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Abstract
Small nonequilibrium systems in contact with a heat bath can be analyzedwith the framework of
stochastic thermodynamics. In such systems,fluctuations, which are not negligible, follow universal
relations such as the fluctuation theorem.More recently, it has been found that, for nonequilibrium
stationary states, the full spectrumoffluctuations of any thermodynamic current is bounded by the
average rate of entropy production and the average current. However, this bound does not apply to
periodically driven systems, such as heat engines driven by periodic variation of the temperature and
artificialmolecular pumps driven by an external protocol.We obtain a universal bound on current
fluctuations for periodically driven systems. This bound is a generalization of the known bound for
stationary states. In general, the average rate that bounds fluctuations in periodically driven systems is
different from the rate of entropy production.We also obtain a local bound onfluctuations that leads
to a trade-off relation between speed and precision in periodically driven systems, which constitutes a
generalization to periodically driven systems of the so called thermodynamic uncertainty relation.
From a technical perspective, our results are obtainedwith the use of a recently developed theory for
2.5 large deviations forMarkov jumpprocesses with time-periodic transition rates.

1. Introduction

Thermodynamics [1] is amajor branch of physics concernedwith the limits of operation ofmachines that
transformheat into other forms of energy. This theory is limited tomacroscopic systems such as a steam engine.
However, theway heat and temperature relate to other forms of energy is also important for small
nonequilibrium systems, such asmolecularmotors and colloidal heat engines. For such systems, thermal
fluctuations are relatively large and they cannot be ignored.

Stochastic thermodynamics [2] generalizes thermodynamics to small nonequilibrium systems. Amajor
question that arises within this theoretical framework that takes fluctuations into account is: what are the
universal relations that rule fluctuations in small nonequilibrium systems? Thefluctuation theorem is one such
relation [3–8], it is a constraint on the probability distribution of entropy that generalizes the second law of
thermodynamics.

Amore recent universal relation associatedwith suchfluctuations is the thermodynamic uncertainty
relation from [9]. This relation establishes that precision of a thermodynamic current, such as the number of
consumedATPor the displacement of amolecularmotor, has aminimal universal energetic cost. Possible
applications of the thermodynamic uncertainty relation include the inference of enzymatic schemes in single
molecule experiments [10], a bound on the efficiency ofmolecularmotors that depends only onfluctuations of
the displacement of themotor [11], a universal relation between power and efficiency for heat engines in a
stationary state [12], and design principles in nonequilibrium self-assembly [13].

The thermodynamic uncertainty relation is a consequence of amore general bound on the full spectrumof
currentfluctuations [14, 15]. Using large deviation theory [16–19], this bound is expressed as a parabola that is
above the so called rate function, which quantifies the rate of exponentially rare events. A key feature of this
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parabolic bound is that it depends solely on the average entropy production and the average current, i.e.,
knowledge of the average entropy production and the average current implies a bound on arbitrary fluctuations
of any thermodynamic current. There has beenmuch recent work related to this universal principle about
currentfluctuations [20–37].

The parabolic bound applies to stationary states ofMarkov processes with time-independent transition
rates. Physically, this situation corresponds to systems that are driven by fixed thermodynamic forces, e.g.,
molecularmotors driven by the free energy of ATPhydrolisis. Anothermajor class of thermodynamic systems
away from equilibrium is that of periodically driven systems, which can be described asMarkov processes with
time-periodic transition rates. Two experimental realizations of periodically driven systems are Brownian heat
engines [38] and artificialmolecular pumps [39].

There is a fundamental difference with respect tofluctuations between systems driven by afixed
thermodynamic force and periodically driven systems. As shown in [40], for a periodically driven system, the
energetic cost of precision of a thermodynamic current can be arbitrarily small, in stark contrast to systems
driven by afixed thermodynamic force, for which this precision has aminimal universal cost, as determined by
the thermodynamic uncertainty relation.Hence, the parabolic bound from [14, 15] that depends on the average
rate of entropy production does not apply to periodically driven systems. For the particular case of a time-
symmetric protocol, a derivation of a thermodynamic uncertainty relation has been proposed in [29]. The
relation between these two classes of nonequilibrium systems is also relevant for themapping of artificial
molecularmachines, which are often driven by an external periodic protocol (see [41] for a counter-example),
onto biologicalmolecularmotors, which are autonomousmachines driven byATP, as discussed in [42, 43].

In this paper, we obtain a universal bound on currentfluctuations in periodically driven systems that is also
parabolic. For the particular case of a current with increments that do not depend on time, such as internal net
motion in amolecular pump, our bound depends on a single average rate. However, this average rate is different
from the entropy production. For a constant protocol that leads to time-independent transition rates, our
bound becomes an evenmore general bound than the known bound for stationary states from [14, 15]. A
relevant technical aspect of our proof is as follows. The parabolic bound for stationary states has been proved in
[15]. This proof uses a remarkable result for large deviations inMarkov processes, i.e., the exact formof the rate
function for 2.5 large deviations for stationary states [44–47].More recently, the rate function of 2.5 large
deviations for time-periodic transition rates has been obtained in [48].We use this result to prove our bounds.

Similar to the parabolic bound for stationary states that implies the thermodynamic uncertainty relation,
our global bound on large deviations leads to a trade-off relation between speed and precision in periodically
driven systems.We obtain a tighter local bound on the rate function that leads to an improved trade-off relation
between speed and precision. For the case of stationary states, this bound is also tighter then the bound
determined by the thermodynamic uncertainty relation.

We also prove our results for the case of a cyclic stochastic protocol [40, 49, 50]. Such protocols are
convenient to perform illustrative calculations with specificmodels. Furthermore, the proofs for stochastic
protocols are a generalization of our results for deterministic protocols, since currentfluctuations for a
stochastic protocol with an infinitely large number of jumps are equivalent to currentfluctuations for a
deterministic protocol [50].

