Sparse Indirect Inference
Inferenza indiretta sparsa

Stolfi Paola and Bernardi Mauro and Petrella Lea

Abstract In this paper we propose a sparse indirect inference estimator. In order to
achieve sparse estimation of the parameters, the Smoothly Clipped Absolute Devi-
ation (SCAD) ¢;—penalty of Fan and Li (2001) is added into the indirect inference
objective function introduced by Gourieroux et al. (1993). We derive the asymptotic
theory and we show that the sparse-Indirect Inference estimator enjoys the oracle
properties under mild regularity conditions. The method is applied to estimate the
parameters of large dimensional non—Gaussian regression models.

Abstract In questo lavoro si propone un metodo di stima indiretta sparsa. A tal fine
la funzione di penalita SCAD—{ di Fan and Li (2001) e introdotta nella funzione
obiettivo del metodo di inferenza indiretta di Gourieroux et al. (1993). Sotto usuali
condizioni di regolarita vengono inoltre dimostrate la consistenza e la Normalita
asintotica unitamente alle proprieta di stimatore ORACLE. Il metodo e illustrato
con l'applicazione alla stima di modelli di regressione lineare con distribuzione
non—Gaussiana del termine di errore.

Key words: Indirect inference; sparse regularisation; SCAD penalty, stable non—
Gaussian models.

1 Introduction

Indirect inference (II) methods (Gourieroux et al. 1993, Gallant and Tauchen, 1996)
are likelihood—free alternatives to maximum likelihood or moment-based estima-
tion methods for parametric inference when a closed—form expression for the den-
sity is not available. Throughout the paper we consider the following dynamic model
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yl:r<ylflaxlaula19) (1)
U = ¢ (ulflagla 19)’ (2)

where X, are exogenous variables whereas #, and & are latent variables. We assume
that: (i) x; is an homogeneous Markov process with transition distribution fq inde-
pendent of & and u,; (ii) the process & is a white noise whose distribution Gy is
known, and (iii) the process {y;,x,} is weekly stationary. We further assume that
the joint density function of the observations {yl,x,}szl is not known analytically.
The II method replaces the maximum likelihood estimator of the parameter ¢ in
equations (1)-(2) with a quasi-maximum likelihood estimator which relies on an
alternative auxiliary model and then exploits simulations from the original model to
correct for inconsistency. Specifically, let Qr (yr, X7, B) the auxiliary criterion func-
tion, which depends on the observations {y;, X },_; and on the auxiliary parameter
B € B C R4, such that limy .. Or (¥, X7, B) = Ow (Fo, Go, Y0, ), a.s., where O is
the true parameter of interest, then

Br = argmax Q7 (yr.x7, B). 3
BeB

Under the additional assumptions that the limit criterion is continuous in 8 and
has a unique maximum f, then the estimator [3T is a consistent estimator of Sy,
that is unknown since it depends on fy and ¥ that are unknown. To overcome this
problem, the II method simulates, for each value of ¥, H paths y’% forh=1,2,....H
and computes the QML estimate Bﬁ for the auxiliary model in equation (3) and
subsequently minimises the following objective function

3¢ —argrmin (Bﬂ zﬁ)a (Bﬂ fﬁ#), @
¢ H = H =

for an appropriately chosen positive—definite square symmetric matrix Q7. Indi-
rect estimator are consistent and asymptotically Normal under mild regularity con-
ditions, see Gourieroux et al. (1993). The most important condition concerns the
binding function that maps the parameter space of the auxiliary model onto the pa-
rameter space of the true model

b<FaGa9>:arg%lagQT<FaGa9aB)a (5)
€

must be one—to—one. We further assume that g—g (Fy, Gy, ) is of full-column rank.
In the following Section we introduce the Sparse—II estimator.
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2 Sparse indirect inference

In order to achieve sparse estimation of the parameter ©% we introduce the Smoothly
Clipped Absolute Deviation (SCAD) ¢;—penalty of Fan and Li (2001) into the II
objective function. The SCAD function is a non—convex penalty function with the
following form

Alyl , ity <2
2 .
i) =1 (a2l =) — iy ifA <y<ad )
Lot ifai <[,

which corresponds to quadratic spline function with knots at A and aA. The SCAD
penalty is continuously differentiable on (—eo;0) U (0;00) but singular at O with its
derivatives zero outside the range [—aA;aA|. This results in small coefficients being
set to zero, a few other coefficients being shrunk towards zero while retaining the
large coefficients as they are. The Sparse II estimator minimises the penalised II
objective function, as follows

B :argngnl)*(ﬁ), (N

where
N 1 HE N (. 1 H
D (v) = (ﬁT 7 Zﬁzh) Qr (ﬁT 7 Zﬁzh) +nYy pa(ol),  ®
r=1 h=1 i

where € is a positive—definite square symmetric matrix. A similar approach in a
different context has been recently proposed by Blasques and Duplinskiy (2015).

