1 Hazard Function Deployment: a QFD based tool for te assessment of working

2 tasks — A practical study in the construction indugy

3 Despite the efforts made, the number of accideats ot significantly decreased in the
4 construction industry. The main reasons can bedaurnhe peculiarities of working activities
5 in this sector, where hazard analysis and safetyagement result in being more difficult than
6 in other industries. To deal with these problemsgomprehensive approach for hazard
7 analysis is needed, focusing on the activities liictv a working task is articulated since they
8 are characterized by different types of hazards thod risk levels. The study proposes a
9 methodology that integrates the Quality Functiorplbgment (QFD) and Analytic Network
10 Process (ANP) methods to correlate working acésitihazardous events and possible
11 consequences. This provides a more effective decisiaking, while reducing the ambiguity
12 of the qualitative assessment criteria. The resudkdeved can augment the knowledge on the
13 usability of QFD in safety research, providing aibdor its application for further studies.
14
15 Keywords: occupational health and safety; Qualiipétion Deployment; Analytic Network
16 Process; occupational risk assessment; hazardttipation; safety management; construction
17 industry.
18
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ECs =Engineering Characteristics P Probability

CRs =Customer Requirements S Severity

W, =i-th matrix/eigenvector As Activities

Rl =Random Index Hs Hazards’ types

Cl =Consistency Index Cs Gonsequences
HFD = Hazard Function Deployment QFD Quality Function Deployment
Ryrp = risks calculated using the HFD approach ANPAnalytic Network Process

Rr =risks calculated using the traditional approach PHRreliminary Hazard Analysis
JSA =Job Safety Analysis ORA @Gccupational Risk Assessment

20

21 1. Introduction

22 In recent years, standards and regulations comgggcupational safety have become more and

23 more rigorous. Despite such an effort, the numlbeaccidents and victims is still significant and
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the construction sector is certainly one of the madfected by this situation [1-6]. For example, in
the European Union (EU), the statistics and repaetated to construction accidents show that,
although a reduction of the overall number of aeotd was registered in recent years, the average
number of fatalities is still significant at abduD00 cases per year and over 800.000 workers are
injured [7].

The main reasons for this situation are due tesgeeific characteristics of the sector [8-10].
As a matter of fact, the large variety of actistiasually carried out by companies, the use of
obsolete machinery and equipment, the continuoasgs of workplaces, and the simultaneous use
of the working site by different companies, are falttors that make the management of safety
issues a difficult task to deal with [11-15]. Tohaave effective results, safety managers should
adopt a proactive hazard identification and eliniamagpproach [16]. In addition, Underwood and
Waterson [17] underlined the need of a holisticrapph for risk assessment in order to better
understand and evaluate the interactions amongpéetor, the technical systems, and the working
environment. In such a context, Mitropoulos et[88] emphasized the role of the analysis of the
working task characteristics in construction acetdeas the normative approaches do not consider
the characteristics of the working processes ptpp#Yorking tasks should be considered with
more attention, since ensuring the safety of thi®ua tasks performed in a construction site can be
the precondition for ensuring a higher level ofesafat both project and company levels [10, 19].
Parise et al. [20] argued that an extensive eiartquired to develop a hazard assessment approach
based on the analysis of the specific tasks exeéanta construction site. Accordingly, Zhou et al.
[21] remarked the lack of construction safety rese@n the specific working tasks. Furthermore,
the relevance of accidents related to the use chmary and work equipment in a construction site
was pointed out in numerous studies (e.g. in [2R-ZA¢cordingly, Jaafar et al. [28] remarked that
the leading causes of this situation are mainly tdulhe operators’ unsafe behavior, as well as to
the lack of the proper management of the work eqait. Hence, when performing risk assessment

of a working task such as the use of a work equipinadl of the specific activities related to itseu
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and management (e.g. setting, operating, maingirdleaning, etc.) should be considered, since

they can present different levels of risk [29]. &ddress these concerns, a more user-centred
approach is needed to investigate the differensg@héhat characterize the use of a machinery or an
equipment in practice [30].

On these considerations, it is clear that safetgagars /professionals need to implement a
risk assessment approach in order to provide compamith information concerning potential
hazards as well as prevention and improvement mesague. a safety plan) based on the specific
working activities carried out. To deal with suahiasue, several studies suggested the use of the
Quality Function Deployment (QFD) method [31] asnaans of performing hazard analysis and
risk assessment of the working tasks in a holis@nner [32, 33]. In particular, both Liu and Tsai
[34] and Bas [35] focused on the use of QFD toqenfrisk assessment concerning the working
tasks in the construction industry. These two ssidiropose effective procedures for safety
management at a general level. However, at a pehctevel, a more specific and hands-on
approach should be adopted, in order to make @seasier also in the case of Small and Medium-
sized Enterprises (SMEs), which often rely on exerprofessional services to carry out the
activities related to the protection and preventidroccupational risks, due to the lack of internal
resources [11, 36-39]. To address these issuespdper presents a procedure for the hazard
analysis of the working activities related to trse wf a work equipment, which takes into account
all of the foreseeable phases of its usage. Inratloeds, this study is an attempt to answer the
following research question: How to correlate thevities concerning a working task (e.g. the use
of a work equipment), the related hazardous sttnatiand events, and their corresponding
prevention and improvement measures in an effeatnkethorough manner?

With this goal in mind, we propose a risk assessmagthodology based on the use of
QFD, augmented by the integration of the AnalytietWwbrk Process (ANP) approach [40]. Its
validity was verified by means of a practical casgly concerning the use of an in-transit concrete

mixer, which was carried out in collaboration withio companies operating in the construction
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industry. In such a context, the working task is ttse and management of the machinery which
consist of a set of working activities (e.g. prep@n of the concrete mixer, concrete discharge,
maintenance and cleaning, etc.).

