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1 Preliminaries

An auction with budgets is denoted by A =< n,m,M,S,v,b >. There are n
bidders and m different goods. M =< m1, . . . ,mm > indicates the amount of
supply of each good. For every j ∈ {1, . . . ,m}, there are mj copies of good
j. S =< S1, . . . , Sn > indicates the preference set of each bidder. For every i ∈
{1, . . . , n}, Si is the subset of goods in which bidder i is interested. Finally, v =<
v1, . . . , vn > indicates the valuation of each bidder. For every i ∈ {1, . . . , n},
bidder i has a valuation of vi for each copy of goods in his preference set Si.
Given price p, the demand of a bidder i is defined as:

Di(p) =

{
min(b bip c,

∑
j∈Si mj), if vi ≥ p

0, if vi < p

When there is no ambiguity on the price, we simply use Di instead of Di(p).
A mechanism maps every auction A to an outcome < X, p >, where X =<

X1, . . . ,Xn > is an allocation mapping goods to bidders and p ∈ R is a fixed
price for every goods. Note that for every i ∈ {1, . . . , n}, Xi =< x1

i , . . . , x
m
i >

where bidder i gets xji copies of good j. An outcome < X, p > must satisfy all
of the following conditions:

1. limited supply: for every j ∈ {1, . . . ,m}, it holds
∑
i∈{1,...,n} x

j
i ≤ mj ;

2. bidder rationality: for every i ∈ {1, . . . , n}, and every j ∈ {1, . . . ,m}, if
xji > 0 then j ∈ Si and vi ≥ p;

3. budget constraint: for every i ∈ {1, . . . , n}, it holds p
∑m
j=1 x

j
i ≤ bi.

Given outcome < X, p >, the utility of bidder i is defined as:

ui(Xi, p) = (vi − p)
∑
j∈Si

xji .

The revenue r(X, p) of the auction is the total payments of bidders, i.e.,
r(X, p) = p

∑
i∈{1,...,n},j∈Si x

j
i . When the price and allocation are clear in the

context, the revenue is simply denoted by r.



Given price p, we partition bidders as follows. Bidders with vi = p are called
value-limited bidders, denoted by V Lp = {i ∈ {1, . . . , n}|vi = p}. Similarly,
bidders with vi > p are called non-value-limited bidders, denoted by NV Lp =
{i ∈ {1, . . . , n}|vi > p}. Finally, bidders with vi < p are called exited bidders,
denoted by Ep = {i ∈ {1, . . . , n}|vi < p}. When there is no ambiguity on the
price, we will remove the subscript from the sets.

We consider the following notion of envy-freeness. Given an outcome <
X, p >, we say bidder i envies bidder i′ if the following conditions are satis-
fied:

1. allocating Xi′ to i would be rational for i, i.e., Xi′ ⊆ Si;
2. bi ≥ p

∑
∈Si x

j
i′ ;

3. ui(Xi′ , p) > ui(Xi, p).

An outcome is envy-free if for every pair of bidders i, i′ ∈ {1, . . . , n}, bidder
i does not envy bidder i′.

Definition 1. The envy-free fixed-price auction: Given < n,m,M,S,v,b >,
design a mechanism to compute an envy-free outcome < X, p > that maximizes
auctioneer’s revenue r(X, p).

2 Unit-demand Bidders

In this section, we consider envy-free fixed-price auction when all bidders have
unit demands and budgets, that is, bidders are only interested in obtaining at
most one copy of a good in their preference sets. Here, envy-freeness implies
that bidder i will be allocated one item if another bidder i′ gets some item
j ∈ Si and the price is not higher than min{vi, bi}. Guruswami et al. [2] consid-
ered non-fixed-price schemes in this setting. They showed that the problem is
APX-hard and gave a logarithmic approximation algorithm. A logarithmic in-
approximability result was given by Chalermsook et al. [1] for unlimited supply.
This logarithmic hardness translates to our setting as unit-demand min-buying
pricing they defined induces an envy-free allocation. On the contrary, we present
an algorithm optimizing the revenue among all fixed-price allocations. Despite
the fact that our auction is fixed-price, we prove that it is able to extract O(log n)
of the optimum envy-free auction. We assume in this section for all i ∈ [1, . . . ,m]
we have mi ≤ n, as higher supply of goods is not needed in the unit demand
case.

We model auctions for the unit-demand case as bipartite graphs. Specifically,
given a price p, the demand graph Gp is a bipartite graph (V = {1, . . . , n}, U =
{1, . . . ,m′}, E), where {1, . . . ,m′} contains mj identical vertices for good j and
E contains an edge (i, j) if and only if j ∈ Si and min{vi, bi} ≥ p. We identify
vertices in V with bidders. We define non-value-limited subgraph G′p of Gp to
contain only bidders that are non-value-limited.

