
CLUSTERING AND STRUCTURAL EQUATION 
MODELLING 

Mario Fordellone1, Maurizio Vichi1 

1 Department of Statistical Sciences, Sapienza University of Rome   
 (e-mail: mario.fordellone@uniroma1.it, maurizio.vichi@uniroma1.it) 

ABSTRACT: The identification of different homogeneous groups of observations and 
their appropriate analysis in PLS-SEM has become a critical issue in many application 
fields. Usually, PLS-SEM assumes the homogeneity of all the units on which the model 
is estimated, and the approaches of segmentation present in literature, consist in 
estimating separate models for segments of statistical units, which have been obtained 
by assigning the units to segments a priori defined. However, no causal structure among 
the variables is postulated and this has been considered a limitation. In this paper, a new 
methodology for simultaneous non-hierarchical clustering and PLS-SEM is proposed. 
A simulation study and an application on real data are included to evaluate the 
performance of the proposed methodology. 

KEYWORDS: SEM, simultaneous clustering, K-Means, PLS. 

1 Introduction 

In the last years, Structural Equation Modelling (SEM) has become one of the 
reference statistical methodologies in the analysis of the statistical relationships 
between observable (manifest) and non-observable (latent) variables. Structural 
equation models are used for both to assess unobservable hidden constructs (i.e., latent 
variables) by means of observed variables, and to evaluate the relations between latent 
constructs. In SEM, variables (manifest or latent) are considered endogenous if they 
are dependent, i.e., related to a set of variables that explain or predict them. These last 
are the exogenous variables. SEM has the property to estimate the multiple and 
interrelated dependence in a single analysis by combining factor analysis and 
multivariate regression analysis. SEM has been used in many different fields, as in 
economics and social sciences, in marketing for example to assess customer 
satisfaction (Squillacciotti, 2010). SEM allows to build latent variables (LVs), such 
as customer satisfaction, through a network of manifest variables (MVs). As we have 
noted before, an important research issue in marketing is the measurement of customer 
satisfaction by using PLS-SEM and the identification of distinctive customer 
segments has been considered relevant. 

Covariance Structure Approach (CSA) (Jöreskog, 1978) and Partial Least Squares 
(PLS) (Lohmöller, 1989) are the two alternative statistical techniques for estimating 
such models. The CSA, also referred to as LISREL, uses the ML estimation; thus, has 
the advantage to allow the researcher to make inference on the results. However, PLS 



is considered preferable to CSA in three specific cases: (i) when the sample size is 
small, (ii) when the data to be analysed is not multi-normal as required by CSA, and 
(iii) when the complexity of the model to be estimated may lead to improper or non-
convergent results (Squillacciotti, 2010).  

In this paper, we work to the parsimonious consensus model that identifies the best 
clustering that best explains the manifest variables reconstructed by a unique common 
set of measurement/structural relationships. Thus, a new methodology for 
simultaneous non-hierarchical clustering and PLS-SEM is proposed and named 
Partial Least Squares K-Means (PLS-KM) (Fordellone and Vichi, 2017). 

2 Model 

Given the !×#   data matrix X, the !×#   membership matrix U, the !×#   centroids 
matrix C, the !×#   loadings matrix ! = [!$, !&]  , and the errors matrices Z, E, and D, 
the Partial Least Squares K-Means model can be written as follows (Fordellone and 
Vichi, 2017): 
 
              ! = !#$ + &'$ + (  , 
                                          ! = #$%& + ($)& + *  , 
                                         ! = #$%%& = #$%'%'& + #$%) %)& + 	+  ,     (1) 
 
under constraints: (i) !"! = $  ; and (ii) ! ∈ 0,1   , 𝐔𝟏# = 𝟏%. Where H and L are the 
number of exogenous and endogenous LVs, respectively (i.e., H+L=P). Then, 𝐇 is 
the !×#   matrix of the endogenous LVs with generic element	"#,%  , !   be the !×#   
matrix of the exogenous LVs with generic element !",$  , 𝐁	is the !×!   matrix of the 
path coefficients !","   associated to the endogenous latent variables, !   is the !×#   
matrix of the path coefficients !",$   associated to the exogenous latent variables, !"	  is 
the !×#   loadings matrix of the exogenous latent constructs with generic element !",$   
and !"	  is the !×#   loadings matrix of the endogenous latent constructs with generic 
element !",$  .  