The paper is organized in the followingway. In section 2we define the basicmathematical quantities and
physicalmodels. In section 3, we introduce and illustrate ourmain results for the case of currents with time-
independent increments. The bounds are derived in section 4.We conclude in section 5. The appendix contains
the proofs for the case of a stochastic protocol.

2.Mathematical preliminaries and physicalmodels

2.1.Markov processes with time-periodic transition rates andfluctuating observables
Weconsider aMarkov jump process withfinite number of statesΩ. The space of states is written as {1, 2,K,Ω}.
The transition rate from state i to state j at time t is denoted bywij(t). Sincewe are interested in periodically driven
systems, these transition rates have a period τ, i.e.,wij(t)=wij(t+τ). Furthermore, we assume that if

¹( )w t 0ij then ¹( )w t 0ji .
Themaster equation that governs the time-evolution of Pi(t), the probability to be in state i at time t, reads

å= -
¹

( ) [ ( ) ( ) ( ) ( )] ( )
t

P t P t w t P t w t
d

d
. 1i

j i
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In the long time limit, Pi(t) tends to an invariant time-periodic distributionπi(t)=πi(t+τ). An important
quantity in this paper is the average elementary current
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Fluctuations can be analyzed if we consider stochastic variables that are defined as functionals of a stochastic
trajectory - - t( )at t m0 , wheremτ is the final time andm is an integer number. This trajectory is a sequence of
jumps andwaiting times. If a jump takes place at time t, the state of the systembefore and after the jump is
denoted by -at and +at , respectively. Two basic fluctuating quantities are
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where dt is an infinitesimal time interval and tä[0, τ]. The empirical density r ( )( ) ti
m counts the fraction of

periodswith the system in state i at time t. The empirical flow ( )( )C tij
m counts the number of jumps per period

from i to j at time t. Even though both quantities are functionals of the stochastic trajectory, to simplify notation,
we do not keep the explicit dependence on - - t( )at t m0 . Thefluctuating empirical current from state i to state j is
given by

= -( ) ( ) ( ) ( )( ) ( ) ( )J t C t C t . 5ij
m

ij
m

ji
m

The average in equation (2) is

" = á ñ
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m

where the brackets denote an average over stochastic trajectories.
A generic current a

( )J m is defined by its periodic incrementsαij(t), which are anti-symmetric, i.e.,
αij(t)=−αji(t), as
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whereå <i j represents a sumover all pairs of states (i, j)with <i j andwith non-zero transition rates. The
current in equation (7) can also bewritten in the form
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In stochastic thermodynamics, physical observables such as heatfluxes and particle fluxes are expressed as
currents a

( )J m . The average rate associatedwith a
( )J m in the limit ¥m reads
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Furthermore, the diffusion coefficient associatedwith a
( )J m is defined as
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An important current in stochastic thermodynamics is the entropy increase of the environment [2], which
corresponds to the increments a =( ) ( )

( )t lnij
w t

w t
ij

ji
. The average rate of entropy production is then given by
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The second equality follows fromπi(t)=πi(t+τ) and from equation (1), which leads to "p¶ + å =¹ 0t i j i ij .

2.2. Large deviations
The rate function from large deviation theory quantifies exponentially rare events in the long time limit [16–19].
It is defined through the relation

t» ~ -a a( ) [ ( )] ( )( )J x m I xProb exp , 12m

where the symbol∼means asymptotic equality in the limit ¥m and »a
( )J xm means that a

( )J m lies in an
infinitesimal interval around x. Ourmain result is a parabola that bounds a ( )I x , which is a convex function,
from above. This parabola depends on an average rate. For the knownparabolic bound for stationary states from
[14, 15], this rate is the average rate of entropy productionσ in equation (11). In our bound for periodically
driven systems, this rate is, in general, different fromσ.

3

New J. Phys. 20 (2018) 103023 ACBarato et al



Current fluctuations can also be characterized by the scaled cumulant generating function

l
t

tº á ña a
¥

( ) ( ) ( )( )z
m

m J zlim
1

ln exp , 13
m

m

where z is a real number. The cumulants associatedwith a
( )J m can be obtained as derivatives ofλα(z) at z=0. The

scaled current generating functionλα(z) is a Legendre–Fenchel transformof the rate function Iα(x), i.e.
l º -a a( ) { ( )} ( )z xz I xsup . 14

x

If a parabola bounds a ( )I x from above then a corresponding parabola, which can be determined from
equation (14), boundsλα(z) frombelow. For illustrations of our results we perform calculations ofλα(z) using
knownmethods [40, 50].

2.3. Stochastic protocol
Wealso consider the case of an external protocol that is stochastic [40, 49, 50]. In order tomimic a deterministic
periodic protocol, this stochastic protocol is cyclic and hasN states. The transition rate from state i to state jwith
the external protocol in state n=0, 1,K,N−1 is denoted bywij

n. The transition rate for a change in the
external protocol from state n to state +n N1 mod is γ, whereas the transition rate for the reversed transition is
0. Consider a deterministic periodic protocol characterized by the rateswij(t) and the period τ. If the rates of the
model with a stochastic protocol are t= =( )w w t n Nij

n
ij and γ=N/τ, then in the limit of ¥N , current

fluctuations for the stochastic protocol become equal to currentfluctuations for the deterministic protocol [50].
Hence, the deterministic protocol corresponds to an asymptotic limit of a stochastic protocol.We point out that
we do not consider the cost of the external protocol [51].