Denote for a set S ⊆ V (G), νG(S) = {v : (u, v) ∈ E(G) and u ∈ S}. A set of
vertices S ⊆ V is said to be tight in G if and only if |νG(S)| ≥ |S|. We observe
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that we cannot sell items to all bidders in S if S is not tight in G′p, because we
will not be able to satisfy the demand of everybody in S. On the other hand,
it is not necessarily true that we can satisfy all bidders in a given tight set S,
because S can contain subsets that are not tight. Using the tools from matching
theory we will prove the existence of canonical tight sets in G′p, that can be
fully satisfied. We define surplus of S ⊆ V ∪ U in G as minT⊆S |νG(T )| − |T |.
By Hall’s marriage theorem a set S ⊆ V that has positive surplus in G has a
perfect matching onto νG(S). The following is a consequence of Gallai-Edmonds
decomposition theorem in the case of bipartite graphs.

Theorem 1 (Theorem 3.2.4 from [4]). Let G = (V,U,E) be a bipartite
graph.V can be partitioned into three subsets CV , AV , DV and U can be parti-
tioned into three subsets CU , AU , DU such that:

– νG(DV ) = AU and νG(DU ) = AV ,
– surplus of CV in G[CV ∩ CU ] is 0,
– surplus of AV in G[AV ∩DU ] is positive,
– surplus of AU in G[AU ∩DV ] is positive.

We observe the following.

Corollary 1. Let AU be given by Theorem 1 for G′p. No item from AU can be
sold in any envy-free allocation at price p.

By Hall’s marriage theorem we know that the matching M that is needed in
the following observation always exists.

Corollary 2. Let CV and AV be given by Theorem 1 for G′p. Let M be a match-
ing in G′p that matches CV with CU and AV with DU then M induces an envy-
free allocation at price p.

In other words M is the maximum size matching in G′p \AU . So far we have
considered only non-value-limited bidders in G′p. Adding value-limited bidders
can increase the number of items we can sell and lead to higher revenue. Still no
item in AU can be sold. Potentially, in Gp \ AU there can be a maximum size
matching such that it does not induce an envy-free allocation. However, this can
be countered using the following well known fact.

Corollary 3 (Corollary 3.1.6 from [4]). If a set of vertices is covered by
some matching then it is also covered by some maximum matching.

By applying this corollary to M in Gp, we know that there exits a maximum
size matching M ′ in G′p \ AU that matches all vertices in CV and AV . Hence,
M ′ induces the maximum revenue envy-free allocation at price p. We note that
the constructions of Theorem 1 and Corollary 3 can be executed in polynomial
time. Now, we can observe that the set of candidate fixed-prices is small.

Lemma 1. The set of candidate fixed-prices for the unit-demand case is given
by ∪i∈{1,...,m}min(vi, bi).
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Algorithm 1: Optimal Revenue Maximizing Envy-free Fixed-price for
Unit-Demanded Bidders
Input: < {1, . . . , n}, {1, . . . ,m},M,S,v,b >.
Output: a price p, an allocation X =< X1, . . . ,Xn >, the optimal revenue r.

1 Let p be the set containing {min(vi, bi)}, r = 0, and S = ∅ ;
2 while p 6= ∅ do
3 Choose some y ∈ p, p = p \ {y};
4 Construct the demand graphs Gy and G′y with respect to y;
5 Use Theorem 1 to find AU in G′y;
6 Find maximum size matching M of G′y \AU ;
7 Extend M to maximum matching M ′ in Gy \AU using Corollary 3;
8 if y|M | > r then
9 Set p = y, r = y|M | ;

10 for i ∈ {1, . . . , n} do
11 if j ∈M then

12 Set xji = 1 if (i, j) ∈M ;

The main result in this section is the following theorem, which directly follows
lemmas and corollaries above.

Theorem 2. Algorithm 1 outputs, in polynomial time, an envy-free outcome
which optimizes auctioneer’s revenue among all envy-free fixed-price outcomes.

Next theorem shows that our auction is O(log n)-approximate with respect
to the general envy-free auction.

Theorem 3. Algorithm 1 outputs, in polynomial time, an envy-free outcome
which is O(log n)-approximate with respect to the optimum envy-free action.

3 Envy-free Fixed-price Multi-unit Auctions with
Budgets

We now turn to envy-free fixed-price auction when bidders are not unit-demand
and have budgets, that is, bidders are interested in obtaining items in their
preference sets as much as possible within their budgets. In this section, we
present a Fully Polynomial Time Approximation Scheme (FPTAS) for the case
that one single type of good is in limited supply of m copies. This setting is
often referred to as multi-unit auction. Note that in the indivisible enviroment
the easier approaches used with divisible items are no more useful. The presence
of discontinuity points that produce discrete jumps in the demand functions
force us to carefully analyze the prices, in particular when the number of items
is small and a rough analysis can blemish the approximation ratio. We denote
by < XOPT, pOPT > the revenue maximizing envy-free outcome. Note that
XOPT =< xOPT1 , . . . , xOPTn >. Bidder i gets xOPTi copies of the good and pays
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pOPTxOPTi . For the optimal revenue we have rOPT = pOPT
∑n
i=1 x

OPT
i . The

proposed FPTAS considers the following two cases regarding XOPT :

1. More than n2

ε goods are allocated in the revenue maximizing envy-free out-

come, that is, m ≥
∑n
i=1 x

OPT
i > n2

ε ;

2. At most n2

ε copies are allocated in the revenue maximizing envy-free out-

come, that is,
∑n
i=1 x

OPT
i ≤ n2

ε .

