching M , we can associate a characterize vector χM ∈
RE whose component has value 1 if e ∈ M and 0 otherwise. Consider the
polytope defined by the following inequalities:

∑
e∈(δ(u))

xe = 1 for all u ∈ v (1.11)

x ≥ 0 (1.12)

In this case, a vector x ∈ {0, 1}E , a characteristic vector of a perfect match-
ing, is an extreme point of above polytope. If the graph is bipartite then a rich
theory had already been developed which not only characterized those bipartite
graphs which had perfect matchings [11], but showed that this problem could
be formulated as a small linear program. However, the more general case of
nonbipartite graphs, graphs that contain odd cardinality cycles, seemed differ-
ent. A necessary condition was that the number of nodes had to be even, but
that was far from sufficient.

Theorem 1. (Hall’s Bipartite matching Theorem). A bipartite graph G =
(V,E) has a perfect matching if and only if, for every X ⊆ V , the number of
isolated nodes in G−X is at most |X|.

In 1947, Tutte [12] had generalized Hall’s theorem to nonbipartite graphs. He
proved that replacing “isolated nodes by “odd cardinality components yielded
a characterization of which nonbipartite graphs have perfect matchings.

Theorem 2. (Tutte ’s matching Theorem). A (nonbipartite or bipartite) graph
G = (V,E) has a perfect matching if and only if, for every X ⊆ V , the number
of odd cardinality components of G−X is at most |X|.

A well-known work of Edmonds [13] gives the minimal set of equations and
inequalities which describes the perfect matching polytope as following :

xe ≥ 0 ∀e ∈ E (1.13)

x (δ (v)) = 1 ∀v ∈ V, (1.14)

x (δ (U)) ≥ 1 ∀U ⊆ V, |U | is odd. (1.15)

where δ (U) denotes the set of edges that have exactly one endpoints in U ⊆ V .
The last class of inequalities are called ( odd cut) or ( blossom constraints). The
re-statement of these inequalities, derived by using the matching equality and
considering the edges with both endpoints inside the odd set U , is as follows:

x(E(U)) =
∑

e∈γ(U)

xe ≤
|U | − 1

2
(1.16)

where γ(U) is the subset of edges with both endpoints inside the odd set U ⊆ V .
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He also proved that the inequalities (1.13) - (1.15) describe a 0/1 polytope,
means that the perfect matching problem can be solved by maximizing a linear
function over the polytope defined by (1.13) - (1.15) . One may notice that
the number of odd cut inequalities (1.15) or (1.16) grew exponentially with
the size of G. Later on, in 1982, Padberg & Rao in [10] showed that the
separation problem for the inequalities (1.15) can be solved in polynomial time.
Let x∗ ∈ RE be the fractional solution satisfying system (1.13) , (1.14) that we
want to separate from perfect matching polytope. Then, the separation problem
is to find a subset U ⊆ V of nodes such that

x (δ (U)) < 1 |U | is odd (1.17)

which is equivalent to solving a minimum cut problem on graph G whose
weight of edges are the elements of x∗. To this purpose, there is no need to
solve minimum (s− t) cut problem for all the {s, t} pairs of nodes of G, instead
one may exploit the proposed algorithm by Gomory & Hu [14]. The algorithm
proceed by construction of Gomory-Hu tree, obtained by solving a sequence of
|V |−1 maximum (s− t) flow problems on graphs derived from G by a sequence
of contracting and uncontracting operations. Managing a data structure that
efficiently performs all such operation is not trivial, therefore the implementation
of Gomory-Hu algorithm results a not simple task to achieve.

The following lemma stated in [10] allowed Padberge & Rao to solve the
minimum cut problem by just a little modification of the Gomory-Hu procedure.

Lemma 1. Let G = (V,E) and ce ≥ 0 for all e ∈ E be given. Let δ(X) be a
cut of G that is minimum with respect to the cost vector c. Then there exists an
odd minimum cut δ(X0) such that X0 ⊆ X or X0 ⊆ V \X holds.

1.5 Stable set problem

A stable set of a graph G is a set of nodes S with the property that the nodes
of S are pairwise non adjacent. We abbreviate a stable set with S. Let Gc be a
node-weighted graph. A stable set of Gc, which maximize

∑
v∈S c(v), is called

a maximum set. The size of a maximum-cardinality stable set is called the
stability set number or the stable set number and indicated by αG(c). In
the case where all the elements of c is equal to 1, we neglect c and write more
simply αG. Let’s define an incidence vector, χS , of a stable set S of graph G as
a |G| - dimensional vector with the following components

χi
S :=

{
1, if vi ∈ S

0, otherwise.

Definition 1. The stable set polytope of a graph G = (V,E) is the convex
hull of the incidence vectors of all stable sets in G. It is denoted by

PSTAB := conv{χS |S ⊆ V stable set} (1.18)
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The stable set polytope is a polytope because it is bounded by the n-dimensional
unit cube. By choosing S = V , one may notice that unit vector is a stable
set. Moreover, the zero vector is trivially also a stable set of the empty set and
therefore, the stable set polytope is a full-dimensional polytope. This implies
that all facets of PSTAB are inequalities and hence we do not have to consider
equalities.

It has been proved that the maximum stable set corresponds to a vertex of
PSTAB , let’s denote this incidence vector χS by a binary variable x, therefore
the stability number is cTx. This inspire us for an IP formulation for obtaining
the maximum stable set. To complete the IP formulation, we need inequalities
which define PSTAB . Consider the following inequality system

xi + xj ≤ 1 ∀ij ∈ E (1.19)

xi ≥ 0 ∀i ∈ V, (1.20)

The definition of an incidence vector of a stable set implies the so-called
non-negativity inequalities (1.20). They are always facet-defining for PSTAB ,
since there are n−1 affinely independent solutions which have value zero in one
entry. The inequalities (1.19) ensure that there cannot be a pair of adjacent
nodes in one stable set which is a direct consequence of its definition. This type
of constrains is called edge inequality. Hence, inequalities (1.20) and (1.19)
are both valid for the stable set polytope. Inequalities (1.19) are not generally
facet-defining. Inequalities (1.19) together with the non-negativity inequalities
are referred to as trivial inequalities. Hence, maximum stable set problem
can be formulated as a linear integer programming as follows:

IP : max cTx (1.21)

s.t. Ax ≤ 1 (1.22)

x ∈ {0, 1}|V | (1.23)

where vertex x is the incidence vector of stable set and matrix A is a node-edge
incident matrix for graph G.

It has been proved in [15] that determining a maximum stable set in an
arbitrary graph is NP-hard. This is still true even when the weighting coefficient
is equal to 1. Moreover, assuming that P 6= NP, there is no polynomial time
algorithm for approximating the stability number within a factor of |V |ε for fixed
ε ≥ 0. Therefore, it is also NP- hard to find a solution of IP. Nevertheless,
the Branch and Cut algorithm is the approach that can be applied to solve
the IP problem. To this purpose, we need to propose a linear programming
relaxation and see how well it describes the stable set polytope. By looking
carefully at the IP, one may notice that the inequalities (1.23) are the reason
why IP is challenging to solve. Hence, the easiest polynomial relaxation of IP
to substitute the binary constraints (1.23) by (1.20).
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LP : max cTx (1.24)

s.t. Ax ≤ 1 (1.25)

x ≥ 0 (1.26)

and its corresponding stable set polytope relaxation is described as follows:

PRSTAB := {x ∈ R|V ||Ax ≤ 1, x ≥ 0} (1.27)

The following colloray by Balinski [16] indicates an important structure of
the stable set polytope relaxation.

Collorary 1. The vertices of PRSTAB are
(
0, 1

2 , 1
)
-valued.

Theorem 3. [4] The trivial inequalities, the non-negative inequality (1.20) to-
gether with the edge inequality (1.19) are sufficient to describe PSTAB iff G is
bipartite and has no isolated nodes.

The minimal graph for which the trivial inequalities (1.20) and (1.19) are
not defining the PSTAB , are the odd circuits. If G is an odd circuits then the

point
(

1
2 ,

1
2 , ...,

1
2

)T ∈ R|V | satisfies all the inequalities (1.20) and (1.19) but it
is not in PSTAB . This point is a vertex of PRSTAB as well as the optimal values
of the corresponding model in LP-model.

1
2

1
2

1
2

1
2

1
2

Therefore each odd cycle C describes a new class of inequalities valid for
PSTAB , so-called odd cycle inequalities:∑

i∈V (C)

xi ≤
|V (C)| − 1

2
(1.28)

Let’s define the cycle-constraint stayble set polytope as a polytope con-
structed by the inequalities (1.20) and (1.19) and (1.28)

PCSTAB := {x ∈ R|V ||x satisfies (1.20) , (1.19) , (1.28)} (1.29)

t-perfect graphs, introduced by Chvátal in [17], are family of graphs for
which the corresponding PCSTAB(G) has integral extreme points. Bipartite
and almost bipartite are those among the t-perfect graphs. The problem of
checking weather a graph is t-perfect or not belongs to co-NP. In 1986, Gerard
and Schrijver [18] gave a polynomial time algorithm for separation problem of
odd cycle inequalities; Given a fractional point x∗, to separate this point by
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an odd cycle inequality one has to find a minimal weight odd cycle where the
weight of each edge uv is given by 1 − x∗u − x∗v. This problem is equivalent to
find a shortest path in a bipartite graph G

′
obtained by making identical copies

of vertices which are suitably connected. More precisely, for every arbitrary
vertices u and v of G, the bipartite graph G

′
has vertices v, v

′
, u, u

′
where v

and u are in the one part and
′
v and u

′
are in the other one. The edges are

defined as vu
′
, uv

′
. So, this graph has twice as many nodes and twice as many

edges as the original graph, G. One can see easily that any path from v to v
′

in
G

′
is corresponds to a union of cycles with odd number of total edges. Hence,

one has to just look for the minimum odd cycle weather it has a length value
exactly less than one ( which amounts to running |V | times a shortest path
algorithm). In conclusion, we have the following theorem.

Theorem 4. [4] Strong optimization problem for PCSTAB can be solved in
polynomial time.

Collorary 2. A maximum weight stable set problem for t-perfect graph can be
solved in polynomial time.

Among all the possible valid odd-cycle inequalities for PSTAB , we are mainly
interested in those which are facet-defining because they are not dominated by
any valid inequality of PSTAB . A cycle is called a hole if it is chordless. If an
odd cycle induce an odd hole, then the corresponding odd-cycle inequality is
called odd-hole inequality.

Collorary 3. [19] Let G be an odd hole, then
∑
i∈V xi ≤

|V |−1
2 is facet-defining

for PSTAB(G).



“ What is in this spaceship planet that needs doing that I know something
about, that probably won’t happen unless I take responsibility for it?”.

Buckminster Fuller



Chapter 2

Fullerene graph

2.1 Introduction

Buckminsterfullerene Γ60 − Ih is a molecule made of 60 carbons that is convex
and spherical with a highly symmetric icosahedral structure. This molecule was
originally conjectured independently by Osawa in 1970 [20] and discovered in
1985 by Kroto et al. through laser evaporation of graphite [21, 22, 23, 24]. From
the very beginning, the Fullerenes had attracted the attention of theoreticians
because of their special structures and properties. The earliest theoretical work
was performed in 1986 using semiempirical MNDO method [25]. Later on in
1998, a critical review was reported about the results obtained with different
computational methods on the most classical Fullerenes, Γ60 and Γ70 [26].

Fullerenes are cage-like hollow carbon molecules of pseudospherical symme-
try consisting of pentagons and hexagons. They are generally prepared by the
vaporization of graphite in an electric arc in a low-pressure atmosphere.

It has been the object of interest for chemists and mathematicians due to its
widespread application in various fields namely including electronic and optic
engineering [27], medical science [28] and biotechnology [29, 30].

Fullerene derivatives is an attractive tool for biological applications. In [29],
it has been explained how very appealing photo-, electro-chemical and physical
properties of Fullerene family, and especially Γ60, are exploited in many and
different biological fields.

The interest in such a field is so intense that it has given rise to the journal
“Fullerene Science and Technology” in 1993, currently known as “Fullerenes,
Nanotubes and Carbon Nanostructures”[31], several books [32, 33, 34] and ex-
ponentially increasing number of papers [35].

2.1.1 Isomers of Fullerene

Fullerene graph, Γn made of n molecules, with all faces either pentagon or
hexagon has the multiplicity of isomers. Soon after the discovery of Fullerene the
simple Stone-Wales [36] transformation technique was proposed as a mechanism

19
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of isomerization. Based on the distribution of the pentagonal faces in Fullerenes,
Fullerene polyhedra can be arranged in multiple isomeric forms for all n ≥ 28.

In [37] they consider a unified framework that allows construction and cata-
loging of the distinct topological possibilities for isomerization processes. There,
all isomerization patches and isomerization pairs containing up to five pentagons
and with an upper limit for the boundary length depending on the number of
pentagons are listed and several infinite series of transformations are identified.

More recently, In 2012, the Buckygen program developed by Brinkmann et
al. [38] constructs Fullerene isomers up to Γ400. They also list special Fullerenes
without ring spirals starting at a pentagon and Fullerenes without any ring spiral
at all up to Γ400.

These isomer comes in different many shapes, namely spherically or icosahe-
dral, barrel, trigonal pyramidally ( tetrahedral structure), trihedrally, nano-cone
and cylindrically(nanotubes) shaped

The number of distinct isomers of a given dimension n, i.e., the number of
pairwise non isomorphic Fullerene graphs of n nodes, grows with n quite rapidly.

The following table shows the number of isomers for each value of n in the
range [20, 204]. Recall that no Fullerene graph exists for n = 22, for n ≤ 20 and
for n odd. All the values of columns “# of isomers” in Table 2.1.1, for n ≥ 60,
can be expressed by the function

f(n) = 1.7 · 10−14 · n9.59±0.03.

This function gives a better idea about the growth rate of the number of isomers
as n increases.

A Fullerene isomer belongs to the IPR ( isolated pentagon rule ) class if each
pentagon joins only hexagons, and each hexagon alternatively join pentagons
and hexagons. It has been known that the IPR property brings thermodynamic
stability to a Fullerene cage [39]. Fullerenes with less than 60 carbon atoms
cannot have an IPR structure, therefore Γ60 − Ih is the smallest member in
this class. Γ72 is the smallest Fullerene with an IPR cage besides the two
classical Γ60 and Γ70. It has been known that IPR Fullerenes yield the best
stability and even focusing in this class, the number of candidate isomers for
most thermodynamically stable isomers are huge.

2.1.2 Enumeration of Fullerene

Since the first Fullerene, the famous Γ60 was discovered, a perennial problem in
the chemistry and physics of Fullerene is the question of how these organised
cage structure emerges from chaotic carbon- vapour. In the transformation of
Fullerene for construction of Fullerene road models, carbon atoms are added to
or subtracted from Fullerene cages in multiples of two.

Experimental data and quantum mechanical calculation developed various
mechanisms for carbon ingestion/ extrusion [40, 41] and isomerisation/annealing
[36]. Other many attempts have been made to generate large lists of combina-
torial Fullerenes [42, 43, 44]. The first tool was the spiral algorithm [42]. These
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n # isomers n # isomers n # isomers n # isomers

20 1 68 6 332 114 1 008 444 160 26 142 839
24 1 70 8 149 116 1 207 119 162 29 202 543
26 1 72 11 190 118 1 408 553 164 33 022 573
28 2 74 14 246 120 1 674 171 166 36 798 433
30 3 76 19 151 122 1 942 929 168 41 478 344
32 6 78 24 109 124 2 295 721 170 46 088 157
34 6 80 31 924 126 2 650 866 172 51 809 031
36 15 82 39 718 128 3 114 236 174 57 417 264
38 17 84 51 592 130 3 580 637 176 64 353 269
40 40 86 63 761 132 4 182 071 178 71 163 452
42 45 88 81 738 134 4 787 715 180 79 538 751
44 89 90 99 918 136 5 566 949 182 87 738 311
46 116 92 126 409 138 6 344 698 184 97 841 183
48 199 94 153 493 140 7 341 204 186 107 679 717
50 271 96 191 839 142 8 339 033 188 119 761 075
52 437 98 231 017 144 9 604 411 190 131 561 744
54 580 100 285 914 146 10 867 631 192 145 976 674
56 924 102 341 658 148 12 469 092 194 159 999 462
58 1 205 104 419 013 150 14 059 174 196 177 175 687
60 1 812 106 497 529 152 16 066 025 198 193 814 658
62 2 385 108 604 217 154 18 060 979 200 214 127 742
64 3 465 110 713 319 156 20 558 767 202 233 846 463
66 4 478 112 860 161 158 23 037 594 204 257 815 889

Table 2.1: Number of isomers as a function of n

proposed methods either could not guarantee that every possible structure is
generated, so they are not complete or were not efficient enough to be able to
generate lists of interesting size or both. A parallel line of research is the use of
graph theoretical techniques to catalog the mathematically possible Fullerene
structure. As an early mathematical approach the one in [45] towards enumer-
ating three-regular spherical graphs, could not be used to obtain fast algorithms
for this restricted class of structures. Therefore, base on an assumed set of rules
for the construction and transformation of fulleren, in [34] and [46] two growth
transformation technique were proposed. The one in [46] exploited a top-down
approach, and it was considered as fast enough algorithm to generate, for exam-
ple, all 1812 isomers of Γ60in less than 20 seconds. Their suggested program is
called fullgen which is the most successful practical method to date with proven
completeness. It operates by stitching together ’patches’ bounded by zigzag
paths.

