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Abstract Traditional Bayesian quantile regression relies on the Asymmetric Laplace
distribution (ALD) due primarily to its satisfactory empirical and theoretical per-
formances. However, the ALD displays medium tails and is not suitable for data
characterized by strong deviations from the Gaussian hypothesis. In this paper, we
propose an extension of the ALLD Bayesian quantile regression framework to ac-
count for fat tails using the Skew Exponential Power (SEP) distribution. Linear and
Additive Models (AM) with penalized spline are used to show the flexibility of the
SEP in the Bayesian quantile regression context. Lasso priors are used to account
for the problem of shrinking parameters when the parameters space becomes wide.
‘We propose a new adaptive Metropolis—Hastings algorithm in the linear model, and
an adaptive Metropolis within Gibbs one in the AM framework. Empirical evidence
of the statistical properties of the model is provided through several examples based
on both simulated and real datasets.

Abstract I’analisi Bayesiana per la regressione quantile si basa sull’uso della dis-
tribuzione Laplace asimmetrica come strumento inferenzale. Tale distribuzione pur
fornendo performances soddisfacenti non ha un comportamento soddisfacente nel
caso in cui il fenomeno sotto indagine presenti code con andamento diverso da
quello gaussiano. In questo paper, per tener conto di code pesanti del fenomeno,
proponiamo 1’uso della distribuzione Skew Exponential Power (SEP) in un contesto
di regressione quantile. Considereremo modelli lineari e modelli additivi attraverso
I’uso di spline per effettuare I'inferenza bayesiana. Una distribuzione lasso a priori
sui parametri del modello viene proposta per tener conto del problema della con-
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trazione del numero degli stessi laddove lo spazio parametrico diventi elevato. Per
effettuare ’inferenza bayesiana viene proposto un nuovo algoritmo adattivo di tipo
Monte Carlo Markov Chain e analisi di simulazioni verranno proposte per validare
il modello considerato.

Key words: Bayesian quantile regression; Skew Exponential Power; Additive Model.

1 Introduction

Quantile regression has become a very popular approach to provide a more complete
description of the distribution of a response variable conditionally on a set of regres-
sors. Since the seminal work of [1], several papers have been proposed in literature
considering the quantile regression analysis both from a frequentist and a Bayesian
points of view. Specifically, let Y = (11,Y>,...,Yr) be a random sample of 1" obser-
vations, and X; = (1, X, 1, ... ,X,J,,l)/, withr = 1,2,...,T equal to the associated
set of p covariates. Consider the following linear quantile regression model

Y =XB,+& t=12,..T,

where 8. = (B0,Be.1,---,Brp—1) is the vector of p unknown regression parame-
ters, varying with the quantile 7 level. As usual, & represents the error term that,
in the specific case of quantile regression, has the 7 quantile equal to zero and
constant variance. This assumption allows us to interpret the regression line as
the 7 conditional quantile of ¥ given the set of explanatory variables X = x, i.e.
Q: (Y | X = x) = x” B;. In what follows we omit the subscript T for simplicity. The
estimation procedure of the 7 — th regression quantile in the frequentist approach is
based on the minimization of the following loss

mﬁinzpf (Yt *X;TB)

with pr (u) = u (7 —1 (x < 0)). From a Bayesian point of view [8] introduces the
ALD as likelihood function to perform the inference. For a wide and recent Bayesian
literature on quantile regression and ALD see for example [7], and [3]. Although the
ALD is widely used in the Bayesian framework it displays medium tails which may
give misleading informations for extreme quantile in particular when the data are
characterized by the presence of outlier and heavy tails. The absence for the ALD
of a parameter governing the tail fatness may influence the final inference. To over-
come this drawback we propose an extension of the Bayesian quantile regression
using the Skew Exponential Power (SEP) distribution proposed by [2]. The SEP
distribution, like the ALD, has the property of having the 7-level quantile as the nat-
ural location parameter but it also has an additional parameter governing the decay
of the tails. Using the proposed distribution in quantile regression we are able to
robustify the inference in particular when outliers or extreme values are observed.
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When dealing with model building the choice of appropriate predictors and con-
sequently the variable selection issue plays an important role. In this paper, we
approach this problem, by considering the Bayesian version of Lasso penalization
methodology introduced by [6] both for the simple linear regression quantile and for
the non linear additive models (AM) with Penalized Spline (P—Spline) functions. To
implement the Bayesian inference we propose a new adaptive Metropolis Hastings
algorithm in the linear model, and an Adaptive Metropolis within Gibbs one in the
AM framework for an efficient estimate of the penalization parameter and the P-
Spline coefficients. We show the robust performance of the model with simulation
studies.

