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Abstract. Accurate calculations of the near resonant charge exchange cross-
sections in HD+, HT+ and DT+ at very low energies are presented. The charge
exchange process between an ion and its parent atom is a near resonant process
that becomes inelastic when two different isotopes are involved. We find that,
at very low energies, the charge exchange cross-section follows Wigner’s law
for inelastic processes and becomes much larger than the cross-section for
elastic collisions which tends to a finite limit. The efficiency of inelastic charge
exchange increases as the mass difference between the two isotopes decreases.
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1. Introduction

The possibility of creating small ensembles of ultracold atoms and molecules has opened a
new research in atomic, molecular and optical physics [1]–[3]. These include applications in
condensed-matter physics [4], in the measurement of fundamental constants [5], in quantum
computing [6, 7] and in ultracold chemistry [8, 9]. One open question lies in the role of electrical
charges in ultracold systems [10, 11]. Two decades ago, in studies of atomic ions embedded in
liquid helium, the measurement of ion mobilities helped to elucidate the microscopic structure
of quantum liquids and served as a valuable probe of their properties. Recent experiments have
been directed to observing ultracold atomic systems in which electric charges may play an
analogous role: these include ultracold plasmas [12], ultracold Rydberg gases [13, 14] and
direct ionization experiments in BEC [15, 16]. Observations of atomic and molecular collision
processes involving ions at low energies can also be performed using Coulomb crystals [17],
where an array of trapped atomic ions or sympathetically cooled molecular ions [18] is used as
a cold target buffer because of its spatial localization and the low translational temperatures of
10mK.

In the collision of a positive ion with its parent atom of the same isotopic composition the
identity of the nuclei must be taken into account and charge transfer collisions

A+A+ ⌅ A+ +A (1)
cannot be distinguished in principle from elastic collisions

A+A+ ⌅ A+A+. (2)
At high collision velocities, an empirical distinction is possible. The angular differential
scattering cross-section has two peaks, one in the forward direction which may be attributed
to elastic collisions and the other in the backward direction which may be attributed to charge
transfer collisions. The corresponding total cross-sections tend in the limit of zero kinetic energy
to finite values. The cross-sections are determined theoretically by the interaction potentials of
the gerade and ungerade symmetry states of the molecular ions A+2. An explicit example is the
calculation for Na +Na+ [19].

If different isotopes are involved, there occurs a change in the kinetic energies of the
particles in the charge transfer collisions and not in the elastic collisions. The molecular
u–g symmetry is broken and the molecular states separate at large internuclear distances to
asymptotic binding energies for A+A⇧+ and for A+ +A⇧, differing by a small amount of ⌃E
that depends on the masses. The Born–Oppenheimer (BO) approximation fails because its
symmetry properties are determined by the electronic Hamiltonian. Several theoretical methods
have been proposed [20]–[22] in which the BO approximate eigenfunctions are replaced by
adiabatic eigenfunctions which incorporate some aspects of the nuclear–electronic coupling and
which are constructed so that the colliding species separate asymptotically to the correct limits.
Numerical cross-sections have been obtained for the reaction

H+D+ ⌅ H+ +D, (3)
and its reverse for kinetic energies down to 10�5 eV. We adopt the approach of Hunter et al [20]
and apply it to reactions involving hydrogen, deuterium and tritium ions and their parent atoms.
We carry out calculations of the cross-sections at low energies and determine the complex
scattering lengths.
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2. Methodology

In the BO approximation the three molecules H+2, D+2 and HD+ can all be described using
the same 2⌥g,u potentials with a dissociation limit of �1/2 au. For our purposes a two-
state approximation suffices and therefore we do not consider the excited states with higher
dissociation limits. When the different mass of the isotopes is correctly considered, the
homonuclear symmetry in HD+ is broken and the two ⌥ states correlate asymptotically to the
exact energies of the isolated neutral atoms in the following way:

H+D+ ⌅ E0 = �µH/2, (4)

H+ +D⌅ E1 = �µD/2, (5)

where µH and µD are the reduced masses of the hydrogen and deuterium atoms, respectively.
The ground state of HD+ separates to the heavier neutral D atom. We will show that at ultra-low
energies the inelastic collision process (charge exchange) that brings the system from H+D+
to the ground state follows Wigner’s law and that therefore, at sufficiently low energies, its
cross-section becomes infinite.