The distinction between these two cases is important as follows. In the former
case that the number of copies is not polynomial in n, the proposed FPTAS
achieves a revenue at least (1 − ε)rOPT by restricting to a polynomial number
of prices. On the other hand, a dynamic programming is design to extract the
optimal rOPT through the enumeration of all the possible optimal outcomes.

3.1 The case of m ≥
∑n
i=1 x

OPT
i > n2

ε

In this case, there are a non-polynomial number of copies. Hence, one cannot
enumerate all the possible sensible prices. The propose algorithm overcome this
problem by finding a polynomial number of prices that could extract an (1− ε)
fraction of the optimal revenue. We assume for convenience 0 ≤ v1 ≤ v2 ≤
. . . ≤ vn. OPT will also set pOPT ∈ [0, vn]. Set v0 = 0, and let us define
Πi = (vi−1, vi]. There exists exactly one Πi such that pOPT ∈ Πi. Denote by
Ai = {i′ : vi′ > vi−1} the set of bidders with values higher than vi−1.

Furthermore, for each interval Πi, we define a price

p̄i =

{
min{vi,

ε·
∑
j∈Ai

bj

n2 }, if
ε·
∑
j∈Ai

bj

n2 > vi−1

vi, if
ε·
∑
j∈Ai

bj

n2 ≤ vi−1

Note that price p̄i ∈ Πi and p̄i = vi if vi−1 = vi. Algorithm 2 computes the
revenue obtained from each price in {p̄i}ni=1 and outputs the maximum one.

We show that the revenue r produced by Algorithm 2 is an (1 − ε) approx-
imation to the optimal revenue rOPT . The proof is split into two parts: i) We

first consider the case of pOPT ∈ Πi and p̄i =
ε·
∑
j∈Ai

bj

n2 ; ii) We later address
the case of pOPT ∈ Πi and p̄i = vi.

We use the following lemma as a tool to prove the first case.

Lemma 2. If p̄i =
ε·
∑
j∈Ai

bj

n2 , then rOPT ≥
∑
j∈Ai

bj

n .

Proof. If p̄i =
ε·
∑
j∈Ai

bj

n2 then there is enough copies to satisfy the demand of all
bidders in Ai, those with vi′ > p̄i :∑

i∈Ai

Di(p̄i) =
∑
i∈Ai

b bi
p̄i
c ≤

∑
i∈Ai

bi
p̄i

=
n2

ε
.

Note that essentially those bidders are the ones in Ai. Thus, we have rOPT ≥∑
j∈Aib

bj
p̄i
c · p̄i ≥

∑
j∈Ai(

bj
p̄i
−1) · p̄i ≥

∑
j∈Ai bj−n · p̄i =

∑
j∈Ai bj−

ε·
∑
j∈Ai

bj

n =∑
j∈Ai

bj
n (n− ε). From n ≥ 2 we have n− ε > 1 and the lemma follows. ut
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Algorithm 2: Envy-free Fixed-price Multi-unit Auction with Budgets

(
∑n
i=1 x

OPT
i > n2

ε )

Input: < A = {1, . . . , n},m,v,b >.
Output: a price pALG, an allocation XALG =< xALG1 , . . . , xALGn >, the revenue

rALG.
1 Set r = 0, Let p̄ = {p̄1, . . . , p̄n} be the set of candidate prices;
2 while p̄ 6= ∅ do
3 Pick a price p̄i ∈ p̄;
4 Compute < p′,X′, r′ >= Sell(p̄i, Ai,m,v,b);
5 if r′ > r then
6 Set < pALG,XALG, rALG >=< p′,X′, r′ >;

7 Set p̄ = p̄ \ {p̄i};
1 Sell(p,A,v,b):
2 Set X =< x1 = 0, . . . , xn = 0 >, r = 0;
3 if

∑
i∈ADi(p) ≤ m then

4 For each i ∈ A, set xi = Di(p), and set r = p
∑
i∈ADi(p);

5 return < p,X, r >

Lemma 3. If pOPT ∈ Πi and p̄i =
ε·
∑
j∈Ai

bj

n2 , then rALG ≥ (1− ε)rOPT .

Proof. rOPT ≤
∑
j∈Ai bj =

∑
j∈Ai

bj
p̄i
· p̄i ≤

∑
j∈Ai(b

bj
p̄i
c+ 1) · p̄i ≤

∑
j∈Ai x

ALG
j ·

p̄i +
∑
j∈Ai p̄i = rALG +

∑
j∈Ai p̄i = rALG + n ·

ε·
∑
j∈Ai

bj

n2 ≤ rALG + ε · rOPT .

The first inequality comes from the assumption that pOPT ∈ Πi, and the last
inequality is implied by Lemma 2. Hence, we have rALG ≥ (1− ε)rOPT . ut

Now we move to the second part of the proof. This is the case that pOPT ∈ Πi

and p̄i = vi. We first observe the following:

Lemma 4. The optimal price pOPT /∈ Πi if
ε·
∑
j∈Ai

bj

n2 < vi−1.

