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Abstract We study turbulent plane Couette-Poiseuille (CP) flows in which the conditions
(relative wall velocity AU, = 2U,,, pressure gradient d P /dx and viscosity v) are adjusted
to produce zero mean skin friction on one of the walls, denoted by APG for adverse pres-
sure gradient. The other wall, FPG for favorable pressure gradient, provides the friction
velocity u, and 4 is the half-height of the channel. This leads to a one-parameter family of
one-dimensional flows of varying Reynolds number Re = U,,i/v. We apply three codes,
and cover three Reynolds numbers stepping by a factor of two each time. The agreement
between codes is very good, and the Reynolds-number range is sizable. The theoretical
questions revolve around Reynolds-number independence in both the core region (free of
local viscous effects) and the two wall regions. The core region follows Townsend’s hypoth-
esis of universal behavior for the velocity and shear stress, when they are normalized with
u; and h; on the other hand universality is not observed for all the Reynolds stresses, any
more than it is in Poiseuille flow or boundary layers. The FPG wall region obeys the classi-
cal law of the wall, again for velocity and shear stress. For the APG wall region, Stratford
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Flow Turbulence Combust

conjectured universal behavior when normalized with the pressure gradient, leading to a
square-root law for the velocity. The literature, also covering other flows with zero skin
friction, is ambiguous. Our results are very consistent with both of Stratford’s conjectures,
suggesting that at least in this idealized flow turbulence theory is successful like it was for
the classical logarithmic law of the wall. We appear to know the constants of the law within
a 10% bracket. On the other hand, that again does not extend to Reynolds stresses other than
the shear stress, but these stresses are passive in the momentum equation.

Keywords Turbulence - Simulation - Couette-Poiseuille flow

1 Introduction

The aim of this study is to test two theoretical conjectures applied to the zero-skin-friction
CP flow, which we will name CPO. The first conjecture is that the velocity profile near the
frictionless wall is universal (independent of the flow Reynolds number Re) when velocity
and wall distance are both normalized by the pressure gradient and the kinematic viscosity
v, so that

U-=F0O). M

where U™ = U/up, y~ = ywltp/v, yy is the wall-normal distance from the frictionless
wall, u% = vd(P/p)/dx and p is the (constant) fluid density. The second conjecture is that
for large y~, allowed by high enough Re, the velocity profile will include a square-root
layer, with (1) taking the form

U- =BJ/y +C, 2)
where B and C are nondimensional universal constants. These conjectures, which we shall
refer to respectively as (I) and (II), come from reasoning, first proposed by Stratford [12],
equivalent to that that produce the classical Law of the Wall and logarithmic layer; the skin
friction being zero, the normalization is built on the pressure gradient instead. Dimensional
analysis then directly leads to the conjectures. There have been attempts to combine #, and
up at walls that have both skin friction and pressure gradient, but they lack rigor in our
opinion, and we have no plans of that sort. We focus on the pure zero-skin-friction situation.

Although CPO flow arguably provides the best chance of success for conjectures (I) and
(ID), its study to date has yet to provide clear conclusions. Schlichting and Gersten [10] cite
experiments (not in the CPO flow) for which the ‘universal constants’ range as widely as
2.5 < B <4.9and —3.2 < C < 2.2, while the direct numerical simulation (DNS) of CP0
flow (Coleman & Spalart [2]; hereinafter CS15) revealed significant differences with the
earlier DNS of Pirozzoli et al. [9] (henceforth PBO11). Although both appear to support the
»/Yuw behavior, PBO11 yields (B, C) = (3.6, —2.65) while CS15 suggests (2.2, —2.05).
The primary objective of this joint paper is to resolve this discrepancy, via a series of new
DNS, and thereby provide unambiguous evidence either for or against conjectures (I) and
{am.