Thus, the PLS-KM model includes the PLS-SEM modeling and the clustering 
equations. The simultaneous estimation of the three sets of equations will produce the 
estimation of the pre-specified SEM describing relations among variables and the 
corresponding best partitioning of units. 

When applying PLS-KM, the number of groups is unknown and the identification 
of an appropriate number of K clusters is not straightforward. Then, often you need to 
rely on some statistical criterion. In this paper we use the gap method for estimating 
the number of clusters, i.e., a pseudo-F designed to be applicable to virtually any 
clustering method.  

In the preliminary step of the PLS-KM algorithm, the estimation of the PLS-SEM 
over the entire dataset is carried out; subsequently, the number of the K classes is 
obtained according to the maximum level of the pseudo-F function computed on the 



estimated latent scores. Then, once chosen the number of clusters, the PLS-KM 
algorithm optimize the following overall objective function: 
 
                      	argmin

()*
+-()**- .           (2) 

 
Note that because the constraints on U, the method can be expected to be rather 

sensitive to local optima. For this reasons, it is recommended the use of some 
randomly started runs to find the best solution.  

3 Simulation study 

Data matrices formed by 100 statistical units and 9 MVs have been simulated for 
1000 random generations. The 9 generated variables are split in three blocks related 
to 3 LVs according the path diagram shown in Figure 1.  

  

 
  

Figure 1 – Path diagram of the SEM model specified by the simulation scheme 
  
Note that, in this simulated model 𝐁 = 1 (there is only one endogenous LV), 

whereas the other parameters have been fixed as follows: 
 
!"# = 0.60 0.40 −0.80

0 0 0 				 0 0 0
0.85 −0.85 0.50					

0 			0			 0
0 			0			 0   ; 

 
!"# = 	 0 0 0					0 0 0					0.85 −0.80 −0.50   ; 
 
!" = 	 			0.6-0.7   . 
 
The exogenous latent scores matrix !   has been generated by three different 

multivariate normal distributions (each with 2 uncorrelated dimensions) to obtain a 
structure of three groups of units:  
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!" = 30;	(" = 								1				0 *;	+" = ,   
!" = 30;	(" = 		-10	10 +;	," = -   
!" = 40;	(" = 			100	10 *;	+" = ,  . 

 
The errors matrix 𝐄 has been generated by a multivariate normal distribution (9 

uncorrelated dimensions) with means equal to zero (i.e., noise) and standard deviation 
fixed as: ! = 0.30   (low error), ! = 040   (medium error), ! = 0  .50 (high error). Then, 
we have simulated 1000 random generations of data for each level of error and the 
performance of the PLS-KM model has been evaluated for each case.  

We have split up the analysis of simulation results in two steps. Firstly, we have 
compared the global quality of the model in the three different error levels using GoF, 
ARI and AGoF (Fordellone and Vichi, 2017). Secondly, we have analyzed each 
specific case where ARI is lower than 1 (i.e., when the model identifies a partition 
that is not the real one) to understand if this cases are local minima or overfitting 
(results in Tables 1 and 2, respectively). 
 

Table 1 – Means of the indices distributions for the three different error levels 
 

 
 

Table 2 – Clustering performance of the PLS-KM for the three different error levels 

 
 

4 Application on real data 

In this section, an application of the Partial Least Squares K-Means model is 
presented. For this application the European Consumer Satisfaction Index (ECSI) has 
been used. In particular, we have analyzed the ECSI model in mobile phone industry 
(Tenenhaus et al., 2005). 
 
4.1 Dataset 
 

Dataset consists in 24 observed variables that represent the answers of 250 
consumers of a mobile phone provider. The original items, scaled from 1 to 10, are 
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index

Mean of 
Adjusted Rand 

Index
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index

! = 0.30 0.846 0.780 0.812 0.993 0.710
! = 0.40 0.737 0.614 0.672 0.987 0.524
! = 0.50 0.705 0.556 0.626 0.984 0.470

Found Optimal 
K (%)

Times model is 
true (%)

Local minima 
with 15 

random start 
(%)

Overfitting (%)

! = 0.30 100.00 99.90 0.00 0.10
! = 0.40 100.00 88.00 7.40 4.60
! = 0.50 100.00 72.60 17.20 10.20



transformed into new normalized variables (scaled from 0 to 100). Figure 2 represents 
the complete ECSI model for the mobile phone industry. 

 

 
Figure 2 – ECSI model for the mobile phone industry 

 
 

4.2 Results 
 

In Tables 3 and 4 are shown measurement model and structural model results, 
respectively. 
 