In [47] they present a carbon insertion/extrusion mechanisms for transform-
ing one Fullerene to another by replacing a patch on the Fullerene surface.
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They construct a systematic catalogue for the topologically distinct local in-
sertion/extrusion transformation of Fullerene and they list all pairs of growing
patches with the same boundary containing up to five pentagons.

This approach is extended in [48] by using a cut-and-paste approach for a
family of structurally similar ’growth patches which are non-isomorphic patches
with the same boundary but containing different numbers of vertices.

They explore the ways that Fullerenes can be formally generated from ’seed’
polyhedra, using either a predefined set of graph transformations or a set that
is restricted by a cost function intended to mimic the energetics of bond re-
arrangement and carbon insertion. There, it has been shown that a family of
transformations based on the Endo-Kroto Γ2 insertion mechanism [41] gives
access to all isomers of all Fullerenes up to Γ200 from a Γ24 seed. This method
fails in the general case.

This growth operation is called expansion. Fullerenes can be constructed
from some simple set of starting isomers by successively applying expansion
that replaces some fragment of Fullerene by a larger piece. It is shown in [49]
that no finite set of expansion operation is sufficient, so instead in [50] they seek
an easily-described infinite class of these operation that are probably complete.

The interested reader on the chemistry and physics of Fullerene can refer
to the comprehensive reviewers and books on this subject highlighting many
activities in years [51, 52, 53, 54, 55, 56, 57, 58].

The field of topological and graph theoretical descriptions of Fullerene has
been received an intensive activity over the past 20 years [59, 34, 60, 61] to the
extend that it has become a major sub-discipline within mathematical chemistry.
One can mention here An Atlas of Fullerenes by Fowler and Manolopoulos [62]
and The Topology of Fullerenes by Schwerdtfeger, Wirz and Avery [63] as good
reviewers for topological and graph theoretical structures of Fullerenes.

2.2 Topological Properties of Fullerenes

Fullerene molecules can be represented as a 2-connected plane graph in which
only carbon atoms are depicted as vertices while hydrogens are omitted. Edges
are demonstrating chemical bonds between carbon atoms. The basic idea of
considering a Fullerene graph is that many that physico-chemical properties of
Fullerenes can be studied by using the information encoded in their correspond-
ing graph [64]. Fullerene graph is both cubic, planar and three-connected whose
faces are either pentagons or hexagons. Many properties about the Fullerene’s
topologies and indicators of their chemical behaviour can be derived directly
from their graphs. For a three-connected planar graph, there is essentially a
unique way to be embedded in the plane [65]. Due to this fact, the three-
connected planar graph has a well-defined set of faces. Therefore a cubic three-
connected Fullerene graph can be represented as Γ = (V, E ,F) where V de-
fines a set of vertices, and E is a set of edges and F is a set of faces which
is defined without ambiguity. Based on the Euler’s polyhedron formula for the
planar connected graph:
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N − E + F = 2 (2.1)

where N = |V|, E = |E| and F = |F| being the number of vertices, edges and
faces, respectively. According to the hand-shaking lemma in graph theory

N∑
i=1

deg(vi) = 2|E| (2.2)

since fullernes are cubic so deg(vi) = 3 for all vertices, therefore N =
2

3
E, and

by replacing this in the equation (2.1) one may derive that

E = 3F − 6 (2.3)

As we already mentioned the total number of faces is F = F5 + F6, where F5

and F6 are the number of pentagons and hexagons respectively. From (2.3) we
derive

E = 3F5 + 3F6 − 6 (2.4)

On the other hand, each pentagon(hexagon) has five(six) edges, which gives

E =
5

2
F5 + 3F6. From this equation together with (2.4) one may obtain that

F5 = 12. This property is called 12 Pentagon Theorem from which the number
of hexagons are derived as F6 = (N − 20) /2 with N ≥ 20, and the general
formula for Fullerenes can be describe as Γ20+2F6

. In this formulation at least a
Fullerene with every number of hexagons greater than two exists [66]. However
N = 22 with just one hexagon and 12 pentagon is not a Fullerene though a
cage-like fulleroid [67].

2.2.1 Dual of Fullerene

Generally talking, the dual of a planar graph might not be unique though in the
case of three-connected graph such as Fullerene a dual is unique and the dual
operation is well defined [65]. The dual graph of Fullerene is a triangulation
graph with 12 vertices of degree 5 and the remaining of degree 6. In this thesis,
Γ∗n indicate the Fullerene dual of Γn. According to the fact that the dual is an
involution operation, we have Γ∗n = Γn, so one can think of the Fullerene dual
as just another representation of the same graph. Figure (2.1) shows planer
representation of Fullerene graph Γ60 and its corresponding Γ∗60.

The Manolopoulos face spiral algorithm is one of the first methods for en-
coding Fullerene graphs which unwinds all the faces of Fullerene same as an
orange peel [42]. More precisely, the algorithm starts with a sequence of three
mutually adjacent faces and adds the new faces to the string such that the next
face is adjacent to the previous one and the one that was added to the string
earliest, and that has neighboring faces left which are not part of the spiral
string (yet). As a result, the string length consists of 12 fives and N/2 − 10
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Γ60 Γ∗60

Figure 2.1: Planner embedding of Fullerene graph and dual: (a) Γ60 − Ih; (b)
the dual of Γ60 − Ih (pentakis-dodecahedron)

sixes, corresponding to the size of faces. There are 6N possible spiral starts re-
sulting in up to 6N spirals per Fullerene graph. In most Fullerene, the number
of spirals is less than 6N due to the fact that some of them cannot be completed
since the two rules for selecting the next face to be added to the string can not
be both fulfilled simultaneously. Since there is always 12 position in the spiral
string for all Fullerene, it can be abbreviated as a list of the positions of the 12
pentagon, which is referred to as a Face Spiral Pentagon Indices (FSPI). The
canonical spiral representation of Fullerene is the lexicographically smallest of

all successful spirals. Although the initial conjecture was that all the Fullerene
admits the face spiral, there is exceedingly small proportion of Fullerene which
cannot be unwounded into spiral face.

One of the approaches for generating the Fullerene graph is by adding faces
to an existing graph while considering the different position for this addition.
[43] Brinkmann et al. [46] use patches,a subdivision of an existing Fullerene
graph, rather than a single faces for generating Fullerene. Further develop-
ment came in Brinkmann et al. [48] in which Γ20 is used as seed and all other
Fullerenes up to Γ200 are generated from it. Their approach has a shortcoming
that three graphs are not accessible by their proposed transformation and to
overcome this approach, in Hasheminezhad et al. [50] a set of growth operation
is defined in a way that starting from either Γ20 or Γ28 every Fullerene is gen-
erated in a systematic way. Furthermore, these set of growth operation is used
in Brinkmann et al. [38] to develop a fast and complete algorithm that recur-
sively generates all Fullerene isomerase up to a given maximal N . The method
is called a patch replacement which is based on replacing a finite connected
region inside a Fullerene with a larger patch with identical boundary. Accord-
ing to [68] without exploiting the patch replacement approach generating all
Fullerene graph defeat to combinatorial explosion. The incredibly efficient gen-
erator based on the patch replacement is called buckygen and it has been used to
generate databases up to Γ400, this database are available at House-of-Graphs
website [60].

A Fullerene graph can be transformed locally by replacing one Fullerene
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patch [69] by either a different patch or the same patch in a different orienta-
tion [37, 47], or globally according to Goldberg-Coxeter transformation. The
boundary code of patches is a sequence of free valencies of the vertices that
lie on the boundary and two patches can be exchanged if they share the same
boundary code. Isomerization operation is referred to replacing patches of the
equal size while growing operation is referred to replaying patches by smaller or
bigger one by insertion or deletion of vertices. Brinkmann et al. [37] generated
a catalogue of isomerization with up to five pentagons. In this study, we are
interested in the growing operation which is classified according to the number
of the pentagons and the number of vertices which is added. The smallest ex-
ample of growth operation which involves a patch with two pentagons and adds
two vertices is called Endo-Kroto transformation [41]. In Brinkmann et al. an
extensive list of growth pair can be found. The current fast Fullerene generator
[38] is based on the three class of patch replacement defined by Hasheminezhad
et al. [50].

Topological and Chemical Indicator Many useful properties of chemical
system can be deduct by chemist just by considering its graph structure. For
Fullerene, as an instance, the way on which the 12 pentagon are distributed
on the surface indicates qualitatively the stability of the Fullerene or how it
will be packed in the solid state. Moreover, by considering the symmetry of
the underlying structure some spectroscopic properties of the Fullerene will be
relived. Topologicall indicator is defined as a map τI from a Fullerene graph G
into a finite series of number,

τI : G→ {x1, · · ·xn} (2.5)

where the number xi is called Topological Index which might be integer, rational
or real. More precisely, Topological Index connects graph theoretical properties
of Fullerene directly to its physical properties. It is worth mentioning that there
might not be a one-to-one corresponding between the topological indicators
and the Fullerene graph and indeed most of the commonly used topological
indicators are the same for many different isomers. Moreover, easily obtained
topological indices is very useful since solving electronic structure problem for a
large Fullerene is a daunting task. 12 face spiral pentagon indices is an example
of topological indices.

Wiener in 1947 introduced the first topological indices with chemical concept
called Wiener Index in which the paraffin boiling points is determined to exploit
its graph structure [70] According to that the Wiener Index is defined as the
sum of the entries in the Topological distance matrix which consists of the length
of the shortest path between every pair of vertices in the chemical graph. The
WienerIndex gives an acceptable measurement of compactness acyclic alkanes
and provides a reasonable correlation to boiling points [70]. For Fullerene, the
lower the Wiener Index the higher is the compactness of the molecule. Since
then, for the purpose of analysing the structural properties of the molecule,
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many different topological indices have been introduced and studied yielding
interesting mathematical properties. A number of very useful topological indices
are arise from the distance matrix. To name a few, topological radius R and
diameter D [71], Wiener Index, Hosoya Polynomial [72] and the Szeged Index
[73] An interested reader is referred to Ref [74] for a list of Topological Indices
and for more detailed discussion about Topological Indices is referred to [75] and
[71].

2.3 Stability of Fullerene

Although there exists a number of heuristics that estimate the thermodynamic
stability of a particular Fullerene, for example, by way of spectral analysis of
its graph, it is not yet feasible to do so systematically for all isomers of large
Fullerenes.

Kekulé structure and Perfect Matching Kekulé (resonance) structure is
double bounds are drawn into the aromatic system [76]. Benzene has only two
possible Kekulé structure while by increasing the size of Fullerene, one notice
that Γ60 has as many as 12,500 Kekulé structure of which only 158 are non-
isomorphic, [77], [78], [79]. A Kekulé structure is the same as Perfect Matching
in the associated structural graphG (V, E ,F). In graph theory, a Perfect Matching
is a subset of edges such that every vertex of the graph G is incident with exactly
one edges from the subset. Over Fullerene, the edges of the perfect matching
corresponds to the double bounds which are what referred to by the chemists
as Kekulé structure. The existence of a perfect matching in Fullerene graph is
the a corollary of a classical result of Petersen’s Theorem [80] :

Theorem 5. Every Connected cubic graph with no more than two cut-edges has
a perfect matching.

Before presenting a proof of this theorem a few remarks are in order. The
original proof of the Peterson’s Theorem was somewhat complicated and tedious,
thereafter shorter proofs were given by Brahana(1917-18), by Frink(1925-26)
and by Konig(1936), though with Tutte’s Theorem at hand the shortest possible
proof can be stated. Let c0(G) denote the number of odd components of a graph
G.

Theorem 6. (Tutte’s Theorem). A graph G has a perfect matching if and only
if c0(G− S) ≤ |S|, for all S ⊆ V (G).

The existence of the perfect matching can be characterized well exploiting
the Tutte’s Theorem and the important part of the theorem is the sufficiency
which asserts that if G does not have a perfect matching, then there exist a
subset of vertices S whose removal creates more than |S| components with odd
cardina The following is the proof of Peterson’s Theorem based on the Tutte
Theorem.
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Proof. Let G be a connected cubic graph with no more than two cut-edges,
it is trivial that |V (G)| is even. Suppose indirectly that G has no perfect
matching, according to Tutte’s Theorem, G contains a cutset S with c0(G− S)
odd components and |S| ≤ c0(G − S) − 2. Since G is cubic each odd com-
ponent is joined to S by some odd number of lines. If this odd number is
one, the corresponding line must be cut-edge. By hypothesis there are at
most two edge-cuts in G. Hence the odd components of G − S send at least
3 (c0(G− S)− 2) + 2 = 3c0(G − S) − 4 ≥ 3 (|S|+ 2) − 4 = 3|S| + 2 edges to
S. On the other hand S sends at most 3|S| edges to the odd components and
a contradiction results.

The problem of counting the number of perfect matching in a given graph
is a very difficult problem. Let’s denote the set of all the Kekulé structures of
the graph Γ by K(G) and φ(G) = |K(G)|, Kekulé number, as the cardinality
of K(G). Not very sharp lower bound can be obtained just by taking into
account the fact that Fullerene graph are 3-connected and using the method of
Cathedral Construction ([12]).

Theorem 7. Every Fullerene graph contains at least three different perfect
matching.

In ([81]) a much better lower bound is derived exploiting other structural
properties of the Fullerene graph.

Theorem 8. (Plesnik) [12] Let G be an r-regular with an even number of points
which is (r − 1) − line − connected. then if any (r − 1) lines are deleted from
G, the resulting graph has a perfect matching.

the proof details can be found in [12]
As a corollary of Plesnk’s results, every edges of the Fullerene graph is con-

tained in a perfect matching.

Definition 2. Graph G is 1−extendable if every edge of G appears in some
perfect matching of G.

Therefore Fullerene graphs are 1−extendable. 1−extendable graph deserve
special attention because they permit ear decomposition. More details about
ear decomposition can be found in [12].

The Kekulé number for several small Fullerene up to Γ84 is calculated and it
has been shown that for Γ60 the least stable isomer has K = 16, 501, while for
its most stable isomer we have K = 12, 500 [82].Moreover, it has been shown by
Austin et al. that 20 isomers of the Γ60 have a higher Kekulé number than its
most stable isomer [83]. As a conclusion, Kekulé number is not a good indicator
for the stability of the graph. Cubic graphs has exponentially many perfect
matching and hence exponentially many Kekulé Structure and the theoretical
lower bounds is given in [83].
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Chapter 3

Fries and Clar number of
Fullerene graph

Let Γ = (V,E, F ) be a Fullerene graph and Kekulé number, k = |K| corresponds
Kekulé structure K ⊆ E of Γ. Based on k, we have |V | = 2k, |E| = 3k and
|F | = k + 2.

For a given Kekulé structure K ⊆ E of Γ, each of its face might have 0,1,2
or 3 of its bounding edges in K. Let’s denote by Bi(K) the set of faces that
have exactly i of their bounding edges in K. The void faces of K are those in
B0 and the faces in B3(K) are called the full faces or benzenoid faces of K. The
Fries number [84] or the Kekulé parameter of Γ, denoted by Fris(Γ), is defined
to be the maximum of the number of benzenoid hexagonal faces overall Kekulé
structures for Γ. The next lemma shows that Fris(Γ) ≤ 2k

3 and the perfect

Kekulé structure is the one with |B3(K)| = 2k
3 .

Lemma 2. [85] Let K ⊆ E be a Kekulé structure for the Fullerene Γ = (V,E, F )
and, for i = 0, 1, 2, 3 let Bi(K) denote the set of faces of Γ that have exactly i
of their bounding edges in K. Then:

• |B3(K)| = 2k
3 −

|B1(K)|+2|B2(K)|
3 ;

• Fris(Γ) ≤ 2k
3

These banzenoid hexagons can have two isomers and Kekulé assumed that
the three double bonds in these benzenoid hexagons are changing their place
so fast that an isolation of these isomers would be impossible. According to
Pauling assumption there could not exist two distinct isomers and the real state
of benzene was the result of ”resonance” between the two isomers.

Recent surveys on Fries number and face independent number of Fullerenes
appear in Graver [85], Graver [85] and Vukicevic, et al. [86]

For a given perfect matching M ⊂ E of Γ, a cycle C of Γ is M -alternating
if the edges of C appear alternately in and off M . A set H of disjoint hexagons

29
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of Γ is called a resonant set (or sextet pattern) if Γ has a perfect matching
M such that all hexagons in H are M-alternating. A maximum sextet pattern
is also called a Clar formula. The Clar number [87], Clr(Γ), of Γ is the size
of the largest resonance set of benzenoid faces overall Kekulé structures for Γ
or equivalently, the largest independent set of benzenoid faces over all Kekulé
structure for Γ.