In addition to being a testbed for the zero-skin-friction scaling, this flow also satisfies the
conditions assumed by Townsend [13] in his derivation of Reynolds-number similarity for
the mean velocity profile U (y) in the core of a parallel wall-bounded turbulent shear flow
(see his § 5.3), which in the present context implies

]
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where 7, = pu% is the nonzero wall-shear stress (i.e., on the FPG wall, at y = —h; cf.
Fig. 1) and U, is the mean velocity at the channel center, y = 0. In other words, u; is
the only velocity scale and & the only length scale for this problem (scaling with u#, and
h or with d(P/p)/dx and h is actually equivalent), and away from the walls F(y/h) is
independent of Reynolds number. Simple algebra on the velocity gradient dU /dy reveals
that (2) and (3) are compatible, so that (2) amounts to an overlap argument between (1) and
(3), exactly in the way the logarithmic law follows from an overlap between the law of the
wall Ut = F(yT) and the defect law (3). The degree to which the present results satisfy (3)
will also be of great interest since the present flow, by definition, has a pressure gradient of
order one, and the FPG wall is of course a candidate for universal behavior, of the common
type, extending into the core region.

2 Approach and Problem Definition

Results for Re = 3000, 6000 and 12 000 are considered below. The parameters used for the
various cases are tabulated in Tables 1 and 2.

To put this study on as firm a foundation as possible, we apply three separate codes — one
finite-difference (Code A; PBO11), one mixed-discretization (Code B; Luchini & Quadrio
[7]) and one fully spectral (Code C; Johnstone et al. [5]) — to the same flow conditions,
with Re = 3000 and d(P/p)/dx = —0.0044U3}/h, in the same domain, assuming peri-
odic conditions in the streamwise x and spanwise z directions, with periods Ay = 4w h and
A; = 2mh. These three runs are respectively denoted Case A3000, B3000 and C3000a.
Streamwise-velocity flow visualizations (shown later in Figs. 6 and 7) suggest that the
present domain size is sufficient, but spanwise spectra (not shown) from a Re = 3000 flow
have a significant content at a wavelength of mh (that is, half of the simulation period)
with essentially no x-dependence. This is somewhat confirmed by Fig. 7b and c, raising the
possibility that further increases of A, are required to reach the ultimate level of accuracy,
particularly in the core region. Motivated by this observation, Case C3000b was run, which
is a larger-domain version of Case C3000a, with Ay /h = 6mrh and A; = 4mh (i.e., 1.5 and
2 times larger, respectively); its spatial (and temporal) resolution is identical (see Table 2).
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Fig. 1 Profiles of (a) mean velocity and (b) Reynolds shear stress for Re = 3000 from three DNS codes.
Straight line in (b) indicates total-stress profile defined by pressure gradient
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Table 1 Case parameters

Case Code Re (—i—f) (plh/,%) TaUy/h & ru,_Apc,/puz Up/ue
A3000 A 3000 0.0044000 2000 0014 —6.6x107*  0.1212
B3000 B 3000 0.0044000 2000 0.053  —28x107*  0.1213
C3000a C 3000 0.0044000 1867 0003 —12x1073  0.1211
C3000b C 3000 0.0044000 688 0.006 —2.6x1073  0.1211
A60007 A 6000 0.0037836" 2000 0016  0Of 0.0986
C6000a C 6000 0.0038240 1906 0.003  +34x1073  0.0982
C6000b C 6000 0.0039440 908 0.006 —1.5x1073  0.0980
C12000a C 12000  0.0032894 1779 0.007  +65x1073  0.0796
C12000b0 C 12000  0.0034514 1004 0.006 +1.6x1073  0.0794

Details of DNS algorithms given in Pirozzoli et al. [9] (Code A; see also Orlandi [8]), Luchini & Quadrio
[7] (Code B) and Johnstone et al. [5] (Code C). The momentum-imbalance parameter & (which would equal
zero for perfect balance) is defined in the text. The statistics were gathered by averaging over x-z planes at
discrete times over the period 74. Note that case names used here do not always correspond to the parameters
defined in Coleman et al. [3]