The remainder of the paper is articulated as fdloim Section 2, the background and
research motivations are introduced. Section 3gmtssour research approach, while its application
to the case study is described in section 4. Tlettion 5 discusses the results achieved and

Section 6 concludes the article addressing fustioek.

2. Background and motivations

The need to focus on the relationships betweeropleeator, the working system and the working

environment when performing risk assessment as/lias been largely discussed in the literature,
as notably remarked by Karwowski [41]. Dealing witlese issues requires a holistic approach [42-
45], which should take into account the feedbaoknfthe system’s (i.e. the equipment) users [46,
47]. In such a context, several studies proposeduie QFD as a means of carrying out hazard
analysis and risk assessment activities in a olistanner, through the analysis of the inter-

relationships and interactions among hazards, sawftects and their consequences [30, 33-35,
48].

The core of the method is certainly the so-callétbuse of Quality” (HoQ), whose
innermost part is represented by the relationshigtriy which links customer needs and
expectations (i.e. the so-called Customer Requintsn€CRs), also called the “whats”) to
appropriate technical attributes (i.e. the EngimgeCharacteristics (ECs), also called the “hows”),

providing their weight and thus their prioritizatigFigure 1).

Figure 1. Scheme of the traditional House of QudhtoQ) (adapted from [31]).

[Figure 1 near here]
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In particular, focusing the attention on occupatiosafety in the construction industry, two main
approaches were presented. Firstly, Liu and Ts#iifBroduced a two-phase approach (by means
the development of two Houses of Quality (HoQs#t throvides a correlation among construction
items (i.e. working tasks), hazard types and hazadses (Figure 2), following a top-down

approach for hazard analysis [49].

[Figure 2 near here]

Figure 2. Scheme of the approach proposed by LduTaai [34].

To augment the effectiveness of the QFD, both thalyic Network Process (ANP) and the
Fuzzy-Failure Modes and Effect Analysis (FMEA) apgrhes were implemented. More in detail,
the ANP approach was used to address the inndieredaips and inter-relationships among the
HoQ’s components. In addition, the Fuzzy Logic aagh was applied to allow a more accurate
analysis. Hence, the study included the use of zyRrMEA method to complete the risk
assessment activities (i.e. the estimation of tble level of each hazard cause to determine the
relative preventive and protective measures).

A more comprehensive approach based on the QFDouheshthe one presented by Bas
[35]. In this study, a three-phase approach isasgmted (Figure 3), where three HoQs were used to
consider the relationships between tasks and hazaadards and events, and events compared with

preventive and protective measures.

[Figure 3 near here]

Figure 3. Scheme of the approach proposed by Bds [3

Compared with the former study, this framework prés a more complete risk assessment

approach, since:
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» the hazard analysis follows a bottom-up approa®li [4

» it enables the analysis of the relationships betvibe hazards and the possible
preventive/protective measures;

» the final priority weight of the events (in therthphase) considers the probability of
occurrence, the expected economic cost of each,emmhthe expected consequences of the

events.

Nevertheless, some drawbacks can be underlinedalidation of the procedure by means
of an empirical application was not performed. Selcdhe availability of statistical data on the
occurrence of accidents was used to complete tleeghase of the procedure, while the correlation
relationships were not considered, limiting theddga of the HoQ in assessing mutual relationships
among its parameters. In addition, both the abogatibned approaches are aimed at supporting
engineers at a project level and thus they take aticount macro-activities, while the specific
activities that characterize a working task areaduressed sufficiently. Moreover, focusing on the
operator and the activities carried out when perfng a specific task, the use of a structured risk
management approach can allow the achievement fafr solutions [50]. Merging these
considerations, we can observe that, when carrging occupational risk assessment (ORA)

activities, four main issues need to be addressed:

1. a bottom-up approach should be preferred to prosmgneers with a thorough procedure
for hazard analysis and prioritization;

2. in order to meet the practical needs of compaihiasdperate in a construction site, the
specific activities in which a working task is attiated need to be analyzed,;

3. involving operators in the risk assessment proalew/'s engineers to better define the

specific tasks, the identification of hazards dmeldetermination of risks [51];



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

4. the evaluation of the inner relationships among difeerent parameters analyzed (e.g.
working activities, hazardous events and conseasgris significant in order to make their

assessment more consistent.

In the literature, numerous ORA approaches carobed: as remarked by Pinto et al. [52],
in the construction industry one of the most comiparsed ORA methods is the Preliminary
Hazard Analysis (PHA). Accordingly, with the godlaxcident prevention through planning, more
specific tools were proposed to properly addregsabove mentioned issues. In particular, the
approaches based on the Job Safety Analysis (IBAyEk Hazard Analysis (THA)) [53] stress on
the importance of identifying hazards and the pmdemaccidents starting from the analysis of the
specific activities in which each job can be spiihile the assessment criteria are similar to theso
used in the traditional PHA-based methods [54]. desthe unquestioned benefits that can be
achieved by the JSA approach, which allows engméeraddress the first three ORA issues
mentioned above, some limitations can be foundg&h-especially when considering its capability
to deal with the mutual influences of the differéattors analyzed.

To tackle these issues, a QFD-based methodologyl@asdoped for the risk assessment of

a working task concerning the use of a machinegygonstruction site.

3. Research approach

The proposed safety assessment tool consists eé thrain phases, each based on the HoQ

augmented by the ANP approach to assess the indeswer relationships [57].

3.1. The HoQ augmented by the ANP

The ANP approach uses pairwise comparisons to ah@nevaluation and ranking of alternatives
while deciding on the optimal solutions to a comppgoblem [40, 58-59]. Hence, the use of the

ANP can support engineers in reducing the limitegiof the traditional QFD in differentiating the
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relative importance of different attributes effgety [60]. In Figure 4 a scheme of such an
integration is reported, where the CRs (i.e. thédts”) correspond to the HoQ's inputs, while the

ECs (i.e. the “"hows”) represent the outputs [61].

[Figure 4 near here]

Figure 4. Scheme of the integration of the ANP apph in the HoQ.