3 Asymptotic theory

As shown in Fan and Li (2001), the SCAD estimator, with appropriate choice of
the regularisation (tuning) parameter, possesses a sparsity property, i.e., it estimates
zero components of the true parameter vector exactly as zero with probability ap-
proaching one as sample size increases while still being consistent for the non—zero
components. An immediate consequence of the sparsity property of the SCAD esti-
mator is the, so called, oracle property, i.e., the asymptotic distribution of the estima-
tor remains the same whether or not the correct zero restrictions are imposed in the
course of the SCAD estimation procedure. More specifically, let ¥y = (1901 , 19(? ) be
the true value of the unknown parameter ¥, where 9 € R is the subset of non-zero
parameters and 19(? =0cRFSandletA = {i S 1901 }, we consider the following
definition of oracle estimator given by Zou (2006).
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Definition 1. An oracle estimator O, has the following properties:

(i) consistent variable selection: lim, ..’ (4, = A) = 1, where A, = {i: &; € 3L ..}
(ii) asymptotic normality: /% (8. 190) = N(0,X), as n — oo, where X is the
variance covariance matrix of 191.

In the remainder the Section we establish the oracle properties of the penalised
SCAD II estimator. To this end, the following set of assumptions are needed:

(i)
H
&Tﬁ(f)%‘ Orsxr,Bo) = ZaQ(?’%’”’ﬁO))’ ©)

is asymptotically normal with mean zero, and asymptotic variance—covariance
matrix given by W =limy_..V (&7);

(it)

%
Jim v (f oo ,xr,ﬁo)) I, (10)

and the limit is independent of the initial values zg, forh=1,2,....H;

(iii)
limCov(\/> 98 (y,,xnﬁo) \/>‘9 T(y;,xT,ﬁ0>):Ko, (11

T —o0 3[3
and the limit is independent of zé‘ and zé for h=£ I;
(v)
. 01 /. 32Qu
phm*w (yT,X]',ﬁ0> - 3[33[3/ (FOaGOaﬁOaB()) (12)

and the limit is independent of zg.
The next Theorem states that the estimator defined in equation (7) satisfies the spar-
sity property.
Theorem 1. Given the SCAD penalry function p; (+), for a sequence of A, such thar
A — O, and \/nhy, — o0, as n — oo, there exists a local minimiser & of D* (¥) in (7)
with || — || = G, (n*%> Furthermore, we have

’}ggP({aO:o) ~1. (13)

The following theorem establishes the asymptotic normality of the penalised SCAD
11 estimator; we denote by ' the subvector of ®9 that does not contain zero elements
and by 9! the corresponding penalised II estimator.
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Theorem 2. Given the SCAD penalry function py (|9;]), for a sequence A, — 0 and
Ay —+ o0 as n— oo, then {91 has the following asymptotic distribution:

N 1
Va5 o) iN(o,(Hﬁ)W), (14)

as n — oo, where

—1 -1
W = (b (Fo, Go, ¥0) Qb (Fy,Go,D0)) Wi (¥ (Fo,Go, Do) QF (Fo, Go, B0))

and

Wi =1 (Fo,Go, do) 235" (Io— Ko) J; ' Q¥ (Fy, Go, Do), (15)
where b (Fy, Gy, Og) = W is the first derivative of the binding function
b (ﬁOa GOa 190)

4 Sparse II algorithm

The objective function of the sparse estimator is the sum of a convex function and a
non convex function which complicates the minimisation procedure. Here, we adapt
the algorithms proposed by Fan and Li (2001) and Hunter and Li (2005) to our
objective function in order to allow a fast procedure for the minimisation problem.
To this aim we consider the first order Taylor expansion of the penalty, for ¥ = ¥y

175 (|Biol)

3 Ta (O P), (16)

pa (181]) = pa (| 00]) +

where the first derivative of the penalty function has been approximated as follows:

/
P ([%nl)
(P2 (9] = pa (0} sen (09 ~ A 2o, (17
z
when 9; £ 0. The objective function D* in equation (7) can be locally approximated,
except for a constant term by

s N s aoogh
D7)~ (B-B4,) 2 (B Bh) - 5 X G2 (B-Bh) o)
1 J1 OBk 1 i oph no
+5 (0= ) Ef; 31’; Qﬁf; 31’; (B~ 00) + 5 0P, (80) 9,