Table 3 – Loadings matrix !   obtained by the 
PLS-KM model 

 

 

Table 4 – Path coefficients matrix !   obtained 
by the PLS-KM model 

 

 

 
Finally, in Table 5 are shown the summary statistics of the three obtained. 
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Image Expectations PercQuality PercValue Satisfaction Complaints Loyalty
X1 0.449 0 0 0 0 0 0
X2 0.398 0 0 0 0 0 0
X3 0.355 0 0 0 0 0 0
X4 0.528 0 0 0 0 0 0
X5 0.486 0 0 0 0 0 0
X6 0 0.615 0 0 0 0 0
X7 0 0.607 0 0 0 0 0
X8 0 0.503 0 0 0 0 0
X9 0 0 0.419 0 0 0 0
X10 0 0 0.284 0 0 0 0
X11 0 0 0.399 0 0 0 0
X12 0 0 0.377 0 0 0 0
X13 0 0 0.375 0 0 0 0
X14 0 0 0.381 0 0 0 0
X15 0 0 0.397 0 0 0 0
X16 0 0 0 0.624 0 0 0
X17 0 0 0 0.781 0 0 0
X18 0 0 0 0 0.558 0 0
X19 0 0 0 0 0.563 0 0
X20 0 0 0 0 0.609 0 0
X21 0 0 0 0 0 1.000 0
X22 0 0 0 0 0 0 0.585
X23 0 0 0 0 0 0 0.099
X24 0 0 0 0 0 0 0.805

Loadings	matrix	of	PLS-KM
Image Expectations PercQuality PercValue Satisfaction Complaints Loyalty

Image 0 0.507 0 0 0.177 0 0.201
Expectations 0 0 0.554 0.048 0.071 0 0
PercQuality 0 0 0 0.557 0.509 0 0
PercValue 0 0 0 0 0.191 0 0

Satisfaction 0 0 0 0 0 0.523 0.479
Complaints 0 0 0 0 0 0 0.067

Loyalty 0 0 0 0 0 0 0

Path	Coefficients	matrix	of	PLS-KM



Table 5 – Summary statistics of the three groups of mobile phone customers   
 

 

5 Concluding remarks 

In wide range of applications for empirical data analysis, the assumption that data 
are collected from a single homogeneous population is often unrealistic. In particular, 
the identification of different groups of observations and their appropriate 
consideration in PLS-SEM constitutes a critical issue in many fields. 

The traditional approach to segmentation in SEM consists in estimating separate 
models for objects segments which have been obtained either by assigning 
observations to a priori segments. Then, each class has different component scores, 
structural coefficients, outer weights and loadings. 

The PLS-KM approach, instead provides a single SEM guarantying the best 
partition of objects represented by the best causal relationship in the reduced latent 
space. 
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Image Expectations PercQuality PercValue Satisfaction Complaints Loyalty
Min 0.460 0.180 0.660 0.000 0.537 0.000 0.019
Q1 0.722 0.652 0.775 0.688 0.710 0.778 0.824

Median 0.802 0.773 0.837 0.778 0.787 0.889 0.898
Mean 0.796 0.752 0.840 0.763 0.794 0.832 0.862

Q3 0.861 0.849 0.905 0.878 0.875 1.000 0.956
Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000

N	=	92

Image Expectations PercQuality PercValue Satisfaction Complaints Loyalty
Min 0.225 0.145 0.483 0.000 0.273 0.000 0.190
Q1 0.541 0.481 0.594 0.511 0.526 0.556 0.594

Median 0.600 0.584 0.648 0.622 0.599 0.667 0.698
Mean 0.607 0.584 0.643 0.591 0.589 0.638 0.696

Q3 0.681 0.664 0.687 0.667 0.647 0.778 0.804
Max 0.845 1.000 0.831 0.889 1.000 1.000 1.000

N	=	112

Image Expectations PercQuality PercValue Satisfaction Complaints Loyalty
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q1 0.306 0.359 0.284 0.333 0.272 0.333 0.263

Median 0.440 0.497 0.414 0.444 0.353 0.444 0.467
Mean 0.392 0.471 0.398 0.423 0.345 0.447 0.460

Q3 0.494 0.599 0.486 0.556 0.445 0.667 0.626
Max 0.676 0.820 0.704 1.000 0.691 1.000 1.000

N	=	46

Group	1

Group	2

Group	3