Accordingly, the augmented HoQ can be represergeql Bigure 5, where:

* Wj is an eigenvector representing the weight (i.e.tiportance level) of each EC.

* W, is the correlation matrix representing the inngpehdency matrix of CRs.

* W; is the relationship matrix, where the pairwise panson of each CR with respect to

each EC is determined.

* W, is the correlation matrix among representing itmeer dependency matrix of ECs.

* Wsis an eigenvector representing the weight of €2Ch

[Figure 5 near here]

Figure 5. Scheme of the HoOQ augmented by the ANP.

In practice, the integration of the ANP within thi®Q is carried out by means of the

following procedure:

1. Definition of the list of CRs and ECs.
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. Definition of the eigenvector W pairwise comparisons of CRs with respect to €akhare

carried out taking into account that there is npetielence among the CRs. The output)(W

is represented by the importance degrees of each CR

. Definition of the correlation matrix W pairwise comparisons of CRs with respect to each

CR are performed. The output §\Ms represented by the importance degrees of €&th

(inner dependencies).

. Definition of the eigenvector W pairwise comparisons of ECs with respect to €aRhare

carried out taking into account that there is npetelence among the ECs. The output is

represented by the relationship matrix iVat provides the importance degrees of each EC.

. Definition of the correlation matrix W pairwise comparisons of ECs with respect to each

EC are performed. The output (s represented by the importance degrees of E&ch

(inner dependencies).

. Definition of the inter-dependent priorities of CRbe interdependent weight of CRs is

calculated by means of the following equation:

Wers = (W2 X W) (1)

. Definition of the inter-dependent priorities of EGQke interdependent weight of ECs is

calculated by means of the following equation:

Wees = (Wa X W) (2)

. Definition of the overall priorities (\4): the overall priorities of the ECs are calculatsd

multiplying the four resulting weight vectors/mags as in the following equation:

W = (W4 X W3) X (W2 X W1) = Wecs X Wers (3)
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As per the criteria used in the pairwise compassdtime judgment scores reported in Table 1 can be

used [34].
[Table 1 near here]

Accordingly, to verify the consistency of each pase comparison matrix fom elements, the
values reported in Table 2 for the computation ltd Random Index (RI) [40] can be used

following equations:

Consistency Index (CI) = /1,,::_:711 4)

Consistency Ratio = % (5)

where Anax represents the largest eigenvalue of the pairatseparison matrix, while ClI is the
consistency index. It has to be noted that theistarey ratio of a pairwise comparison matrix has

to be lower than 0.1 to guarantee the consistambyiman judgement [34].

[Table 2 near here]

3.2. The Hazard Function Deployment (HFD) methodology
Following such a scheme, the proposed methodolagyiges a bottom-up approach for

hazards identification and assessment, i.e. whemsfog on a specific task, the analysis starts from
the identification of the working activities reldté such a task, followed by examining the hazards
and the possible hazardous situations and howdaeyead to harms [49]. The general scheme of
the proposed approach, called Hazard Function Demat (HFD), is shown in Figure 6, where the
main phases are the followings:

Phase |. Hazard types’ assessment: from the aesivihat characterize a certain working task

(e.g. the use of a machinery), hazard types araetbnd assessed.
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Phase Il. Hazardous events’ assessment: starbing thie type of hazards, hazardous situations
and events are defined and assessed.
Phase lll. Hazards effects’ assessment: startong the hazardous situations and events, effects
and consequences are defined and assessed.
With reference to the scheme proposed in Figuie e name of each matrix and vector

the number of the phase was added. For exampleqtregion (3) for Phase | becomes:

W= (Wa X W3)) X (W2 X W) (6)

[Figure 6 near here]

Figure 6. Scheme of the HFD approach.

The definition of the various parameters of the¢hHoQs should be carried out with the
support of experts and experienced operators. df) ém the one hand, the experts’ consultation
concerning the importance of both hazardous sdnatevents and their possible consequences can
facilitate the risk assessment activities, sinae rdnking provided already takes into account the
probability factors based on the experts’ know-htivarder to prevent any bias in the assessment
activities carried out by the group of experts, Bephi technique can be used. Such a tool is a
well-known means of gathering experts' opinionsodlgh several rounds of consultation and
controlled feedback of results [62]. In particuliais a suitable approach when the analysis dhrrie
out is based on a subjective assessment (e.getimitidn of the weights or importance levels) [63]

On the other hand, also the feedback from expeztbrmperators can help the safety
managers in better addressing the implementatiothefHoQs, especially for what concern the
definition of the specific activities carried ouhan performing a task [47]. It has to be noted ihat
the present study a working task is the generagmsent the operator carries out (e.g. use of the
in-transit concrete mixer). A working task consisfsseveral specific activities (e.g. setting the

machinery, discharge the concrete, cleaning). Maean our model the output of the analysis of
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the hazardous situations (i.e. the specific worlgiigation during a working activity that exposes
the operator to the hazard) and hazardous eveathi@Gw the hazard can cause harm) is synthetized
in the category “hazardous situations and eveirisdrder to verify the validity of this approach, i
was applied to an empirical case study conceriiagise of a truck mixer in a construction site. On
these considerations, in order to define and adbessarious parameters of the three HoQs, the
company’s operators are interviewed in order tongethe activities related to the use of the work
equipment, including all foreseeable operationsyels as experienced accidents, near misses, and
operative troubles.

The list of the CRs and ECs for each phase, as agetheir mutual assessment, can be
defined in collaboration with a group of experts time field of occupational safety in the

construction industry.