In the appendix, we derive bounds on currentfluctuations for the case of a stochastic protocol. These
derivations are similar to the derivation in section 4 for a deterministic periodic protocol. An advantage of
models with a stochastic protocol is that they areMarkov processes with time-independent transition rates,
which can simplify the exact evaluation of the scaled cumulant generating function in equation (13), as explained
in [40].Whereas the expressions in themain text are for the case of a deterministic protocol, the expressions for a
stochastic protocol can be obtained from these expressions for a deterministic protocol bymaking the
substitution òt å

t- -t Nd n
1

0
1 , as explained in the appendix.

2.4. Case studies
2.4.1. Colloidal particle driven by a time-periodic field
Thefirstmodel infigure 1(a) is a biased randomwalk on a ringwithΩ states driven by a time-periodic force

p tº( ) ( )F t F tcos 20 . A physical realization of thismodel is a charged colloid on a ring subjected to a time-
periodic electricalfield.We set Boltzmann constant kB and the temperatureT to kBT=1 throughout. The
transition rate for a jump in the clockwise direction is º+

W( ) ( )k t keF t and the reversed transition rate is
º-( )k t k. These transition rates satisfy the generalized detailed balance relation [2]. The current we consider is

Figure 1.Case studies. (a)Biased randomwalkwith time-periodic force F(t). (b)Model for amolecular pump. The red square
represents the energyE1, the blue hexagon represents the energy E2, and themagenta circle represents the energy E3. The red solid bar
represents the energy barrierB1, the blue dashed bar represents the energy barrierB2, and the dottedmagenta bar represents the
energy barrierB3. The green arrows represent transitions that change the state of the protocol. (c)Representation of the network of
states of themodel with 4 states and two independent thermodynamic forces that depend on the state of the external protocol n.
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the net number of jumps in the clockwise direction per unit time. For thismodel, the scaled cumulant generating
function in equation (13) can be calculated exactly [50].

2.4.2.Molecular pump
The other twomodels are driven by a stochastic protocol. Themodel illustrated infigure 1(b) is amolecular
pumpwithΩ=3. Thismodel has been introduced in [40]. The external protocol changes energies and energy
barriers between states, which can lead to net rotation in the ringwith three states. The number of states of the
external protocol isN=3. The states of the external protocol are denoted by 0, 1, 2, which correspond,
respectively, to the top left circle, the top right circle and the bottom circle infigure 1(b). In thismodel, the
energies and energy barriers are rotated in the clockwise direction by one step if a jump (with rate γ ) that changes
the state of the protocol takes place. The energies are denoted byE1,E2, andE3, whereas the energy barriers are
denoted byB1,B2, andB3. The internal transition rates are given by

= -- - ( )w e , 15ij
n E Bi n j n

for j=i+1, and

= -- - ( )w e , 16ij
n E Bi n i n

for j=i−1, wherewe assume periodic boundary conditions. An important property ofmolecular pumps is
that the thermodynamic force is zero for any state n of the external protocol. This physical condition is
manifested in the following restriction on the transition rates

= ( )w w w

w w w
1. 17

n n n

n n n
12 23 31

21 32 13

The current we consider is the net number of jumps in the clockwise direction per unit time. The scaled
cumulant generating function in equation (13) associatedwith this current can be calculated from the eigenvalue
of amodified generator, as shown in [40].

2.4.3. Enzymatic reactionwith stochastic substrate concentrations
Themodel illustrated infigure 1(c) is amodel withΩ=4 and two independent thermodynamic forces F1

n and
F2
n, which depend on the state of the external protocol n. Thismodel can be interpreted as a enzyme that can

consume two different substrates and produces one product [9]. The two enzymatic cycles are
+ +E S ES EP E P1 1 and + +E S ES EP E P2 2 , where E is the enzyme, P is the product,

S1 is one substrate, and S2 is another substrate. State 1 corresponds to the free enzyme E, state 2 corresponds to
ES1, state 3 corresponds toES2, and state 4 corresponds toEP. The external control of the concentrations of the
substrates S1 and S2 generate thermodynamic forces that depend on n. The number of states of the external
protocol isN=2. The generalized detailed balance relation for thismodel reads

= = ( )F
w w w

w w w
F

w w w

w w w
ln ln . 18n

n n n

n n n
n

n n n

n n n1
12 24 41

21 42 14
2

13 34 41

31 43 14

The thermodynamic forces change between two values of the samemodulus and different sign stochastically,
i.e., F1

n is given by =F F1
0

1 and = -F F1
1

1, whereas F2
n is given by =F F2

0
2 and = -F F2

1
2.

The transition rate for a change of the external protocol is γ. The transitions rates are set to
= = =w k w k w ke , e ,n F n F n

12
2

13
2

14
n n
1 2 , = = = =w k w k w k w k, e , , en n F n n F

21 24
2

31 34
2n n

1 2 , = =w k w k,n n
41 42 , and

=w kn
43 . The current we consider is the elementary current from state 1 to state 2, which corresponds to the net

number of S1molecules that have been consumed per unit time. As is the case of the previousmodel, the scaled
cumulant generating function in equation (13) can be calculatedwith themethod explained in [40].

3.Main results

In this sectionwe discuss ourmain results for currents with time-independent incrementsαij(t)=αij, which
include the case of currents generated in amolecular pump. For time-independent increments, the results
acquire a simpler formwith amore direct physical interpretation. In section 4, we present proofs ofmore general
results, which, inter alia, also hold for currents with time-dependent increments. Physical examples of currents
with time-dependent increments include the heat andwork currents in heat engines (see [49] for general
definitions of these currents). The general features of ourmain results presented in this section are the same
irrespective of whether the protocol is deterministic or stochastic, which is discussed in appendix.
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3.1. Global bound
The parabolic bound on the rate function is

*
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"ò ås
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ln d , 20
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ij

ij

i ij

j ji0

2

and

" "òt
º

t¯ ( ) ( )t t
1

d . 21ij ij
0

The inequality * .s 0 comes from the fact that forfixed t every term in the sum å <i j in equation (20) is not
negative. In general, the average rate *s is different from the thermodynamic rate of entropy productionσ in
equation (11). Furthermore, there is no simple inequality relating both quantities, as illustrated infigure 2(b).

