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Abstract Cellulose is the most abundant biopolymer in biosphere and the major constituent of plant biomass. 
Cellulose polymer is made up of β-glucose units linked by β-glucosidic bonds. Cellulase is an enzymatic system that 
catalyzes the hydrolysis of cellulose polymer to glucose monomers. This enzymatic system consists of three 
individual enzymes namely endoglucanase, exoglucanase and β-glucosidase which act synergistically to degrade 
cellulose molecules into glucose. Cellulases are produced by bacteria, fungi, plants, and animals and used in many 
industrial applications such as textile industries, laundry and detergent industries, paper and pulp industry, animal 
feeds, and biofuels production. β-Glucosidase is a diverse group of enzymes with wide distribution in bacteria, fungi, 
plants and animals and has the potential to be utilized in various biotechnological processes such as biofuel 
production, isoflavone hydrolysis, flavor enhancement and alkyl/aryl β-D-glucoside and oligosaccharides synthesis. 
Thus, there is increased demand of β-glucosidase production from microbial sources under profitable industrial 
conditions. In this review, β-glucosidase classification, localization, and mechanism of action will be described. 
Subsequently, the various sources of β-glucosidase for industrial sector will be discussed. Moreover, Fermentation 
methods and various parameters affecting β-glucosidase production will be highlighted on the light of recent 
findings of different researchers. Finally, β-glucosidase applications in biofuel production, flavors enhancement, 
isoflavones hydrolysis, cassava detoxification and oligosaccharide synthesis will be described. 
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1. Introduction 

Cellulose is the most abundant organic biopolymer in 
biosphere and the major constituent of lignocellulosic material 
making up to 35-50% of plant biomass. Hemicellulose and 
lignin are the other two constituents making up to 20-35% 
and 10-15%, respectively. This biomass is known to be 
renewable with annual production of approximately 1 x 
1010 tons, sustainable and cheap source of energy [1-8]. 
Biomass is the fourth among world energy sources after 
coal, fossil fuel and natural gas, providing 10-14% of the 
total energy [9,10]. Lignocellulosic material can be converted 
into numerous valuable organic compounds such as sugar, 
bioethanol, amino acids, organic acids and food additives. 
It can also be used as substrate for production of many 
industrially important enzymes [11,12,13,14,15]. Cellulose is 
a linear polymer of anhydro-β-D-glucose unit linked by  
β-(1-4) O-glycosidic bonds ranging from 800-10000 units 
forming a chain with average molecular weight of 100000 
Da [4,7,16,17,18]. Cellulose chains are stabilized by  
intra- and intermolecular hydrogen bonds and Van Der 
Walls forces [19,20]. Usually cellulose polymer has two 
regions: crystalline region recalcitrant to enzymatic 
hydrolysis and amorphous region easily accessible to 

enzymatic hydrolysis [21,22,23]. To be utilized in various 
industrial applications e.g., bioethanol production, cellulose 
must first be broken down to simple fermentable sugar i.e., 
glucose.  In nature, cellulose degradation is mediated by 
combined action of three individual enzymes named as 
endoglucanase (1,4-β-D-glucan hydrolase; EC 3.2.1.4), 
exoglucanase (1,4-β-D-glucan glucohydrolase EC 3.2.1.74) 
and β-glucosidase (β-D-glucoside glucohydrolase EC3.2.1.21) 
[24,25,26,27]. To begin with, endoglucanase randomly 
attacks and hydrolyzes glucosidic bonds in the interior of 
the molecule especially in the amorphous regions generating 
oligosaccharides chains of different length. This is followed 
by exoglucanase/cellobiohydrolase that processively 
hydrolyzes these chains at their reducing and nonreducing 
ends releasing glucose, cellobiose, and short oligosaccaharides. 
These two enzymes act synergistically and are usually 
inhibited by cellobiose. Finally, β-glucosidase breaks down 
cellobiose and short oligosaccharides into glucose units 
thus eliminating cellobiose inhibitions on endoglucanase 
and cellobiohydrolases [22,24,28-33]. These three enzymes 
are collectively referred to as cellulase enzyme and 
produced by bacteria, fungi, protozoa, plants, and animals 
[26,34,35,36]. Cellulase enzymes collectively are used in 
various industries such as laundry and detergents industry, 
textile industry, paper and pulp industry, animals feed, 
food industry etc. [18,28,35-40]. 
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β-Glucosidase is an ubiquitous enzyme produced by all 
life domains: bacteria, fungi, plants and animals including 
noncellulolytic organisms such as human [24]. It hydrolyzes 
β-D-glucosidic bonds of various compounds comprising 
of alkyl-β-D-glucosides, aryl-β-D-glucosides, cyanogenic 
glucosides, disaccharides and short chain oligosaccharides 
liberating glucose from their nonreducing end, in addition, 
some novel β-glucosidases with β-galactosidase and  
β-xylosidase activity have also been reported [41,42]. 
Under certain circumstances, β-glucosidase also catalyzes 
synthetic reactions of oligosaccharides/glycosides [43,44,45]. 
This synthetic activity is brought about in two ways: either 
through reverse hydrolysis or transglycosylation. In reverse 
hydrolysis reaction, lowering water activity, trapping of 
product or high substrate concentration results in a shift of 
reaction equilibrium toward synthesis through “reverse 
hydrolysis”. This reaction is under thermodynamic control. 
In transglycosylation reaction, donor glycoside is hydrolyzed 
by the enzyme resulting in enzyme-glycosyl intermediate 
which is in turn attacked by a nucleophile other than  
water such monosaccharide, disaccharide, aryl-amino,  
alkyl-alcohol or monoterpene alcohol to yield a new 
elongated product. This reaction is under the kinetic 
control [44,46,47]. 

β-Glucosidase plays fundamental roles in many 
physiological processes [48,49]. For instance, in plants, it 
is involved in defense [50,51], β-glucan chain synthesis 
and cell wall metabolism [52,53], lignification [54,55], 
phytohormone activation [56,57], secondary metabolism 
[58,59], and fruit ripening [60,61]. In microorganisms, it 
plays roles in cellulose hydrolysis, carbon recycling and 
cellulase gene induction [62,63,64,65]. In mammals,  
β-glucosidase is involved in hydrolysis of glucosyl ceramides 
and in humans its defect causes Gaucher’s disease [66, 67]. 