4. Case Study

The validity of the HFD approach was tested inafmdration with a company that operates in the
construction industry where the use of an in-ttagsncrete mixer was considered. As far as
accidents related to this type of machinery is eomed, official statistics cannot be considered
exhaustive. In fact, on the one hand data provirethe Italian Workers’ Compensation Authority

(INAIL) provide a detailed information concerninget fatal accidents occurred in recent years
while operating a truck mixer: in Table 3 the numbaed the type of causalities of fatal accidents

that occurred in the period 2008-2015 are repdaéd
[Table 3 near here]

On the other hand, information concerning non-fatetidents, especially when minor
injuries incurred, is often treated with a low ambof detail, while data concerning these injuries

are provided at a macro level (i.e. accidents wmiwngl any heavy machinery in construction sites).



284  The study was carried out in collaboration with tamall sized companies operating in such a
285  sector. More in detail, 15 operators were inter@dwo gather practical information concerning the
286  working activities that accomplish the task “usetlod in-transit mixer” and the safety problems
287 they have experienced while performing them. Og, thigroup of experts was defined, consisting
288 of 2 company managers (1 per each company) who &gverience both as safety managers and
289  supervisors, and 3 experts belonging to the Itallorkers’ Compensation Authority, who have
290 experience in machinery safety and ORA in the cansbn industry. The group was asked to
291  define the list of activities, the related hazanoets, the hazardous events and situations andsgvent

292  as well as the potential consequences/possibleshiarorder to fill the three HoQs (Table 4).
293 [Table 4 near here]

294 It has to be noted that in Table 4 the various el@sare summarized due to space limits,
295 since a more formal definition of each of them veblidve required longer sentences (e.g. instead of
296  “Direct/indirect contact with electrical parts” aonme appropriate sentence to indicate this hazardous
297  situation should be “The operator is close to adootive metallic body of the machinery or to an
298 unprotected/worn out cable”). Then, following th@gedure exposed in the previous section, the
299  ANP-QFD approach was applied. To reduce the patebias and to respect the privacy concerns
300 of the companies, the Delphi technique was usetheénassessment activities carried out by the
301 group of experts. More precisely, once collectedittiormation from the operators, two rounds of
302 consultations were organized by means of questicemaWhile the first round concerned the
303 definition of the elements of each phase of thecgaare (i.e. the list of activities, hazard types,
304 hazardous events, etc.), the second round concénegohirwise comparisons. In detail, data used
305 as input in the meetings were provided by mearstrottured (in the case of the first round) and
306 semi-structured (in the case of the pairwise compas) questionnaires. It has to be noted that,
307 although the participants knew each other, indigidesponses to questions were asked separately

308 and kept anonymous in the further discussion terdehe the final results of each round.
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4.1 Phase |l

In collaboration with the group of experts, therp@e comparisons among activities and hazard

types were carried out based on the criteria expwssection 3:

Eigenvector W,: the group of experts was asked to respond toeatmunnaire, where each

qguestion inquired the relative importance betweainspof activities concerning the goal

(determine important hazard types). calculatechas/s in Table 5.

Matrix Wj3: the comparison among hazard types was carriecangidering the impact
level of activities on each of the hazard typese Tasponses were provided using the
criteria exposed in Table 1. It is worth nothingtttwhen comparing an element of the
matrix to itself (e.g. H1 compared to H1) a scofelds given (hence the values of the
diagonal are equal to 1); while the values below thagonal are the inverse of the
corresponding values above the diagonal. This méaals if a; represents the relative
importance of thé-th element compared to the¢h element, then the relative importance of
the j-th element compared to theh element is represented By = 1/a;. To better clarify
the calculation mechanism, all the matrices usedetove the values for the matrix \\are

reported in Annex I.

Matrix W,: the comparison among the activities was performasithg as criterion the
occurrence of accidents (without considering tlediects). In other words, the judgement
score of 1 was given when the occurrence of actsdguring an activity A was considered
equal to the one of an activity B. Hence, followihg same computational process reported
in Annex |, the type of questions used in this case: “With respect to Al (arrival,
departure, transit), what is the relative imporean& A1 compared to A2; A1 compared to

A3; Al compared to A4; etc.?” (Table 6).

Matrix W,: the comparison among the hazards was performed wss criterion the
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relevance of hazard types [34]. Following the sarpenputational process reported in
Annex |, the type of questions used in this cass: W&/ith respect to H1 (mobility), what is

the relative importance of: H11 compared to H2;ddinpared to H3; etc.?”.
[Tables 5-6 near here]

In detail, the final results obtained in the fipbiase are shown in Table 7, where:

* Wy X W3 provides the interdependent weight of hazard typéen compared with

reference to working activities;

Wy x Wy, represents the interdependent weight of workingyiies when compared with

reference to hazard types; and

*  Ws provides the importance weights of hazard typestheir overall priorities.

[Table 7 near here]

4.2 Phasel|

Following the same approach as in Phase |, atdfasige the overall priorities of the possible
hazardous events were calculated, as shown in Balaere:
Wy X W3, provides the interdependent weight of hazardownhtsvwhen compared with
reference to hazardous events;
o Wy X Wy = Wy X Wy, represents the interdependent weight of hazambstgerived from
Phase I; and

* Ws, provides the weights of hazardous events, i.@: tverall priorities.
[Table 8 near here]

The numerical values of each matrix of Phase Ireperted in Annex Il
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4.3 Phaselll

Similarly, in the last phase of the procedure therall priorities of the possible consequences were

calculated, as shown in Table 9 and Table 10, where

Wy X Wy represents the interdependent weight of hazardeests derived from Phase Il

(Table 9);

o Wy X Wy provides the interdependent weight of possiblesequences when compared

with reference to hazardous events (Table 10);

*  Wsy provides the weights of the possible consequeficdse 9).

[Table 9-10 near here]

The numerical values of each matrix of Phase 8Iraported in Annex Il.

5. Discussion of results

5.1. The case study outputs

The results obtained from the case study can bensuized in the following figures, where the
weights (i.e. the overall priorities) of the hazayges (Figure 7), the hazardous events (Figure 8)
and the possible consequences (Figure 9) are sliowte that the values of the "y’ axes are

dimensionless, as they are normalized values).