For the case of time-independent transition rates *s s= =( )w t w ,ij ij and the bound (19) becomes

"
"- s

-a
a

a( ) ( ) ( )I x x
4

. 22
2

2

This bound is the knownparabolic bound for time-independent transition rates proved in [15]. Hence,
equation (19) constitutes a generalization of this parabolic bound to periodically driven systems.

In terms of the scaled cumulant generating function, the bound in equation (19) is written as

*" ".l s+a a a( ) ( ) ( )z z z1 , 23

wherewe used equation (14). The universality of our result is illustrated infigure 2(a). Therewe compare the
function

* * *" .l l s l s sº = +a a a a˜ ( ˜) ( ) ( ˜ ) ˜( ˜) ( )z z z z z1 , 24

where *" sº az̃ z , for themodels infigure 1, with the lower bound +˜( ˜)z z1 . This bound, or the bound in
equation (19), is a particular case of two bounds, one derived in section 4.1 and the other derived in section 4.5.

3.2. Trade-off between speed andprecision
Taking the second derivative of Iα(x) at "= ax , we obtain the diffusion coefficientDα defined in equation (10)
as

Figure 2. Illustration of the bound. (a)The function la˜ ( ˜)z in equation (24) for themodels fromfigure 1, as indicated in the legends,
compared to the lower bound +˜( ˜)z z1 . The parameters for themodel represented infigure 1(a) are set to F0/Ω=2 and k=τ=1.
The parameters for themodel represented in figure 1(b) are set to E1=E3=B1=B2=0, E2=2,B3=5, and γ=1/10. The
parameters for themodel represented infigure 1(c) are set to F1=2, F2=1/2, k=1, and γ=1/10. (b)Comparison between the
rate of entropy productionσ, the rate *s and the rate s̃ , for themodel in figure 1(b)with parameters

= = - = - = =E E B B B2, 5, 5, 2, 02 3 1 2 3 , and g = e2. The parameter E1 is the variable in the horizontal axis.
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The inequality in equation (19) and the fact that this inequality is saturated at "= ax , leads to the following
bound onDα,

*
".
s

a
a ( )D . 26
2

In section 4.3, we derive a local quadratic bound on a ( )I x , which is valid for x close to the average"a. This local
bound together with equation (25), gives a tighter bound onDα that reads
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The second inequality in equation (27) is a consequence of * .s s̃, which follows from the inequality
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a b
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ln

2
, 29

2

where a and b are positive. An inequality similar to * .s s̃ has been considered in [52].We point out that there
is no general inequality between the entropy productionσ and the rate s̃, as illustrated infigure 2(b).

Rearranging the terms in equation (27), wewrite the following universal trade-off relation between speed
and precision for periodically driven systems,

*
� " - -s s

a a
- ˜ ( )

2 2
, 301

where � "ºa a aD2 is the Fano factor. The Fano factor characterizes the precision associatedwith a
( )J m ,

whereas"a quantifies the speed. In periodically driven systems, a current with smallfluctuations, as
characterized by a small Fano factor �a, can only be as fast as �s a˜ 2.

This trade-off relation is a generalization of the thermodynamic uncertainty relation to periodically driven
systems. In particular, for the case of time-independent transition rateswij(t)=wij, inequality (30) implies the
thermodynamic uncertainty relation � " - sa a

- 21 , since *s s= for this case. Furthermore, the inequality
� " - sa a

- ˜ 21 , for time-independent transition rates, provides an even tighter bound than the thermodynamic
uncertainty relation.

This result is relevant for themapping between an artificialmolecular pump and a systemdriven by a fixed
thermodynamic force such as a biologicalmolecularmotor, which ismodelledwith time-independent
transition rates that lead to a nonequilibrium stationary state, proposed in [42].With thismapping, one can
construct amolecular pump thatmimicks a stationary state and vice-versa, in the sense that both the average rate
of entropy production and the average elementary currents between a pair of states are conserved.However, a
mapping of amolecular pumponto a stationary state that also preserves fluctuations is not always possible, since
amolecular pumpmay not fulfill the relation" -sa a( )D2 1 22 , as shown in [40], whereas a system that
reaches a nonequilibrium stationary statemust fulfill this relation.

Our trade-off relations do not imply the generalization of the thermodynamic uncertainty relation from [29]
for the case of periodic protocols that are symmetric, i.e., t t+ D = - D( ) ( )w t w t2 2 , where
- - tDt0 2. The trade-off relation from this reference involves the thermodynamic entropy productionσ

and for symmetric protocols the rateσ is, in general, different from the rates *s and s̃.

3.3.Discussion of the bounds
Infigure 3(a), we showplots of *" -sºa a a( )R D2 1 22 as a function of the rate γ, which quantifies the speed
of the protocol, for themodels illustrated infigure 1(b) and infigure 1(c). For thefirstmodel, which is a
molecular pump,wefind that this bound is saturated if the transitions of the protocol aremuch slower than the
internal transition rates associatedwith changes of the state of the system. For thismodel, in this limit the bound
is saturated independent of the values of the energies and energy barriers. However, for the secondmodel the
bound is not saturated in this limit.