β-Glucosidases, particularly those derived from 
microbial sources, have the potential to be used in many 
biotechnological processes such as bioethanol production 
[68,69], improvement of the aroma in wine and fruit juices 
industry through release of the aromatic compounds from 
flavorless glycosides [70]. They are also used to hydrolyze 
isoflavone glycosides thus increasing their absorption 
from small intestine positively affecting human health 
[71,72,73]. β-Glucosidases can also be utilized for 
detoxification of cassava [74,75,76], and deinking of waste 
paper [77,78]. Based on synthetic activity, β-glucosidase 
is utilized in biosynthesis of oligosaccharides and alkyl 
glycosides [79,80,81,82,83]. These compounds have wide 
range of uses in medical sciences as therapeutics agents, 
diagnostics tools, and as growth promoters for probiotics 
bacteria [84]. Alkyl glycosides have anionic surfactant 
properties and can be used as antimicrobial agents 
[85,86,87], and in pharmaceutical, cosmetics, detergent 
and foods industries [83]. 

β-Glucosidases are produced by microorganisms in low 
quantities [88], and inhibited by their end product i.e., 
glucose [89], resulting in accumulation of cellobiose during 
cellulolysis which in turn inhibits both endo-/exo-glucanase. 
β-Glucosidase is therefore considered to be the key 
enzyme in determining the cellulase efficiency and the 
bottle neck in bioethanol production through biomass 
conversions [90,91,92]. Researchers are focusing on 

finding or developing microorganisms with high  
β-glucosidase productivity and/or β-glucosidase with high 
glucose tolerance, thermostability and catalytic efficiency.  

In this review, we describe β-glucosidases classification, 
localization, and mechanism of actions. Further, the 
microbial sources of β-glucosidases, production methods 
along with parameters affecting their production will be 
discussed thoroughly. Finally, biotechnological applications 
of β-glucosidases such as bioethanol production, flavors 
enhancement of wine and fruit juices, among other 
potential applications, will also be highlighted. 

1.1. β-Glucosidase Classification 
β-Glucosidase cleaves β-D-glucosidic bonds from a 

variety of compounds releasing glucose as the end product. 
Thus, differing greatly in their substrate specificity particularly 
with regard to the aglycone moiety making their 
classification a challenge [44]. The two widely accepted 
methods for their classification are: 1) classification based 
on substrate specificity and 2) classification based on 
nucleotide sequences identity and hydrophobic cluster 
analysis [43]. Based on substrates specificity, β-glucosidases 
are categorized in three classes: 1) aryl-β-glucosidases 
hydrolyzing only aryl-β-glucoside linkage, 2) cellobiases 
hydrolyzing only cellobiose, and 3) broad substrate 
specificity β-glucosidase hydrolyzing wide range of 
substrates with different bonds such as β(1→4), β(1→3), 
β(1→6), α(1→4), α(1→3), and α(1→6) linkage. Most of 
the reported microbial β-glucosidases show broad 
substrate specificity [46,93,94]. Based on sequence 
identity and hydrophobic cluster analysis, β-glucosidases 
are placed in Glycoside Hydrolase (GH) family 1 and 
family 3 as in Carbohydrate active enZyme database 
“CaZy” [49,95,96,97]. β-Glucosidases belonging to GH 
family 1 are reported from archeabacteria, plants and 
animals whereas β-glucosidases belonging to GH family 3 
are from bacteria, fungi and yeast, although β-glucosidase 
can also be found in family 5, 9, 30 and 116 [43,44,46,73]. 

1.2. Localization of β-Glucosidases 
Microbial β-glucosidases are localized as intracellular, 

extracellular, or cell-bound enzymes  [98,99]. Generally  
β-glucosidases belonging to GH 3 are localized as 
extracellular or cell-bound enzymes whilst those 
belonging to GH 1 are predominately intracellular 
enzymes [100,101]. Some Fungal species such as 
Trichoderma reesei are known to synthesize extracellular, 
intracellular and cell-bound β-glucosidase [102]. Majority 
of the reported fungal β-glucosidases are extracellular and 
belong to GH 3 whereas majority of the reported bacterial 
β-glucosidases are intracellular and belonging to GH 1[44]. 
For instance, extracellular and cell-bound β-glucosidase 
from Aspergillus kawachii [92], an intracellular β-
glucosidase from the bacterium Baciulus circulans subsp. 
Alkalophilus [103], and extracellular β-glucosidase from 
unidentified bacterial isolate M+, and Bacillus subtilis 
strain [104,105] have all been reported. Extracellular, 
intracellular and cell bound β-glucosidase in yeast have 
also been identified [106,107,108].  
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Figure 1. Mechanism of action of retaining β-glucosidase (A) and 
inverting β-glucosidase (B) 

1.3. Mechanism of Actions of β-Glucosidase 

β-Glucosidase are either retaining or inverting enzymes 
depending on the configuration of anomeric carbon atom 
of the released glucose e.g., retaining β-glucosidase 
cleaves β-glucosidic bond with the resulting glucose unit 
has β-configuration whereas in inverting β-glucosidase the 
resulting glucose has α-configuration. β-Glucosidase 
belonging to GH family 1 and 3 are retaining enzyme 
while those placed in GH family 9 are inverting enzymes 
[49]. Both inverting and retaining enzymes follow acid-
base catalysis mechanism and two residues at their active 
site, general acid/base catalyst and nucleophile, are 
involved in catalysis. Retaining enzymes catalyze the 
hydrolysis in two steps: glycosylation and deglycosylation, 
or double displacement mechanisms. In glycosylation, the 
catalytic acid/base donates a proton to the substrate 
leading to formation of oxocarbonium ion, and then the 
nucleophile attack the anomeric carbon atom yielding 
enzyme-glycosyl intermediate. In the deglycosylation step, 
a water molecule attacks enzyme-glycosyl intermediate to 
displace the catalytic nucleophile from the glucose with 
basic assistance of the catalytic acid/base [109,110,111]. 
Inverting enzymes catalyze the hydrolysis of glycosidic 
bond in one step reaction in which a water molecule acts 
as nucleophile and attacks the anomeric carbon atom to 
displace the aglycone (Figure 1) [109]. The catalytic 
residues are highly conserved among glycoside hydrolase 
families, and clans. The nucleophile of β-glucosidase 
belonging to GH 3 has been identified as Asp residue 
which is highly conserved; while catalytic general 
acid/base residue appeared to be presented by different 
motifs in different members, although mostly it is His-Asp 
dyad motif in which the histidine side chain involves in 
catalysis [112,113,114,115]. In β-glucosidases belonging 

to GH family 1, the catalysis is mediated by two glutamic 
acid residues one acts as nucleophile and other as general 
acid/base catalyst [116]. For instances, in Streptomyces sp, 
a glutamic acid at position 178 acts as general acid/base 
catalyst while glutamic residue at position 383 acts as 
nucleophile [117]. 