Proof. Assume that
ε·
∑
j∈Ai

bj

n2 < vi−1 < pOPT , it implies that there is less than
n2

ε copies sold in the optimal allocation. It contradicts the assumption that at

least n2

ε goods allocated to the optimal revenue maximizing envy-free outcome.
ut

Lemma 4 allows us to only prove the revenue guarantee of Algorithm 2 on

the case that pOPT ∈ Πi, p̄i = vi and
ε·
∑
j∈Ai

bj

n2 ≥ vi. In this case, it could
be that the total demand of bidders in Ai exceeds the number of copies, that

is,
∑
j∈Ai Dj(p̄i) ≥ n2

ε > m. Denote by tp̄k = {i ∈ {1, . . . , n}|Di(p̄) ≥ k} the

set of bidders with demand at least k and l = max{z|tz > 0,
∑z
j=1 |t

p̄
j | ≤ m}.

Algorithm 2 allocates to each bidder i ∈ Ai a supply of min{l,Di(p̄)} copies at
price p̄.
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Lemma 5. If pOPT ∈ Πi and p̄i = vi, r
ALG > (1− ε)rOPT .

Proof. By Lemma 4 and the assumption that m ≥ n2

ε , it is sufficient to consider
the case that

∑
i∈N Di(vi) ≤ m only. In this case, we have enough copies to

satisfy the demand of all bidders at price vi. Algorithm 2 sells at least n2

ε − n
copies at price vi. Since the maximum revenue any algorithm can get is no more
than the budgets of the bidders, it is easy to the the optimal revenue is at

most n2

ε vi. Hence, Algorithm 2 achieves a (1− ε)-approximation to the optimal
revenue. ut

Besides a good approximation to the optimal revenue, the following lemma
shows outcomes produced by Algorithm 2 are envy-free.

Lemma 6. < XALG, pALG > is envy-free.

Proof. When price p̄i produce a total demand less than the available copies, i.e.,∑
i∈Ai Di(p̄i) ≤ m, we satisfy all the demands. Hence, no bidder envies others.

When
∑
i∈Ai Di(p̄i) > m, for every i ∈ Ai, it holds either bidder i obtains Di(p̄i)

copies or bidder i receive the maximum number of copies among all bidders. It
concludes that allocation < XALG, pALG > is envy-free.

Now we present the main theorem in this section, as stated below.

Theorem 4. When there are more than n2

ε copies sold in the revenue maximiz-
ing envy-free outcome in multi-unit auctions, Algorithm 2 outputs, in polynomial
time, an envy-free outcome that achieves a (1− ε)-approximation to the optimal
envy-free revenue.

3.2 The case of
∑n
i=1 x

OPT
i ≤ n2

ε

Now we consider the other case that at most n2

ε copies of the good are allocated in
the revenue maximizing envy-free outcome. We first present a dynamic program-
ming that maximizes the revenue when a price is given. Since there is only a poly-

nomial number of possible prices for pOPT , i.e., pOPT ∈
⋃n
i=1({ bij }

n2

ε
j=1 ∪ {vi}),

one can simply run the dynamic programming for every possible price and out-
put the optimal revenue. Now let us concentrate on computing the maximum
revenue when a price is given. We first sort bidders by their demands. Without
loss of generality, we assume D1(p) ≤ . . . ≤ Dn(p). Recall that V L is the set
of value-limited bidders, and NV L is the set of non-value-limited bidders. Let
V L(i) be the ith value-limited bidder in the sorted order. Similarly, let NV L(i)
be the ith non-value-limited bidder in the sorted order. Observe that both sets
V L and NV L are also sorted by non-decreasing demand at price p. The correct-
ness of the dynamic programming relies on the following claim.

Claim 1 There exits a revenue maximizing envy-free allocation XOPT such that
the following conditions hold: i) xOPT1 ≤ xOPT2 ≤ . . . ≤ xOPTn ; ii) xOPTV L1 ≤
xOPTV L2 ≤ . . . ≤ xOPTV L|V L| ; iii) xOPTNV L1 ≤ xOPTNV L2 ≤ . . . ≤ xOPTNV L|NVL| .
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The dynamic programming fills a 4-dimensional table t[i][j][k][h] of boolean
values representing the existence of an envy-free allocation of exactly h copies
among the first i value-limited bidders and the first j non-value-limited bidders
such that the maximum number of copies allocated to a bidder is k. The dynamic
programming proceeds in rounds. In the current round either the next value-
limited or the next non-value-limited bidder in the order is considered:

– The bidder considered in the current round is value-limited. If the maximum
number of copies already allocated to value limited bidders [1, . . . , i− 1] and
non-value-limited bidders [1, . . . , j] is k and t[i−1][j][k][h−k] is true, then we
can allocate k copies to value-limited bidder j. The resulting allocation is still
envy-free. On the other hand, if the maximum number of copies allocated
is less than k then we must ensure that giving k copies to value-limited
bidder j does not violate envy-freeness. That implies that all non-value-
limited bidders [1, . . . , j] have budgets less than kp.