(18)
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= ~ _ ! (8
where B} = Sy Bj, and Py, () = diag {P_M'%'ﬁ; ;& Ol } Then the first or-

der condition becomes

oD () 1L IBY s s
v ”*Eh; a0 Q<B7ﬁﬂ0>
1 oBh 1 9B _
+Eh; 3o Qﬁf; 5o (0= 00) +nPy, (%) 9
VEBE e =y 1 HIBE 1 B 9B
’*Eh; 90 Q<ﬁfﬁﬂ0>+ﬁ,§1 90 Qﬁh; F9 (0 %)
+nPln (190) (197190)4»}11)1 (190 o)
=0, (19)
therefore
= = —1
L& aBy 1 aBy
8 =to- {ﬁhil 70 21 X Ty T ()
1 & 3B§0 A (a En _
[2EBho i) wmcal. e

-1

P, (19<’<>)

;o 2D

313;k) o <B *Ejs%) —nP;, (ﬁ(@) 5®

and if ﬁi(k“) ~ 0, then ﬁi(kH) is set equal zero. When the algorithm converges the
estimator satisfies the following equation

0O (ﬁ - Ej;o) —nPy 0 =0, (22)

that is the first order condition of the minimisation problem of the Sparse—II estima-
tor.
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5 Tuning paramenter selection

The SCAD penalty requires the selection of two tuning parameters (a, A ). The first
tuning parameter is fixed at ¢ = 3.7 as suggested in Fan and Li (2001), while the
parameter A is selected using the cross validation function

H N H
CV(A)Z(I?H Z%,fc)g(ﬁ;hzl ,’;l) (23)

where 9, ; denotes the parameters estimate over the sample (UK | 1)\ 7 with A as
tuning parameter. Then the optimal value is chosen as A* = argminy CV (1), where
again the minimisation is performed over a grid of values for A.

6 Application

Lety = (y1,)2,...,vr) be the vector of observations on the scalar response variable
Y, X = (x{,%5,...,xy)" is the (nx p) matrix of observations on the p covariates,
ie,Xj; = (xm 3 Xj2ye e ,xjyp) and consider the following regression model

y=1r6+Xy+e,  €~S4(0,0), 24

where t7 is the 7' x 1 vector of unit elements, § € R denotes the parameter related
to the intercept of the model, ¥ = (%1, 7,...,%) is the p x 1 vector of regression
parameters and Sq (0, ¢) denotes the symmetric o—Stable distribution (Samorod-
nitsky et al. 1994) centred at zero with characteristic exponent o « (0,2) and scale
parameter ¢ > 0. We further assume that the element of the vector of innovations
€= (e,&,...,er) are independent i.e. £; |l &, for any j  k and they are indepen-
dent of x;, for [ = 1,2, ..., p. Indirect inference for Stable distributions has been
previously considered by Lombardi and Veredas (2009). The Sparse—II method re-
quires the definition of the auxiliary model as well as the metric used to compare the
synthetic data generated by the method § with the true data y. As auxiliary distribu-
tion we consider the Student—t regression model defined in equation (24), with the
only difference that the error term follows a Student—t distribution &€ ~ T (0, o2, v).
As regards the metric, we consider the L, distance between the scores of the auxil-

iary model evaluated at the true y and simulated §, i.e., ||V ([3 , y”) -V (B, y) 3 In

Table 1, we report the empirical inclusion probabilities of the regression parameters
obtained over 1,00 replications of the o—Stable regression model defined in equa-
tion (24), for two values of o = (1.70,1.95) with n = 250. The true parameters are
defined in the column (Par.) of Table (24), while the scale parameter of the Stable
distribution is held fixed at ¢ = 0.05. Our simulation results confirm that the sparse
Indirect estimator perform well in detecting zeros in linear non—Gaussian regression
models.
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Par. True  EIP EIP  Par True  EIP EIP
a=170 a=195 a=170 a=195
51 0 0 w0 0651  0.8919
no 2 0 0 w2 0 07500  0.8378
B2 0 0 w3 0 08182 0.9459
B3 0 0 w0 07273 0.9189
w1 0 0 w5 0 07955 0.9730
B2 0 0 ne 0 07273 0.8378
% 3 0 0 w, 0 07727  0.8919
y o1 0 0 ns 0 08182 09189
% 2 0 0 ne 0 0.8636  0.9459
® 3 0 0 w0 0 08636  1.0000
w0 0 0 0 pi 0 08636  0.9459

Table 1 Empirical inclusion probabilities (EIP) evaluated over 1,00 replications for the regression
parameters (3,7) of the o—Stable regression model defined in equation (24).

7 Conclusion

In this paper we introduce the sparse indirect inference (SII) estimator and we ex-
tend the asymptotic theory. Empirical properties of the estimator are evaluated by
means of a simulation study where a moderately large linear regression model with
non—Gaussian innovations is considered. Our results confirm that the SII estimator
performs well in detecting non zero regressor parameters.
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