2. β-Glucosidase Sources 

β-Glucosidase is a ubiquitous enzyme expressed by all 
life domains: bacteria, fungi, plants and animals. It has 
been purified and characterized from animals and plants 
[118,119]. For the industrial utilization, microorganisms are 
considered the best choice for enzyme productions. The 
preference of microorganisms as source of industrial enzymes 
is attributed to many reasons such as 1) microorganisms 
grow rapidly speeding up the production of enzyme, 2) 
microorganisms are easier to handle than animals and 
plants since they require less space making the processes 
cost effective, 3) microorganisms can easily be manipulated 
with help of genetic engineering, mutagenesis and direct 
evolution and 4) furthermore, some microorganisms produce 
enzymes with special characteristic such as thermostablility 
and alkalophilicity which can be utilized in many industries 
requiring such harsh conditions [120,121]. β-Glucosidase 
is obtained from fungi and bacteria, although fungi are the 
preferred source of cellulase enzymes [122].  

2.1. Fungal β-Glucosidase 
β-Glucsidase has been produced, purified, and characterized 

from many fungal species majority of which are extracellular 
enzymes belonging to GH 3. For instance, β-glucosidase 
has been produced and characterized from Trichoderma 
reesei [123], the filamentous fungus Acremonium persicinum 
[124], Aspergillus oryzae [96], lanuginosus–SSBP [125], 
Thermoascus aurantiacus [126], Chaetomium thermophilum 
var. coprophilum [127], Penicillium purpurogenum [128], 
Daldinia eschscholzii [129], Melanocarpus sp. MTCC 
3922 [130], Neocallimastix patriciarum W5 [131], Monascus 
purpureus [132] and brown-rot basidiomycete Fomitopsis 
palustris [133]. Moreover, β-glucosidase recently has 
been produced from Penicillium purpurogenum KJS506 
[134], Phoma sp. KCTC11825BP [135], Aspergillus fumigatus 
Z5 [136], Penicillium italicum [137], Fusarium proliferatum 
NBRC109045 [33], Aspergillus saccharolyticus [138,139], 
Aspergillus niger A20 [140], Fusarium solani [141], 
Flammulina velutipes [142], Monascus sanguineus [143], 
Sporothrix schenckii [144], Gongronella butleri [145], 
and Fusarium oxysporum [146]. Although Trichoderma 
reesie is major source of industrial cellulase, it lacks 
sufficient amount of β-glucosidase activity for efficient 
cellulolysis, therefore supplementary β-glucosidase is 
required for efficient biomass hydrolysis. The fungal 
species Aspergillus niger is the major source of 
commercial β-glucosidase under the name of 
Novazym188 [90].  

2.2. Bacterial β-Glucosidase  
Although bacteria are known to secrete cellulase 

enzyme in lower quantities, they have been the focus of 
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many researchers for production of cellulases and  
β-glucosidase because of their high multiplication rate and 
robust properties exhibited by bacterial enzymes 
[147,148,149]. β-Glucosidase has been identified, purified 
and characterized from several bacterial species such as 
Clostridium thermocellum [150], Pyrococcus furiosus 
[151], Bacillus circulans subsp. Alkalophilus [103], 
flavobacterium johnsoniae [152], Actinomycete 
Thermobifida fusca [153], Paenibacillus sp. Strain C5 
[154], Lactobacillus brevis [155], Caldicellulosiruptor 
saccharolyticus [156], and Terrabacter ginsenosidimutans 
sp. [157]. Recently high glucose tolerant β-glucosidase 
with high specific activity toward cellobiose from 
Thermoanaerobacterium thermosaccharolyticum has been 
characterized [158] and β-glucosidase with ability to 
transform ginsenoside Re to the minor ginsenoside Rg 2 
from Pseudonocardia sp. Gsoil 1536 has also been 
identified [159]. 

2.3. Metagenomics β-Glucosidase 
Microorganisms are the most diverse and enormous 

living organisms on Earth, representing about 60% of the 
total biomass. Current research estimated that soil  and 
oceans contains about 4–5 x 1030 and 3.6 x 1029 microbial 
cells, respectively [160]. Only 1% of these microorganisms 
are culturable by laboratory standard techniques and majority, 
about 99%, are unculturable under laboratory conditions, 
thus making them unexplored to investigation and 
utilization for production of many value-added products 
[161,162,163]. Metagenomic, a term coined by Handelsma 
in 1998, is culture-independent technique utilized to 
analyze the genetic material present in an environmental 
sample [164]. This approach starts with environmental 
DNA extraction and digestion, metagenomic DNA library 
construction, and screening of libraries for gene and 
sequences of interest [160,163,165,166]. Screening of 
metagenomic library can be done either by function-based 
screening, gene specific screening or direct sequencing 
[160,164,167]. Finally cloning and expression studies are 
carried out for the gene of interest. Metagenomic approach 
can be utilized for finding a novel genes encoding for 
novel protein e.g., enzymes with special characteristics. 
Numbers of β-glucosidases have been characterized using 
metagenomic approach from different environmental 
samples such Globitermes brachycerastes gut metagenome 
[168], wetland soil metagenome [169], agricultural soil 
metagenome [170,171,172,173], compost microbial 
metagenome [174], cow rumen metagenome [175], rabbit 
cecum metagenome [176], buffalo rumen metagenome 
[177], bioreactor contents metagenome [178] Kusaya 
gravy metagenome [179], marine metagenome library 
[180,181], hydrothermal hot spring metagenome [182], 
alkaline-polluted soil metagenome [183], amazon soil 
metagenome [184], cattle rumen metagenome [185], and 
mangrove soil metagenome [186]. 