– The bidder considered in the current round is non-value-limited. Similar to
the previous case, if the maximum number of copies already allocated to a
bidder is k and t[i][j − i][k][h − k] is true, then we can allocate k copies to
this bidder. The resulting allocation is still envy-free. On the other hand,
if the maximum number of copies already allocated to a bidder is less than
k, we must ensure that giving k copies to this value-limited bidder does
not affect envy-freeness. This essentially means that the already allocated
non-value-limited bidders have budgets less than kp.

Finally, the revenue maximizing envy-free allocation is the entry of the table
with TRUE value in t[|V L|][|NV L|][·][h] that maximizes the total number of
allocated copies of the good h ≤ m.

Now we are ready to present Algorithm 3 that computes revenue maximizing

outcomes when the number of copies allocated is at most n2

ε . The core of Algo-
rithm 3 is a dynamic programming that computes revenue maximizing outcomes
on every possible optimal price.

Theorem 5. When there are at most n2

ε copies sold in the revenue maximizing
envy-free outcome in multi-unit auctions, Algorithm 3 outputs, in polynomial
time in terms of n and ε, an envy-free outcome that achieves the optimal envy-
free revenue.

Proof. Given a price, the size of table in the dynamic programing is O(n2 n2

ε ). A

calculation of a value of a single entry requires O(n
2

ε ) time, which gives a total

O(n
6

ε2 ) for computing a revenue maximizing outcome for a given price. Since there

are O(n
3

ε ) possible price, the total complexity of the dynamic programming is

O(n
9

ε3 ). The envy-freeness of outcomes produced by Algorithm 3 is guaranteed by
the recursive formula. The recursive formula produces all possible non-decreasing
allocations that satisfy Claim 1. Hence, the maximum revenue achieved by this
dynamic programming gives us the optimal envy-free revenue. ut
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Algorithm 3: Dynamic Programming for Envy-free Fixed-price Multi-unit

Auction with Budgets (
∑n
i=1 x

OPT
i ≤ n2

ε )

Input: < {1, . . . , n},m,v,b >.
Output: a price pDP and the revenue rDP .

1 Set P =
⋃n
i=1({ bi

j
}
n2

ε
j=1 ∪ {vi});

2 while P 6= ∅ do
3 Pick a p ∈ P ;
4 Initial a 4-dimensional table, set t[0][0][0][0] = T , and

t[0][0][k][h] = F,∀0 < k ≤ m, 0 < h ≤ m;
5 Compute every entry in the table by the following recursive formula:

t[i][j][k][h] =
[
(i > 0) ∧ (k ≤ DV L(i)) ∧ (h > k)

∧
(
t[i− 1][j][k][h− k]

∨ [
∨
k′<k

t[i− 1][j][k′][h− k] ∧ (k > DNV L(j)

])]
∨
[
(j > 0) ∧ (k ≤ DNV L(j)) ∧ (h > k)

∧
(
t[i][j − 1][k][h− k]

∨
[ ∨
k′<k

t[i][j − 1][k′][h− k] ∧ (k > DNV L(j−1)

])]
Let l = max{h ∈ {1, . . . ,m}|∃i, j, k, t[i][j][k][h] = T};

6 if lp > rDP then
7 Set pDP = p and rDP = lp;

8 Set P = P \ {p} ;

4 Envy-free Revenue Maximizing Fixed-price Multi-good
Auctions with Budgets and Matching Preferences

In previous section we presented encouraging results when there is one single
type of good in the auction. However, the results do not apply to the setting
when there are different types of goods and bidders have matching preferences,
i.e., bidder i values vi all copies of goods in Si ⊆ {1, . . . ,m} and 0 for items not
in Si. We start with a hardness result as shown below.

Theorem 6. When there are non-constant number of types of goods, the opti-
mal revenue in any envy-free multi-good auctions with budgets cannot be approx-
imated within O(min(n,m)1/2−ε) for any ε > 0 unless P = NP .

Corollary 1 When there are non-constant number of types of goods, the optimal
revenue in any envy-free fixed-price multi-good auctions with budgets cannot be
approximated within O(min(n,m)1/2−ε) for any ε > 0 unless P = NP .
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4.1 A FPTAS for Constant Number of Types of Goods

The main result in this section is the following theorem.

Theorem 7. When the number of types of goods is a constant, there exists an
algorithm outputs, in polynomial time in terms of n and ε, an envy-free fixed-
price outcomes that achieves a (1 − ε)-approximation to the optimal envy-free
fixed-price revenue.

The algorithm could be seen a generalization of the results in Section 3. Due
to the space limit, we only discuss the ideas of how to extend our techniques in
Section 3 to obtain a FPTAS in this setting. The full version of this section is
available in Appendix B. As before, the proposed FPTAS considers two cases
regarding XOPT.