TCase A6000 uses a spatially uniform time-dependent pressure gradient adjusted such that the APG-wall
shear 7,, Apg remains essentially zero (i.e., the one-sided three-point estimate of this derivative is machine
zero on a 64-bit machine). Value of d P /dx shown is the time average

This flow field also contains large-scale longitudinal ‘ridges,” suggesting that the CPO flow
poses a challenge in terms of periodic domain size, although much milder than it is for pure
Couette flow. It is difficult to ascertain when the solution has truly erased any memory of
its initial condition, especially regarding the larger structures, with their long time scales.
The very good agreement of the statistics from these two cases shown below indicates that
the overall conclusions drawn from the present DNS results are not adversely affected by
the domain size.

Table 2 Numerical parameters

Case Ay/h A/ h N, Axt Ny o N, Azt
A3000 47t 27 512 6.9 192 2.4 384 4.6
B3000 47t 27 512 6.9 151 10.4 512 35
C3000a 47t 27 576 6.1 257 1.7 432 4.1
C3000b 67 4 864 6.1 257 1.7 864 4.1
A6000 4 27 1024 6.4 384 1.8 768 43
C6000a 4 27 576 115 257 32 864 3.8
C6000b 47 27 576 11.6 257 32 864 3.9
C12000a 47 27 1152 10.7 385 2.6 1536 4.0
C12000b 4 21 1152 109 257 6.1 1536 4.1

Resolution given in terms of equivalent streamwise N,, wall-normal Ny and spanwise N grid points (with
de-aliasing in x and z for Codes B and C, such that the number of expansion coefficients is 2/3 the number of
grid points in these directions), and the resulting FPG-wall units Ax* = Ax u; /v, «V?E) = (h+y10) U /v and
Azt = Azu, /v, where Ax = A;/Ny, Az = A;/N;, A, is the streamwise, and A the spanwise, domain
size and y is the y-coordinate of the 10th grid point from the bottom of the domain (9th grid point off the
wall)
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The pressure-gradient/wall-velocity combination used for the Re = 3000 runs yields
negligible skin friction on the APG wall (Fig. 1), in that the stress on that wall is at most
of the order of 0.25% of the FPG-wall value (Table 1). The number of grid points used
for each case, and the corresponding spatial resolution in FPG-side wall units, are listed
in Table 2. The APG wall region is far calmer (see Fig. 7a) and therefore less demand-
ing of resolution in space and time. Therefore, we believe it is very well resolved. For
nearly all the runs, the resolution in all three directions is well within the bounds needed
for a spectral discretization (such as that used by Codes B and C) to produce accurate
first- and second-order statistics in a turbulent boundary layer with finite skin friction (i.e.,
AxtT < 12, Azt < 4, y{% < 6; cf. Spalart et al. [11] and see Table 2 caption). These
values are expected to also be reasonable for the finite-difference code/directions. More
direct confirmation of the appropriateness of the resolution, especially on the APG side,
will be inferred by comparing results from the different codes, as well as recent chan-
nel results. Codes A and C are also applied at Re = 6000, for Cases A6000, C6000a
and C6000b, with pressure gradients tuned to yield dU/dy = 0O (or in the former case,
dU/dy = 0) on the APG wall; the latter two spectral-code runs differ from each other
only in their pressure gradients, which produce slightly different mean APG-wall shear
dU /dyapg, of opposite sign but very small (Table 1). The two Re = 12000 cases are also
identical apart from their d P /dx values, which again yield slightly different dU /dyapg, of
about +0.7 and 40.2% of their FPG-wall shears. These dual-d P /dx results at Re = 6000
and 12000 will be used to estimate the U profiles corresponding to the dU/dy = 0 ide-
alization at each Re, by forming an appropriate linear combination of the two profiles (see
below).