3. Microbial β-Glucosidase Production 

Generally microorganisms produce low amount of β-
glucosidase e.g., cellulase hyperproducer species, 
Trichoderma reesie, lacks sufficient β-glucosidase activity 

[187,188]. Therefore, the search for microorganisms with 
high β-glucosidase productivity is the concern of 
researchers. β-Glucosidases have been produced from 
number of fungi, yeast and bacteria using either solid state 
fermentation (SSF) or submerged fermentation (SMF) 
[99,189,190]. In SSF, the microorganism is grown on 
solid substrate such as castor bean cake, sugarcane 
bagasse, cassava cake, wheat bran, rice straw or corn husk 
solely or in combination. Substrate is used steadily and 
slowly therefore SSF can be carried out for long period of 
time. SSF is more suited for cultivation of microorganisms 
with less moisture content requirement. The advantages of 
SSF are high productivity, cheap substrate utilization, low 
energy requirement, minimal water output and lacking of 
foam up, but heat generation and lacking knowledge on 
automation are the limitations [191,192,193]. In SMF, free 
flowing liquid such as molasses and broths containing 
different nutrients is utilized for cultivation of 
microorganisms. The bioactives, enzymes, and metabolic 
wastes are secreted into fermentation medium and the 
substrates are rapidly utilized therefore continuous 
supplementation with nutrients is needed. This 
fermentation technique is best suited for microorganisms 
that require high moisture content such as bacteria. The 
main advantages of SMF are the easiness of: sterility, heat 
and mass transfer, process monitoring and automation, 
and extraction and recovery of enzymes and bioactives 
[46,192,194,195,196,197,198]. There are several reports 
on β-glucosidase production from filamentous fungi, and 
yeast by SSF and SMF. Table 1 summarizes production 
methods from different microbial sources.  

Table 1. Production methods of β-glucosidase from different fungi 
and yeast species 

Fungal species Fermentation method Ref# 
Tolypocladium cylindrosporum Syzx4 SMF [199] 

Penicillium simplicissimum H-11 SMF [200] 

Aspergillus strain SA 58 SSF [201] 

Penicillium citrinum YS40-5 SSF [202] 

Fusarium proliferatum SMF [33] 

Fusarium solani SSF [203] 

Aspergillus niger + A. Oryzae SSF [204] 

Fomitopsis palustris SMF [133] 

Aspergillus niger SOI017 SMF [205] 

Flammulina velutipes SMF [142] 

Monascus sanguineus SSF [143] 

Phoma sp. KCTC11825BP SMF [135] 

Aspergillus niger AS 3.4309 SSF [206] 

Aspergillus terreus EMOO 6-4 SSF [207] 

Thermomucor indicae-seudaticae N31 SSF [208] 

Aspergillus niger HDF05 SSF [209] 

Gongronella butleri SSF [145] 
Penicillium miczynskii SMF [210] 
Fusarium oxysporum SMF [146] 
Yeast species 
Aureobasidium pullulans SMF [211] 

Candida peltata SMF [106] 

Kluyveromyces marxianus SMF [212] 
Aureobasidium sp. SSF+SMF [213] 
Saccharomyces cerevisiae SMF [214] 
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3.1. Production Parameters 

Optimization of fermentation conditions is very crucial 
step for profitable enzyme production and commercialization. 
There are many parameters which need to be carefully 
optimized during fermentation processes for enzyme 
production. These parameters include carbon source and 
concentration, nitrogen source and concentration, salts, pH, 
temperature, oxygen availability, fermentation period, 
inoculum size etc. [215,216]. The optimal conditions for 
fermentation vary depending on microbial species, 
required end product (e.g., enzymes), and production 
methods, among others factors. 

3.1.1. Carbon Source 

β-Glucosidase, among other cellulases, is an inducible 
enzyme synthesized by microbial cells in response to 
various carbon sources included in fermentation medium. 
These carbon sources may be complex such as cellulose, 
wheat bran, rice straw, rice husk, sugar cane bagasse, and 
pectin, or simple sugar such as glucose, lactose, cellobiose, 
or sophorose. Complex sugar cannot enter the cells 
through cell membrane, it is therefore believed that some 
constitutively expressed enzymes degrade them to simple 
sugar such as cellobiose, lactose etc. which can then be 
transported through the cell membrane via specific 
transporters to the cytosol where they induces the 
expression of these enzymes in poorly understood 
mechanism [64,101,217,218]. Synthesis of β-glucosidase, 
and other cellulases, is repressed by metabolizable sugar 
such as glucose in phenomenon known as catabolite 
repression [213,214]. The optimal carbon source for  
β-glucosidase production varies depending on the species 
utilized for β-glucosidase production, fermentation method, 
and other fermentation parameters and interaction among 
these factors. For instances, optimum production of 
extracellular and intracellular β-glucosidase from Chaetomium 
thermophilum var. coprophilum was achieved when  
sugar-cane bagasse and avicel used as carbon source, 
respectively [127]. Aspergillus oryzae optimally produces 
β-glucosidase with high glucose-tolerance (HGT-BGL) 
when quercetin was used as carbon source [96]. Under 
solid state fermentation, Aspergillus strain SA 58 
expressed two extracellular β-glucosidase when pectin 
was used as carbon source [201]. Microbial consortium 
implies two or more microbial groups. Optimal production 
of β-glucosidase from the microbial consortium of 
Aspergillus niger and A. oryzae was achieved when wheat 
bran was used as carbon source [204]. Similarly, optimum 
production of β-glucosidase from Fusarium proliferatum 
NBRC109045 was achieved when it was cultured on corn 
stover and wheat bran containing medium [33]. Aspergillus 
saccharolyticus produced an optimal β-glucosidase 
activity when cultivated on media containing xylose, 
xylan, wheat bran, and pretreated corn stover [138]. 
Flammulina velutipes and Penicillium Purpurogenum 
achieved optimal β-glucosidase production when grown 
on medium containing sucrose as carbon source [128,221]. 
Optimal β-glucosidase production from Monascus 
sanguineus was obtained when jack fruit seed was used as 
carbon source among wheat bran, coconut residue, 
tamarind seed and jack fruit seed tested [143]. Stereum 
hirsutum produced optimum β-glucosidase when it was 