The aromaticity denotes extra stability nature of a specific conjugated sys-
tem and the resonance energy reflects the energy gain or loss due to the inter-
action between Kekulé structures. The resonance energy is calculated experi-
mentally and represents the extra stability of the conjugated system. Distinct
approaches have been developed to estimate the resonance energy [88] among
them the probably most successful was the Clar’s π-sextet theory stated in [87]
In Clar’s aromatic sextet theory, the aromatic π-sextext are defined as six π-
electrons set in a single ring separated from adjacent rings by formal CC single
bonds [89]. Moreover, Gutman in [90] stated: the Clar structure consisting of
circles that satisfies the following three rules:

• Circles are never drawn in adjacent hexagons

• The remainder of the polyhex obtained by the deletion of the vertices of
the hexagons that possess circles must be empty or have a Kekulé structure

• As many circles as possible are drawn subject to the constraints (a) and
(b).

For building up his aromatic π-sexset theory, in [87] Clar provided many
instances to support his observation that for isomeric benzenoid hydrocarbond
when the number of the circles of Clar structures (Clar number) increases, the
absorption bands shift to the shorter wavelength and the stability of the isomers
also increases.

The Clar number of a benzenoid hydrocarbon was computed by Hansen and
Zheng [91] by the integer linear programming.They conjectured that the linear
programming relaxation of this model was sufficient for the general case. Later,
this conjecture has been proved by Abeledo and Atkinson in [92].

The Clar and the Fries number for benzenoid hydrocarbons are good indi-
cators for their stability. However for the Fullerene graph in Austin et al. [83]
20 distinct isomer of C60 was constructed whose Fries number suppress the on
of icosahedral C60. This leads to the fact that the maximality of Fries number
may not indicate the higher stability of the molecule. On the other hand, in
Zhang et al. [93] a significant correlation between Clar number and the stability
of Fullerene have been studied.

One might naively assume that there is a Kekulé structure that simultane-
ously corresponds to the Fries and Clar numbers or in another word the Clar
structure is the subset of the Fries structure. In [94] it has been discussed that
this is generally not the case. Abeledo and Atkinson proved that Clar number
of a 2-connected bipartite plane graph can be computed in polynomial time [92].
Note that a plane graph is bipartite if and only if all of its faces are even. On
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the other hand, E.R Brczi-Kovcs and A.Bernth in [95] showed that determining
the Clar number of a general 2-connected plane graph is NP -hard. Their aim
was to determine the Clar number of fulllerene graph in polynomial time. They
showed that determining the Clar number of a general 2-connected plane graph
is NP -hard, if the number of odd faces is not bounded in the planar embedding.
They present an algorithm that determines the Clar number of a 2-connected
plane graph and has good running time unless that the odd faces are too far
from each other in the planar representation. The problem weather computing
a Clar number for Fullerene graph is NP -hard is however left open, since their
NP -hardness reduction involves creating a lot of odd faces.

However, finding a Clar number for the planar graph is computationally NP -
hard problem [96]. It is known that the Fries number of Fullerene is bounded

above by
|V |
3

and the Fries structures with
|V |
3

numbers are referred to as

complete Fries structures or perfect Clar structures. This happens only when
the Clar and the Fries structures are the same. On the other hand, the corre-

sponding bound for the Clar number is
|V |
6
− 2 and the Fullerene for which this

bound is attained is characterized by Zhan and Ye in [97, 98] where they are
referred to as extremal Fullerene.

Theorem 9. [97] Let Γn be a Fullerene graph with n vertices. Then Clr(Γn) ≤
bn− 12

6
c.

They also showed that there are infinite many extermal Fullerene.

It might be worth mentioning that in contrast to various topological indices
which are usually invariant under the automorphism operation, Fries number of
Fullerenes depends strongly on the Fullerenes isomer, and different isomers of a
certain Fullerene may have different Fries number [85].

The idea of expressing a mathematical model for the topological index goes
back primarily to the work done by P. Hansen and M. Zheng [91]. They proposed
an integer programming model for determining the Clar number of benzenoid
hydrocarbon. Later on and more recently L. Pavlovic and T. Divnic introduced
a quadratic programming approach for computing the Randic index [99].

In [100] we introduced a binary integer linear programming model for find-
ing the Fries number of a Fullerene and here in this thesis, we improve solving
approach for the proposed binary programming models such that their optimal
solution specify the location of the double bounds in the associated Kekulé struc-
ture and its optimum value denote the Fries and Clar number for all Fullerenes.
As a common technique, in this study, we applied the branch-and-cut procedure
for reaching the optimal solution of the prescribed binary integer programming
models.
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3.1 Integer Linear Programming for Fries Num-
ber

Let Γ = (V,E, F ) be a Fullerene graph and M ⊂ E be a perfect matching of Γ.
Let H(Γ) the set of all hexagons of Γ, i.e., the set of all induced sub-graphs of Γ
whose edge sets are 6-cycles of the graph. The set H(Γ) has n/2− 10 elements,
where n is the size of V .

In [100] the following integer programming formulation is used to compute
Fries number:

ILPFris :

max
∑

H∈H(Γ)

yH (3.1a)

s.t. x(δ(v)) = 1 v ∈ V, (3.1b)

x(E(H)) ≥ 3 yH H ∈ H(Γ), (3.1c)

0 ≤ xe ≤ 1 e ∈ E, (3.1d)

0 ≤ yH ≤ 1 H ∈ H(Γ), (3.1e)

x ∈ ZE , (3.1f)

y ∈ ZH(Γ). (3.1g)

A variable xe is associated with every edge e of Γ and δ (v) denotes the
set of edges that have exactly one endpoints in {v}. Let’s us call the polytope
described by the above set of constrains as Fries polytope, PFries(Γ).

Every vector x̄ that satisfies the constraints (3.1b), (3.1d), and (3.1f) is the
incidence vector of a perfect matching M of Γ, i.e., a vector of {0, 1}E where,
for every e ∈ E, the component x̄e is equal to 1 if e ∈ M and is equal to 0,
otherwise. The reverse also holds. To count the number of saturated hexagons
of a given perfect matching M the variables yH come into play; one for each
H ∈ H(Γ). If an hexagon H is saturated and x̄ is the incident vector of M , then
x̄(E(H)) = 3; therefore both values 0 and 1 for variable yH make constraint
(3.1c) satisfied, and the direction of the objective function “pushes” its value to
1. If, to the contrary, H is not saturated, then x̄(E(H)) ≤ 2, and the integrality
constraint (3.1g) along with (3.1c) force yH to take the value zero. Let us refer
to the set of inequalities (3.1c) as Kekulé inequalities.

In conclusion we can assert that the integer linear program (3.1a)-(3.1g)
correctly computes the Fries number of the graph Γ.

Linear Programming Relaxation Formulation for Fries Number

Generally speaking, solving binary problems for large-scale instances are com-
putationally complicated procedure. Therefore, as a first approach for solving
(ILPFris), we start by considering its underlying linear relaxation problem. To
this purpose, we solved the linear relaxation models for a variety instance of
Fullerene graphs and our computational experiments clearly reveal that solving
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the linear relaxation models do not always yield an integer optimum solutions;
so, it can be stated generally that the underlying coefficient matrix is not always
unimodular.

Quadratic Programming for Fries number

In this section, we show that a simple polynomial transformation allows us
to reformulate the linear binary integer mathematical model (ILPFris), as a
quadratic program. The idea behind it is that, the integrality constraints are
enforced by the complementary constraints. To this purpose, let’s start by
replacing the integrality conditions x ∈ ZE and y ∈ ZH with the following ones:

xe (1− xe) = 0, e ∈ E (3.2)

yH (1− yH) = 0, H ∈ H(Γ) (3.3)

Let’s call these set of equations, the complementary constraints. Substituiting
them in the programming problem (ILPFris) results in obtaining the following
equivalent nonlinear version of the problem:

QPFris :

max
∑

H∈H(Γ)

yH (3.4a)

s.t. x(δ(v)) = 1 v ∈ V, (3.4b)

x(E(H)) ≥ 3 yH H ∈ H(Γ), (3.4c)

xe(1− xe) = 0 e ∈ E, (3.4d)

yH(1− yH) = 0 H ∈ H(Γ), (3.4e)

0 ≤ xe ≤ 1 e ∈ E, (3.4f)

0 ≤ yH ≤ 1 H ∈ H(Γ), (3.4g)

Furthermore, the complementary constraints xe (1− xe) = 0 and yH (1− yH) =
0 can be enforced by incorporating an exact penalty within the objective func-
tion, i.e., there exists a threshold value M∗ such that whenever the scalar M
exceeds M∗ the solution of the following problem satisfies the complementary
constraints and so on the integrality conditions of the involved variables are
insured.

max
∑

H∈H(Γ)

yH −M
∑

H∈H(Γ)

yH(1− yH)−M
∑
e∈E

xe(1− xe) (3.5a)

s.t. x(δ(v)) = 1 v ∈ V, (3.5b)

x(E(H)) ≥ 3 yH H ∈ H(Γ), (3.5c)

0 ≤ xe ≤ 1 e ∈ E, (3.5d)

0 ≤ yH ≤ 1 H ∈ H(Γ), (3.5e)
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Over the past decades, Interior point methods (IPMs) have been proved prac-
tically efficient in solving linear and nonlinear optimization problems including
quadratic programming problems [101]. IPMs have better complexity bounds
than other available solving approaches for quadratic programming problem (the
best iteration complexity bound found for accuracy ε > 0 is O(

√
nlog 1

ε ) [101].
For more details of IPM appraoch the interested reader is referred to Byrd et
al. [102], Byrd et al. [103], Waltz et al [104]. Experimental results of solving
concave quadratic model for set of fullenere instances, under the frame work of
interior point method, has been reported in Table 1 in [100]. Note that differ-
ent isomers of a certain Fullerene, due to their various structures, might have
different Fries numbers. There, for each Fullerene the first isomer according to
the is taken into account. Furthermore, as mentioned previously, there might
be more than one Kekulé structure associated to Fries number of a specific
Fullerenes isomer, known as alternative optimum solutions of the problem.

3.1.1 Integer Linear Programming for Clar number

Two hexagons of Γ are called independent if they do not have any nodes of
edges in common. Observe that it would be sufficient to say that two hexagons
are independent if they do not share a node because if two hexagons sharing
a node v had no edges in common, then v would have four edges incident to
it contradicting the assumption that Γ is a Fullerene graph, where every node
has degree three. We call a Clar system associated with a perfect matching M
of Γ a maximal set on saturated hexagons that are also pairwise independent.
The cardinality of such a Clar system is denoted by CM (Γ). The Clar number
Clr(Γ) of Γ is the the maximum value CM (Γ) over the set M(Γ) of all perfect
matchings of Γ, i.e.,

Clr(Γ) = max{CM (Γ) |M ∈M(Γ)}.

Developing on the model (3.1a)-(3.1g), a computation of the Clar number
through integer linear programming techniques is proposed in [105], where the
constraints

yH + yL ≤ 1 for all distinct H,L ∈ H(Γ)
with V (H) ∩ V (L) 6= ∅

(3.6)

are simply added to the program (3.1a)-(3.1g). It is easy to see that in any
solution to (3.1a)-(3.1g), (3.6) the y vector is the incidence vector of a subset of
H(Γ) that qualifies as a Clar system.

Let’s refer to the system described by the set of inequalities (3.1a)-(3.1g)
together with (3.6) as ILPClr and the corresponding polytope as Clar Polytope,
PClar(Γ).

Not all isomers of a given size have the same Clar number. Therefore, since
a high Clar number denotes a higher molecule stability, it is of great interest to
identify, for each value of n within a reasonable range, which are the isomers for
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which the Clar number has the maximum possible value C̄n among all isomers
of size n. We call these isomers the Clar isomers and we denote them by In.

This task of finding the Clar isomers of Fullerene graphs with sizes in a given
interval can be accomplished by solving quite a large number of optimization
problems of the type described in the previous section. For example, for n = 200,
even a solution algorithm that would take a second of computing time per
isomer, which is a time in the range of those reported in [105], would take
almost seven years on a single processor to examine all the isomers.

Therefore, it is necessary to design efficient solution algorithms improving
on the methods proposed so far in the literature.

3.2 Strengthening the Clar number ILP formu-
lation

3.2.1 Hex Inequality

Suppose an arbitrary hexagon H ∈ H(Γ) with its corresponding face variable
yH , let us indicate by E(H) := {1, 2, · · · , 6} the 6 edge cycle of H and by
δ (V (H)) := {a, b, c, d, e, f} the set of 6 edges the have only one endpoint in H,
as shown in Figure 3.1.

1 2

3

45

6

f

a

b

c

d

e

Figure 3.1: Hexagon H

Then, the Kekulé inequality for H can be written as:

x1 + x2 + x3 + x4 + x5 + x6 − 3yH ≥ 0 (3.7)

Consider the following valid solution for (3.7),

(x1, x2, x3, x4, x5, x6, yH) = (1, 0, 1, 0, 0, 0) (3.8)

The matching constraints (3.1b) imply that

(xa, xb, xc, xd, xe, xf ) = (0, 0, 0, 1, 1, 0) (3.9)

One may notice that this feasible solution is not among the interested ones since
xi are taking integral values and in the contrary, yH has a fractional value.
This fact motivates us to look for a set of tighter inequalities such that while
dominating the inequalities (3.7), it also chops off such possible solutions as
described previously from PFries(Γ) and PClar(Γ) polytopes. To this purpose,
by matching constraint (3.1b) we have:
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x1 + x2 = 1− xa, (3.10)

x3 + x4 = 1− xc, (3.11)

x5 + x6 = 1− xe. (3.12)

Then, substituting set of equations (3.10) - (3.12) into the Kekulé inequality
(3.7) results in:

1− xa + 1− xc + 1− xe ≥ 3yH (3.13)

which can be split into the sum of the following three inequalities:

1− xa ≥ yH , (3.14)

1− xc ≥ yH , (3.15)

1− xe ≥ yH . (3.16)

The set of inequalities (3.14) - (3.16) are valid for a given solution (3.8) and
(3.9), nevertheless 1− xe ≥ yH is violated by (3.8) and (3.9) which means that
(3.14) - (3.16) chop off such an undesirable feasible solutions from the Fries and
Clar polytopes.

On the other hand, by considering the other three possible matching con-
straints:

x1 + x6 = 1− xf , (3.17)

x2 + x3 = 1− xb, (3.18)

x4 + x5 = 1− xd. (3.19)

Following are the other three valid inequalities that (3.7) can be obtained by
their positive combination:

1− xb ≥ yH , (3.20)

1− xd ≥ yH , (3.21)

1− xf ≥ yH . (3.22)

Let’s refer to inequalities of type (3.14) - (3.16) and (3.20) - (3.22) as Hex
inequalities. It can be concluded that replacing (3.1c) by Hex inequalities in
ILP formulations of Fries and Clar numbers result in more accurate description
of PFries(Γ) and PClar(Γ), respectively.
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ILPHClr :

max
∑

H∈H(Γ)

yH = (1H(Γ))T y (3.23a)

s.t. x(δ(v)) = 1 v ∈ V, (3.23b)

xe + yH ≤ 1 H ∈ H(Γ), e ∈ δ(V (H)) (3.23c)

yH + yL ≤ 1 for all distinct H,L ∈ H(Γ) with
V (H) ∩ V (L) 6= ∅

, (3.23d)

xe ≥ 0 e ∈ E, (3.23e)

xe ≤ 1 e ∈ E \
⋃

H∈H(Γ)

δ(V (H)), (3.23f)

x ∈ ZE , (3.23g)

y ∈ ZH(Γ). (3.23h)

where for U ⊆ V , by δ(U) ⊆ E we denote the set of edges that have one endpoint
in U and the other in V \ U . Thus δ(V (H)) is the set of 6 edges the have only
one endpoint in H. Observe that, because of the constraints (3.23c), the upper
bound on the variables y is redundant while for the variable x the upper bound
has to be stated explicitly only for those components that appear in none of the
constraints (3.23c).

3.2.2 The Blossom Inequality

A well-known work of Edmonds [13] gives the minimal set of (in)equalities which
describes the perfect matching polytope as following:

xe ≥ 0 for all e ∈ E, (3.24)

x (δ (v)) = 1 for all v ∈ V, (3.25)

x (δ (U)) ≥ 1 for all U ⊆ V, |U | is odd. (3.26)

where δ (U) denotes the set of edges that have exactly one endpoints in U ⊆ V .
The last set of t inequalities (3.26) are ( blossom inequalities) and it is proved
to be one of the effective cutting plane for both Fries and Clar polytopes. One
may observe obviously that:

x (δ (U)) =
∑
v∈U

x(δ(U)) − 2
∑

e∈γ(U)

xe (3.27)

where γ(U) is the subset of edges with both endpoints inside the odd set U ⊆ V .
Matching constraint implies that∑

v∈U
x(δ(U)) ≤ 1 (3.28)
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Therefor, an equivalent re-statment of blossom inequalities are derived easily as:∑
e∈γ(U)

xe ≤
|U | − 1

2
for all U ⊆ V, |U | is odd (3.29)

Here we are going to consider the necessary and sufficient conditions under
which blossom inequalities are facet inducing cutting planes for general matching
polytope.