Turbulent initial conditions were obtained either by applying random velocity distur-
bances across the domain, or from a mature field from another case at lower Reynolds
number. For example, for Case C12000a, an early Case C6000a field was projected onto a
finer grid (Table 2) and the wall velocities adjusted to minimize the changes to net stream-
wise momentum. This involved invoking (3) in the core region while maintaining the same
d(P/p)/dx (with respect to Uy, at Re = 6000), and thereby roughly the same u ., employed
for Case A6000. (The first Re = 6000 runs with code C also employed the mean pres-
sure gradient obtained from Case A6000. However, the small but finite positive residual
dU /dyapg, of the order of 0.003 dU/dyrpg — presumably due to differences of statisti-
cal and numerical convergence between the two runs and the codes that produced them —
and our observation that these small deviations from zero of the APG-wall stress have a
profound effect on the square-root scaling (2), led to the decision to increase d(P/p)/dx
slightly, relative to Case A6000, for Cases C6000a and C6000b.)

The global/wall-to-wall momentum balance, (tgpg — tapg)/2h[dP/dx], lies between
0.998 and 1.006 for all the cases shown in Table 1. (Recall the ideal value is unity.) A
more discriminating measure of the mean-momentum imbalance, reflecting the quality of
the statistics by its nearness to zero, is quantified in terms of the root-mean-squared differ-
ence between the two right-hand-side terms of the mean streamwise RANS equation. This
quantity is defined as

e | L /*h[d(r/m_d(P/p)Td ’ /—d(P/p)
), o | &

where t/p =vdU/dy — u'v'; it is included in Table 1.
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3 Results
3.1 Mean Velocity

The Re = 3000 results from the three codes are presented in Fig. 1. The close agreement
points to the accuracy and reliability of the DNS data, at least for these domain sizes, and
to the adequacy of the spatial resolution used in each case (which implies that that used for
A3000 and C3000a, especially in the wall-normal direction, is much finer than is required
to capture faithfully the U and —u’v’ profiles). The APG-side skin friction is also a very
discriminating measure of the agreement between codes.

A comparison across all three Re values is shown in Fig. 2. Figure 2a normalizes U (y)
with Uy, and the effect of Reynolds number is clear. Contrast with Fig. 1b, a test of the
outer-layer scaling (3), with respect to the friction velocity u.; the striking collapse across
the core of the flow supports Townsend’s assumption that u, is the relevant outer-layer
velocity scale, and that Reynolds-number effects are limited to thin regions near the walls.

(a) b
x 5] .
i 2>
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5 Re=1800 (Yang et al. 2017) S 2
=) A3000 | E
~ B
=) B3000 I i
C€3000a D -4+
A6000 ]
C6000a 6]
¢ C12000a i
h ———— C12000b ]
Oj_é*t(\\\\\\\\\\\\\\\\\\\\ _87&\\\\\\\\\\\\\\\\\\\\
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1
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Fig.2 Mean-velocity profiles scaled with respect to (a) Uy, and (b,¢) u, in terms of (b) outer y/ i coordinate
(relative to centerline velocity UC‘*' = U(0)/u;) and (c) inner y* coordinate, where y* = (y + h)u; /v.
For Re = 3000, 6000 and 12 000, respectively, u,/U,, = 0.0937 (A3000,B3000,C3000a), 0.0870 (A6000),
0.0877 (C6000a) and 0.0816 (C12000a), 0.0832 (C12000b) such that ~T = 281 (A3000,B3000,C3000a),
522 (A6000), 526 (C6000a) and 979 (C12000a), 998 (C12000b)
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The inner scaling for the FPG wall is shown in Fig. 2c¢ for the mean velocity and in Fig. 4a
for the Reynolds stresses. The behavior is highly reminiscent of that seen in pure plane-
Poiseuille flow. We note the approach toward zero of the pressure gradient with Reynolds
number, implied by the reduction in slope of the shear stress profile in Fig. 4a (i.e., that the
pressure gradient in wall units p™ goes to zero as Re increases). The logarithmic U profile
in Fig.2c reveals the manner in which this flow essentially doubles the thickness of the
inertial sublayer contained between the walls, compared to the plane-channel counterpart
with the same value for hu /v.