grown on avicel followed by cellulose and minimum 
production was observed in glucose containing medium 
[222]. Lichtheimia ramosa produced optimal β-glucosidase 
activity under wheat bran as carbon source under SSF 
[223] and that from Aspergillus niger NRRL 3112 was 
produced optimally when wheat bran and glycerol were 
used as co-substrate [224]. More interestingly, an optimal 
production of extracellular β-glucosidase from Candida 
peltata was achieved when it was grown on glucose and 
xylose containing broth medium both of which are 
considered simple metabolizable sugar and a catabolite 
repressors for these genes [106]. Kluyveromyces marxianus 
produced optimal β-glucosidase when cultivated in 
medium containing cellobiose, sucrose and lactose [212] 
and Aureobasidium pullulans produced highest level of 
extracellular β-glucosidase when cultivated on medium 
containing lactose and corn bran [211]. Optimum 
production of extracellular β-glucosidase from Proteus 
mirabilis VIT117 was achieved in medium supplemented 
with sorbitol as carbon source [225]. 

Many filamentous fungi have been shown to express 
multiple isoforms of β-glucosidase when cultured on 
different carbon source [45,96]. For example, Aspergillus 
niger NII-08121/MTCC 7956 expressed four isoform of β-
glucosidase when it was cultivated on lactose or cellulose 
as carbon source while only two isoforms were found 
when wheat bran or rice straw was used as the carbon 
source [226]. Similarly, Penicillium funiculosum NCL1 
express 4 isoforms on wheat bran, 2 isoforms on 
sugarcane bagasse, 1 isoform on avicel containing 
medium under SMF whereas no isoform was induced on 
salicin [227]. These isoforms may result from presence of 
multiple genes, differential mRNA splicing, and 
posttranslational modifications such as glycosylation and 
proteolytic digestion [228,229]. The regulatory 
mechanism underlying the generation of these isoforms is 
not clear. Further investigation are needed and which may 
help in designing the fermentation condition for 
production of most suitable isoform e.g., glucose tolerant 
β-glucosidase. 

3.1.2. Nitrogen Source 
For microbes to grow, nitrogen source must be included 

in the fermentation medium to synthesize amino acids, 
proteins, nitrogenous compounds, vitamins, nucleic acids 
and bioactives [121,230]. Nitrogen source can be organic 
or inorganic. Organic nitrogen sources can be peptone, 
yeast extract, beef extract, tryptone, or soybean meal. 
Inorganic source of nitrogen can be ammonium sulphate, 
ammonium chloride, ammonium hydrogen phosphate etc. 
For optimum β-glucosidase production, different species 
required different nitrogen source. Most of researchers 
have not reported optimization of nitrogen source for  
β-glucosidase production. β-Glucosidase was optimally 
produced from Penicillium simplicissimum H-11 
cultivated on medium containing bean cake powder as 
nitrogen source [190]. Chaetomium thermophilum var. 
coprophilum produced optimum β-glucosidase when 
grown on peptone and yeast extract as nitrogen source 
[231]. Aspergillus strain SA 58 produced high level of 
extracellular β-glucosidase when cultured on medium 
containing beef extract as nitrogen source while least 
production was observed when ammonium salts were used 
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as nitrogen source [201]. Flammulina velutipes produced 
highest β-glucosidase activity when L-asparagine was 
used as nitrogen source in comparison to other ammonium 
salts which produced negligible to low activity [221] 
whereas Penicillium citrinum YS40-5 was found to 
produce the highest level of extracellular β-glucosidase 
when cultivated on urea containing medium as nitrogen 
source under SSF [232]. Penicillium purpurogenum was 
found to produce high level of intracellular β-glucosidase 
when grown on medium containing NaNO3 as nitrogen 
source among three salt tested NaNO3, KNO3, (NH4)2NO 
tested [128]. Stereum hirsutum produced optimal β-
glucosidase when tryptone was used as nitrogen source 
[222]. Kluyveromyces marxianus produced optimal β-
glucosidase when corn steep liquor was used as nitrogen 
source [212]. Aspergillus protuberus produces optimum β-
glucosidase when ammonium sulfate was used as nitrogen 
source under SSF [233]. Similarly, the mechanism by 
which these nitrogen sources influence the expression of 
β-glucosidase is not clear and more future investigation is 
required. 

3.1.3. Temperature 
Temperature of β-Glucosidase production varies from 

species to species. Usually production temperature of  
β-glucosidase coincides with optimal temperature for 
microorganism growth. For instance, β-glucosidase has 
been produced from Monascus purpureus at 30°C [132], 
Penicillium italicum at 28°C [137], Chaetomium thermophilum 
var. coprophilum at 45°C [231], Penicillium simplicissium 
H-11 at 30°C [190], Daldinia eschscholzii at 25°C [129], 
Thermoascus aurantiacus at 50°C [126], and Aspergillus 
oryzae at 28°C [96]. Aspergillus strain SA 58 was found 
to produce maximal β-glucosidase at a temperature of 
35°C, although the organism grows optimally at 30°C. A 
temperature of 32°C was optimal for β-glucosidase 
production from Penicillium purpurogenum KJS506 
which grow optimally at 28°C [134]. Optimum production 
of β-glucosidase from Lichtheimia ramosa and  
A. protuberus was obtained at 35 and 30°C when tested in 
a temperature range of 25-45°C and 25-40°C, respectively 
[223,233]. β-Glucosidase has been produced from 
bacterial species: Clostridium thermocellum at 60°C [150], 
archaeon Pyrococcus furiosus at 90°C [151], 
Lactobacillus brevis at 25°C [155], flavobacterium 
Johnsonae at 28°C [152], psychrotolerant Shewanella sp. 
G5 at 15°C [154], these temperatures are exactly the same 
for species growth. Most of researchers has also reported 
the optimization of temperature for β-glucosidase 
production from various species rather an arbitrary 
temperature usually the same for optimal growth is used.  