Theorem 10. Let G = (V,E) be the undirected graph and U ⊆ V be any odd
subset of nodes of G, |U | is odd. If G[U ] which is the subgraph of G induced
by U , is not connected, then the corresponding blossom is not facet inducing
inequality.

Proof. Since G[U ] is not connected, there exist U ⊆ S with an odd cardinality
such that U∪

(
U \ U

)
= U and U \U is an even node set. The blossom inequality

for the odd subset U says that:∑
e∈γ(U)

xe ≤
|U | − 1

2
(3.30)

and the following valid inequality for the even subset U \ U :∑
e∈γ(U\U)

xe ≤
|U \ U |

2
(3.31)

Summing up the two inequalities (3.30) and (3.31) results a corresponding
blossom inequality for subset U . This indicates the fact that it can not be a
facet inducing one.

3.2.3 The Odd Hole Inequality

A hole of a graph G is an induced subgraph of G whose edges form a cycle
that does not have chords. Let CG be the family of all holes of G with an odd
number of edges. Then the family of the odd hole inequalities is the following
linear system: ∑

v∈V (C)

xv ≤
|V (C)| − 1

2
, C ∈ CG. (3.32)

Let the stable set polytope P stab(Γ) of Fullerene graph Γ to be defined as
the convex hull of all characteristic vectors of the stable sets of Γ.

Optimizing a linear function over P stab(Γ) is an NP -hard problem, [15].
Therefore, a complete external description of P stab(Γ) may not be obtainable
generally speaking. However several other families of valid inequalities are
known for this polytope such as odd hole inequalities. Since the number of
odd cycle grow up exponentially in the dual graph of Fullerene, they are ex-
ploited as cutting planes.
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3.2.4 The Clique Inequality

Based on the stable set definition, Clique inequality are valid for the stable set
polytope: ∑

vi∈K
vi ≤ 1 for all clique K ⊆ V (3.33)

Considering Clar polytope PClar, since the Fullerene dual is planar there is no
clique of size more than three in the Fullerene dula. This suggest that the
maximum cliques are triangles. Fig. (3.2) provides a subraph H3 of three
adjacent hexagons namely h1, h2 and h3 of an arbitrary Fullerene graph Γn.

y1

y2

y3

Figure 3.2: Triangle Inequality

their associated variables y1, y2 and y3 makes a triangle in underlying the
Fullerene dual Γ∗n. This suggest the following clique inequality for Clar polytope
PClar:

y1 + y2 + y3 ≤ 1 for all triangles in Γ∗n (3.34)

Let’s refer to this set of inequality as Triangle ones.

Theorem 11. Let G be a graph with node set (X,Y ) and K ⊆ Y . Inequalities
(3.33) is valid for PClar(X).

Proof. Let K be a clique in G = (V,E), K ⊆ Y . Since there is an edge yiyj ∈ H
for all the nodes yi, yj ∈ K, a stable set of G can only contain one node of K
which implies that inequality

∑
hi∈K yi ≤ 1 holds for all (x, y) ∈ PClar(X).

Sine there is a y variable associated to each hexagonal face, by just looking
at the dual graph of the Fullerene, which is planar and cubic, therefore, there is
no subgraph of K4 in the dual graph of Fullerene. So one might conclude that
the maximal clique set of y variables are the triangle.

Another proof approach will be by looking at the primal graph G, suppose
the three hexagons adjacent pairwise as shown in (3.3), for the fourth hexagon
to be adjacent to the current three ones, it will require a common edge with
each of them. The adjacency with two of them can be built easily through the
third common edge is only possible by making a tube which is contrary to the
structure of Fullerene graphs.
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Figure 3.3: Maximum Clique in Fullerene

The problem of finding three set of pairwise adjacent hexagons in Fullerene
graph Γn or equivalently a 3-clique ( triangle) in dual Fullerene Γ∗n is a polyno-
mial time as it is a problem of finding a maximum clique in the dual Fullerene.

3.2.5 The Earing Inequality

Suppose (P ,H ) be a pair of adjacent through one edge pentagon and hexagon,
|P ∩H | = 1 then the inequality

x(P/P∩H ) + yH ≤ 2 (3.35)

is called Earring Inequalities.

Theorem 12. The earring inequality is valid for the Fries polytope.

Proof Consider 3.4. For any arbitrary matching, red lines indicate the matched
edges in hexagons and dashed blue lines are matched ones in pentagons.for any
arbitrary matching, this figure consider all possible cases. More precisely, in the
case when yH = 0 at most two of the edges of the pentagons can be matched
in which neither edges of the adjacent hexagon is in the matching, y1

H = 0 and
y2
H = 0.

In the case where yH = 1, there are exactly two ways of matching edges in
the corresponding hexagon indicated in figures y1

H = 1, · · · , y4
H = 1 in which as

a consequence, the number of the matched edges in the adjacent pentagon can
not exceed one.

y1
H = 0 y2

H = 0
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y1
H = 1 y2

H = 1

y3
H = 1 y4

H = 1

Figure 3.4: Earring Inequality

Since every Fullerene graph has exactly twelve number of pentagon, it is
easily to find this pair of faces. Moreover due to the fact that there will not be
two many number of these set of inequalities they are exploited to strengthen
the linear relaxation of the Fries Polytope.

3.2.6 The Twin Inequality

For each hexagon H, its associated edge cut set, δ(H), is defines as

δ(H) = {e := uv ⊆ E : | {u, v} ∩ V (H)| = 1} (3.36)

Suppose
(

H ,H
′
)

be a pair of adjacent through exactly by one edge hexagons

such that |H ∩H
′ | = 1, then the inequality

xe − xe′ + yH + yH′ ≤ 1
{
e, e

′
}
∈ δ(H) ∩H

′
(3.37)

is referred to as twin inequalities. It should be noticed that for each pair of
hexagons there are two set of Twin Inequality.

Theorem 13. The Twin Inequality is valid for Clar Polytope.
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Proof The proof is based on considering the variant values of yH , yH′ ∈ {0, 1}
which are restricted to the cases where yH yH′ can not take value equal to one
simultaneously according to the stable set constraint.

• yH = yH′ = 0; trivial.

• yH = 0, yH′ = 1; there are two possible matchings for covering the vertices
in hexagon H when yH′ = 1 and in both cases it is easy to see that
xe−xe′ = 0 (they both either covered or not covered by the corresponding
matching), which verifies the validity of the twin inequalities.

• yH = 1, yH′ ∈ {0, 1}, in this case one have xe = xe′ = 0, according to Hex
Inequality which reflects the fact that when yH = 1 neither of the edges
in the edge cut set of H is covered by any feasible perfect matching.

In the following subsections some inequalities that are dominated by the
matching equality and Hex inequalities are stated.

3.2.7 The 3-path Inequality

3-path inequality for the Clar polytope gives the relation between y variables of
two adjoint hexagons and 3 of the edges inside and in the boundary of one of the
hexagons, H

′
. Based on the labeling indicated in Figure (3.38) this inequality

is as follows:

yH + yH′ + xa + xb + xc ≤ 2 (3.38)

abc

Figure 3.5: The 3-path inequality

Theorem 14. 3-path inequality is a valid inequality for PClar(Γ) ∩ Z|E|+|V |.

Proof. Let (x, y) ∈ PClar(Γ) ∩ Z|E|+|V | be a arbitrary feasible integer point
in PClar. To prove the validity of (3.38), it is sufficient to show that for this
arbitrary integer point in the polytope, the left hand side value of (3.38) can
not be three. So let us consider the maximum feasible values can be allowed to
assign to the variables in left hand side of the equation. Based one the stable
set constraint yH + yH′ ≤ 1, so at most of the variables yH and yH′ could take
value one, suppose yH′ = 1. Then, the Hex inequality yH′ + xa ≤ 0 force that
xa = 0. Moreover, by matching constraint one have xa + xb ≤ 1, since xa is
forced to be zero, let xb takes its maximum value which is one but this leads xc
to take only value zero based on the matching inequality. Hence, at most one
might have yH′ = xb = 1 and as a result yH = xa = xc = 0.
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Obviously,the number of adjacent hexagons can not exceed the number of

edges in Fullerene dual, 3|V |
2 . One may notice that for each pair of adjacent

hexagon there will be four set of 3-path inequalities and we are going to exploit
them as cutting planes in branch and cut procedure.

3.2.8 The Paralell-edge Inequality

Considering each hexagon H and its two paralell edges a and b, the paralell
edge inequality is described as

−xa − xb + yH ≤ 0 (3.39)

a

b

Figure 3.6: Parallel-edge inequality

Theorem 15. Parallel- edge inequality is valid for PClar(Γ) ∩ Z|E|+|V |.

Proof. Suppose (x, y) ∈ PClar(Γ) ∩ Z|E|+|V |. One needs to take the similar
approach as in the proof of previous theorem. To this, when yH = 1, then
exactly one of the variables xa or xb are definitely one.This leads to the zero
value at the left hand side and in the case when yH = 0, xa+xb ≥ 0 is definitely
a valid constraint for PClar.

There are at most 3 3n
2 inequalities of this type and as 3-path ones they are

used as cutting planes.

3.3 A stable set formulation for the Clar number

Every feasible solution (x̄, ȳ) of Problem (3.23a)-(3.23g) defines a perfect match-
ing M = {e ∈ E | x̄e = 1} of Γ whose edges are partitioned into two sets: the
set of edges M ′ that belong to one of the saturated hexagons, i.e., M ′ = {e ∈
M | e ∈ E(H) and ȳH = 1} and M ′′ = M \M ′, its complement with respect
to M . Consequently, since every node of V is the endpoint of some edge in
M , such a matching induces a partition of V into 6-node sets (V (H) for some
H ∈ H(Γ) with ȳH = 1) and 2-node sets (the endpoint of e for e ∈M ′′), which
are all pairwise disjoint.

Therefore, we can reformulate Problem (3.23a)-(3.23g) as the following set



44 CHAPTER 3. FRIES AND CLAR NUMBER OF FULLERENE GRAPH

partioning problem, based on the nodes sets of these two categories.

max (1H(Γ))T y (3.40a)

s.t. AΓ x+WΓ y = 1V (3.40b)

x ≥ 0E (3.40c)

y ≥ 0H(Γ) (3.40d)

x ∈ ZE (3.40e)

y ∈ ZH(Γ). (3.40f)

Here for a finite set U , by 0U (or 1U ) we denote a vector of RU with all its
components equal to 0 (or equal to 1). The |V |×|E| matrix AΓ is the node-edge
incidence matrix of the graph Γ, i.e., a matrix where the column corresponding
to edge e = (i, j) is the incidence vector of the set {i, j} as a subset of V . The
matrix WΓ, that we call the hexagon matrix, is the |V | × |H(Γ)| matrix where
the column corresponding to hexagon H is the incidence vector of V (H) as a
subset of V .

The constraints (3.40b)-(3.40f) guarantee that the solution is a 0–1 vector;
indeed, since AΓ and WΓ have components in 0–1, to satisfy (3.40b) no variable
can exceed value 1. Constraint (3.40b) imposes that a 0–1 vector is feasible if
and only if the sets defined by the columns of AΓ and WΓ, corresponding to the
solution components that have value 1, is a partition of V . The rows of the two
matrices are never empty and a feasible soution to the system always exists for
the values of n we consider, since Γ has at least one perfect matching.

The formulation (3.40a)–(3.40f) was already used in [91] by Hansen and
Zheng to formulate the Clar number problem for benzenoid hydrocarbons (mole
cules made of carbon and hydrogen atoms). The graphs associated with these
molecules are bipartite (all cycles have length 6) thus the authors conjectured
that the linear programming relaxation might always yield integral optimal so-
lutions. The conjecture was proved to be true in [92] by Abeledo and Atkinson
that showed that the linear programming relaxation (3.40a)–(3.40d) is totally
unimodular, thus an optimal slution of the corresponding linear program is al-
ways integral. This implies that the problem of computing the Clar number of
a benzenoid hydrocarbon is solvable in polynomial time.

In the case of Fullerene graphs odd cycles are also present and the result of
Abeledo and Atkinson does not hold. The question whether the Clar problem
for Fullerene graphs is solvable in polynomial time or not has not been settled
yet; see, e.g., [95].

Since, as observed, the polytope defined by linear programming relaxation
(3.40a)–(3.40d) has fractional vertices, in order to strengthen the formulation it
is necessary to find valid inequalities that can be added to the formulation either
“statically”, if their number is small, or “dynamically” by a suitable separation
algorithm. This can be done by introducing the intersection graph of a matrix.

Let us denote by B = [AΓ |WΓ] the coefficient matrix of constraint (3.40b).
Then the intersection graph GB = (VB , EB) of matrix B is defined as follows:
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every element of the node set VB is associated with a column of B. For two
distinct nodes i and j of VB the edge (i, j) exists if and only if BTi Bj 6= 0, where
Bi and Bj are the columns of B associated with i and j, respectively. In other
words, the subsets of V defined by the two columns are disjoint.

Since the columns selected by a feasible solution of (3.40a)–(3.40f) are such
that their sum is the vector of all ones 1(V ), then for any pairs of them there is
no edge in EB connecting the corresponding nodes in VB . Consequently, these
nodes are a stable set of the graph GB . Let us call STAB(G) the convex hull of
the incidence vectors of all the stable sets of a graph G = (N, J). Being these
vectors finitely many, STAB(G) ⊂ RN is a polytope and is called the stable set
polytope.

Thus, Problem (3.40a)–(3.40f) can be reformulated as follows:

max (1H(Γ))T y

s.t. AΓ x+WΓ y = 1V

(x, y) ∈ STAB(GB), where B = [AΓ |WΓ].

(3.41)

A well known linear programming relaxation of the stable set problem is
based on two families of inequalities that we are going to briefly describe.

A clique of a graph G is a set K of pairwise adjacent nodes. A clique is
called a maximal clique if it is not properly contained in another clique. Since
the intersection of a stable set and a clique of G has at most one element, the
following inequality, called the clique inequality, is valid for STAB(G):∑

v∈K
zv ≤ 1, where K is a clique of G, (3.42)

where z ∈ RN+ is a non-negative vector indexed by the nodes of G. If the clique
K is maximal, then the inequality (3.42) cannot be dominated by any other
inequality and actually it defines a facet of STAB(G). Let us call KG the
family of all maximal cliques of G. Then∑

v∈K
zv ≤ 1, K ∈ KG (3.43)

is a system of inequality whose constraint matrix is called the clique matrix of
STAB(G). The inequalities defined by the clique matrix along with the non-
negativity constraints provide a relaxation of STAB(G) that often approximates
STAB(G) pretty well. For a well know class of graphs, the perfect graphs, the
relaxation coincides with the polytope since all its extremal feasible points are
integral. For general graphs, when combined with the integrality restrictions, it
yields an integer linear programming formulation of the stable set problem.

Unfortunately, for general graphs KG has exponentially many elements.
Therefore the clique matrix cannot be entirely given explicitly in a formula-
tion that has to be used in actual computations. Therefore, maximizing (or
minimizing) a linear function over the set defined by (3.43) and z ≥ 0 must be
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done by cutting plane techniques based on a repeated solution of a separation
problem for the system (3.43). Such a separation problem amounts to finding a
clique of maximum weight on a suitable weighted graph, which is an NP -hard
problem for general graphs.

The situation is much more favorable when the stable set problem is defined
on the intersection graph of a Fullerene graph, as stated in the following.

Proposition 1. For a Fullerene graph Γ = (V,E) with adjacency matrix AΓ

and hexagon matrix WΓ, the family of maximal cliques of its intersection graph
GB, where B = [AΓ | WΓ], has |V | elements whose incidence vectors are given
by the rows of matrix B.

Proof. For a node v of Γ, the corresponding row of AΓ has a 1 in the column
indexed by an edge incident with v. The corresponding row of WΓ has a 1 in
the column indexed by an hexagon with v in its node set. The node sets of all
these columns have a common intersection and thus their corresponding nodes
in GB define a maximal clique Kv.

If the claim is false, then there must exist a node w of GB that is not
in Kv but is adjacent to two nodes u and v in Kv. Moreover, the node sets
corresponding to u, v, and w need not have a common intersection t, because
otherwise they would be contained in the clique Kt defined by row t of B. It is
easy to see that in a Fullerene graph three pairwise intersecting node sets that
are either the endpoints of an edge or the nodes of an hexagon have always a
common intersection.