OPT allocates more than n2

ε
copies of goods An important difference with

respect to the multi-unit case is the following. When p̄i equals to
ε·
∑
j∈Ai

bj

n2 , it

is possible that there is no feasible allocation that sells n2

ε copies of items at
price p̄i. This is because the cumulative demand for a subset of items could be
greater than the number of copies of the items. Hence, in order to find a price at

which n2

ε can be sold and to keep the envy-freeness of the allocation, we transfer
the problem to a min-cost max-flow problem. When the maximum flow is not

equal to n2

ε , the solution of min-cost max-flow identifies the subset of bidders

who do not obtain bi′
p̄i

copies of items. Then, the algorithm iteratively updates

p̄i by decreasing a particular amount until p̄i is out of the range of Πi or n2

ε
copies of items can be sold.

OPT allocates at most n2

ε
copies of goods In order to cooperate this

setting, the dynamic programming needs to ensure that envy-freeness between
different types of bidders. Bidders belongs to the same type if their preference
sets are the same. To guarantee the envy-freeness of the allocation, when bidder
i is allocated to a copy of good j ∈ Si, bidder i′ must also be allocated a copies
of j′ ∈ Si′ if j ∈ Si′ . We solve this problem in the dynamic programming by
consider together different type bidders whose preference sets intersect. Similar
to Section 3, bidders are divided into two groups, valued-limited and non-value-
limited bidders. Bidders are sorted by their budgets in each group and considered
in this order. Besides satisfying the limited supply and non-decreasing numbers
of goods assigned to bidders in each group, to guarantee that the allocation is
envy-free, when bidder i is assigned a bundle of goods, the dynamic programming
checks envy-freeness for all those bidders with preference set that includes the
bundle, i.e., preference sets are the supersets of the bundle, prefer their bundles to
the bundle assigned to bidder i or they cannot afford to buy bidder i’s bundle.
Therefore, the dynamic programming has 2c − 1 parameters to indicate the
largest bundles assigned to each type of bidders.
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A Appendix - Proofs

A.1 Proof of Corollary 1

Proof. By positive surplus of AU we have that for every subset of items T ⊆ AU
there are more bidders than |T | interested in buying items from T . Hence, for
every allocation of T there is at least one bidder that gets nothing and hence
envies the others.

A.2 Proof of Corollary 2

Proof. Observe that only bidders in DV could potentially envy someone, but
DV is incident only with AU which is left unsold.

A.3 Proof of Lemma 1

Proof. In the unit-demand case the price paid by the bidders can always be
increased without loosing any revenue till the minimum between the valuation
and the budget of an bidder. Therefore, we need to consider at most 2n different
prices.

A.4 Proof of Lemma 3

Proof. Consider the optimum allocation X̄i and optimum pricing p̄i. Assume
that in this allocation bidders are sorted in descending order by p̄i. Consider a
random number l that is selected uniformly at random form the set [1, . . . , log(2n)],
and consider price pl = p̄1

2i . Let us denote by n̄(p) the number of bidders who
pay in optimum allocation no less then p. We observe that

OPT =

n∑
i=1

p̄i =

n∑
i=1

n̄(p̄i)(p̄i−p̄i+1) ≤ 2

log(2n)∑
l=0

n̄(pl)pl+n
pl

2log(2n)
= 2

log(2n)∑
l=0

n̄(pl)pl+
OPT

n
.

Additionally note that for each pl selling items to bidders with pi ≥ pl at
fixed price pi is envy-free. Hence, choosing random pl gives fixed-price O(log n)-
approximation in expectation with respect to the optimum envy-free pricing. By
the optimality of our algorithm this bound in expectation is turned into worst-
case bound. ut

A.5 Proof of Lemma 4

Proof.
ε·
∑
j∈Ai

bj

n2 < vi−1 and pOPT > vi−1 imply that there is less than n2

ε items
sold in the optimal allocation thus a contradiction since we are in the case of at

least n2

ε goods allocated to the optimal revenue maximizing envy-free outcome.

12



A.6 Proof of Lemma 6

Proof. When price p̄i produce a total demand less than the available items, i.e.,∑
i∈Ai Di(p̄i) ≤ m, we satisfy all the demands. Hence, no bidder envies others.

When
∑
i∈Ai Di(p̄i) > m, for every i ∈ Ai, it holds either bidder i obtains Di(p̄i)

items or bidder i receive the maximum number of items among all bidders. It
concludes that allocation < XALG, pALG > is envy-free.

A.7 Proof of Claim 1

Proof. Since the second and third conditions directly follow from the first con-
dition, it is sufficient to prove the first condition. Suppose there exists another
revenue maximizing envy-free allocation X ′ where x′i > x′j for a pair i and j > i.
Since X ′ is envy-free, it must be the case that both i and j are value-limited bid-
ders. Thus, we can swap the allocation between bidders i and j, which results in
a new envy-free allocation and maintains the same revenue. Recursively applying
these, we could find out a revenue maximizing envy-free allocation satisfying the
above conditions.

A.8 Proof of Theorem 5

Proof. Given a price, the size of table in the dynamic programing is O(n2 n2

ε ). A

calculation of a value of a single entry requires O(n
2

ε ) time, which gives a total

O(n
6

ε2 ) for computing a revenue maximizing outcome for a given price. Since there

are O(n
3

ε ) possible price, the total complexity of the dynamic programming is

O(n
9

ε3 ).
The envy-freeness of outcomes produced by Algorithm 3 is guaranteed by the

recursive formula. The recursive formula produces all possible non-decreasing
allocations that satisfy Claim 1. Hence, the maximum revenue achieved by this
dynamic programming gives us the optimal envy-free revenue.