2 Model and Inference

In their paper [2], the authors propose a parametrization of the SEP, that allows to
consider the location parameter as the 7—level quantile. With their parametrization
the SEP density function can be written as:

K(a)exp{fé(%)a}, if y<pu
K(a)exp{fé <ﬁ>a} A y>u,

where y € R, pt € R is the location parameter, ¢ € R and o € (0,00) are the scale
and shape parameters, respectively, 7 € (0,1) is the skewness parameter while K =

1
foumoma)={ " M

-1
[Zaéf (1 + é)] and I"(-) is the complete gamma function. It can be showed

that y is the 7 quantile and that the ALD is a particular case with o¢ = 1. Several
model specifications can be obtained using the SEP likelihood by specifying a given
function for the location parameter.

In this paper we consider both the linear quantile regression framework

p=px)=xpB )

where X; is a set of exogenous covariates than the Additive Models within a robust
semi-parametric regression framework:

J
p=p(x,n) =x B+ Y filz))
=1

where x[T is the parametric component while z; = (z:.1,- - ,, ])T is an additional

set of covariates and each f;(z;;) is a nonparametric continuous smooth function.
To implement the Bayesian analysis we assume that f; (z;;), can be approximated
using a polynomial spline of order d, with £+ 1 equally spaced knots.

Let’s consider more specifically the linear case where the likelihood function can be
easily computed starting from (1) by using pt asin (2).
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The Bayesian inferential procedure requires the specification of the prior dis-
tribution for the unknown vector of parameters & = (f3,7,0, ). Here in order to
account for sparsity within the quantile regression model, we generalize the prior
proposed in Park and Casella for the f8 parameter, assuming the hierarchical struc-
ture given below. The prior distribution is given by:

T(E)=xB V() r(o)n(a),

with
P
(B [y)e< HlLl B 10,77
=

p

x(n =19 v.)
j=1

w(C) < IY (a,b)

(@) =< Z(c,d) L) (@),

where f§ € IR?. Here (y,®,a,b,c,d) are given positive hyperparameters and y =

(1,%,--.,%p) are the parameters of the univariate Laplace distribution:

L1 (B 10,1) = Lexp {=11B; } L i) (By)-

with zero location and ¥; scale parameter. Here ¢, .#% and % denote the Gamma,
Inverse Gamma and Beta distributions, respectively. Given its characteristics, the
Laplace distribution is the Bayesian counterpart of the Lasso penalization methodol-
ogy introduced by [6] to achieve sparsity within the classical regression framework.
By shrinking each regression parameter in a different way, we overcome problems
that may arise in the presence of regressors with different scales of measurement.
The Bayesian inference is performed by building an Adaptive Independent Metropo-
lis Hastings MCMC algorithm using the location—scale mixture representation of
the the Laplace distribution, see for example [9].

3 Simulation Studies

‘We have performed several simulation studies to highlight the improvements of our
model specification with respect to the well known ALD model tool. In particular
the first simulation experiment is built in order to show the robustness properties
of the proposed methodology for quantile estimation when the joint distribution of
the couple (Y;,X,), fort =1,2,...,7, is contaminated by the presence of outliers.
The second study shows the effectiveness of the shrinkage effect, obtained by im-
posing the Lasso—type prior, used when the multiple quantile linear model is of key
concern. The last experiment aims at highlighting the ability of the model to adapt
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to non-linear shapes, when data come from heterogeneous fat—tailed distributions.
All of the simulation studies showed the improvement in performances of the model
proposed in this paper with respect to the ALD quantile regression commonly used
in literature. Here we present only the second experimental study. In particular we
carry out a Monte Carlo simulation study specifically tailored to evaluate the perfor-
mance of the model when the Lasso prior is considered for the regression parame-
ters. The simulations are similar to the one proposed in [4] and [5]. In particular, we
simulate 1" = 200 observations from the linear model ¥; — X; B + &, where the true
values for the regressors are set as follows:

Simulation 1. = (3,1.5,0,0,2,0,0,0)’,
Simulation2. = (0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85)',
Simulation3. = (5,0,0,0,0,0,0,0Y,

The first simulation corresponds to a sparse regression case, the second to a dense
case, and the third to a very sparse case. The covariates are independently generated
froma .4 (0,X) with ¢; ; = 0.5l=J1. Two different distributions for the error terms
generating process are considered for each simulation study. The first is a Gaussian
distribution .4 (/,L, 62), with p set so that the 7-th quantile is 0, while 62 is set as 9,
asin [4]. The second distribution is a Generalized Student’t 4. ( 1,02, v) with two
degrees of freedom, i.e. v =2, 62 = 9 and y set so that the 7-th quantile is 0. For
three different quantile levels, 7 = (0.10,0.5,0.9) we run 50 simulations for each
vector of parameters (§) and each distribution of the error term. Table 1 reports the

median of mean absolute deviation (MMAD), i.e. median(ﬁ) Y20 B —xB \>,

and the median of the parameters ﬁ, over 50 estimates. Results for the first sim-
ulation are reported, since results from the other two simulations are qualitatively
similar. The proposed Bayesian quantile regression method based on the SEP like-
lihood performs better in terms of MMAD for both distributions of the error term.
This is evidence that the presence of the shape parameter ¢ in the likelihood better
capture the behavior of the data. The estimated shape parameter is indeed greater
and lower than one in the Gaussian and Generalized Student’t cases, respectively;
this provides a more reliable estimation of the vector 3, regardless of the tail weight
of the error term distribution. These results are reinforced in the second and third
simulation (not reported here) in which we exaggerate the density and the sparsity of
the predictors structure. Furthermore, the proposed robust method reduces the bias
of estimated § for all quantile confidence levels. Regarding the shrinkage ability
of the proposed estimator, when the true parameters are zero, the SEP distribution
performs better than the ALD in identifying the parameters .
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ALD SEP

7=010 =050 =090 =010 =050 =090
MMAD  1.0131 1.1008 1.0579 0.9096 1.0955 0.9708

Error distribution Par.

B1 3.1323 3.2209 3.2145 3.0744 3.0036 3.2127

B 1.6408 1.4786 1.6165 1.7656 1.4833 1.6800

B3 0.0444 0.0294 0.0267 0.0428 0.0228 0.0186

Gaussian Ba 0.0453 0.0243 0.0235 0.0248 0.0191 0.0156
Bs 1.2731 1.2379 1.3471 1.3969 1.8405 1.4702

Bs 0.0185 0.0161 0.0205 0.0124 0.0127 0.0128

By 0.0112 0.0106 0.0120 0.0067 0.0063 0.0095

Bs 0.0073 0.0078 0.0064 0.0038 0.0047 0.0051

MMAD 05163 0.1807 04685 04777 0.1789 0.4275

B1 3.0630 2.9884 2.9874 3.0826 2.9877 2.9934

B 1.0484 1.3700 1.1366 1.0952 13951 1.2110

B3 0.0304 0.0144 0.0325 0.0252 0.0135 0.0412

Generalized Student t Ba 0.0258 0.0181 0.0162 0.0263 0.0163 0.0138
Bs 1.7012 1.9036 1.7701 1.7558 1.9111 1.8052

Bs 0.0128 0.0085 0.0137 0.0074 0.0072 0.0136

By 0.0055 0.0057 0.0101 0.0052 0.0066 0.0082

Bs 0.0067 0.0009 0.0002 0.0051 0.0011 -0.0021

Table 1 Multiple regression simulated data example 1. MMADs and estimated parameters for
Simulation 1 under the SEP and ALD assumption for the quantile error term.

4 Conclusion

We

show how to implement the Bayesian quantile regression when the SEP distri-

bution is considered. Linear and Additive Models (AM) with penalized spline are
used with Lasso priors to account for the problem of shrinking parameters. Empiri-
cal analysis highlights how the SEP quantile regression better capture the behaviour
of the data when outliers or heavy tails are concerned.
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