Because of Proposition 1, no clique inequalities need to be added to the
formulation (3.40a)-(3.40f).

The second family of additional constraints are the odd hole inequalities as
described in section 3.2.3.

The maximum cardinality of a stable set S in a hole C ∈ C is obtained,
for example, by numbering the nodes of C, as they appear along the cycle,
with consecutive integers starting from 1 and by assigning the nodes with even
label to the stable set. Thus the inequalities of (3.32) are valid also when
|V (C)| is even. In this case, though, the inequality is dominated by the one
obtained by summing up the clique inequalities defined by each of the cliques
made by the edges incident to each of the even labeled nodes. If |V (C)| is odd,
but C has a chord e, the the edges of C and the chord make two cycles C ′

and C ′′, one of even size and the other of odd size. The inequality obtained
by summing up the inequalities (3.32) defined by C ′ and C ′′ dominates the
inequality (3.32) defined by C. Since we are interested in families of inequalities
that do not contain member trivially dominated by positive combinations of
other known inequalities, the members of CG are requested to have odd sizes
and to be chordless.

The inequalities (3.32) are exponentially many, in general. However a poly-
nomial time separation algorithm exists for them (see [4] (8.3.6) and (9.1.11)).
Consequently, we can optimize a linear function in polynomial time over the
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polytope described by the equations (3.40b), the non-negativity constraints and
the whole family of odd hole inequalities.

For completeness we recall here the polynomial time algorithm that solves
the separation problem of the odd hole inequalities. Suppose that we are given
a point z̄ ∈ RV with 0V ≤ z ≤ 1V . We assign a weight s̄e = 1 − z̄u − z̄v to
every edge e ∈ E of G. The inequalities (3.32) are satisfied by z̄ if and only if
the following holds: ∑

e∈E(C)

s̄e ≥ 1, C ∈ CG. (3.44)

It is therefore sufficient to find the shortest (according to the edge length s̄) odd
hole in G and check whether or not its length is less than 1. To find the shortest
odd hole we do the following. For every node v of G we create two copies: one
at the “top” level v′ and another at the “bottom” level v′′. For every edge
e(u, v) of G we create two edges (u′, v′′) and (u′′, v′), both with weight s̄e. In
every simple path from v′ to v′′ nodes alternate from “top” to “bottom” and
eventually terminates at the “bottom” level; therefore, every simple path from
v′ to v′′ has odd length. Every such a path induces a cycle of odd length in G.
For every v ∈ V we compute the shortest v′–v′′ path. The shortest among these
|V | shortest paths defines the desired shortest odd hole in G. Since a shortest
path in a graph with non-negative edge lengths can be found in polynomial
time, the whole procedure has polynomial time complexity.

3.4 Empirical evaluation of the algorithms

Based on the formulations described in the previous sections, we have designed
several solution algorithms to solve the Clar problem to optimality. The pattern
of each such algorithms is the same and can be outlined as follows.

First the optimal value over the linear programming relaxation is computed
by providing the linear programming (LP) solver with a static linear system.
This is the case of the formulations whose LP relaxation contains a small (poly-
nomial in n) number of constraints. The formulations (3.1b)–(3.1g) plus (3.6)
and (3.23a)–(3.23h) are of this type.

If the LP relaxation contains a number of constraints that is exponential in n,
then its optimal solution is obtained dynamically by an iterative cutting-plane
algorithm. This is the case, for example, of the LP relaxation (3.40a)–(3.40f),
where the odd hole inequalities are used to strengthen the LP formulation.

In the cutting plane phase of the algorithm that involves an exponentially
sized family of inequalities L, we solve the first linear program (derived from a
static polynomially sized relaxation) and we check whether the optimal solution
satisfies all the inequalities in L. If this is the case, we have solved the relaxation
that includes (implicitly) all the inequalities in L. Otherwise, we find one or
more inequalities in L that are violated by the current solution, we add them
to the linear program, and we iterate

Once the computation of the optimal solution of the relaxation is completed,
two scenarios are possible. In the first one, such an optimal solution is integral
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and we are done: the corresponding optimal value is the Clar number of the
instance. In the second one, the solution has at least one fractional compo-
nent. Then we submit the formulation to a mixed linear programming (MIP)
solver. Solvers of this kind are able to solve linear programs with the additional
requirement that a subset of the variables can only have integral values.

Recent versions of commercial MIP solvers are able to strengthen the LP
formulation of the mixed integer linear program that are supposed to solve.
The inequalities that they generate are produced with different techniques that
typically are not based on the combinatorial structure of the problem (like, for
example, the one we described for the generation of the odd hole inequalities).
If the best relaxation that they are able to produce is not integral, then they
proceed with a branch and bound phase, i.e., with a pseudo-enumeration algo-
rithm based on decomposing the original problem into two subproblems. Each
of them is characterized by having one of the solution variables, that has a
fractional value at the optimal solution of the relaxation, fixed to 0 and to 1,
respectively (here we assume that we are in the special case where all variables
are bounded to have values between 0 and 1).

This recursive process can be described by a binary tree where every node
represents the original linear programming relaxation with the addition of a set
of variable fixings. The proliferation of the tree is interrupted when a node
corresponds to an infeasible linear program, or when the LP solution is integral,
or when the optimal LP value at the node (upper bound) falls below the current
best integral solution found during the execution of the whole process (lower
bound).

Actually, state-of-the-art MIP solvers implement the technique known as
branch and cut, whose main difference with respect to branch and bound is that
at every node of the tree the LP relaxation is further strengthened with addi-
tional inequalities. They can either be global, i.e., valid for the original problem
and thus useful to improve the relaxation of every other node, or local, i.e., valid
only for the subproblems corresponding to node and to all its descendants.

It is important to stress the fact that it is of paramount importance to keep
the size of the enumeration tree small. If the size of the tree grows exponentially
fast, then so does the computation time. Therefore, it will become practically
infeasible to solve instances even of moderate size if the tree is not kept small.
The principal devise used to limit the tree proliferation is the “pruning” of
a node for which the upper bound falls below the lower bound. Therefore,
it is important to have relaxations that yield upper bounds that are as low as
possible. Since the better the relaxation the lower is the value of the bound, most
of the efforts of the present paper are focused on identifying strong relaxations
that, at the same time, are not too time consuming to solve for an LP solver.

For our computational experiments we used IBM CPLEX Optimizer Ver-
sion 12.71 both as an LP and an MIP solver, with its default settings, with the
exception of the preprocessing that we turned off because no advantages from
this feature, which is most beneficial in general mixed integer programming, are
to be expected in our case.

All the computations were carried out with an Intel i7 4960X with 6 cores,
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clock at 3.6Ghz, and 64Gb of core memory, equipped with the operating sys-
tem Linux, Version 4.4.0. The solution algorithm was implemented in C and
compiled with the gcc compiler with optimization switch “-O2”.

3.4.1 Comparing the three models

Our first experiment was to compare the performances of the three algorithms
based on the linear programming relaxation (3.1b)–(3.1g) plus (3.6), that will be
referred to as Algorithm A1; on the relaxation (3.23b)–(3.23h) (Algorithm A2),
and on the relaxation (3.40b)–(3.40f) (AlgorithmA3). No additional inequalities
were used in this experiment to strengthen the formulation and the CPLEX cut
generation feature was disabled.

The tree algorithms were tested on Fullerene graphs with 120, 122, and 124
nodes. For each size we examined the first 2 000 isomers generated by the code
fullgen. As it will be more evident in the next section, the hardness of the Clar
problem varies quite substantially among instances of similar sizes depending
on whether the reminder of the division n/6 is 0, 2, or 4. For this reason we
selected sizes for which the reminders have all these three values. The results
are shown in Table 3.1.

n = 120 n = 122 n = 124

Algorithm BB Time BB Time BB Time

A1 8 817 1 846 9 639 2 025 10 682 2 308
A2 7 796 2 610 8 508 2 874 9 555 3 282
A3 50 47 40 45 20 48

Table 3.1: Comparison of the three basic algorithms

The columns of the table labeled “BB” report the average number of nodes
of the branch and bound tree, while those labeled “Time” refer to the average
computation time in milliseconds. Both averages are computed over the set of
2 000 isomers considered in the computational study.

The clear winner among the three algorithms is A3, which is based on the
stable set formulation described in Section 3.3. It is from two to three orders of
magnitude faster that the other two “matching-based” algorithms both in terms
of generated branch and bound nodes and in terms of computation time. About
these two algorithms, A2 seems to be superior toA1 in terms of generated nodes.
This was to be expected since the corresponding formulation is stronger than
the other. However, it requires a longer computing time per node. Possibly
because the corresponding relaxation is about six times larger than the other.
However, it is conceivable that for larger values of n the difference in the number
of generated nodes compensates the higher demand of computing resources at
every node and that thus also the total CPU time for A2 becomes shorter
compared to the one of the other algorithm.
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We repeated the same computational experiment by strengthening the three
formulations. In particular, we enabled the automatic cut generation in CPLEX.
Therefore, in this new setting the algorithm was of a branch and cut type,
because the solver could add inequalities at every node of the enumeration tree.
In addition, we statically added all the 3-clique inequalities to the formulation
of Algorithm A2 and all the 5-hole inequalities (defined by every 5-cycle in the
Fullerene graph that intersects 5 hexagons) to the formulation of A3.

Due to the different types of inequalities it is possible that the strengthening
automatically operated by CPLEX changes the performance ratios of the three
algorithms. The results reported in Table 3.2 might help settling this issue. In
the table the columns labeled “BC” give the average number of the branch and
cut nodes generated by the MIP solver. To the names of the algorithms we
appended the character “C” to recall the fact that “CPLEX inequalities” were
generated.

n = 120 n = 122 n = 124

Algorithm BC Time BC Time BC Time

A1C 4 251 1 152 2 173 1 272 2 855 1 387
A2C 1 268 788 1 023 882 1 056 957
A3C 1.95 149 0.43 169 0.43 166

Table 3.2: Comparison of the strengthened version of three algorithms

Compared to the first experiment, in this one we observe a substantial reduc-
tion in the number of nodes in the enumeration tree, in particular for Algorithm
A3C that is able to solve many instances without any recourse to enumeration
(the average number of nodes is less than 0.5). The reduction is remarkable also
for the computing time, but only for the algorithms A1C and A2C. As noted
for the first set of experiments, it is conceivable that for larger values of n also
Algorithm A3C becomes faster than A3.

3.5 Hunting for Clar isomers

The time needed to compute the Clar number, i.e., to solve Problem (3.23a)-
(3.23g) to optimality, varies from one isomer to another quite substantially. In
Table 3.5 we show the results of the Clar number computation for all the isomers
of size 76, using Algorithm A3C. The column “Mean CPU ratio” is the ratio
of the average computing time for a single isomer, evaluated over the set of all
isomers sharing the same Clar number, and the same average for the group of
Clar isomers.

It is clear from the table that most of the computation effort is essentially
useless, since it is not actually necessary to compute the Clar number exactly
for any instance belonging to the first four groups. It is only necessary to have
a mathematical proof that an isomer is not a Clar isomer. Once this proof is
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Clar # Isomers Mean CPU ratio Total CPU share

6 37 7.72 0.23%
7 2 121 9.52 16.04%
8 12 673 7.28 73.31%
9 3 898 3.26 10.09%
10 422 1 0.34%

Table 3.3: Clar computation breakdown for n = 76

provided, the computation of the Clar number can be abandoned since it cannot
contribute to the construction of the class of the Clar isomers.

Fortunately, this mathematical proof is readily available: if the upper bound
on the value of the Clar number falls below the value of the largest Clar number
found among the isomers that have been analyzed, we have a proof that the
instance cannot be a Clar isomer. The upper bound is the optimal value of
the relaxation at hand if the algorithm is in the first phase. Otherwise, if we
are in the enumeration phase, it is the maximum of the optimal values of the
relaxations associated with all the leaves of the current enumeration tree.

All isomers of a given size are generated by the computer code fullgen (see
[46]) with the command “fullgen <n> code 6”, where “<n>” is the isomer
size. The code generates all the isomers sequentially. We give each of them an
integer identifier that corresponds to the position of the isomer in the sequence.
The output of our algorithm contains the list of the integer identifiers of all the
Clar isomers of a given size. For each such isomer we also record the set of
hexagons that make the optimal solution.

The algorithm that constructs the set of Clar isomers of a given size is based
on A3C and works as follows. The isomers are submitted to the algorithm in
increasing order of identifier. Suppose that we are processing isomer j, that the
maximum Clar number of the isomers from 1 to j − 1 is C̄ and that we have
collected the set of all isomers from 1 to j−1 whose Clar number equals C̄. We
add the following new constraint to formulation:

1000 · (1H(Γ))T y ≥ 1000 · C̄ − 1. (3.45)

This constraints has the effect of making infeasible the problem if the Clar
number of the instance is less that C̄. Finally we execute A1C. If the problem
is infeasible, then we proceed to the next isomer. If it is feasible and the optimal
value equals C̄, then we add the isomer to the collection. If the optimal value
is bigger than C̄, then we reset C̄ to the new value and we replace the current
collection with the one made by the current isomer.

The advantage of this approach is that the time taken by A1C to prove that
the problem is infeasible because of (3.45) is typically much shorter that the
time needed to find the optimal solution in the formulation without (3.45).

The computational results are reported in Table 3.5. The table is split into
three groups of columns. Each group corresponds to one of the possible values
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of the reminder of the division n/6. As a matter of fact, the cardinality of the
Clar isomers |In| and the average CPU time grow quite regularly with n within
each of such groups. To the contrary, these two values, as functions of n, are
not monotone at all.

The columns headed with “CPU”, report the average computing time for a
single isomer evaluated over the whole set of isomers of size n, whose number
is given in Table 2.1.1. The CPU time spent for an isomer amounts to the
time necessary either to find its Clar number of to prove that its Clar number
is strictly less than the largest one found among the preceding isomers in the
sequence.

All the computations were carried out with an Intel i7 4960X with 6 cores,
clock at 3.6Ghz, and 64Gb of core memory, equipped with a Linux 4.4.0 oper-
ating system. The solution algorithm was implemented in C and compiled with
the gcc compiler with optimization switch ”-O2”. The MIP solver employed by
the algorithm was the IBM CPLEX Optimizer Version 12.71.

According to the values of CPU reported in Table 3.5 and to the number of
isomers given in Table 2.1.1, the total computation time amounts to 334 days.
Indeed the actual computation time, that includes setup and other auxiliary
operation, was 395 days. Since we could run the experiments in parallel using the
6 cores available in the processor, the total wall clock time was about 9.4 weeks.

Let us now analyze the results of Table 3.5 in more details.
The least regular behavior, as |In| and CPU as a function of n are concerned,

appears when n is a multiple of 6. When n falls in the range [24, 204], the value
|In| falls in the following interval defined by two cubic functions (see Figure 3.7):[

0.02 ·
(
n− 24

6

)3

, 40 + 0.03 ·
(
n− 20

6

)3
]
.

The value CPU does not seem to depend on n, for n ∈ [24, 204], and has an
average of 3.5 milliseconds.

If n ≡ 2 mod 6, then |In| is well approximated by the function

0.5 ·
(
n− 18

6

)3.76

(see Figure 3.8), while the value of CPU is approximated by the linear function

1.75 + 0.8 ·
(
n− 18

6

)
.

Finally, when n ≡ 4 mod 6, the number of Clar isomers |In| is approximated
by the function

0.65 ·
(
n− 18

6

)3

(see Figure 3.9), while the value of CPU is substantially independent of n, for
n ∈ [24, 204], with an average of 5.23 milliseconds.
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n ≡ 0 mod 6 n ≡ 2 mod 6 n ≡ 4 mod 6

n |In| CPU n |In| CPU n |In| CPU

24 1 4.00 26 1 0.00 28 2 6.00
30 3 8.00 32 6 2.67 34 6 6.00
36 9 6.89 38 15 5.11 40 18 5.03
42 16 4.26 44 72 5.07 46 27 4.13
48 16 3.62 50 159 8.62 52 67 5.28
54 39 4.02 56 439 8.94 58 100 4.91
60 18 2.78 62 718 10.42 64 195 4.82
66 11 6.13 68 1,408 10.52 70 267 4.56
72 22 2.86 74 2,107 10.29 76 422 5.11
78 19 3.29 80 3,530 10.48 82 558 5.05
84 47 2.64 86 4,795 10.67 88 812 4.94
90 50 2.24 92 7,216 10.76 94 1,065 5.01
96 72 2.07 98 9,340 11.10 100 1,442 4.89
102 66 2.64 104 13,187 11.50 106 1,703 4.93
108 101 2.13 110 16,142 11.96 112 2,233 4.91
114 80 2.82 116 21,394 12.62 118 2,647 4.93
120 150 2.35 122 25,687 13.26 124 3,301 4.99
126 144 2.45 128 32,833 14.39 130 3,826 5.01
132 186 2.68 134 38,015 14.85 136 4,655 5.06
138 208 2.65 140 47,293 15.78 142 5,418 5.07
144 273 2.77 146 54,290 16.72 148 6,407 5.13
150 188 2.90 152 65,668 17.81 154 7,120 5.19
156 360 3.00 158 73,728 19.26 160 8,385 5.93
162 378 3.41 164 88,081 20.70 166 9,498 5.34
168 388 3.57 170 97,705 22.02 172 10,913 6.28
174 431 3.66 176 114,864 23.28 178 11,962 5.48
180 559 3.47 182 125,981 24.89 184 13,719 5.56
186 407 3.58 188 146,187 26.43 190 15,114 5.65
192 732 3.74 194 159,356 27.88 196 17,107 5.75
198 685 3.80 200 183,402 28.15 202 18,722 5.87
204 662 4.07

Table 3.4: Clar isomers and average computing time
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Figure 3.7: |In| for n ≡ 0 mod 6
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Figure 3.9: |In| for n ≡ 4 mod 6
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Rather then reporting the values of the C̄n in a table, we summarize them
in the following

Proposition 2. For n ≤ 204 the maximum Clar number C̄n of a Fullerene
graph over the set of all isomers of n nodes is

C̄n =

3

(
n− 2

6

)
− 2

⌊
n− 2

6

⌋
− 3 if n ≥ 20 and n /∈ {22, 30},

2 if n = 30.
(3.46)

In [97] Zhang and Ye prove the following

Theorem 16 (Theorem 1.1 in [97]).