Infigure 3(b), we showplots of *" -sºa a a( )R D2 1 22 for themodel illustrated infigure 1(c). The
quantity in the horizontal axis is the thermodynamic force F1. For thismodel, the bound is saturated for F1 small
and the other thermodynamic force F2=0. This saturation of the bound is similar to the saturation of the
bound for stationary states known as thermodynamic uncertainty relation, which happens in the linear response
regime [9].
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Let us comment on the rate *s that we have introduced here. Its physical interpretation is that *s , and not
the rate of entropy productionσ, provides a bound on thewhole spectrumoffluctuations for any current (with
time-independent increments) in a generic periodically driven system arbitrarily far from equilibrium. In terms
of the trade-off relation from equation (30), *s (and also s̃) provides a limit on howprecise and fast a
thermodynamic current can be. The rate of entropy production σ quantifies the energetic cost of sustaining the
operation of the nonequilibrium system. Interestingly, for time-independent transition rates corresponding to a
systemdriven by a fixed thermodynamic force, *s s= is a rate that has both physical properties, i.e., it bounds
currentfluctuations and quantifies energetic cost.

3.4. *s as the entropy production of a nonequilibrium stationary state
The rate *s of the original periodically driven system can be interpreted as the rate of entropy production
associatedwith the stationary state of an auxiliaryMarkov process with time-independent transition rates that
are determined by time-averaged quantities associatedwith the original system. These time-averaged quantities
are "̄ij, defined in equation (21), and

"
"òq

t
p
p

º
t ¯

( )
( ) ( )
( ) ( )

( )
t

t w t

t w t
t

1
ln d . 31ij

ij

ij

i ij

j ji0

Both quantities are anti-symmetric, i.e.," "= -¯ ¯ij ji and q q= -ij ji.Moreover, from the definition in
equation (31), "̄ij and θij have the same sign.We assumewithout loss of generality that "̄ij and θij are non-
negative .

From equation (20), *s can bewritten as * "s q= å <
¯

i j ij ij. The transition rates associatedwith this auxiliary
process are denoted by rij and the stationary distribution associatedwith this process is denoted by pi. The
stationary probability currents of this auxiliary process are the time-averaged currents "̄ij, hence, we have the
constraint

"- = ¯ ( )p r p r . 32i ij j ji ij

Furthermore, if we impose

= q ( )r

r
e , 33

ij

ji

ij

then the rate of entropy production of the auxiliary process is *s , i.e., * "s = å <
¯ ( )r rlni j ij ij ji . From the

conditions in equations (32) and (33), we obtain

"
=

-

q

q

¯
( )r

p p

e

e
. 34ij

ij

i j

ij

ij

Figure 3. Illustration of the trade-off relation. (a)The ratio *" -sºa a a( )R D2 1 22 as a function of the rate γ for jumpof the
protocol.Wehave analyzed themodel illustrated in figure 1(b)with parameters E1=1,B1=5, and E2=E3=B2=B3=0, and
themodel illustrated in figure 1(c)with parameters = = =F F k 11 2 . (b)The ratio *" -sºa a a( )R D2 1 22 as a function of F1
figure 1(c)with parameters k=γ=1 and two values of F2.
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The reversed rate rji is then given by

"
=

-q

¯
( )r

p pe
. 35ji

ij

i j
ij

Equation (34) defines a class of stationary states that have entropy production *s . Since transition rates are non-
negative, the stationary probabilitymust satisfy the constraint .-q p pe 0i j

ij . One possible stationary
probability that fulfills this constraint for anymodel is the uniformdistribution = Wp 1i for i=1, 2,K,Ω,
since θij�0.

We can nowprovide the following physical interpretation for *s . This rate quantifies the thermodynamic
cost tomaintain a nonequilibrium stationary state that is determined by the transition rates in equation (34).
There are different stationary probabilities that fulfill equation (34), hence, this nonequilibrium stationary state
is not unique but rather a class of nonequilibrium stationary states. The network topology of this class of
nonequilibrium stationary states is the same as the network topology of the periodically driven system,
furthermore, the stationary currents are the same as the time-averaged currents of the periodically driven
system. As an example, consider a colloidal particle driven by an external periodic protocol, such as themodel
represented infigure 1(b). For suchmolecular pumpwe can think of a colloidal particle driven by afixed force
that reaches a nonequilibrium stationary state. The force that drives this particle and the specific transition rates
that determine its dynamics are obtained from time-averaged quantitative associatedwith the originalmolecular
pump. The rate *s quantifies the energetic cost of driving the colloidal particle with suchfixed force.

4.General bounds

In this sectionwe derive the bounds that imply the results discussed in section 3.We obtain two global bounds
that imply the global bound in equation (19), thefirst one is given in equation (52) and the second one is given in
equation (72).We also derive a local bound that leads to the inequality in equation (61), which generalizes the
trade-off relation in equation (30).

4.1. First global bound
In our proof we use the theory for 2.5 large deviations for periodically driven systems developed in [48]. At the
level 2.5 the joint distribution of all empirical densities defined in equation (3) and all empirical currents defined
in equation (5) is considered. In our notation ρ(t) represents a vector with the empirical densities that has
dimensionΩ and J(t) is a vector with the empirical currents that has dimensionM, whereM is the number of
unordered pairs of states with non-zero transition rates. The advantage of considering this level of large
deviations is that the rate function can be calculated exactly as

ò år
t

y=t t
t

Î Î
<

[( ( )) ( ( )) ] ( ( ) ( ) ( )) ( )[ ] [ ]I J t t t J t G t a t,
1

d , , , 36t t
i j

ij ij ij2.5
cur

0, 0,
0

where

r rº -( ) ( ) ( ) ( ) ( ) ( )G t t w t t w t , 37ij i ij j ji

r rº( ) ( ) ( ) ( ) ( ) ( )a t t t w t w t2 , 38ij i j ij ji

and

y = + - + + -- -( ) [ ( ) ( )] ( )J G a G a J a J J a G a, , sinh sinh . 392 2 2 2 1 1

Note that the quantitiesG and a depend on the empirical density ρ. The empirical density and current in
equation (36) fulfill the constraint

år + =
¹

( ) ( ) ( )
t

t J t
d

d
0, 40i

j i
ij

for all states i. To simplify the notationwewrite r[ ( ) ( )]I J t t,2.5
cur instead of the lhs of equation (36).