3.1.4. pH 
Different species required different initial pH for 

optimal production of β-glucosidase. Like in case of 
temperature, most researchers worked on β-glucosidase 
have not reported optimization of pH for β-glucosidase 
production rather they use an arbitrary pH at which these 
species grow optimally. For instance, β-Glucosidase has 
been produced from Fusarium oxysporum at pH 6 [234], 
Penicillium italicum at pH 4.5 [137], Aspergillus oryzae at 
pH 6.0 [96], Fusarium proiferatum NBRC109045 at pH 
5.0 [33], Candida peltata at pH 5.0 [211], Daldinia 

eschscholzii at pH 5.5 [129], and Phoma sp. 
KCTC11825BP at pH 4.5 [135]. Aspergillus strain SA 58 
was found to produce optimal β-glucosidase at pH 5.0 
when screened from pH 3.0-9.0 [201]. Pichia pastoris 
achieved optimal β-glucosidase production at pH 7.5 
when screened from pH 4-8 [235] The microbial 
consortium of A. niger and A. oryzae was found to 
produce optimal β-glucosidase at pH 5.5 when it was 
screen from pH 4.5 and 7 [99].  

3.1.5. Incubation Time/Fermentation Period 
Fermentation period is another crucial parameters 

affecting enzyme production. Fermentation process has to 
be carried out for an optimum time which otherwise 
optimal production of specific value-added product e.g., 
enzyme cannot be achieved. Usually the production of 
enzyme increased with increase of incubation time till it 
reaches an optimal peak beyond what there is a decline in 
enzyme production and activity. The decline in the 
enzyme production may be attributed to decline in the 
nutrient availability, accumulation and/toxicity of waste 
products, and decrease in the stability of the enzyme itself. 
Optimal β-glucosidase production from Aspergillus niger 
and Trichoderma sp. was achieved after 4 and 5 days  
of fermentation, respectively, after which the production 
was decreased gradually [215]. Optimum extracellular  
β-glucosidase production from Penicillium purpurogenum, 
and Chaetomium thermophilum var. coprophilum was 
achieved after 96 and 140 h, respectively [231]. Optimum 
production of an extracellular β-glucosidase from 
Fusarium solani, Lichtheimia ramose, and Thermomucor 
indicae-seudaticae was achieved at 72, 96 and 196 h on 
SSF [203,208,223].  

In addition, number of other parameters affect the 
production of these bioactives or enzymes such  
β-glucosidase during fermentation processes. These 
parameters includes inoculum size, moisture content, 
fermentation methods, fermentation volume, fermenter 
size, substrate concentration, salts and its concentration, 
aeration, and additives. The exact mechanism by which 
fermentation parameters affect β-glucosidase production is 
not clear and it appears to be species specific and highly 
influenced by interaction between parameters. Future 
investigation should focus on understanding the 
mechanisms by these parameters influence the production 
of this valuable enzymes and the interaction between 
various parameters so that designing of cost effective 
processes may be initiated. Moreover, isolation of new 
microbes, fungi and bacteria, and optimization of 
fermentation conditions for β-glucosidase production 
under SSF and/SMF is highly encouraged.  

3.2. Statistical Design Approach for 
Improvement of β-Glucosidase 
Production 

Optimization of fermentation conditions for production 
of β-glucosidase is of the crucial importance because these 
parameters significantly affect the enzymes production, 
yield and productivity. Optimization is usually carried out 
using the traditional approach known as One Variable At a 
Time (OVAT) by changing one variable keeping all other 
factors constant. However, OVAT is not efficient method 
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for optimization because it ignores the interactions 
between different parameters which are actually 
independent, in addition, it is laborious, expensive and 
time consuming thus it usually fails to identify optimal 
fermentation conditions. Statistical methods such as 
Response Surface Methodology (RSM) is a new effective 
statistical method for optimization of fermentation 
conditions because it takes the interaction of multiple 
variables into consideration and reduces the number of 
experiments needed to be performed [207,236]. RSM has 
been used for optimization of 4 parameters (yeast extract 
concentration, cellobiose concentration, ammonium 
sulfate concentration, and pH) for β-glucosidase 
production from Aspergillus niger SOI017 and found that 
0.275% yeast extract, 1.125% cellobiose, and 2.6% 
ammonium sulfate at a pH value of 3 are the optimal 
condition for β-glucosidase production [205]. Job et al 
optimized the fermentation condition for glucose tolerant 
β-glucosidase from Paecilomyces sp. using Plackett–
Burman and Box–Behnken design revealing that peptone 
concentration of 2 g/l, inoculum concentration of 1.2 x 106 
spores/ml and an incubation period of 96 h are the optimal 
conditions for enzyme productions [237]. El-Naggar et al 
employed two Plackett-Burman and Box–Behnken 
designs for optimization of β-Glucosidase production 
from A. terreus demonstrating that NaNO3, KH2PO4 and 
Tween 80 are the variable with maximum effect on 
enzyme production [207]. Mahapatra et al found that an 
optimum inoculum size, pH and yeast extract of 2 %, 9 
and 2 %, respectively, are the optimum for extracellular 
β-glucosidase production from Proteus mirabilis VIT117 
using Plackett–Burman and RSM statistical approaches 
[225]. 

4. β-Glucosidase Applications  

β-Glucosidase is a hydrolytic enzyme that acts upon 
β(1-4) glucosidic bonds of disaccharides, oligosaccharides 
and glucose-substituted molecules. Under certain 
circumstances, it also catalyzes synthetic reactions 
through reverse hydrolysis or transglycosylation.  
β-Glucosidase has the potential to be used in many 
biotechnological applications. β-Glucosidase applications 
can be divided into: 1) applications based on hydrolytic 
activity 2) applications based on synthetics activity.  

4.1. Applications Based on Hydrolytic 
Activity 

β-Glucosidase involves in the hydrolysis of β(1-4) 
glucosidic linkages of disaccharides e.g., cellobiose, 
oligosaccharides and glucose-substituted molecules, 
although some novel β-glucosidase can hydrolyze bonds 
such as β (1-3), β (1-6), β (1-2) bonds. Therefore it can be 
utilized in many applications in biofuel production, food 
technology, and biomedical sciences. 