C̄n ≤
⌊
n− 12

6

⌋
. (3.47)

They call extremal Fullerene those for which the Clar number is the one
given by Theorem 16 and in [97] they show examples of extremal Fullerene with
60 and 70 nodes. In [98] the same authors characterize the extremal Fullerenes
and apply this characterization to the case n = 60, for which they find and show
all the 18 isomers that are extremal. All these results are in agreement with
those of Table 3.5.

In [106] Gao, Li, and Zhang prove the following

Theorem 17 (Theorem 1.2 in [106]).

C̄n ≤


⌊n

6

⌋
− 3 if n ≡ 2 mod 6,⌊n

6

⌋
− 2 otherwise.

(3.48)

They also call extremal a Fullerene for which the Clar number is the one
given by (3.48). Quite remarkably, they provide a complete characterization of
extremal Fullerene.

With this characterization the problem of constructing an extremal Fullerene
graph of n nodes is reduced to the one of constructing a suitable plane graph
of roughly n/3 nodes. However, in [106], it is not said if at least one such plane
graph exists for all n; only a few examples are shown with n = 70 and n = 80.
From Proposition 1 we know that this is indeed the case for all n except n = 30,
but only if we are in the range [20, 204] (the case n = 22 is excluded, of course,
since no Fullerene graph exists with this size). We believe that Proposition 1
can be extended to all sizes n > 204, possibly using the techniques and the
results of [106]. Therefore, we conclude with the following

Conjecture 1. The maximum Clar number C̄n of a Fullerene graph over the
set of all isomers of n nodes is

C̄n =

3

(
n− 2

6

)
− 2

⌊
n− 2

6

⌋
− 3 if n ≥ 20 and n /∈ {22, 30},

2 if n = 30.
(3.49)



56 CHAPTER 3. FRIES AND CLAR NUMBER OF FULLERENE GRAPH



Part II

Distributing the Errors in
Iterative Interior Point

Methods

57





Chapter 4

Preliminaries of Interior
Point Methods

The first polynomial algorithm for Linear Programming (LP) was developed
by Khachiyan [107] called ellipsoid algorithm. According to this algorithm a
series of ellipsoids are constructed whose centers form a sequence of points which
converge to an optimal solution of an LP problem. The ellipsoids are constructed
in a way that progressing towards optimality from one iteration to another
is guaranteed. Updating the ellipsoids requires a high pre-iteration algebra
operations therefore it has never become a competitive alternative to the simplex
method [108].

Later, interior point method (IPM) was proposed by Karmarkar [109]. The
idea beyond the Karmarkar’s algorithm was that instead of inscribing a ball into
the ill-conditioned corner of the feasible polytope, it employs projective geom-
etry to transform this corner into a regular well-conditioned simplex polytope,
inscribes a ball into it, and exploits the fact that optimization on a ball is a
trivial operation.

Moreover, using a potential function in this method insures the reduction of
a distance to optimality at each iteration. This algorithm is computationally
attractive because the optimality is reached after a relatively small number of it-
erations [101] even though a single iteration of Karmarkar’s method is expensive
due to requiring to apply a projection operation.

Karmarkar’s projective method and the projected Newton barrier method
were proved to be equivalent in Gill et al. [110]. This fact made an increasing
influence in the role of barrier functions in the theory of interior point method.

Interior point methods for linear and (convex) quadratic programming have
low-degree polynomial worst-case complexity and it has the ability to derive the
optimal solutions in an almost constant number of iterations which depends very
little on the problem dimension. These impressive features makes the interior
point methods applicable for very large scale optimization.

Interior point methods are competitive when dealing with small problems

59
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of dimensions below one million constraints and variables and are beyond com-
petition when applied to large problems of dimensions going into millions of
constraints and variables [101].

Primal-dual techniques are usually faster and more reliable than pure pri-
mal or pure dual approaches [111, 112]. Infeasible - primal- dual interior point
algorithm have impressive and attractive features for which it is widely accepted
that it is the most efficient interior point method. These features follows from
the fact that the logarithmic barrier method is applied to the primal and the
dual problems at the same time. This method was discussed in Megiddo [113]
and then later, its theoretical background and the first complexity results are
given in Kojima et al. [114]

Many scientists interpreted the interior point methods as algorithms which
follows a central path on their way to an optimal solution [115]. In the late
80s, the research on the implementation of the interior point methods was im-
pressively progressed and the theoretical crucial role of the logarithmic barrier
functions was studied in [116] and later on, by the early 90s, sufficient evidence
was given in [117, 118] to prove that the IPMs are efficient enough for solving
very large scale linear programming problems.

Mixed Integer Programming solvers contain implementations of both simplex
and interior point methods and have been led to impressive developments since
the presence of interior point methods, over the last 25 years [119, 120, 121, 122].
Both methods are widely used and continue to compete with each other. It is
worth mentioning that problems of large scale size generally seems to be solved
preferably by interior point methods, though it is not always possible to predict
the winner on a particular class of problems. For example, one of important
factors that clarifies the efficiency of a given algorithm is the sparsity structure
of the problem which determines the cost of linear algebra operations. The
simplex method easily takes advantage of any hyper-sparsity in a problem [123]
but its sequential nature makes it difficult to parallelise [124].

The key reason of IPMs success is solving linear optimization problem using
logarithmic barrier function as a nonlinear programming technique. Soon after,
a similar logarithmic barrier function methodology has been extended to solve
quadratic [125] and nonlinear optimization problems [126]. The reason why
the logarithmic function is a well type of barrier function was explained in
Nesterov and Nemirovskii [127]. Indeed, Forsgren et al. [128] stated nicely
that an especially appealing aspect of the interior-point revolution is its spirit
of unification, which has brought together areas of optimization that for many
years were treated as firmly disjoint.

The interested reader in nonlinear and semidefinite property are referred to
surveys of Forsgren et al. [128], Vandenberghe and Boyd [129], respectively.

In this thesis the theory and implementation of interior point methods for
solving convex quadratic programming problem will be considered.
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4.1 Duality Theorem

Considering the primal convex quadratic programming problem as follows:

PG : min
x

cTx+
1

2
xTQx (4.1)

s.t Ax ≥ b (4.2)

where A ∈ Rm×n, Q ∈ Rn×n, c ∈ Rn, b ∈ Rm and the primal variable is
x ∈ Rn. Since we are interested in the convex quadratic problem, it requires
that matrix Q ∈ Rn×n is positive semidefinite which means that there is a
factorization (not necessary Cholesky one) such that Q = V E2V T is explicitly
given, where V ∈ Rn×l and E ∈ Diag(Rl++) is a positive diagonal matrix.
Let’s denote by νPG

(x) as a value of the objective function of the problem PG
at x.

Let ΓG be a Lagrangian problem associated with the primal problem PG,
i.e.:

ΓG : min
x

cTx+
1

2
xTQx+ yT (b−Ax) (4.3)

s.t y ≥ 0. (4.4)

Let’s define the Lagrange dual function ( or just a lagrange function) νΓG
:

Rm → R as the minimum value of Lagrangian problem over x; for y ∈ Rm,

νΓG
(y) := yT b+ min

x
{ (cT − yTA)x+

1

2
xTQx} (4.5)

one may notice that since Q is positive semidefinite, for each given y, the

term (cT − yTA)x+
1

2
xTQx is convex and differentiable in x and therefore the

minimum, if exists, is given by the Fermat rule, which in our case becomes :

Qx+ (cT − yTA) = 0 =⇒ (4.6)

xTQx+ cx− yTAx= 0 ⇐⇒ (4.7)

yTAx =
(
xTQx+ cx

)
(4.8)

By substituting the equation (4.8) into the lagrange dual function (4.5), we
have

cTx− yTAx+
1

2
xTQx = cTx−

(
xTQx+ cTx

)
+

1

2
xTQx (4.9)

= −1

2
xTQx (4.10)

Now, by taking into account this substitution into the dual function we may
write the Dual problem as:
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DG : max
x,y

bT y − 1

2
xTQx (4.11)

s.t AT y −Qx = c, (4.12)

y ≥ 0. (4.13)

Notice that the dual problem also turns out to be a linearly constrained
convex quadratic program.

We continue our discussion by stating two fundamental properties used for
deriving the necessary and sufficient condition for optimality of convex quadratic
programing problems; namely the Weak and Strong duality properties.

Theorem 18. (Weak Duality Property) Let (PG) be a feasible quadratic
program with positive semidefinite symmetric matrix Q in the objective and (DG)
be its corresponding dual problem. If x and (x̂, y)) are feasible solutions to this
pair of problems, respectively, then the primal objective at x is greater than or
equal to the dual objective at (x̂, y), i.e, νPG

(x) ≥ νDG
(x̂, y).

Proof. Let x and (x̂, y) be feasible solutions to the problems (PG) and (DG),
respectively. Then,

cTx+
1

2
xTQx

eq(4.12)
= (AT y −Qx̂)Tx+

1

2
xTQx (4.14)

= yTAx− xTQx̂+
1

2
xTQx (4.15)

eq(4.2)

≥ yT b− xTQx̂+
1

2
xTQx (4.16)

Since Q is positive semidefinite, (x − x̂)TQ(x − x̂) ≥ 0 this implies that
1

2
xTQx− xTQx̂ ≥ −1

2
x̂TQx̂, applying it to the equation (4.16) results in

cTx+
1

2
xTQx ≥ yT b− 1

2
x̂TQx̂ (4.17)

νPG
(x) ≥ νDG

(x̂, y) (4.18)

Here after, we assume that both pair of problems PG and DG are nonempty
and for Theorem (18) the primal and dual objectives value are both finite.

Let’s refer to the nonnegative gap between the primal and dual objectives,

4 := νPG
(x)− νDG

(x̂, y), (4.19)

as the duality gap associated with the primal and dual feasible pair x and
(x̂, y), respectively.

If the duality gap at the primal dual feasible pair (x), (x̂, y) is zero, i.e.,
νPG

(x) = νDG
(x̂, y), then we say that the strong duality property holds.
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Now based on the weak duality property, it can be derived easily that if the
primal dual feasible pair x, (x̂, y) satisfy the strong duality property, then x is
primal optimal and (x̂, y) is dual optimal.

In the following parts, we will go through the proof that strong duality
property holds for our underlying problems (PG) and (DG).

We continue our discussion by stating the preliminary required to the proof
of strong duality property for pair of problems PG and DG.

Lemma 3. ( Farkas Lemma): [130]
Considering the system of inequalities,

Ax ≥ 0, cTx < 0 (4.20)

and the system of equalities and inequalities,

AT y = c, y ≥ 0, (4.21)

Where A ∈ Rm×n and c ∈ Rn, then, exactly one of these two systems has
solution.

Proposition 3. Let x∗ be the primal optimum for the problem PG, then there
exists y∗ such that (x∗, y∗) is feasible for DG and, moreover, this pair of solutions
satisfy the Complementry Slackness Condition (C.S.C):

y∗T (Ax∗ − b) = 0. (4.22)

Proof. We are going to consider two cases, first, if Qx∗+c = 0, then since y ≥ 0,
let’s define y∗ = 0. So AT y∗−Qx∗ = c, i.e., (x∗, 0) is a feasible solution for DG.
Moreover, y∗T (Ax∗ − b) = 0. Otherwise, if Qx∗ + c 6= 0, then obviously x∗ is
on the boundary of primal feasible set, i.e.,

I(x∗) = {i| Aix
∗ = bi} 6= ∅. (4.23)

Now based on the linear programming version of the Farkas Lemma 3 , exactly
one of the two following systems has a solution.

(I) :dT (Qx∗ + c)< 0 (II) : yI
TAI = Qx∗ + c

AId ≥ 0 yI ≥ 0

Where AI is rows of matrix A indexed in set I. Due to the fact that x∗ is an
optimal solution for PG, we claim that the system (I) can not be solvable. To
proof this, it is only sufficient to show that d is an improvement direction for
PG only if AId ≥ 0 , dT (Q∗ + c) < 0. Indeed, first notice that since AId ≥ 0, it
can be seen easily that (x∗ + εd) is a feasible solution for PG, for a small enough
value of ε. Now by comparing the value of the primal objective function at both
x∗ and (x∗ + εd), one can observe that for ε ≥ sufficiently small:
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cT (x∗ + εd) +
1

2
((x∗ + εd)

T
Q(x∗ + εd)) (4.24)

= cTx∗ +
1

2
x∗TQx∗ + εdT (Qx∗ + c) +

1

2
ε2dTQd (4.25)

< cTx∗ +
1

2
x∗TQx∗ (4.26)

Hence, as a result, by Farkas lemma, system (II) has a solution, i.e.

∃ yI ≥ 0 : yI
TAI = Qx∗ + c (4.27)

By defining y∗ =

[
yI
0

]
, it can be easily seen that (x∗, y∗) is feasible for DG

and moreover y∗T (Ax∗ − b) = 0.

Theorem 19. Let x∗ be the optimum solution for PG, then there exists y∗

such that (x∗, y∗) is optimum for DG and for this pair of optimum solutions the
strong duality property holds.

Proof. Let y∗ be chosen according to the proof scheme of Proposition 3, in the
case if Qx∗+c = 0, then y∗ = 0 and by considering the primal and dual objective
values at this pair, one may obtain.

νPG
(x∗) := cTx∗ +

1

2
x∗TQx∗ (4.28)

= (−Qx∗)Tx∗ +
1

2
x∗TQx∗ (4.29)

= − 1

2
x∗TQx∗ (4.30)

=: νDG
(x∗, y∗) (4.31)

Otherwise if Qx∗ + c 6= 0, then y∗ =

[
yI
0

]
where yI is obtained from the

equation (4.27). In this case let’s start by looking at the dual objective value:

νDG
(x∗, y∗) := bTI y

∗
I −

1

2
x∗TQx∗

eq(4.22)
= (AIx

∗)T y∗I −
1

2
x∗TQx∗ (4.32)

= x∗T ((yI
∗)TAI)−

1

2
x∗TQx∗ (4.33)

eq(4.27)
= x∗T (Qx∗ + c)− 1

2
x∗TQx∗ (4.34)

= cTx∗ +
1

2
x∗TQx∗ (4.35)

=: νPG
(x∗) (4.36)
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So the primal and dual objective functions has the same values, this con-
cludes that strong duality for the pair of solutions x∗ and (x∗, y∗) holds. More-
over, based on the weak duality theorem, the feasible (x∗, y∗) solution for DG

can not be any thing but an optimal solution.

In the following section, the strong duality property will be exploited to
drive the necessary and sufficient optimality condition for a quadratic convex
programing problem in which the primal feasibility set is bounded.

4.2 The KKT condition for Convex Quadratic
Programing

As a contribution of solving convex quadratic programing problem, we are going
to experiment our results on minimum cost flow problems with quadratic costs.
Due to this fact, for the rest of this thesis, we are interested in defining the
following pair of problems as primal P and dual D problems, respectively.