The name level 2.5 large deviations can also refer to the rate function associatedwith the joint probability of
the empirical density and the empirical flowdefined in equation (4). The rate functionwith the empirical current
can be obtained from the rate functionwith the empirical flow [48].

An important technique in large deviation theory is the so called contraction [16–19], for which the rate
function associatedwith a coarse-graining of the number of variables can be obtained from the original rate
function.Hence, the rate function for an arbitrary current Jα can be obtained froma contraction of

r[ ( ) ( )]I J t t,2.5
cur , which leads to the expression
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r=a
r

( ) [ ( ) ( )] ( )
( ) ( )

I x I J t tinf , , 41
J t t,

2.5
cur

where J(t) and ρ(t) are such that they fulfill equation (40) and the relation

ò åt
a =

t

<

( ) ( ) ( )t t J t x
1

d . 42
i j

ij ij
0

In particular, this relation leads to the inequality

- ò år
t

y=a
t

<

( ) [ ˜( ) ˜( )] ( ˜ ( ) ˜ ( ) ˜ ( )) ( )I x I J t t t J t G t a t,
1

d , , , 43
i j

ij ij ij2.5
cur

0

where G̃ and ã are functions of r̃ as in (37) and (38). This inequality is valid for any pair of vectors that fulfill the
constraints

år + =
¹

˜ ( ) ˜ ( ) ( )
t

t J t
d

d
0, 44i

j i
ij

for all states i, and

ò åt
a =

t

<

˜ ( ) ( ) ( )t J t t x
1

d . 45
i j

ij ij
0

The inequality [15]

-y
r
r

-( ) [ ] ( )J G a
J G

G

w

w
, ,

1

4
ln 46ij ij ij

ij ij

ij

i ij

j ji

2

togetherwith equation (43), leads to

- ò åt
r
r

-
a

t

<

( ) [ ˜ ( ) ˜ ( )]
˜ ( )

˜ ( ) ( )
˜ ( ) ( )

( )I x t
J t G t

G t

t w t

t w t

1
d

1

4
ln . 47

i j

ij ij

ij

i ij

j ji0

2

Weare now left with the problemoffinding a judicious choice of r( ˜( ) ˜( ))J t t, that fulfills the constraints in
equation (44) and in equation (45). One such choice is

r p=˜ ( ) ( ) ( )t t , 48i i

"
"

å a
= +

- a

¢< ¢ ¢ ¢ ¢ ¢

˜ ( ) ( ) ( )
¯

( )J t t
x K

K
, 49ij ij

ij

i j i j i j

where

òa
t

aº
t

¯ ( ) ( )t t
1

d . 50ij ij
0

The time-independent parametersKij are anti-symmetric, i.e.,Kij=−Kji, and satisfy

å =
¹

( )K 0, 51
j i

ij

for all states i. Using this choice in equation (47), we obtain

*

"
"- s

-a a( ) ( ) ( )I x x
4

, 52K

K
2

2

where

" å aº
<

¯ ( )K , 53K
i j

ij ij

and

*
"ò ås

t
p
p

º
t

<

( )
( )

( ) ( )
( ) ( )

( )K

t

t w t

t w t
t

1
ln d . 54K

i j

ij

ij

i ij

j ji0

2

The global bound in equation (52), togetherwith equation (25), leads to

*
".
s

a ( )D . 55K

K

2
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4.2. Role of the parameterK
4.2.1. Generic choice forK
Due to the constraint in equation (51),Kij can be seen as the current of some auxiliaryMarkov process with time-
independent transition rates in the stationary state. A natural choice ofKij is to consider the time-integrated
probability current, as defined in equation (21), i.e.,

"º ¯ ( )K . 56ij ij

For this choice

" "å a=
<

¯ ¯ ( ), 57K
i j

ij ij

and * *s s=K , where *s is defined in equation (20). For currents with time-independent incrementsαij(t)=αij,
we obtain " "aå = a<

¯ ¯i j ij ij , where"a is given by equation (9), and the bound in equation (52) becomes the
bound in equation (19). For currents with time-dependent increments, which include the rate of extractedwork
and the rate of heatflow in a heat engine driven by periodic temperature variation, the rate"K in equation (57)
is, in general, different from the average current"a.

4.2.2. Other possible choices forK
The freedomof choice for the parameterK depends on the network of states of theMarkov process, with
equation (51) limiting the number of independent currentsKij [53]. For instance, for the unicyclicmodel in
figure 1(a), there is just one independent current andKij is the same for all pairs of states. In this case, the ratio
* "sK K

2 becomes independent ofK and, therefore, there is only one bound in equation (52) regardless of the
value ofKij.We note that the same argument about the freedomof choice for the parameterK applies to
stochastic protocols, as is the case of themodel infigure 1(b).

If we consider amodel with the network of states shown infigure 1(c), then there are two independentKij

and different choices for these parameters can lead to different bounds in equation (52). Two particularly
appealing choices for the parameterK are the choices that conserve the rate of entropy production or the average
current in equation (52). Thefirst choice corresponds to aK that fulfills the relation *s s=K and the second
choice corresponds to aK that fulfills the relation" "= aK .Whether it is possible to setK in such away that one
of these relations is fulfilled is a question that depends on themodel (or class ofmodels) at hand.