A.9 Proof of Theorem 6

Proof. We give a reduction from the Maximum Independent Set (MIS) problem
on graphs. It is well-known that MIS cannot be approximated within |V |1−ε
where V is the set of vertices. Let G = (V,E) be an instance of MIS, and d is
the maximum degree in G. The good in the auction consist of all edges E, and
a set of dummy items. Each edge or each dummy item corresponds to a distinct
type of good with one copy. We create the following two sets of bidders:

A: contains bidder v for each vertex v ∈ V . The preference set Sv of bidder
v is equal to the set of edges incident to v in G. If the number of edges is
smaller than d, add some distinct dummy items to Sv such that |Sv| = d.
The budget bv of bidder v is equal to d and his valuation vv for each copy
of good is 1.

13



B: contains another d+ 1 identical bidders for each bidder i ∈ A. Their prefer-
ence sets are equal to Si. Their budgets are d − 1 and their valuations for
each copy of good in Si are d− 1 + ε, where ε > 0.

By the construction above, there are n = |V | + |V |(d + 1) bidders and m =
d|V | − 2|E| different types of good. The supply of each type of good is 1. Due
to the limited supply, any envy-free allocation cannot sell items to bidders in
B. It leaves that the possible envy-free allocations are the ones which sell some
bidders in A their entire preference sets and charge them more than d−1 for the
set. Note that the optimal revenue is to charge bidder v at d for the set Sv. Since
the revenue obtained from each bidder in A is the same, the revenue maximizing
envy-free allocation corresponds to the solution in the maximum independent
set. The fact that MIS cannot be approximated with |V |1−ε [3] implies that the
optimal revenue cannot be approximated within O(min(n,m)1/2−ε).

One could easily see that, even the optimal fixed price is given, the optimal
revenue can not be approximated within O(min(n,m)1/2−ε) for any ε > 0 unless
P = NP .

B Appendix - A FPTAS for Constant Number of Types
of Goods

Here we devise a FPTAS for envy-free fixed-price auction in which there are a
constant number c of different types of goods and mj copies available for goods
of type j. Since there are different types of goods and bidders have preference
sets, the size of the allocated bundles are no more the only important parameter
to guarantee the feasibility and the envy-freeness of the outcome. We extend the
algorithm described in Section 3 with a few essential changes. The section follows
the structure of Section 3. First, we show an algorithm that achieves a (1 − ε)
fraction of the optimum revenue maximizing envy-free fixed-price outcome when
the optimum revenue maximizing envy-free fixed-price outcome OPT allocates

more than n2

ε copies of goods. Next, we provide a dynamic programming that

reaches the optimal envy-free fixed-price outcome if OPT allocates at most n2

ε
copies of goods.

B.1 OPT allocates more than n2

ε
copies of goods

We assume 0 ≤ v1 ≤ v2 ≤ . . . ≤ vn and pOPT ∈ [0, vn]. Set v0 = 0, and let
us define Πi = (vi−1, vi]. We know that there exists exactly one Πi such that
pOPT ∈ Πi. Let Ai = {j : vj > vi−1}, that is, the set of bidders whose values
higher than the price if the price is set to vi−1.

An important difference with respect to the multi-unit setting is as follows.

Even if p̄i =
ε·
∑
j∈Ai

bj

n2 makes the cumulative demand less than n2

ε , it could be
that we cannot satisfy the demand of all the bidders. This is because we don’t
know if the cumulative demand for a specific good is greater than the availability

14



of that good, even if the total demand is less than n2

ε and the copies of different

goods is greater than n2

ε ,
Hence, in order to keep the feasibility and the envy-freeness we impose (dif-

ferent) bounds of the maximum number of goods on subsets of bidders whose
demands are more than the current availability of goods in their preference sets.
To detect such subsets of bidders, we use a max-flow min-cost algorithm. For-
mally, given a price p we construct a flow network Gp = (V p, Ep). The set of
vertices are V p = {{s} ∪ {1, . . . , n} ∪ {1, . . . , c} ∪ {t}}. The source vertex s is
linked to all the bidders (∀i ∈ {1, . . . , n} ∃(s, i) ∈ E) and the capacity of each
edge (s, i) is the demand of bidder i for the current price p, i.e. Di(p). Each
bidder i is linked to all types of goods in his preference set Si, i.e. ∀j ∈ Si
∃(i, j) ∈ Ep. The capacity of each edge that is an outgoing edge from a bidder
i ∈ {1, . . . , n} is equal to infinity. All the goods are then linked to the sink vertex
t and the capacity of all those edges are equal mj (availability of each type of
good). The cost function for each edge e ∈ Ep is ce(f) = f2, where f is the
amount of flow on e.