P : min
x,t

cTx+
1

2
xTQx (4.37)

s.t Ax = b, (4.38)

− x− t = − u, (4.39)

x ≥ 0, (4.40)

t ≥ 0. (4.41)

D : max
x̂,y,w,s1,s2

bT y − 1

2
x̂TQx̂− uTw (4.42)

s.t AT y − w −Qx̂+ s1 = c, (4.43)

− w + s2 = 0, (4.44)

s1 ≥ 0, s2 ≥ 0, (4.45)

x̂, w, y free. (4.46)

where t ∈ Rn, w ∈ Rn and s1, s2 ∈ Rn+. It can be easily seen that these
pair of problems can be obtained from the more general forms PG and DG,
hence the strong duality property also holds for them, i.e. the duality gap at
the optimality is equal to zero. More precisely by computing the duality gap,
∆, between the values of the primal objective of P at primal feasible solution
(x, t) and the dual objective of D at the dual feasible solution (x̂, y, w, s), one
may have:
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∆ = cTx+
1

2
xTQx−

[
bT y − 1

2
x̂TQx̂− uTw

]
(4.47)

eq(4.43)
=

[
AT y − w −Qx̂+ s1

]
x− bT y + uTw +

1

2
xTQx+

1

2
x̂TQx̂ (4.48)

= yT (Ax− b)− w (x− u) + s1x+
1

2
(x− x̂)

T
Q (x− x̂) (4.49)

(4.50)

Keeping in mind that the statement yT (Ax− b) = 0 is satisfied by free
because of the feasibility of (x, t), we get

∆
eq(4.39,4.44)

= s2t+ s1x+
1

2
(x− x̂)

T
Q (x− x̂) . (4.51)

By taking into account the resulting expression for ∆, one may notice that
all the terms there, are non-negative due to the primal and dual feasibility of
(x, t) and (x̂, y, w, s) and also the semidefinite of matrix Q. This means that
∆ = 0 if and only if each non-negative term in the expression for ∆ is equal
to zero. Moreover, according to the factorization of Q := V E2V T with the
assumption that E2 is a positive definite matrix ,the term (x− x̂)

T
Q (x− x̂)

being equal to zero becomes equivalent to V Tx = V T x̂ as seen below:

(x− x̂)
T
Q (x− x̂) = 0 (4.52)

(x− x̂)
T
V E2V T (x− x̂)= 0 (4.53)

(x− x̂)
T
V = 0 (4.54)

(4.55)

To summarize, for optimization problem P with differentiable objective and
constraint function for which the strong duality obtains, any pair of primal and
dual optimal points must satisfy the following system of equations which are
called Karush-Kuhn-Tucker (KKT) condition.

Ax = b, (4.56)

− x− t = − u, (4.57)

AT y − w −Qx̂+ s1= c, (4.58)

− w + s2 = 0, (4.59)

XS1e = 0, (4.60)

TS2e = 0, (4.61)

V Tx− V T x̂ = 0. (4.62)

Where X = diag(x), T = diag(t), S1 = diag(s1) and S2 = diag(s2). It
should be noted that usually in the literatures related to this topic, a less general
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form of KKT system are used, in particular where the constraint V Tx = V T x̂
is replaced with

x = x̂ (4.63)

If one is always going to enforce the constraint x = x̂ then there is no real reason
rather than clarity of exposition to explicitly distinguish between x and x̂.

For the sake of simplicity in the notations of the vectors and parameters
which are involved in (4.37)− (4.41) and (4.42)− (4.46), through the rest of our
discussion, let’s assume the following re-expression of them:

x
′

=

[
x
t

]
, x̂

′
=

[
x̂
0

]
, y

′
=

[
y
w

]
, s

′
=

[
s1

s2

]
, b

′
=

[
b
u

]
(4.64)

Q
′

=

[
Q 0
0 0

]
, A

′
=

[
A 0
−I − I

]
, V

′
=

[
V 0
0 0

]
. (4.65)

Based on the above re-expression of the variables and parameters, the cor-
responding general KKT linear system describing the necessary and sufficient
optimality condition for the convex quadratic programming problem is as fol-
lows:

A
′
x

′
= b

′
, (4.66)

A
′T
y

′
−Q

′
x̂

′
+ s

′
= c

′
, (4.67)

V
′
x

′
− V

′
x̂

′
= 0, (4.68)

X
′
S

′
e = 0, (4.69)

x
′
, s

′
≥ 0. (4.70)

where the equations (4.66), (4.67) and (4.69) will be referred to as the primal fea-
sibility, the dual feasibility and the complementary slackness condition, respec-
tively. In the remaining part of our discussion, for the sake of simplicity, we will
drop the prim symbol of all the involved variables. Moreover, let us re-state the
above KKT system by introducing an additional variable z := −E2V T x̂ ∈ Rl.
According to this definition, the substituting of term −Q′

x̂
′

by V z in (4.67)
and restating the equation (4.68) result in the following two update conditions
in the KKT system:

AT y + s+ V z = c, (4.71)

EV Tx+ E−1z = 0 (4.72)

Now, let’s define a linear function ϕ : Rm+2n+l → Rm+n+l as:

ϕ :=

 Ax− b
(AT y + s+ V z)− c
EV Tx+ E−1z

 (4.73)
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4.3 Primal-Dual Path Following IP Method for
CQP

IPMs for solving the linear system (4.66)-(4.70) are based on introducing a
barrier parameter µ to perturb the complementary slackness feasibility condition
(4.69):

XSe = µe, (4.74)

where the logarithmic barrier parameter µ reduce gradually. This barrier pa-
rameter µ forces keeping the solution x in the interior of the positive orthant
that is preventing any of the components xj from approaching their boundary
value of zero. Thereafter, the algorithm proceeds by gradually reducing the log-
arithmic barrier parameter which means minimizing the original objective and
approaching the optimal solution in which some of the component xj might take
zero value. A system of equations (4.66), (4.71), (4.72) and (4.74) is referred
to as slackened KKT system. Let’s introduce φ : Rm+2n+l → Rm+2n+l as a
function corresponds to the slackened KKT system.

φ :=

[
ϕ

µe−XSe

]
(4.75)

Therefore, the system of equation to be considered in IPMs for CQP can
described as:

φ(x, y, s, z) = 0 (4.76)

which for any µ > 0, has a unique solution (x(µ), y(µ), s(µ), z(µ)) referred to
as µ-centre solution. A family of these µ-centre solution provide a (continuos)
primal- dual central path i.e. {x(µ), y(µ), s(µ), z(µ) : µ ≥ 0}. The clever choice
of a suitable sequence of µ is what the IPMs focuses on and one may notice that
the practical efficiency, the implementation and the theoretical worst-case com-
plexity of the interior point methods depends strongly on the way of handling
the perturbed complementary slackness condition. At the early steps of the op-
timization process assigning the large values to µ enforce the centrality concept
that prevents the components of X and S from approaching the zero boundary.
While progressing the reduction of µ makes a path from centrality to optimality
which may be at the boundary of the feasible region. The convergence to the
optimality in the interior point methods are guaranteed by gradually reducing
the barrier parameter µ. Usually, IPMs terminate when an ε-accurate solution
(µ ≤ ε) is found.

The best known IPM algorithms find the ε-accurate optimal solutions to
the problem with n variables in O(

√
nlog( 1

ε )) iterations or O(nlog( 1
ε )) itera-

tion, depending on how aggressive steps to optimality are allowed. Compu-
tational experience provides evidence that the algorithm which uses a more
aggressive strategy (the so-called long-step method) solves linear and quadratic
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programming problems in a number of iterations which may be expressed as
O(log(n)log( 1

ε )) [131].
It is worth mentioning that, those IPMs which are using a self-concordant

barrier function such as the logarithmic barrier has the best complexity term√
n, referring to the general theory in Ch. 4 of [132].

The interesting issue is that practically IPMs performs even much better
than their theoretical analysis and in many of the applications they converge to
the optimality in a constant number of iterations which is independent of the
dimension size of the problem [133].

IPMs pursue by computing Newton direction and making one step in this
direction before reducing the barrier parameter µ.

Let’s w denote the quadruple (x, y, s, z) and for a given w, let’s define
(rp, rd, rcs, rv) as follows:

µ := µ(w) = xT s/n, (4.77)

rp := rp(w) = Ax− b, (4.78)

rd := rd(w) = AT y + s+ V z − c, (4.79)

rcs := rcs(w)= XSe− σµe (4.80)

rv := rv(w) = EV Tx+ E−1z, (4.81)

r := r(w) = (rp(w), rd(w), rcs(w), rv(w)) (4.82)

In the kth iteration of the exact IPMs, for given µk, the Newton direction
(4x,4y,4s,4z) is derived via the solution of the following system of equations:

φ
′
(xk, yk, sk, zk)


4x
4y
4s
4z

 = −


rp
rd
rcs
rv

 , (4.83)

where φ
′

is a Jacobian matrix of φ.

4.3.1 Primal-Dual Feasible Path Following IP

For the feasible interior point algorithm, it will be assumed that all the primal-
dual iterates belongs to set F0 = {(x, y, s, z) |Ax = b, AT y+s+V z = c, (x, s) >
0} i.e. (rp, rd) = 0 and the convergence is guaranteed by swift control of the
complementarity product xT s and maintaining the second order term 4xT 4 s
small enough. This is achieved by being enough close to the central path, namely
by keeping the the error in the complementarity slackness equation XSe = µe
small enough. In this context, the Newton step is taken in a way that the next
point stays in specific neighborhood. The neighborhood conception should be
defined to guarantee the (x, s) being strictly positive. In [112] the following
neighborhood is defined to which the points at each iteration is belonging :

N2(θ) = {(x, y, s, z) ∈ F0|‖XSe− µe‖ ≤ θµ} (4.84)
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where θ ∈ (0, 1) is an arbitrary parameter and the barrier term is equal to
the average complementarity product µ = xT s/n. Based on this definition, the
neighborhood of the central path becomes smaller as long as the central path
approaches an optimal solution. This neighborhood definition is not preventing
the xisi from being too small and actually small fraction point in F0 is contained
in the N2 no matter how small θ is selected.

Various definitions of the neighborhood to stay close to the central path in-
spired alternative IPMs as path-following methods. Indeed, all these algorithms
follow the central path on their way to optimality [115].

IPMs operating in the N2(θ) neighborhood is known in the literature as
the short-step path-following algorithm. In feasible primal dual path following
algorithm, all iterates belong to N2(θ) of the central path, i.e. all iterates are
strictly primal-dual feasible which implies that the right hand side vector in the
linear system (4.83) has the form (0, 0, 0, µe−XSe). In [101] it has been proved
that the short-step path-following algorithm applied to CQP converges to an
ε-accurate solution in O(

√
nln(1/ε)) iterations.

4.3.2 Primal-Dual Infeasible Path Following IP

In practice there is no need to force the the feasibility of all iterates and to impose
the IPM algorithm to stay in the primal-dual feasible set F0. For the primal dual
infeasible path following (PDIPF) algorithm each of the right hand side term
of Newton direction system (4.83) can be nonzero, i.e. (rp, rd, rcs, rv) 6= 0. In
this algorithm by making a step of size α then the primal and dual infeasibility
will be reduced (1−α) times. Indeed, since all the equations in ϕ(x, y, s, z) are
linear, it is expected that the residuals are reduced progressively. In particular,
if PDIPF algorithm reaches a feasible step, then all the infeasibility are vanished
for remaining iterations. In practice, as noted in [133], usually the primal dual
feasibility is reached before the optimality criteria is achieved. One may notice
that in PDIPF algorithms, it is required to choose the step size α significantly
smaller than 1 that results in a damped Newton direction [[112], Ch.6].

In literature [125], [134] and [135] a system in which rv = 0 is considered.
Based on this assumption and by applying systematic Gaussian elimination
procedure to this system, one may drive a reduced Newton system in which
4s is obtained as a term of 4x from complementary slackness equation and
replacing it in other equations. By proceeding the Gaussian elimination, a
normal equation system with off-diagonal fill in matrix is obtained.

The most significant development between 1994 and 1998 was that LOQO
software package, described in [125], could solve linear and quadratic program-
ming problems by implementing an infeasible primal dual IPM.

4.4 Iterative Inexact PDIPF IP

In each iteration of IPMs a linear system (4.83) has to be solved which is the
main computation effort of IP iteration. Therefore, in recent decades exten-
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sive researches have been devoted to develop techniques for solving this linear
system that becomes extremely ill-conditioned as the IPM approaches its so-
lution. This fact leads to numerical instability and motivates the researchers
for finding alternative techniques based on a family of search directions which
approximate the solution of the system (4.83). Considering these approaches, it
has been claimed in [136] that the iterative approaches without preconditioning
might fail to obtain the solution. One by the term preconditioning means trans-
forming a linear system into another system with more favorable properties for
iterative methods. Therefore, introducing a good preconditioner is significant
ingredient for solving a linear system iteratively that causes impressive number
of researches focusing on this issue [137, 138, 139].

In iterative PDIPF methods Newton direction is computed approximately
rather than accurately. Therefore, instead of a pure Newton iteration (4.83), it
consider the following system to be solved at inner kth iteration:

φ
′
(wk)4 wk = −φ(wk) + εk, (4.85)

where ε := (εp, εd, εcs, εv) is a vector of describing the inexactness of equa-
tions. In [140], they assumed that ‖εk‖/‖φ(wk)‖ ≤ ηk and they showed that
when the forcing sequence ηk is uniformly less than one then the inexact New-
ton method is locally convergent and the order of the convergence is derived in
terms of the rate of the convergence of the relative residuals, i.e, ‖εk‖/‖φ(wk)‖.
In [101], the inexact feasible IPM is applied for CQP where it has been assumed
that εp = εd and also the worst case algorithm complexity is discussed there.

An infeasible inexact potential reduction method for CQP is described in
[141] focuses on generic KKT conditions in which x = x̂. In this approach the
modified system of equations (4.85) is solved in a way that only complementary
slackness equation is solved inexactly, i.e., εp = εd = εv = 0. They also discussed
the convergence attitude of this method. Later on, We are going to review two
inexact PDIPF algorithm proposed in [1] and [2] for CQP and general constraint
system of equations, respectively.

4.4.1 Inexact PDIPF IP algorithm [1]

In inexact PDIPF algorithm [1], it is assumed that in system of equation (4.85),
εp = εd = 0 the inexact search direction satisfy (4.85) and εcs and εv are
relatively small based on the following definition.

Definition 3. Given a point w ∈ R5n
++×Rm and positive scalars τεcs and τεv , an

inexact direction 4w is referred to as a (τεcs , τεv )-search direction if it satisfies
(4.85) for some εcs and εv satisfying ‖εcs‖∞ ≤ τεcsµ and ‖εv‖ ≤ τεv

√
µ.

In inexact PDIFP algorithms, one extra condition should be guaranteed
which is reducing rp, rd and rv at each iteration. This can be controlled by
defining a generalized neighborhood. For a given parameters η ≥ 0, γ ∈ [0, 1]
and θ > 0, define the following set:
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Nw0(η, γ, θ) = {w ∈ <5n
++ ×<m :Xs ≥ (1− γ)µe , (rp, rd) = η(rp

0, rd
0),

‖rv − ηr0
v‖ ≤ θ

√
µ, η ≤ µ/µ0}

then, the generalized central path neighborhood was given by

Nw0(γ, θ) = ∪η[0,1]Nw0(η, γ, θ) (4.86)

Based on the above definition of the generalized neighbourhood, following is
the inexact Primal Dual Path Following algorithm as stated in [1]:

1. Start: Let ε ≥ 0 and 0 < σ ≤ σ < 4/5 be given. Let γ ∈ (0, 1) , θ > 0 and
w0 ∈ Nw0(γ, θ). Set k = 0.

2. While µk := µ(wk) > ε do

(a) Let w := wk and µ := µk; choose σ := σk ∈ [σ , σ].

(b) Set

τεcs = σγ/4 (4.87)

τεv =
(√

1 + (1− 0.5γ)σ − 1
)
θ (4.88)

(c) Set rp = b − Ax, rd = AT y + s + V z − c, rv := EV Tx + E−1z, and
η =‖ rp ‖ / ‖ rp0 ‖.

(d) compute a (τεcs , τεv ) - search direction 4w.

(e) compute α̃ = argmax
{
α ∈ [0 1] : w + α4 w ∈ Nw0(γ, θ),∀α′ ∈ [0, α]

}
(d) compute α = argmin

{
(x+ α4 x)

T
(s+ α4 s) : α ∈ [0, α̃]

}
(e) Let wk+1 = w + α4 w and set k ←− k + 1.

• End(while)

The following results gives the bound on the number of iterations needed by
the inexact PDIPF algorithm to obtain ε-solution to the KKT system (4.66) -
(4.68) .

Theorem 20. Assume that the constants γ, σ, σ and θ are such that :

max
{
γ−1, (1− γ)

−1
, σ−1, (1− 5/4σ)

−1
}

= O (1) , θ = O
(√
n
)

(4.89)

and that the initial point w0 ∈ <2n
++ × <m+l satisfies

(
x0, s0

)
≥ (x∗, s∗) for

some feasible vector w∗. Then, the inexact PDIF algorithm finds an iterate wk

satisfies µk ≤ εµ0 and ‖
(
rp
k, rd

k
)
‖≤ ε ‖ rp0, rd

0 ‖ and ‖ rkV ‖≤ ε ‖ rv0 ‖
+ε1/2θµ0

1/2 within O
(
n2log(1/ε)

)
iteration.

Proof. [1]
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4.4.2 Inexact IP algorithm [2]

In [2], a global inexact interior point method for a general nonlinear system
is proposed. Here, as follows, we modify the iterative step described there,
according to our linear system of equation (4.75).