A test of conjectures (I) and (II) (i.e., of Eqs. 1 and 2) is provided by the u,, v scal-
ing shown in Fig. 3, which contains the Re = 3000 profiles from Fig. 1, as well as the
results from the Re = 6000 and 12000 runs. Also included are the recent Re = 1800
CPO DNS data of Yang et al. [14]. The code-C profiles for Re = 6000 and 12000 are
dU /dyapc = 0 approximations obtained from linear combinations of, respectively, Cases
C6000a & C6000b and Cases C12000a & C12000b, with weighting coefficients defined
such that the resultant satisfies U = U, and dU/dy = 0 at y = +h. This strategy was
prompted by the surprisingly large effect of very small values of dU/dy on the APG wall —
values even as small as those recorded in Table 1 for the Re = 6000 and 12 000 runs with
Code C - have on the slope B and especially additive constant C of the U™ = U _(\/yi )
scaling. The contributions of Reynolds number, statistical convergence and type of (uni-
form) pressure gradient (time-dependent versus constant) to this sensitivity is a subject for
future study. For now, we note that u,, /u, decreases with increasing Re (Table 1).

Although differences of the order of one U~ unit remain, we consider this set of results
to be strongly in favor of both of Stratford’s conjectures, which is quite a positive outcome.
Visual fits suggest the approximate range [2.25, 2.50] for B and C ~ —2.2 (see straight-
line interpolants in Fig. 3). These are considerably tighter than the ranges which were in
place before the present study, even limited to CPO DNS. The square-root law appears to
smoothly extend to higher y~ as the Reynolds number increases, just as the log law does.
We effectively observe agreement between four independent codes and researchers.

x  Re=1800 (Yang et al. 2017
(@) (vang ) (b)
30 °  A3000 L - S
E - B3000 . P < o
25 ----- C3000a < po 7 F
r +  C3000b R x ] .
N o / 6 F x ;
20 [ . A6000 X f K x b N
Fo C6000 x4 e | P X4 o S
b b o > 5 X o o, /
15 F —— C12000 3 g < E i
| . : x .
= [ E 4r xx /‘g o e
10f Lok SAS
SRS R N
5f 5 F g" e
; Ef o
0’7 1F f
-5 E L | | | | 0 :‘&6/ L | | | L |
0 2 4 6 8 0 2 4 6 8
vy~ VY~

Fig. 3 Mean-velocity profiles in Stratford units. For Re = 1800 (Yang et al. [14]), 3000, 6000 and 12 000,
respectively, u, /U, = 0.01405, 0.01136 (A3000,B3000,C3000a), 0.00858 (A6000), 0.00867 (C6000) and
0.00664 (C12000), such that A~ = 25.3, 34.1 (A3000,B3000,C3000a), 51.45 (A6000), 52.0 (C6000) and
79.6 (C12000). C6000 and C12000 profiles are linear combination of C6000a & C6000b, and C12000a
& C12000b results, respectively. Straight lines correspond to Eq. 2 with B = 2.25 and 2.50, both with
C=-22
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A theoretical concern is that the square-root argument depends on large values of y—,
just like the logarithmic law appears only for y* >> 1 (in practice, at least 50, but recent
findings suggest a value of several hundred), and at first sight the y~ range (roughly, from 4
to 20 in Fig. 3) may not yet be large enough. In other words, the appearance of a square-root
layer could appear premature.