4.3. Local bound
Wenowderive a local quadratic bound on Iα(x) that leads to thefirst inequality in equation (27). For a andG
fixed, a Taylor expansion of the functionψ(J,G, a) for J around the valueG, leads to

y =
-

+
+ -( ) ( ) (∣ ∣ ) ( )J G a

J G

G a
J G, ,

2
o . 58

2

2 2
2

Applying this Taylor expansion to equation (43)with r̃ and J̃ given by (48) and (49), respectively, we obtain the
local bound

"
" "- s

- + -a a a( ) ˜ ( ) (∣ ∣ ) ( )I x x x
4

o , 59K

K
2

2 2

where"K is defined in equation (53) and

ò ås
t p p

º
+

t

<
˜ ( )

( ) ( ) ( ) ( )
( )t

K

t w t t w t

1
d

2
. 60K

i j

ij

i ij j ji0

2

The local bound in equation (59) together with equation (25) leads to

".
s

a ˜
( )D . 61K

K

2

Agenericmodel-independent choice forK is the one given in equation (56), i.e., "= ¯Kij ij. If, in addition, the
increments are time-independent, the bound in equation (61) becomes the trade-off relation between speed and
precision in equation (30).We recall that from equation (29), * .s s̃K K , thus, the bound in equation (61) is
stronger than the bound in equation (55).

4.4. Bounds for time-independent transition rates
Here, we stress that the bounds for time-periodic transition rates derived above imply new bounds for the case of
time-independent transition rates that lead to a nonequilibrium stationary state. For time-independent
transition rates, and for currents with time-independent increments, the terms in equation (52) become
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ij ij
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i ij
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2

Hence, from equation (52)we have the bound

*

"
"- s

-a a( ) ( ) ( )I x x
4

. 64K

K
2

2

For "=Kij ij, equation (64) becomes the knownparabolic bound for stationary states from [14, 15].
Furthermore, for time-independent transition rates equation (61) becomes

".
s
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( )D , 65K

K

2

where

ås
p p

º
+<

˜ ( ) ( )K

w w

2
. 66K

i j

ij

i ij j ji

2

This bound is tighter then the bound on the diffusion coefficient that follows from equation (64). For the case
"=Kij ij, equation (65) becomes an even stronger bound than the thermodynamic uncertainty relation, as

discussed in section 3.

4.5. Second global bound
Wecan obtain a bound different from the global bound in equation (52) by considering a choice for ˜ ( )J tij that is
different from the one in equation (49).Wewrite the stationary distribution of amaster equationwith frozen
transition rateswij(t) asμi(t). This quantity is known as accompanying density [54]. Due to the periodicity of
wij(t)we haveμi(t)=μi(t+τ).We consider the bound in equation (47)with r p=˜ ( ) ( )t ti i and

"º + +˜ ( ) ( ) ( ) ( ) ( )J t c t M t c t K , 67ij ij ij ij1 2

where c1(t) and c2(t) are time-periodic functions,Ki,j is anti-symmetric and fulfill the relation in equation (51),
and

m mº -( ) ( ) ( ) ( ) ( ) ( )M t t w t t w t . 68ij i ij j ji

Sinceå =¹ ( )M t 0j i ij , which comes from the definition of the accompanying densityμi(t), this choice fulfills the
constraint in equation (44). Setting "= ¯Kij ij, c1(t)=c1, and c2(t)=c2, the constraint in equation (45) applied
to the choice in equation (67), leads to

" "= - a m
-( ) ( )c x q , 691

1
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⎝
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where q is an arbitrary real number and
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The bound in equation (47) then becomes
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Minimization over the single parameter q gives the tightest bound on the large deviation function. For q=0we
obtain the bound in equation (52)with "= ¯Kij ij. However, for q=1we obtain a bound that cannot be
obtained from equation (52), which reads
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2
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where
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5. Conclusion

The thermodynamic uncertainty relation and the parabolic bound on currentfluctuations that generalizes it,
constitutemajor recent developments in stochastic thermodynamics that are valid forMarkov processes with
time-independent transition rates that reach a stationary state, which describes a systemdriven byfixed
thermodynamic forces.We have generalized these bounds to periodically driven systems. Similar to the bound
for stationary states, we obtained a bound that depends on the single average rate *s and on the average current.
However, for periodically driven systems this average rate is, in general, different from the thermodynamic
entropy productionσ. These rates have two essential physical properties: whileσ quantifies the energetic cost of
maintaining the systemout of equilibrium, *s provides a generic limit to currentfluctuations.

The quite high degree of universality of our results are encouraging with respect to possible applications. For
instance, we have found a trade-off relation between speed and precision in periodically driven systems for
currents that have time-independent increments. Physically, such relation tells us that if onewants to generate
netmotion in a artificialmolecular pumpdriven by an external periodic protocol, there is a universal limit on
how fast and precise this netmotion can be.

For the case of the thermodynamic uncertainty relation for stationary states, several applications have been
proposed [10–13]. Figuring out how to extend these applications to periodically driven systems is an interesting
direction for futurework.One particular instancewould be to extend the universal relation between power,
efficiency andfluctuations from [12] to periodically driven heat engines. Themore general bounds derived in
section 4 that apply to time-dependent increments,might be important for these applications. Finally, good
candidates for an experimental observation of the boundswe have derived here are periodically driven colloidal
particles and artificialmolecular pumps.

Appendix. Stochastic protocol

A.1.Mathematical definitions
Themaster equation for themodel with a stochastic protocol reads

å g= - + -
¹

-( ) ( ) ( )
t

P P w P w P P
d

d
, A.1i

n

j i
j
n

ji
n

i
n

ij
n

i
n

i
n1

where n−1=N−1 for n=0 and Pi
n is the time-dependent distribution. The stationary distribution of state

(i, n) is denoted by pi
n. The stationary distribution of the state n of the protocol is given by p pº å = N1n

i i
n ,

which comes from the solution of themaster equation (A.1) for the stationary distribution. The conditional
probability for the system to be in state i given that the protocol is in state n is written as
p p p p= =( ∣ )i n Ni

n n
i
n. Consider a time-periodicMarkov process with rateswij(t) and period τ. If the

transition rates fulfill the relation t= =( )w w t n Nij
n

ij and γ=N/τ, then, in the limit
p p¥ ( ∣ ) ( )N i n t, i [40], where t= [ ]n tN and [·]denotes the integer part. Therefore, if we consider the

average elementary current" p pº -w wij
n

i
n

ij
n

j
n

ji
n in the limit of ¥N , we obtain

" " ( ) ( )N t , A.2ij
n

ij

where t= [ ]n tN . This relation is important for the connection between the cases of a deterministic and
stochastic protocols.