Step 0. Given data: wk = (xk, yk, sk, z), τ1 = min(X0S0e)/
[
xT0 s0/n

]
, τ2 = xT0 s0/‖F (w0)‖,

γk−1 ∈
[

1
2 , 1
)
, and ηmax, β, θ ∈ (0, 1).

Step 1. Choose σk and η̂k such that (σk + η̂k) ∈ (0, ηmax) , γk ∈
[

1
2 , σk−1

]
and

put µk = σk (xksk) /n and η̃k = σk + η̂k.

Step 2. Solve the linear system

φ
′
(xk, yk, sk, zk)


4x
4y
4s
4z

 = −φ(xk, yk, sk, zk) + εk (4.90)

where ‖εk‖ ≤ η̂k (xksk) /n.

Step 3. Choose αk1 such that

min
(
Xk

(
αk1
)
Sk
(
αk1
)
ê
)
≥ τ1γk

(
xk
(
αk1
)T
sk
(
αk1
))
/n. (4.91)

Step 4. Choose αk2 such that

xk
(
αk2
)T
sk
(
αk2
)
≥ τ1γk‖F (w

(
αk2
)
‖. (4.92)

Step 5. Let α̃k = min
(
αk1 , α

k
2

)
.

Step 6. Let pk = α̃k 4 w, ηk = 1− α̃k (1− η̃k)

Step 7. While

‖H (wk + pk) ‖ > (1− β(1− ηk)) ‖H(wk)‖,
set pk = θpk and ηk = 1− θ(1− ηk).

Step 8. Set wk = wk + pk. Return to Step 0.

Convergence Analysis of Inexact IP [2] Here, we are going to discuss
the convergence properties of the Inexact IP [2] algorithm exploited for solving
(4.76). We assume the following definition of the neighborhood for the given
ε ≥ 0 as stated in [2]:

N (ε) = {w = (x, y, s, z)|ε ≤ ‖φ(w)‖ ≤ ‖φ(w0)‖,
min(XSe) ≥ (τ1/2)sTx/n, sTx ≥ (τ2/2)‖ϕ(w)‖}
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Under the following assumptions, we will prove that ‖φ(wk)‖ −→ 0 and any
limit point of {wk} is a solution of problem (4.76) provided that σk and η̂k are
chosen to satisfy

σk > max
[
(
√
n+ τ1γk)/(

√
(n)(1− τ1γk), (τ2γk +

√
n)/n

]
η̂k (4.93)

(A1) The function φ is continuously differentiable in N (0).

(A2) The iteration sequence {wk} is bounded.

(A3) The Jacobian matrix φ
′
(w) is nonsingular in N (ε), ε > 0

(A4 ) ϕ
′

is Lipschitz continuous in N (0) with constant L.

It can be checked easily that assumptions (A1), (A2) and (A4) hold because
of, respectively, the linearity of the function φ , the boundedness of the iterations
sequence wk and the ϕ

′
being constant. On the other hand, the assumption

(A3) might not be hold always because it can be checked easily that the non
singularity of φ

′
depends directly on the non singularity of the full rankness of

matrix A. To this purpose, we first redeclare here the fundamental theorem 3.1
stated in [2].

Theorem 21. If w∗ is a limit point of {wk} such that φ
′
(w∗) is non singular,

then the sequence {wk} generated by Inexact IP algorithm converge to w∗.

Proof. [2], p:114.

Proposition 4. The jacobian matrix φ
′ ∈ Rm+2n+l × Rm+2n+l is nonsingular

if and only if the matrix A is full rank.

Proof.

φ′ :=


A

AT I V
S X

EV T E−1

 (4.94)

To proof this we just need to apply a sequance of Gaussien elimination op-
erators on the jacobbian matrix φ

′
. To this puropose, let’s start by multiplying

the term −V E to the last row of φ
′

and adding it to its second row. This
modifyies the jacobian matrix as follows:

A
−Q AT I
S X

EV T E−1

 (4.95)

Thereafter, as the second step, let us multiply the term −X−1 to the third row
of (4.95) and adding it to its second row. This obtains
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
A

−(Q+X−1S) AT

S X
EV T E−1

 (4.96)

One may notice that matrix (4.96) is nonsingular if and only if the block[
−(Q+X−1S) AT

A

]
is nonsingular. According to Schur complement property

(4.4.2) is nonsingular if and only if A(Q+X−1S)−1AT is nonsingular. Since Q
and X−1S are positive semidefinte and positive definte matrices, respectively,
so (Q+X−1S) � 0. Hence A(Q+X−1S)−1AT is nonsingular if and only if A
is a full rank matrix. Therefore, one may conclude that the jacobian matrix φ

′

is nonsingular if and only if the matrix A is full rank.
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Chapter 5

Convex Quadratic
Programming, Iterative
Path-Following IP
approaches

This chapter is dedicated to discuss and analyze approaches for solving convex
quadratic programming (CQP) problems by iterative primal dual infeasible path
following (PDIPF) methods. Our main purpose will be considering possible
methods for solving inexactly the following linear system of Newton directions
raised in each iteration of iterative PDIPF.

A4 x = − rp + εp, (5.1)

AT 4 y −Q4 x+4s= − rd + εd, (5.2)

X 4 s+ S 4 x = − rcs + εcs, (5.3)

where

µ :=xT s/n, (5.4)

rp :=Ax− b, (5.5)

rd :=AT y + s−Qx− c, (5.6)

rcs :=XSe− σµe (5.7)

(5.8)

obtained simplified by (4.85) with the assumption that x = x̂.
The final contribution of this chapter will be the proposal of two methods

for redistributing the error generated by inexact linear solvers such that the
iterative PDIPF IP algorithm convergence is guaranteed.

77
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5.1 Agumented System

Inexact Augmented system can be obtained from generic system of Newton di-
rection in various form depends on assuming whether the complementary slack-
ness equation (5.3) is solved exactly or not, i.e, whether εcs has value zero or
not. Let us first consider the case where εcs = 0, by following the Gaussian
elimination procedure as described in Proposition (4), our interested Newton
directions will be modified as the following inexact augmented system:[

D−1 AT

A 0

] [
4x
4y

]
=

[
−rd +X−1rcs

−rp

]
+

[
hy
hx

]
(5.9)

where D−1 := −(X−1S + Q) and hx, hy are errors generated by solving the
augmented system inexactly. It can be checked easily that whatever hx and hy
will be, they transform exactly to the tolerance of the generic Newton direction
system, more precisely: [

εp
εd

]
=

[
hx
hy

]
(5.10)

In addition to this, as a second case, one might consider computing 4s from
perturbed complementary slackness condition (5.3) with εcs as a perturbation
parameter:

4 s (εcs)= X−1(−rcs − S 4 x+ εcs) (5.11)

= X−1(−rcs − S 4 x) +X−1εcs (5.12)

Then substituting (5.12) in (5.2) implies that:

AT 4 y +4s−Q4 x = − rd + εd (5.13)

AT 4 y +
[
−X−1rcs −X−1S 4 x+X−1εcs

]
−Q4 x= − rd + εd (5.14)

AT 4 y −
[
X−1S +Q

]
4 x = −rd +X−1rcs + εd −X−1εcs (5.15)

Hence, it shows that by solving the augmented system inexactly with generated
error hx and hy, the error distribute to the perturbation errors εp and εd of
equations (5.1) and (5.2) in generic Newton direction system as follows:[

εp
εd

]
=

[
hx

hy +X−1εcs

]
(5.16)

By considering (5.16), one may notice that εcs can be chosen freely to balance
the error of equation (5.2) and complementary slackness constraint (5.3).

The best option for choosing εcs will be
By choosing norm two, i.e. ‖.‖2, the εcs that minimizes the total error is

given as follows:

(εcs)i =
hyiX

−1
ii

1 +Xii
−2 ∀i = 1, · · · , n. (5.17)
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5.2 Normal Equation System

In this section, we are going to consider Normal equation system obtained from
applying a Gaussian procedure to the Augmented system. There, we also com-
pare the advantage of solving each of these system above the other.

Inexact normal equation system is obtained by computing the4x from (5.2)
and (5.3) where εcs = 0, in terms of −X−1 4 y:

4x = D
(
−rd +X−1rcs

)
−DAT 4 y +Dεd, (5.18)

And replacing it in the second set of equation of (5.9),

ADAT 4 y= AD
(
−rd +X−1rcs

)
+ rp +ADεd − εp (5.19)

Assuming that εd = 0, the error in (5.19) becomes equal to εp. This means
that the termination of solving inexactly normal equation system depends only
on εp.

As some advantages of working with augmented system one may state the
following features. First, the augmented system is sparse compared with normal
equation system, more precisely if the constraint matrix A has a dense column
this results straightforward in the dense normal equation system. The second
reason is about the ill-conditioning which is due to matrix D. This happens
because some of its elements moves toward zero and the others move toward
infinity. Taking into account the position of D in the augmented system makes
it easier to control the ill-conditioning of the augmented system when designing
a preconditioner.

On the other hand, there are some reasons that motivate us solving normal
equation system at each iteration of IPDIPF method. The first is that, normal
equation system is symmetric and positive semi-definite, secondly its dimension
is smaller compared to the augmented system [136, 125]. The third reason
comes from the fact that in normal equation system, the Cholesky decomposition

for positive definite matrix D costs O(n
3

6 ) which is faster than the possibly

selected QR and LU factorization with the complexity cost O( 2
3n

3) and O(n
3

3 ),
respectively.

As a more general case, one may assume that the complementary slackness
equation (5.3) is also allowed to be solved inexactly. For this, let us obtain 4x
from the equation (5.15) in the the term of 4y as

[
X−1S +Q

]
4 x = AT 4 y −

[
−rd +X−1rcs + εd −X−1εcs

]
(5.20)

4 x =
[
X−1S +Q

]−1
AT 4 y −

[
X−1S +Q

]−1 (
rd −X−1rcs

)
− (5.21)[

X−1S +Q
]−1 (

εd −X−1εcs
)

Thereafter, multiplying (5.21) by matrixA, results in the following re-written
form of the augmented system:
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A
[
X−1S +Q

]−1
AT 4 y =A

[
X−1S +Q

]−1 (
rd −X−1rcs

)
+ (5.22)

A
[
X−1S +Q

]−1 (
εd −X−1εcs

)
+ εp − rp (5.23)

The equation (5.23) can be expressed as:

A
[
X−1S +Q

]−1
AT 4 y = A

[
X−1S +Q

]−1 (
rd −X−1rcs

)
− rp + h̃y, (5.24)

where h̃y depend on εp, εd and εsx and is defined as :

h̃y := A
[
X−1S +Q

]−1 (
εd −X−1εcs

)
+ εp (5.25)

and so on, εp can be described in terms of εd and εcs from (5.25) as below,

εp := h̃y −A
[
X−1S +Q

]−1
εd +A

[
X−1S +Q

]−1
X−1εcs (5.26)

For the sake of simplicity in the formulation, let’s introduce matrices B and
C as:

B := A
[
X−1S +Q

]−1
(5.27)

C := BX−1 (5.28)

Hence, one have εp := h̃y −Bεd + Cεcs.
At this point, if one desire to minimize the squared norm of error vector ε,

then

min ‖ [εp, εd, εcs] ‖2 : = min
(
‖h̃y −Bεd + Cεcs‖+ εTd εd + εTcsεcs

)
(5.29)

:=E(εd, εsx) (5.30)

Now by considering the derivation of function E(εd, εcs) with respect to εd
and εcs one have:

1

2

∂E

∂εd
=−BT

(
h̃y −Bεd + Cεcs

)
+ εd (5.31)

=−BT h̃y +
(
BTB + I

)
εd −BTCεcs

=0

1

2

∂E

∂εcs
=CT

(
h̃y −Bεd + Cεcs

)
+ εcs (5.32)

=CT h̃y − CTBεd +
(
CTC + I

)
εcs

=0 (5.33)
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Now by obtaining εcs from (5.33) as below

−CT h̃y + CTBεd = (CTC + I)εcs → εcs = C̃(CTBεd − CT h̃y), (5.34)

where C̃ :=
(
I + CTC

)−1
and substituting (5.34) in (5.32), one may have

−BT h̃y +
(
BTB + I

)
εd −BTCC̃(CTBεd − CT h̃y) =0 (5.35)

−BT h̃y +
(
BTB + I

)
εd −BTCC̃CTBεd +BTCC̃CT h̃y =0 (5.36)

Here, a simple factorization results in(
BTB + I −BTCC̃CTB

)
εd =

(
BT −BTCC̃CT

)
h̃y (5.37)

From which εd can be described as

εd = ˜̃BBT (I − CC̃CT )h̃y, (5.38)

where ˜̃B :=
[
BTB + I −BTCC̃CTB

]−1

. Hence, we can rewrite εcs in terms of

C̃ and ˜̃B as follows:

εcs = C̃(CTB ˜̃BBT (I − CC̃CT )h̃y − CT h̃y) (5.39)

As a weak feature of this approach one may notice that the computations of

the inverse matrices C̃ and ˜̃B, required in deriving εd and εcs are as complex as
solving Newton search direction system exactly.

To develop this algorithm, as an alternative, suppose that εcs = 0 and let us
have a more precise look at h̃y,

h̃y := A
[
X−1S +Q

]−1
εd + εp (5.40)

From the above equation εp can be obtained in terms of εd and h̃y as below:

εp = h̃y −A
[
X−1S +Q

]−1
εd (5.41)

Therefore,

‖ (εp, εd) ‖2 :=
(
h̃y −A

[
X−1S +Q

]−1
εd

)T (
h̃y −A

[
X−1S +Q

]−1
εd

)
+ εTd εd

= h̃Ty h̃y + h̃Ty

(
−A
[
X−1S +Q

]−1
εd

)
−
(
A
[
X−1S +Q

]−1
εd

)T
h̃y

+
(
A
[
X−1S +Q

]−1
εd

)T (
A
[
X−1S +Q

]−1
εd

)
+ εTd εd

Minimizing this norm also have high computational complexity due to the

appearance of the term
(
A
[
X−1S +Q

]−1
εd

)T (
A
[
X−1S +Q

]−1
εd

)
.
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This fact inspired us to consider minimizing the infinity norm of error vector
(εp, εd, εsx) instead of norm two:

min ‖(εp, εd, εcs)‖∞ (5.42)

This minimization problem can be expanded as follows:

min z (5.43)

z ≥
(
h̃y −A

[
X−1S +Q

]−1
εd +A

[
X−1S +Q

]−1
X−1εcs

)
i

(5.44)

z ≥ (εd)j (5.45)

z ≥ (εcs)k (5.46)

For ∀i = 1, 2, · · · ,m, ∀j, k = 1, 2, · · · , n. Supposing εd = εcs := ze and
substituting them into the (5.43), one may have:

min z (5.47)

e.z ≥ h̃y −A
[
X−1S +Q

]−1
e.z +A

[
X−1S +Q

]−1
X−1e.z (5.48)

(5.49)

By a simple factorization, we derive our interested version which will be consid-
ered:

min z

z ≥ (h̃y)i

1 +
(
A[X−1S +Q]

−1
e
)
i
−
(
A[X−1S +Q]

−1
X−1e

)
i

∀i = 1, 2, · · · ,m

Let z∗ be the optimum solution of the above problem

z∗ = max
i

(h̃y)i

1 +
(
A[X−1S +Q]

−1
e
)
i
−
(
A[X−1S +Q]

−1
X−1e

)
i

∀i = 1, 2, · · · ,m

(5.50)
According to Step 2 of the inexact interior point algorithm described in [2],

for the convergence guarantee the inexact linear solver continues iterating until
the following condition hold:

‖εk‖∞ = ‖εp, εd, εsx‖∞ ≤ η̂kµk/σk. (5.51)

Or, more precisely:

max
i
|(εp)i| ≤ η̂k

µk
σk

∀i = 1, 2, · · · ,m (5.52)

max
j
|(εd)j | ≤ η̂k

µk
σk

∀j = 1, 2, · · · , n (5.53)

max
k
|(εcs)k| ≤ η̂k

µk
σk

∀k = 1, 2, · · · , n (5.54)
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Let’s define βi := A
[
X−1S +Q

]−1
e and Γi := A

[
X−1S +Q

]−1
X−1e. Con-

sider substituting the expressions of εp by (5.41) , εd and εcs by (5.50), respec-
tively in (5.52), (5.53) and (5.54), one may conclude that for the the inexact
linear solver iteration continues until the following conditions hold.

max
i

(h̃y)i
1 + βi − Γi

≤ η̂k
µk
σk

∀i = 1, 2, · · · ,m, (5.55)

(h̃y)i − (βi − Γi) max
i

(h̃y)i
1 + βi − Γi

≤ η̂k
µk
σk

∀i = 1, 2, · · · ,m. (5.56)

The effectiveness of implying this approach considering the infinity norm, on
the convergence of PDIPF IP algorithm requires more investigation.
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