4.1.1. Biofuel Production 
Production of biofuel e.g., bioethanol, from plant 

biomass, involves the use of many enzymes that act 
synergistically to degrade the lignocellulosic material to 
pentose and hexose sugar which in turn is fermented to 

ethanol. Cellulases and xylanases are the major 
components’ of these enzymes [238]. Cellulase enzymatic 
system is comprised of three enzymes, endoglucanase, 
cellobiohydrolyase, which degrade the cellulose chain to 
cellobiose and short oligosaccharide and both get inhibited 
by cellobiose, and β-glucosidase which hydrolyze 
cellobiose and oligosaccharides into glucose unit 
eliminating cellobiose inhibition and increasing the rate of 
cellulolysis. Unfortunately β-glucosidase itself are 
inhibited by their end-product i.e., glucose thus limiting 
the rate of cellulose hydrolysis therefore β-glucosidase is 
considered as the rate-limiting step in cellulolysis pathway 
and the bottle neck in biofuel production [90,239,240]. 
Cellulase hyperproducers filamentous fungus T. reesei 
lacks sufficient amount of β-glucosidase, which is another 
hurdle in biomass conversion and biofuel production [241]. 
Therefore majority of reported β-glucosidase identified 
and characterized for their biochemical and kinetics 
properties are meant to be utilized in biomass hydrolysis 
and in solving these problems associated with β-
glucosidase e.g., low productivity and glucose sensitivity 
[90,146,242,243,244].  

4.1.2. Isoflavones Glycoside Hydrolysis 
Phenolic compounds (flavonoid, flavonone, flavones, 

and isoflavone) are a class of plants secondary metabolites 
differing in their chemical structures and biological 
functions. These compounds recently have been the focus 
of many researchers especially in the field of health and 
food technology because of their biological activity as 
antioxidant, anticancer, antiallergic, anti-inflammatory 
agents, antihypertensive etc. [245,246,247]. Naturally, 
majority of these compounds are presents in form of 
glycosides which increase their water solubility and 
stability and limit their absorption from human GIT [248]. 
Usually these glycosides contain monoglucose unit 
conjugated to other sugar such as galactose, arabinose, or 
xylose. The release of aglycone moiety requires the  
action of specific enzymes such as arabinosidase, and  
β-glucosidase. The liberated aglycone can be easily 
absorbed thus increasing their biological potency [249]. 
Numbers of β-glucosidase have been reported for 
hydrolysis of isoflavone or flavonoid compounds. Table 2 
summarizes the sources of β-glucosidase tested on 
isoflavones and flavonoid compounds. 

4.1.3. Flavor Improvement  
In last few decades, researchers revealed that most of 

the flavor compounds in plants and fruit tissue are 
presents in form of glycoconjugate rendering them 
flavorless and nonvolatile compounds [265]. Glycoside 
flavor compounds have been reported in wide range of 
fruit such as grape [266,267], yellow plum [268], mango 
[269], and strawberry [270]. These glycosides are 
complex and diverse in their structures particularly 
aglycone moiety. Glycone part usually consist of glucose 
unit conjugated to various glycosides such as 6-O-α-L-
arabinofuranosyl-β-D-glucopyranosides, and 6-O-α-L-
arabinopyranosyl-β-D-glucopyranosides. To make these 
flavorless compounds available to flavor content, they 
must be hydrolyzed to release the aglycone part. 
Hydrolysis can be carried out using acids or, most 
favorably enzymes [271,272]. The enzymatic hydrolysis is 
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carried out in two sequential steps, firstly, enzymes such 
as α-L-rhamnosidase, or α-L-arabinosidase cleaves of the 
terminal sugar: arabinose and rhamnose, secondly,  
β-glucosidase acts upon the corresponding β-D-glucoside 
releasing glucose and aglycone moiety such as monoterpenol 
[273]. Unfortunately, β-glucosidase from plants such as 
grapes has low activity and unstable under wine making 
conditions therefore adding β-glucosidase from microbes 
with high activity and stability is mandatory for complete 
hydrolysis of flavor compounds. β-Glucosidase with high 
hydrolytic efficiency for terpenyl glycoside has been 
reported from Sporidiobolus pararoseus [274], and 
Aureobasidium pullulans [275] suggesting their potential 
application for the development of wine aroma. Another 
β-glucosidase from Oenococcus oeni ATCC BAA-1163 
capable of hydrolyzing glycoside present in muscat wine 
has been reported [276]. Another β-glucosiadse from 
Lactobacillus brevis, lactic acid bacterium, with xylosidase, 
arabinosidase and cellobiosidase activities has been and was 
stimulated by ethanol and methanol up to 2-fold, and has 
have life of 50 day at pH 7.0 and 4 days at pH 4.0 
suggesting the possibility of its utilization in aroma 
enhancement of wine [155]. Oenococcus oeni ST81 was 
found to produce a β-glucosidase with high tolerance to 
fructose, malate, mannitol, or sorbitol and its activity was 
increased by ethanol up to 147% and its half-life at pH 5.0 
was 50 days making it of interest in wine making [277]. 
An extracellular β-glucosidase from Issatchenkia terricola 
was also found to be highly active in the presence of 18% 

ethanol, 10% glucose, and 6% metabisulfite with relative 
stability at pH 3.0. It was also immobilized on Eupergit C 
increasing of its stability and resulting in aromatization of 
white Muscat wine over a 16-day experiment increasing 
monoterpenes and norisoprenoids content [278]. Vervoort 
et al reported a β-glucosidase from Brettanomyces 
anomalus capable of methyl salicylate, linalool, benzyl 
alcohol, and eugenol in comparison to that from A. niger 
and Almond glucosidase [279]. 

4.1.4. Cassava Detoxification 
β-Glucosidase has the potential to be used in 

detoxification of cassava. Cassava is a carbohydrate rich 
plants that grow in many places of the world and represent 
a staple food for 500 million people in the world. 
However, consumption of raw cassava is harmful to 
human health due the presence of cyanogenic glycoside 
such as linamarin and lotaustralin [280]. Moreover, a 
correlation between human central nervous system 
syndrome “Konzo” and prolonged consumption of cassava 
products has been established. Naturally cassava is 
detoxified during processing and grating by endogenous 
β-glucosidase and linamarase present in the root. However, 
these enzymes are expressed insufficiently leaving part of 
cyanogenic glycosides in the processed food. It is 
therefore suggested that an exogenous linamarase and  
β-glucosidase from microbial sources can be utilized to 
enhance the hydrolysis of cyanogenic glycoside from this 
important food [75,280,281,282,283]. 