[Figure 7 near here]

Figure 7. Weights of hazard types.

[Figure 8 near here]

Figure 8. Weights of hazardous events.
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[Figure 9 near here]

Figure 9. Weights of possible consequences.

According to these data, the most relevant consesu/hile operating the truck mixer is
represented by C2, i.e. scrapes, lacerations, amdels. Such a result augments the information
provided by accident statistics, since this typeinpdries are hardly reported as they normally
require a few days to recover from. In fact, acoggdo law requirements, if an accident causes an
injury recoverable within three days (apart frore ttay when the accident occurred), it should not
be reported. Hence, while accidents that causedusemjuries are reported correctly, accidents
with minor consequences (e.g. those ones requiewgdays of recovery) are reported with fewer
details. Therefore, official statistics on accideat work provide incomplete information on what
happens in reality regarding the assessment ofmmijwies. Moreover, it is consistent with results
obtained in the second phase of the procedure,enthermost important hazardous event concerns
slipping when getting in/out from the truck’s calfifil), followed by impacts while discharging the
drum (E9). In other words, the results show (segifeis 8 and 9) the relevance of accidents related
to slipping and impacts, which mainly lead to sespcontusions, lacerations, and bruises injuries,
consistently with the findings of Lipscomb et @5]. This is also in line with findings by Shibuya
et al. [66], who pointed out that slips and triggowld be considered a contributing factor for
occupational injuries among truck drivers. Accogiyn these results also confirm implications
provided by Aminbakhsh et al. [67], who reportedtttirips and falls” together with risks related to
the use of “machinery and equipment” are amongntiost significant risks in the construction
industry. This can help engineers in carrying @k assessment more correctly and easily. In other
words, when we consider the traditional approadlovied to perform the hazard analysis, for

instance by means of the Preliminary Hazard Anal{BHA) method [52, 68], the likelihood of the
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events is usually classified into rather broad gaties (e.g. using a scale ranging from 1 (very
unlikely) to 5 (very likely)). Hence, in our caseidy, we should assign a score of 5 to C2 and 1 to
C15 (death), which means that the ratio betweemtle 1l to 5, while following the proposed
procedure such a relationship is extended to 10t¢s@e Table 11). This wider range represents a
value much closer to the reality.

To better evaluate these differences, the groupexgferts was asked to perform the
occupational risk assessment following the ruleghefPHA method [69] and the hints provided by
the report ISO/TR 14121-2 [49]. More in detall, leaisk type (Rs) corresponds to the occurrence
of the related hazardous event (i.e. R1, R2, R3agécthe risks related to the occurrence of E1, E3
E3 etc. that lead to the consequence C1, C2, C3resdpectively). As for the traditional approach,

the risk level (R ) was estimated by means of the equation (7):

R=PxS )

where P is the probability of occurrence of a hdaas event estimated through a 1 to 5
scale (1 = very unlikely — 5 = very likely) and 8dicates the severity of its consequences
(estimated by means of a 1 to 5 scale, where 1nomeffects and 5 = catastrophic effects (e.g.
death)). The estimation of the risk level in acemck with the HFD methodology {B) was
performed using the output of the proposed appraaehweight of the possible consequences (Cs)
determined at the end of Phase Il was multiplied {he corresponding values of Severity (S)

obtained with the traditional approach (Table 11).
[Table 11 near here]

More precisely, the comparison between the resilthe two risk assessment activities is
shown in Figure 10, where the solid line connelsesvtalues (i.e. the importance levels) related to
the risks computed following the traditional approgRy), while the broken line represents the

results achieved by means of the HFD approa¢hp)RThese results bring to light that significant
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differences occur depending on the approach usedltolate risks. First, it has to be pointed out
that the traditional approach provides slight défeces among the various risks: i.e. risks varg in
small range of values of about 5.5 %. Conversédlg, HFD approach leads to a higher level of
differentiation of the risks’ values: i.e. circa.2P6. Secondly, the HFD approach allows engineers
to clearly distinguish the difference of one ris&@h another since risks with a similar weight were
not found, while some strong resemblances can berebd among the results achieved through the
traditional approach. In addition, also when haaasdsituations that might lead to diseases were
evaluated, the HFD approach provided a clearef vwesolution, as in the case of R10 (stress and

fatigue).

[Figure 11 near here]

Figure 11. Risks’ values determined through thditi@nal (Rr - solid line) and the HFD (Rp -
broken line) approaches.

The results achieved were considered very poditora the group of experts, especially for
what concerns the assessment of minor injuriegheis impact is often underestimated when
performing traditional risk assessment. Hence, ghesues need to be addressed better at the

company level by means of a more specific traimhthe operators.

5.2. The methodol ogy

From a safety management point of view, the propp@ggroach does not start from a standardized
set of health and safety risks, but it relies guacess-oriented analysis considering all the diets/
related to a specific task. Hence, it provides @trdoution to the research hints and clues stressed
by Zhou et al. [21], who underlined the lack of staction safety research at the working task
level. This is also in line with Gangolells et |HI6], who remarked the lack of construction safety

research on the specific working tasks. Commonth wther research works in different fields (e.g.
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in [70-72]), this study found that the coordinatexe of QFD and ANP can offer a more precise
analysis due to the integration of interdependefationships among the attributes, providing
consistent information as to improve the safetyditions at the company level. Hence, such an
approach allowed us to effectively correlate wogkattivities related to a specific task (such a&s th
use of a working equipment), hazardous events asslifple consequences.