Hunter et al [20] considered the electronic adiabatic solutions of a system composed of
two nuclei with masses m1, m2 and one electron with mass m3. After the separation of the
center of mass, the Hamiltonian, in au, reads:

� 1
2µ1

⌃2
a � 1

2µ2
⌃2
b + V (Ra,Rb)

�
�I = E�I, (6)

where �I is a function of internal coordinates, µ1 = m1m2/(m1 +m2) and µ2 = m3(m1 +
m2)/(m1 +m2 +m3), Ra is the vector joining the two nuclei and Rb is the vector joining the
nuclear center of mass and the electron. The total wavefunction �I is expanded in adiabatic
states

�I =
X

i

⇧ (i)
a (Ra)⇧

(i)
s (R,Rc), (7)

where each of the ⇧s satisfies an electronic equation [20]
� 1
2µ2

⌃2
c + V (R,Rc)

�
�s(R,Rc) = Es(R)�s(R,Rc) (8)

with R = |Ra| and Rc is the vector Rb after a frame transformation. Equation (8) for the
electronic motion is solved by writing Rc in spheroidal coordinates [20]. Finally, one obtains a
set of coupled equations for the nuclear motion in the R coordinate

H⇧a(R) = E⇧a(R). (9)
We can write the equation for the nuclear motion at energy E = k2/2µHD in the 2⇥ 2 matrix
form


I
d2

dR2
�F d

dR
+k2�

✓
2µHDV+

L2

R2

◆�
⇧a(R) = 0, (10)

where I is the identity matrix, L2 and k2 are diagonal matrices with elements l(l + 1) and
k20 and k21, where l is the nuclear angular momentum quantum number. The initial and final
wavenumbers k0 and k1 are related by

k21 � k20 = 2µHD(E0 � E1) = 2µHD⌃E . (11)
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Figure 1. Potentials and coupling strength reconstructed from the data in [20].
The potentials as well as the distance are in au. C01 and F01 are multiplied by 105
to make them visible on the same scale.

The potential matrix elements are given by

V00 = 1
2(C00 +C11)+C01,

V11 = 1
2(C00 +C11) �C01,

V01 = 1
2(C00 �C11) � 1

2
dF01
dR

,

V10 = 1
2(C00 �C11)+

1
2
dF01
dR

, (12)

where the adiabatic potentials Ci j and coupling strength Fi j are given in [20] in terms of
electronic matrix elements. The Ci j and Fi j potentials are reported in figure 1.

Solutions to equation (10) and the corresponding cross-sections were found through
a modified Numerov algorithm that accounts for the presence of the linear derivative (see
appendix) [23]–[25].

3. Results and discussion

We have performed calculations for collision energies from 10�9 to 10�3 eV above threshold.
Convergence has been carefully checked for the integration range, step-size and number of
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Figure 2. Charge exchange and elastic cross-sections for HD+ as functions of
collision energy above threshold. The symbols are the calculations from [26].

partial waves. We present the cross-sections in figure 2 together with the results of Esry et al [26]
which refer to collision energies above 3⇥ 10�5 eV and which were obtained by a different
procedure. The close agreement confirms the accuracy of both sets of calculations.
The cross-section labeled ‘quenching’ which refers to the inelastic exothermic process:

D+ +H⌅ D+H+

follows Wigner’s law below 10�6 eV, the elastic cross-section becomes a constant and the
excitation cross-section tends to zero. At ultra-low energies the scattering in the electronically
excited state (correlating with D+ +H) can be characterized by a complex scattering length
a = � � i⇥. We have extracted it from the S matrix at the lowest energy and their values are
reported in the first row of table 1. The value of ⇥ yields a limiting rate constant at zero
Kelvin of 1.9⇥ 10�9 cm3s�1. This is remarkably large for a weakly exothermic process triggered
by extremely small non-adiabatic couplings. As can be seen in figure 2, for energies below
5⇥ 10�6 eV (⇤0.5K) the inelastic process is dominant over the elastic scattering. The reverse
inelastic reactions have rate coefficients reduced by the factor exp(�⌃E/kT ). It is clear from
these results that if an ensemble of polarized D and H atoms at ultra-low energies is ionized, the
charge will tend rapidly to migrate to the H nuclei leaving the D atoms neutral.

In such an ensemble, however, there exist two other mechanisms for the migration of the
charge involving the resonant charge exchange in H+2 and D+2. In figure 3, we compare the cross-
sections for the charge exchange (left panel) and for the elastic process (right panel) for H+2,
D+2 and HD+. Only in the case of DH+ we do have an inelastic process during charge exchange
and its cross-section is the one that diverges below 10�7 eV. It is interesting to note that, for
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Table 1. Scattering lengths (in au) for the scattering processes described in the
present work. The number next to ⇥ is the limiting value at zero Kelvin for the
rate constant in cm3 s�1.
System �(El) ⇥/rate(T = 0)

D+ +H⌅ D+H+ 15.3 30.6/1.9⇥ 10�9

T+ +H⌅ T+H+ 9.8 14.5/8.0⇥ 10�10

T+ +D⌅ T+D+ 245.9 451.9/1.6⇥ 10�8

System a(⌥g) a(⌥u)

H+ +H⌅ H+H+ �28.8 +725.2
�29.3a +750a

D+ +D⌅ D+D+ +485.7 �95.6

a From [27].