Table 2. List of microbial sources of β-glucosidase based on the ability to hydrolyze flavonoid compounds 

Source of BGL Flavonoid glycoside Product  Biological activity Ref  

L. acidophilus LA-5 Delphinidin-3-glucoside 
Malvidin-3-glucoside 

Gallic, Syringe 
homogentisic acid Antioxidant [250] 

Paecilomyces thermophila J18 
Daidzin,  
Genistin, 
Glycitin 

Genistein, Daidzein,  
Glycitein 

Anticancer, Osteoporosis 
Antihypercholesterolemia  [251] 

Thermoanaerobacter ethanolicus 
JW200 

Daidzin,  
Genistin Genistein Daidzein Anticancer 

Antipostmenopausal syndrome [252] 

Pseudomonas ZD-8 Genitin and Daidzin Genistein Daidzein Anticancer 
Osteoporosis etc.  [253] 

Bacillus subtilis 18, Genistin  
Daidzin 

Genistein  
Daidzein 

Anticancer 
Osteoporosis etc. 

[254, 
255] 

Gongronella sp. Daidzin  
Genistin, Daidzein, Genistein, Anticancer 

Osteoporosis [256] 

Saccharomyces cerevisiae HJ-
014 Gensin Ginsenoside Rd, F2 

Compound K (CK) 
Anti-inflammatory Anti-cancer  
Anti-aging, Antioxidant activities [257] 

Paecilomyces Bainier sp. 229 Ginsenoside Rb1 Compound K 
Tonic, Adaptogenic, 
Immunomodulatory, 
Anti-aging effects 

[258] 

Mucilaginibacter sp Protopanaxatriol-type ginsenoside 
mixture (PPTGM) 

(S)-Rh1  
(S)-Rg2 

Antineoplastic, Antistress Antioxidant 
activities [259] 

Paenibacillus sp. KB0549 2,6-O-di(β-D-glucopyranosyl)-β-D-
glucopyranosylsesaminol (STG) Sesaminol Antioxidants  [260] 

Pyrococcus furiosus 
Hesperidin, Neohesperidin, 
Naringin, Poncirin, Diosmin 
Neoponcirin, Rutin 

Hesperetin,  
Hesperetin,  
Haringenin,  
Naringenin,  
Quercetin, Rutinose  

Antiallergic, Antioxidant,  
Anti-inflammatory, Antihypertensive [261] 

Bifidobacterium bifidum Daidzin,  
Genistin, 

Daidzein 
Genistein 

Anticancer, Osteoporosis 
Antihypercholesterolemia [262] 

Bacteroides thetaiotaomicron 
VPI-5482 

Daidzin,  
Genistin, 
Glycitin 

Daidzein 
Genistein 
Glycitein 

Anticancer, Osteoporosis 
Antihypercholesterolemia [263] 

Aspergillus terreus 
Daidzin,  
Genistin, 
Glycitin 

Daidzein 
Genistein 
Glycitein 

Anticancer, Osteoporosis 
Antihypercholesterolemia [264] 
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4.1.5. Dinking of Waste Paper 
Paper and pulp industry is one of the most wood 

consumer industries, and is expected to be expanded more 
due to increase in the world economy and population. 
Waste paper is one of the major environmental pollutants. 
Recycling of waste paper is attracting more attention in 
the current time to solve this two-dimensional problem: 
forest wood consumption and landfills pollution. 
Recycling of waste paper can be carried out by chemical 
or enzymatic method. The major hurdle to waste paper 
recycling is the removal of ink. Removal of ink from 
waste paper by conventional methods utilizes several 
chemicals which are environmentally harmful and 
decrease in the brightness of the paper. The enzymatic 
method for waste paper recycling has been reported to be 
efficient in solving these problems. The enzyme 
preparations for waste paper recycling contain cellulase, 
β-glucosidase and hemicellulase [77,284,285,286,287]. 

4.2. Application Based on Synthetic Activity 
β-Glucosidase is known to have synthetic activity other 

than hydrolytic activity, namely transglycosylation and 
reverse hydrolysis resulting in the synthesis of a variety of 
oligosaccharides, aryl- and alkyl-β-D-glycosides with 
wide range of applications. Synthesis of oligosaccharides 
by β-glucosidase is preferred over glycosyl transferase 
because of their higher regio- and stereo-selectivity. 
Moreover, synthesis of these compounds by β-glucosidase 
does not require any input energy in form of sugar 
nucleotides as is the case of glycosyl transferases [288]. 
Alkyl glycosides have a wide range of applications since 
they are biodegradable nonionic surfactants owning good 
emulsifying and antimicrobial properties imparted by their 
carbohydrate head group [102,289,290]. N-alkyl glucoside 
ester formed by reaction of phenyl butyric acid and  
n-alkyl butyl glucoside by β-glucosidase –lipase are used 
in treatment of fever [291]. On other hand, synthetic 
oligosaccharides can be utilized in various applications:  
1) therapeutics agents such as Heparin and Acarbose, 2) 
carbohydrate based techniques such as antibacterial,  
anti-parasite and antiviral vaccines, and 3) probiotic 
agents since they enhance the growth of beneficial 
microorganisms in human gut flora [84,288].  

5. Conclusion Remarks 
β-Glucosidase is an important component of cellulase 

system produced by all life domains playing fundamental 
roles in many life processes. β-Glucosidase, as of cellulase 
system, it eliminates cellobiose inhibition on endoglucanase 
and cellobiohydrolase during cellulose hydrolysis facilitating 
biomass hydrolysis. It also hydrolyzes different β-D-glucosides 
compounds and, under certain circumstances, has synthetic 
activity through reverse hydrolysis and transglycosylation. 
Therefore, it has wide spectrum of applications exemplifying 
by biofuel production, food technology and biomedical 
sciences. β-Glucosidase is produced by microorganisms in 
low quantities, and inhibited by its end-product i.e., 
glucose limiting its application in biomass hydrolysis and 
biofuel production. Therefore, upcoming research should 
focus on finding novel microorganisms with high  

β-glucosidase production efficiency and β-glucosidase 
with high catalytic efficiency, thermostability and 
glucose-tolerance. It is also of great importance to study 
the structure of these enzymes at molecular level and in 
silico, and to identify those amino acids involving in the 
catalysis and glucose tolerance so that protein engineering 
techniques may be employed to design a β-glucosidase 
with high catalytic activity and glucose tolerance making 
biomass hydrolysis cost effective and profitable. 
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