These practical implications for companies arena ith research clues provided by Seker
et al. [45] and Samantra et al. [73]), and can besiclered beneficial when considering that
traditional risk assessment activities provide latineely limited scoring “resolution” (i.e. when
different risks get the same score as well as whenscores vary in a limited range of values),
especially when data concerning the likelihood ofuwsrence are poor. Such an aspect is quite
relevant in SMEs, as observed by Bohm and Hardg [Who carried out a study on risk perception
and risk assessment of dumper drivers operatingpistruction sites. On the contrary, the HFD
approach allows a more accurate assessment agkise énsuring a clearer ranking of them that can
lead to a more efficacious decision making. Thisulte answering our research question, also
accomplishes research suggestions provided by Kihak [75], who stressed on the importance of
providing a more thorough risk analysis approacbring to light the relevance of minor injuries
and uncomfortable working situation. In other worblé-D provides a more precise risk analysis
and ranking than the traditional risk assessmeptageghes, even when the availability of official
statistics concerning workers’ accidents is limited

Finally, the HFD approach was compared with thevabmentioned studies from the
literature concerning the application of the QFDtimod for risk assessment in the construction
industry. As summarized in Table 12, the propoggm@ach can provide more practical insights for
risk assessment of working tasks (e.g. the useashimery or work equipment). This accomplishes
the need of providing the improvement of safetydibons not relying on the compliance with

normative requirements only, but also considerrggractical context of working activities [76].
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[Table 12 near here]

Hence, it has to be pointed out that such an approan accomplish the need of developing
new risk analysis methods to identify and assess lin an acceptable way so that the information
is reliable for decision making [3, 32, 77], augtieq the knowledge on the use of QFD in the

safety management context.

5.3. Practical implications

From the practical point of view, the HFD methodpiextends the benefits of the traditional JSA
approach. In fact, on the one hand, it relies gmogess of identifying activity-related factorsttha
may result in potential hazards, as for exampleube of a work equipment, with the aim of
proposing rules to eliminate or control these hdga®n the other hand, the HFD provides a more
structured framework, which takes into accountrthgual influences that might arise among the
different hazards and the related potential effemigmenting the effectiveness of risk assessment
activities, since carrying out risk assessment ge@uential manner (i.e. cause-effect analysis) is
insufficient to consider the complexity of thesdenactions. Moreover, although the proposed
methodology consists in the definition of a sewésnatrices that make the HFD’s process more
complex than other diffused ORA approaches (e.g.J8A), it is worth nothing that the HFD
assessment criteria rely on simple pairwise corspas, enabling a clearer understanding and
differentiation of the results.

Another contribution of the paper is the preseatatif a concrete case of occupational risk
assessment related to the use of a diffused warpegnt in the construction sector, including the
exemplification of each step of the HFD methodoldgyis contribution is more relevant to practice
in this industry, but it is also useful to advarice scientific knowledge regarding ontologies in the

adoption of task-based ORA models.
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5.4. Limitations

However, despite these positive aspects, the presedy presents some limitations. Firstly, the
computational efforts required to apply the ANP raggh might be problematic and time-
consuming for unexperienced practitioners. The ldgweent of a procedure based on the
implementation of an ease-to-use software caniogrteduce this drawback, making the usability
of the HFD methodology larger and more suitabledorunexperienced audience. Similarly, the
role of costs related to safety measures shoutdlsdgaken into account to provide companies with
a more complete approach [78-80]. Then, in the egpgroup, a difficulty emerged when the
effects of noise and vibrations were consideredcéghese concerns not taken into account in the
final results. To address these limitations, a nu@tiled differentiation of possible consequences
might help engineers in providing better resultbe Timplementation of fuzzy logic could also
facilitate the assessment of this type of hazardeffects, further reducing possible errors or
inconsistencies in the evaluation [34, 81]. Finaltyhas to be underlined that the results were
obtained from a single case study. Hence, whileutieeof a single case-study as a research tool for
exploratory investigation and to generate new wtdadings is recognized by several authors [82-

83], caution is needed when generalizing the figslif84].

6. Conclusions

This study proposes a novel tool, based on thgiated use of QFD and ANP, which is aimed at
supporting safety managers in performing risk assest of working tasks in the construction
sector. Practical results showed that the HFD amtrocan be used for the risk assessment
effectively, allowing engineers to obtain the pitipof hazards and possible consequences, and thus
of the interventions aimed at increasing the salegl of the working activities considering the
mutual relationships among these factors, whileicedy the ambiguity of qualitative assessment

criteria used in traditional risk assessment atisi Hence, this study can provide a basis for the
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development of occupational risk assessment melbgiés and for practitioners in this type of
industry. This article is the result of an initislage of development of the HFD approach: to
augment its validity reducing the above-mentionedtations further work is needed. Currently,
both the development of a procedure based on teeolisn ease-to-use software as well as its
application to different industries, e.g. the agitigral sector that presents similar peculiarifresn

the occupational safety point of view [85-87], beéng analyzed.
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Table 1. The ANP judgement scores when considénwogcharacteristics A and B.

Judgement Rule Score

Equal If .A z_and B have the same behaviour/performance in relation to the assessment 1
criterion

Moderate If the performance of A is moderately higher than the B’s one. 2-3

Strong If the performance of A is strongly higher than the B’s one. 4-5

Very strong If the performance of A is much higher than the B’s one. 6-7

Extreme If the performance of A is extremely higher than the B’s one. 8-9




Table 2. Values of the Random Index (RI) dependimghe number of elements [34].

Number of

(RI)

3 4 5 6 7 8 9 10 11 12 13 14 15
elements (m)
Value of the
Random Index | 0.52 | 0.89 | 1.11 | 1.25 | 135 | 1.40 | 1.45 | 149 | 1.52 | 1.54 | 1.56 | 1.58 | 1.59




Table 3. Types of causal factors that lead to fataldents in the period 2008-2015 (source: [59]).

CAUSAL FACTORS 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015

Hit by falling materials when
operating the machinery

Unintended movement of
the truck/Roll over

Contact with the machinery
parts

Unintended starting of the
machinery

Hit by ejected materials 1

Electric shock (direct) 1 1 1

Electric shock (indirect) 1 2 1




Table 4. List of activities (As), hazard types (H®zardous events (Es), and possible consequences

(C).