A counter-argument is the observation that the ratio of the total-to-viscous shear stress
within the yzi)/ 2 regime (where Eq. 2 is valid) is given by 2(y7)3?/B; assuming B = O(2)
(cf. PBO11; SC15), this implies that even at the bottom of the range of U ~ ylf/ % behavior
shown in Fig. 3a, near y~ = 4, the turbulent stress is already an order of magnitude larger
than the viscous component. At the upper limit of the validity of Eq. 2 found for Re = 6000,
y~ & 20, the turbulent/viscous stress ratio is approaching 100. Based on this reasoning
(y™)3/2, rather than y~ or (y~)!/2, is the quantity that needs to be ‘large’ compared with
unity for the argument that viscosity has no influence locally to be valid. The equivalent
ratio in a log law is xy™, which is only about 40 at y© = 100, where the log law may be
reasonably expected to begin. We note that (h™)3% = (hu »/ 1)3/2 2 200 for the Re = 3000
flow, and increases to ~ 370 at Re = 6000 and ~ 700 at Re = 12000. (Compare the
corresponding increase in the channel half-height in viscous units from A+t = hu,/v of
about 280 to 520 to 990.) These considerations support the relevance of the present DNS
as a means to address the validity of Eqgs. 1 and 2, in the sense that the present Reynolds
number range is not grossly insufficient.

3.2 Reynolds Stresses
The Reynolds stresses and their dependence on Re are illustrated in Fig. 4. (Henceforth, only

Code C results will be considered.) We have already mentioned the similarity of the FPG-
wall scaled stresses (Fig. 4a) to those observed in the plane channel; the significant variation

(a) (b) - - - - C3000a
37 oy ‘ 33 C6000a
E —-—— C12000a
1 — — — Ch2000
2 2
+ ] +
3 ] EEEE N e
1 E 4
~ 14 ~ 14
] ¥
s ] S
E + 07 .
> 1\ > T
s E P
-1 -1
————
0 50 100 150 200 -1 -0.5 0 05 1
y* y/h

Fig. 4 FPG-wall scaling of Reynolds-shear-stress and turbulence-intensity profiles: O, ut = v u'u//u.; o,
v = VUV Jug; +, wT = vVw'w/u;; no symbol, W = W/u%. Slope of solid lines in (a) corresponds
to—pt = —[d(P/,o)/dx][v/uf]. Cases Ch2000, Ch4000 and Ch5200 in (b) are from plane-channel (U,, =
0) DNS of, respectively, Hoyas and Jiménez [4] (Re; = 2003), Bernardini et al. [1] (Re; = 4079) and Lee
and Moser [6] (Re; = 5186), where for illustration purposes the wall-to-centerline half-domain from that
flow has been mapped to the full bottom-to-top-wall domain here
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Fig. 5 APG-wall scaling of Reynolds-shear-stress and turbulence-intensity profiles with respect to y~ =
(h—=yup/v:O,u™ = \/W/up; 0V = \/W/u,,; +, w™ = vw'w'/up; no symbol, wy = u’v//ui.

Solid line traces theoretical variation, —u/'v/ = y~

with Reynolds number of all three normal stresses measured in units of u, versus y* has
been noted in many studies (without, however, any certainty on whether this is a ‘low-
Reynolds-number effect’ that will ultimately saturate). The collapse and linear behavior in
the core-layer variable y/h of the —u’v’ shear stresses across the core is required in this
scaling (Fig. 4b). The wall-normal v+ and spanwise w™ components also tend to collapse
in the core region, as they do in pure Poiseuille flow (when their ‘folded” wall-to-centerline
half domains are expanded to fill the full bottom-to-top wall domain of the present CPO
flow, as is done in Fig. 4b for the u.h/v =~ 2000, 4000 and 5200 DNS of Hoyas and
Jiménez [4], Bernardini et al. [1] and Lee and Moser [6], respectively.) The behavior of the

streamwise component v u#'u’, on the other hand, differs from that of the Poiseuille case, for

y/h 0

S0 o e e e e e e e
0 1 2 3 4 5 6
z/h

Fig. 6 Instantaneous contours of streamwise velocity u in cross-stream—vertical plane from CPO DNS (Re =
6000)
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Fig. 7 Instantaneous contours of streamwise velocity u in wall-parallel planes at (a) y = +0.9999% (near
APG wall), b y = 0 (centerline), and (c) y = —0.9999/ (near FPG wall), from CPO DNS (Re = 6000)
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which only in the inner layer and bottom of the outer layer does it become an increasingly
large fraction of u, as Reynolds number increases. Here the profiles remain linear across
the bulk of the flow and the step with Re appears almost uniform in space, and identical
for the two Reynolds-number doublings, so that there is little indication that the rise will
saturate rapidly at even higher Re.