10–10 10–9 10–8 10–7 10–6 10–5 10–4

Collision Energy / eV

103

104

105

106

107

σ 
/ (

a 0)2

10–10 10–9 10–8 10–7 10–6 10–5 10–4

Collision Energy / eV

103

104

105

106

107

H2
+

D2
+

HD+

Figure 3. Cross-sections for charge exchange (left) and elastic collisions (right).

the latter system below 10�9 eV, the inelastic charge transfer process is more efficient than the
elastic one.

In the case of resonant charge transfer ⇥ is zero and the scattering is characterized by
two real scattering lengths; one for the ⌥g state and the other for the ⌥u state. These data
are presented in table 1. The cross-section for elastic collisions is the average of ⌥g and ⌥u
cross-sections. The large cross-section found for DT+ indicates the approach of a zero energy
resonance state as the reduced mass increases.
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Figure 4. Cross-sections for charge exchange (left) and elastic collisions (right).
The numbers in the legend are the mass ratios between the two isotopes
involved.

To explore the sensitivity of the cross-sections to the mass and energy differences, we report
in figure 4 the cross-sections for the HD+, HT+ and DT+ systems. As the reduced mass increases,
the energy difference⌃E between the states decreases from 39.7 cm�1 for HT+, to 29.8 for HD+,
to 9.9 for DT+. At the same time the inelastic process becomes more efficient in transferring the
charge. The huge value of the rate constant that we obtain for the charge exchange in DT+ of
1.6⇥ 10�8 cm3 s�1 is a value more typical of ionic reactions than that of a process which is
mainly triggered by the non-adiabatic effects that arise from the small electron–nuclei motion
couplings.

4. Conclusions

We have analyzed the general problem of ultracold collisions between an ion and an atom
corresponding to two different isotopes. The charge exchange process is inelastic, the BO
approximation breaks down and the process is driven by the weak coupling of the nuclear and
electronic motion. In contrast to ion–atom collisions involving one isotope for which the cross-
section is finite at zero energy, the cross-section for the exoergic charge exchange process tends
to infinity as the inverse of velocity in accordance with Wigner’s law. We have shown that if the
energy difference is small the charge exchange rate is very fast. We conclude that in a gas with
a mixture of isotopes the charge will migrate to the heavier isotope with high efficiency.
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Appendix. Generalized Numerov propagator

Our nuclear problem is given by:

d2

dR2
I�F d

dR
+k2�

✓
2µHDV+

L2

R2

◆�
 (R) = 0. (A.1)

By setting

Q(x) = k2�
✓
2µHDV+

L2

R2

◆
and P(x) = �F, (A.2)

equation (A.1) can be written as

I
d2

dR2
+P(x)

d
dR

+Q(x)
�
 (x) = 0. (A.3)

The extended Numerov method we have implemented is very similar to the multichannel
Numerov propagator of Johnson [23] and is based on the following two terms recursion relation
for the R matrix

Rn = UnY�1
n �ZnY�1

n R
�1
n�1, (A.4)

where

Un = (2 + 10Tn)↵n � 2h2P†(xn)P(xn)Tn,

Yn =↵n � hP(xn)( 12 �Tn+1)(1�Tn+1)�1,

Zn =↵n + hP(xn)( 12 �Tn�1)(1�Tn�1)�1,

(A.5)

where ↵= 1 + h2/6(P⇧(xn)+P†(xn)P(xn)) and Tn = �h2/12Q(xn). It is possible to obtain  
from R at each point by using

 n+1 = (1�Tn+1)�1Rn(1�Tn) n. (A.6)

The inner boundary condition is obtained by letting R(x1), with x1 well inside the classical
forbidden region, be a diagonal matrix set to a very large number. Equation (A.4) is then used
throughout the integration range up to xN which is sufficiently far out in the asymptotic region.
The matching condition is done through equations (A.16)–(A.19) of [23] and from it we get the
S matrix.
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The propagation is repeated for each contributing value of the angular momentum l and the
S matrix is then used in the familiar way in order to obtain the charge exchange cross-section:

⌅ct(i ⌅ j) = ⇤

k2i

X

l

(2l + 1)|Sli j |2 (A.7)

and the elastic cross-section

⌅el(i ⌅ i) = ⇤

k2i

X

l

(2l + 1)|1� Slii |2. (A.8)
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