ACTIVITIES (As) HAZARD TYPES (Hs)
Al | Arrival/Departure H1 | Mobility
A2 | Preparation H2 | Mechanical
A3 | Direct discharge H3 | Electrical
A4 | Discharge into a concrete pump H4 | Environmental
A5 | Discharge into a bucket H5 | Materials
A6 | Final operations H6 | Ergonomics

H7 | Interferences

HAZARDOUS EVENTS (Es) CONSEQUENCES/POSSIBLE HARMS (Cs)
E1 | Slipping when getting in/out of the truck C1 | Intoxication
E2 | Contact with the rotating drum while operating C2 | Scrapes, Lacerations, Bruises, Abrasions
£3 Contact with heated surfaces while operating the c3 | Fractures
drum
u ted starti f th hi hil
E4 nexp.ec ed starting o ¢ Mmachinery while C4 | Cutting, Severing upper limbs
operating the drum
Es Unl'ntenf:lgd movement of the truck/Roll over C5 | Cutting, Severing lower limbs
while driving
E6 | Falls from heights when working on the drum C6 | Head injuries
E7 | Direct/indirect contact with electrical parts C7 | Hearing illnesses
Es P.FOJeCtIC.m of high pressure fluids/materials while 8 | Eye illnesses
discharging the drum
E9 | Impacts while discharging the drum C9 | Respiratory illnesses
E10 Slipping/Low falls, Trips while discharging the C10 | Stress, Fatigue
drum
E11 Cut'tlng, Severing C%urmg final operations (cleaning, C11 | Burns (including abrasive effects of sand)
maintenance, settings)
Inhalation or contact with dust and hazardous
£12 substances while operating the drum (caus.tlc 12 | Back injuries
effect of the fresh concrete because of its alkaline
nature)
E13 | Entanglement, trapping while cleaning the drum C13 | Thorax injuries
E14 | Severing, cutting while cleaning the drum C14 | Loss of muscle control (electrical shock)

C15 | Death




Table 5. Correlation matrix used to calculate tigemvector W,.

Activities (As) Average W
Al A2 A3 A4 A5 A6 values u
Al 1.000 7.000 5.000 5.000 5.000 3.000 3.714 0.472
A2 | 0.143 1.000 0.333 0.333 0.333 0.250 0.331 0.042
A3 | 0.200 3.000 1.000 1.000 1.000 0.333 0.765 0.097
A4 | 0.200 0.167 1.000 1.000 1.000 0.333 0.472 0.060
A5 | 0.200 3.000 1.000 1.000 1.000 0.333 0.765 0.097
A6 | 0333 4.000 3.000 3.000 3.000 1.000 1.817 0.231




Table 6. Results of the pairwise comparisons toprdmthe relationship matrix MV

W,, (Correlation Matrix)
Al A2 A3 Ad A5 A6
Al 0.280 0.247 0.247 0.247 0.247 0.227
A2 0.046 0.044 0.054 0.054 0.054 0.042
A3 0.102 0.100 0.109 0.109 0.109 0.100
A4 0.102 0.100 0.109 0.109 0.109 0.100
A5 0.102 0.100 0.109 0.109 0.109 0.100
A6 0.368 0.460 0.291 0.291 0.291 0.530




Table 7. Final results of Phase |, wherg Wovides the weights of hazards (Hs).

Wy x W3,
AL | A2 | A3 | A4 | A5 | as Warx Wa W
H1 | 0387 | 0.358 | 0.426 | 0.426 | 0.426 | 0.349 | [ A1 | 0.2580 H1 | 0.3849
H2 | 0.174 | 0.162 | 0.180 | 0.189 | 0.189 | 0.158 | | A2 | 0.0473 H2 | 0.1727
H3 | 0.031 | 0.029 | 0.034 | 0.034 | 0.034 | 0.028 | [ A3 | 0.1034 H3 | 0.0310
H4 | 0.074 | 0.066 | 0.082 | 0.082 | 0.082 | 0.063 | [ A4 | 0.1034 H4 | 0.0721
Hs | 0.073 | 0.067 | 0.081 | 0.081 | 0.081 | 0.065 | | A5 | 0.1034 Hs | 0.0723
He | 0.085 | 0.081 | 0.092 | 0.092 | 0.092 | 0.079 | | A6 | 0.3896 H6 | 0.0850
H7 | 0.177 | 0.165 | 0.190 | 0.190 | 0.190 | 0.158 H7 | 0.1740




Table 8. Final results of Phase I, wherg,Wrovides the weights of the hazardous events (ES).

Wy X W3y
H1 H2 H3 Ha H5 He H7 Wanx Wa Wa
E1 | 0195 | 0196 | 0197 | 0195 | 0195 | 0.194 | 0.196 || H1| 0.382 E1 | 0.194
E2 | 0.088 | 0089 | 0090 | 0089 | 0089 | 0088 | 0089 ||H2| 0.175 E2 | 0.088
E3 | 0.085 | 0086 | 0086 | 0085 | 0085 | 0085 | 0085 || H3| 0031 E3 | 0.085
E4 | 0036 | 0036 | 0036 | 0036 | 0036 | 0036 | 0036 || H4| 0068 E4 | 0.036
E5 | 0.036 | 0036 | 0037 | 0036 | 0036 | 0036 | 0036 || H5]| 0.070 E5 | 0.036
E6 | 0.055 | 0054 | 0055 | 0054 | 0054 | 0054 | 0055 || H6| 0.086 E6 | 0.054
E7 | 0014 | 0014 | 0014 | 0014 | 0014 | 0014 | 0014 || H7 | 0.181 E7 | 0014
E8 | 0.064 | 0.064 | 0064 | 0063 | 0063 | 0063 | 0.064 E8 | 0.063
E9 | 0.134 | 0134 | 0135 | 0134 | 0134 | 0133 | 0.134 E9 | 0.133
E10 | 0.115 | 0.116 | 0117 | 0115 | 0115 | 0.115 | 0.116 E10 | 0.115
E11 | 0088 | 0088 | 0089 | 0088 | 0088 | 0088 | 0.089 E11| 0.088
E12 | 0.063 | 0063 | 0064 | 0063 | 0063 | 0063 | 0.063 E12 | 0.063
E13 | 0.015 | 0015 | 0015 | 0015 | 0015 | 0015 | 0.015 E13 | 0.015
E14 | 0011 | 0011 | 0011 | 0011 | 0011 | 0011 | 0011 E14 | 0.011




Table 9. Final results of Phase Il (a), whergVgrovides the weights of the possible

consequences (Cs).