The Reynolds stresses in the zero-stress-wall scaling are presented in Fig. 5. The —u/v’

component agrees well with the theoretical profile, —u/v/ = y~, for each of the three
Reynolds numbers, as required by the momentum balance; the viscous stress is not visible
in these coordinates except near the opposite wall. This agreement also suggests the suc-
cess of the pressure-gradient-and-wall-velocity combinations used here to establish the CPO
conditions. As is the case for the FPG-side fluctuations in the u, scaling, the normal-stress
components in the u , scaling fail to exhibit Reynolds-number independence, with the devi-
ation for the streamwise component being especially pronounced. Thus, the turbulence as a
whole definitely does not scale with only u,, and y™~ even if the velocity and shear stress do.

3.3 Flow Visualizations

The instantaneous streamwise velocity contours in a y-z plane shown in Fig. 6 suggest
the turbulence associated with the FPG wall affects the flow all the way to the APG side.
Eruptions from the intense FPG region reach fairly close to the quiescent APG layer. See
also the contours in wall-parallel x-z planes in Fig. 7. These contours also reveal the pres-
ence of coherent large-scale roll-type structures associated with the second spanwise mode;
this is particullary evident in the y = O centerline plane (Fig. 7b). However, neither of
these wall-to-wall phenomena appear to defeat the Stratford argument, or the universality
implied by the present DNS data. This claim is supported in Fig. 3 by the good agreement
between the U~ profiles from Cases C3000a and 3000b, with their respectively smaller
(Ax/h =4m, A;/h =2m) and larger (A,/h = 67, A;/h = 4) domains.

4 Summary and Future Work

Our joint study of the Couette-Poiseuille flow with zero skin friction on one wall by Direct
Numerical Simulation reached its objectives quite well. Away from the zero-skin-friction
wall the mean velocity and Reynolds shear stress are dominated by the friction velocity u,
and the channel half-height £, as it is in simple Poiseuille flow. The streamwise Reynolds
stress is again not universal with any normalization we attempted.

The confirmation of the Stratford square-root law, even if it is restricted to small regions
or a very particular flow, is quite satisfying to the theoretician, in that a simple analytical
form similar to the Kolmogorov inertial range or the logarithmic law was predicted purely
by reasoning on the dominance of a parameter (here, the pressure gradient), and the limited
role of viscosity.

In the future, higher Reynolds numbers may refine the estimates of the Stratford con-
stants. (In light of the reduction with increasing Reynolds number of u, /u. (cf. Table 1),
those who perform CPO simulations at higher Re are reminded to attend to the sensitivity
of the Stratford scaling to even very weak nonzero skin friction on the APG wall.) Further
variation of the periodic domain size is in order, but is not expected to alter the general
conclusions. An experiment on the CP0O flow would be of great interest, provided accu-
rate measurements are possible close enough to a sliding belt, and a large enough domain
eliminates end effects in both x and z directions.
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The now better-understood CPO flow also becomes a candidate to be a standard cali-
bration case for turbulence models. We have determined that models of the classical type
will naturally satisfy Stratford scaling and produce square-root layers, but for instance the
Spalart-Allmaras model does not give very accurate values for the B and C constants.

Looking beyond the ideal CPO situation, it will be of great interest to explore other flows
with zero skin friction. For instance, a separating boundary layer may or may not sustain
zero skin friction over a large enough region for the scaling to establish itself. The mean
wall-normal velocity V, or the strain 3V /dy, may also conflict with the pressure gradient as
a dominating influence. In our other studies we have DNS in which the skin friction crosses
zero, but not of Stratford’s ‘continuously separating’ flow, which will be quite challenging
because the boundary-layer thickness increases so rapidly. The current indications are that
the square-root law indeed applies at both zero crossings, and with the same constants found
here.
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