A stochastic trajectory is denoted by - -( )bt t t0 f
, where tf is the final time.Note that a state of theMarkov

process here is specified by the variable that determines the state of the system i and the variable that determines
the state of the protocol n. The stochastic trajectory has afluctuating number of jumpsNf, the time interval
between two jumps is denotedΔ tk, with k=0, 1,K,Nf, and the state of theMarkov process during the time
intervalΔ tk is denoted bk.

The empirical density of state (i, n), which is the fraction of time spent in this state, is defined as

år d= D
=

( )( )
t

t
1

, A.3i
n

f k

N

k b i n
0

, ,

f

k

d ( )b i n, ,k
is theKronecker delta between the state of the trajectory bk and the state (i, n). The notation here in the

appendix is different from the notation in themain text for the case of a deterministic protocol. If we compare
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equation (A.3)with equation (3), we see that here the upper index in ri
n refers to the state of the stochastic

protocol and is equivalent to t in r ( )( ) ti
m , for which the upper indexm refers to the time interval of the stochastic

trajectory. For amore compact notationwe do not keep the dependence of the fluctuating quantities on the time
interval tf.

The empirical current from state (i, n) to state ( j, n) reads

å d d d d= -
=

- -( ) ( )( ) ( ) ( ) ( )J
t

1
. A.4ij

n

f k
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b i n b j n b j n b i n
1

, , , , , , , ,

f

k k k k1 1

For the case of a stochastic protocol, we also consider the empirical flow (or unidirectional current) from state (i,
n) to state (i, n+1), where n+1=0 for n=N−1, which is defined as

å d d=
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+- ( )( ) ( )C
t
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. A.5i
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b i n b i n
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, , , , 1
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The average of this empirical flow in the stationary state is � gpº á ñ =Ci
n

i
n

i
n.

A generic fluctuating current is written as

å å aºa
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where a a= -ij
n

ji
n are the increments. If we compare this expressionwith equation (7), which is the expression

for a deterministic protocol, we see that an integral over a period divided by the period τ for a deterministic
protocol becomes a sumover n divided by the total number of states of the protocolN for a stochastic protocol.
Note that the factor 1/N does not appear in front of the sum in the rhs of equation (A.6) due to equation (A.2).
The average current in the stationary state reads
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The rate function associatedwith Jα is defined as

» ~ -a a( ) [ ( )] ( )J x t I xProb exp , A.8f

where∼means asymptotic equality in the limit ¥tf . The scaled cumulant generating function for a
stochastic protocol is defined as
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These two quantities are related by a Legendre–Fenchel transform, as in equation (14).
Similar to equation (21) and equation (50) for a deterministic protocol, we define
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respectively. Furthermore, we define
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which is equivalent to (53),
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which is equivalent to equation (54), and
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which is equivalent to equation (60). The parameterKij in these equations is anti-symmetric, i.e.,Kij=−Kji, and
thus fulfillå =¹ K 0j i ij for all i.
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A.2. Proofs of the bounds
Wenow consider the joint distribution of the vector of empirical densities ρ, the vector of empirical currents J,
and the vector of the empirical flowC. The level 2.5 rate function [46] for thisMarkov process reads
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The quantities in this rate function fulfill the constraint
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for all i and n.
Applying a contraction to obtain Iα(x) from I2.5[J,C, ρ], as in equation (41) for a deterministic protocol, and

setting r p=i
n

i
n and gp=Ci

n
i
n, we obtain

"- å å y p pa
=

-

<

( ) ( ˜ ) ( )I x J w w, , 2 , A.19
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where J̃ij
n fulfill the constraints
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0
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and
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¹
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n

i
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j i
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n1

for all i and n.
The global bound on large deviations is obtained by setting

"
"

å a
= +

- a

<

˜ ( )
¯

( )J
x K

K
. A.22ij

n
ij
n ij

i j ij ij

and by using the inequality in equation (46).With these operations, equation (A.19) becomes

*

"
"- s

-a a( )
( ¯ )

( ) ( )I x x
4

, A.23K

K
2

2

which is the global bound for a stochastic protocol.
The choice in equation (A.22) and theTaylor expansion in equation (58), together with equation (A.19) lead

to the local bound

"
" "- s

- + -a a a( ) ˜ ( ) (∣ ∣ ) ( )I x x x
4

o . A.24K

K
2

2 2

Using the relation (25) for the diffusion coefficient we obtain the bound

".
s

a ˜
( )D . A.25K

K

2

The choice "= ¯Kij ij for a stochastic protocol leads to bounds similar to the bounds discussed in section 4.2.1 for
a deterministic protocol.

A bound similar to the bound in equation (72) for a stochastic protocol can be obtained by setting r p=˜i
n

i
n

and
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n
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ij1 2

where

m mº - ( )M w w , A.27ij
n

i
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n

j
n
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n

15

New J. Phys. 20 (2018) 103023 ACBarato et al



and mi
n is the solution of the stationarymaster equation m må - =¹ ( )w w 0j i i

n
ij
n

j
n

ji
n . Defining
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1

leads to the fulfillment of the constraint in equation (A.20).With this choice for r̃i
n and J̃ij

n, the bound in
equation (A.19) becomes
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In particular, for q=1we obtain
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