Wi X Wy Wsy Ranking
E1l 0.193 Cc1 0.037 11
E2 0.088 (ov) 0.216 1
E3 0.084 Cc3 0.114 4
E4 0.036 Cc4 0.116 2
E5 0.036 Cc5 0.114 3
E6 0.054 Ccé 0.095 5
E7 0.014 Cc7 0.040 10
E8 0.064 Cc8 0.057 7
E9 0.133 c9 0.056 8
E10 0.115 C10 0.068 6
E11 0.088 C11 0.042 9
E12 0.062 C12 0.033 12
E13 0.015 C13 0.031 13
E14 0.011 c14 0.014 14
C15 0.009 15




Table 10. Final results of Phase 1l (b): relatioipsmatrix.

W x Wy,

El E2 E3 E4 ES E6 E7 E8 E9 E10 E11 E12 E13 E14
C1 0.037 0.038 0.038 0.038 0.038 0.037 0.037 0.037 0.038 0.037 0.038 0.037 0.037 0.037
c2 0.214 0.227 0.224 0.222 0.220 0.215 0.210 0.210 0.221 0.213 0.219 0.211 0.216 0.216
c3 0.113 0.118 0.118 0.117 0.118 0.113 0.111 0.111 0.118 0.113 0.117 0.112 0.114 0.114
c4 0.115 0.119 0.118 0.120 0.120 0.114 0.113 0.113 0.120 0.114 0.119 0.113 0.115 0.115
c5 0.113 0.117 0.117 0.118 0.118 0.113 0.111 0.112 0.118 0.113 0.117 0.112 0.114 0.114
C6 0.094 0.098 0.098 0.097 0.096 0.094 0.092 0.093 0.097 0.094 0.096 0.093 0.095 0.095
c7 0.040 0.042 0.041 0.041 0.041 0.040 0.039 0.039 0.041 0.040 0.041 0.039 0.040 0.040
C8 0.056 0.059 0.058 0.058 0.058 0.056 0.055 0.055 0.058 0.056 0.057 0.056 0.057 0.057
(6°] 0.056 0.058 0.058 0.058 0.057 0.056 0.055 0.055 0.058 0.056 0.057 0.055 0.057 0.057
Cc10 0.068 0.071 0.070 0.070 0.069 0.068 0.067 0.067 0.070 0.068 0.069 0.067 0.069 0.069
Cl1 0.042 0.044 0.043 0.044 0.043 0.042 0.041 0.041 0.044 0.042 0.043 0.041 0.043 0.043
C12 0.033 0.034 0.034 0.034 0.034 0.033 0.032 0.032 0.034 0.033 0.034 0.033 0.033 0.033
C13 0.030 0.032 0.031 0.032 0.031 0.030 0.030 0.030 0.032 0.030 0.031 0.030 0.031 0.031
C14 0.014 0.015 0.015 0.015 0.015 0.014 0.014 0.014 0.015 0.014 0.015 0.014 0.015 0.015
C15 0.009 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.010 0.009 0.009 0.009 0.009 0.009




Table 11. Comparison of the risk assessment’steesul

. Values of Risk
List of ' HFD approach Traditional approach (normalized)
Consequences Severity Weight of
(Cs) (1-5 scale) Consequences Ruro P Rr Risk Ry Rurp
(normalized) (CxS) | (1-5scale) | (Rr=PxS) |code
Cc1 2 3.57 7.14 3 6 R1 | 6.67 2.91
Cc2 1 20.70 20.70 5 5 R2 | 5.56 8.45
C3 3 10.95 32.85 2 6 R3 | 6.67 13.41
c4 3 11.10 33.30 3 9 R4 | 10.00 | 13.60
c5 3 10.95 32.85 3 9 R5 | 10.00 | 13.41
C6 3 9.07 27.21 3 9 R6 | 10.00 | 11.10
c7 2 3.83 7.66 2 4 R7 | 4.44 3.13
Cc8 2 5.42 10.84 2 4 R8 | 4.44 4.43
Cc9 2 5.41 10.82 2 4 R9 | 4.44 4.42
Cc10 3 6.54 19.62 2 6 R10 | 6.67 8.01
Cl1 3 4.06 12.18 2 6 R11 | 6.67 4.97
C12 3 3.18 9.54 2 6 R12 | 6.67 3.90
C13 3 2.94 8.82 2 6 R13 | 6.67 3.60
Cl4 5 1.39 6.95 1 5 R14 | 5.56 2.84
C15 5 0.89 4.45 1 5 R15| 5.56 1.82
Probability (P) = 1 (very unlikely) — 5 (very likely); Severity (S) = 1 (minor effects) - 5 (Catastrophic).




Table 12. Comparison of the results of prior steiduh the present study.

Method Approach n.o of phases input output Correlations Risk Practical case Data source
(HoQs) assessment | assessment study
Liu and Construction Augmentation Company
. Top-d 2 . H d ANP Y
Tsai [34] op-down items azard causes by FMEA es experts
General set of General Construction
Bas [35] Bottom-up 3 Set of working preventi.ve/pr No assessment No exp.er_t/
tasks otective related to Official
measures working tasks statistics
Specifi
. Specific set of peciiic
Present Activities that reventive/ assessment Group of
Bottom-up 3 accomplish a P . ANP related to Yes experts and
study . protective .
working task working operators
measures

activities