Now, we can construct a min-cost max-flow problemMinCostMaxF lowp(I, J)
as described above for a given price p, a set of goods J , set of bidders I. The
solution of such a problem is the max-flow that minimizes the sum of the costs
in the network. Since the cost function is quadratic, minimize the cost is equal
to distribute goods as even as possible amongst the bidders. The solution of the
problem is a vector x = {x1, . . . , xn} that represents fraction numbers of copies
of goods allocated to each bidder, xi ∈ R≥0.

Now given a price p, a set of active bidders Ai and a set of goods M̄ ⊆
{1, . . . , c} we run the flow problem MinCostMaxF lowp(Ai, M̄). Given the so-
lution of the flow problem X, we can partition the set of active bidders Ai.
ANBi = {j ∈ Ai|xj = Dj(p)} is the set of bidders that exhausted their demand.
ABi = {j ∈ Ai|xj < Dj(p)} is the set of bidders that cannot obtain their full
demand.

Note that price p̄i ∈ Πi and p̄i = vi if vi−1 = vi. Initially the price is set

to p̄i =
ε·
∑
j∈Ai

bj

n2 and the MinCostMaxF lowp̄i(Ai,M) detects ANBi and ABi .

If the maximum flow is less than n2

ε , we lower the price to p̄i =

∑
j∈ANB

i
bj

n2

ε −
∑
j∈AB

i
fj

.

Thus the demand of all the bidders increase. As a consequence, the bidders
that were detected as bounded remain bounded. The bidders that were not
detected as bounded in the previous round now, with an increased demand,
could become bounded. So we need to execute the MinCostMaxF lowp̄i(Ai,M)
with the updated price and add to the set ABi the bidders that become bounded.
Iteratively doing it, the algorithm ends up with one of the following conditions:

– a maximum flow of n2

ε and p̄i ∈ [vi−1, vi] are found;

– a maximum flow is less than n2

ε and ANBi = ∅. It implies that it is impossible

to find a feasible price such that more than n2

ε copies of goods are sold to
bidders in Ai. It further implies that the optimal price is not between vi−1

and vi.
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– p̄i = vi until p̄i is less than vi−i.

The algorithm for detecting ANBi , ABi and compute p̄i for each interval Πi

is given as Algorithm 4.

Algorithm 4: Compute price p̄i for interval Πi

Input: < Ai,M = {1, . . . , c}, {m1, . . . ,mc} >.
Output: A price p̄i, a set ABi of bidders and a flow result X = {x1, . . . , x|Ai|}

1 Set p̄i =
ε·
∑
j∈Ai

bj

n2 ;

2 Set ANBi = ∅, ABi = ∅;
3 Set f = MinCostMaxF lowp̄i(Ai,M);

4 ANBi = {j ∈ Ai|fj = Dj(p̄i)} where fj the flow goes through bidder j;

5 ABi = Ai \ANBi ;

6 while |f | 6= n2

ε
do

7 if ANBi = ∅ then
8 return p̄i = vi ;

9 Set p̄i =

∑
j∈ANB

i
bj

n2

ε
−
∑
j∈AB

i
fj

;

10 if p̄i < vi−1 then
11 return p̄i = vi ;

12 Set f = MinCostMaxF lowp̄i(Ai,M);

13 ANBi = {j ∈ Ai|xj = Dj(p̄i)};
14 ABi = Ai \ANBi ;

15 return min(p̄i, vi) and X = f ;

Lemma 7. For each interval Πi, Algorithm 4 terminates in a polynomial time

in n, and outputs a price p̄i such that the maximum flow is n2

ε in Gp̄i or setting
p̄ = vi.

Proof. Computing min-cost max-flow in a network with quadratic cost functions
is strongly polynomial in the number of vertices and edges in the network [5].
Since the number of different types of goods is constant, the running time of
computing min-cost max-flow in Algorithm 4 is polynomial in n. It is clear that,
after computing a min-cost max-flow, Algorithm 4 terminates or at least one
bidder is removed from ANBi . Therefore, the Algorithm 4 computes at most n
times of min-cost max-flow.

At each round, Algorithm 4 decreases the price in the way that the demand

of bidders in ANBi is the difference between n2

ε and the number of copies assigned
to bidders in ABi . Hence, Algorithm 4 will terminate with price p̄i such that the

maximum flow is n2

ε , or setting p̄i = vi when the price decreases to a number
less than vi−1. ut
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Now let us focus on a particular Πi. Given Ai, Algorithm 4 computes p̄i, A
B
i ,

and X. We set a virtual budget for each bidder in Ai as follows:

b̄i′ =

{
bi′ , if i′ /∈ ABi
xj · p̄i, if i′ ∈ ABi

Now consider the set of different types of goods in which bidders in ABi are
interested, above lemma enable us to bound the maximum revenue we could
extra from them is

∑
j∈ABi

xj p̄i. For other types of good, we bound it by the

total budgets of bidders in ANBi .
Now, we prove that, by plugging in {b̄i} and {p̄i} computed by Algorithm 4

into Algorithm 2, it achieves a (1 − ε) approximation to the optimal revenue.
The first part of the proof is that pOPT ∈ Πi and p̄i ∈ (vi−1, vi).

Lemma 8. If p̄i ∈ (vi−1, vi), then rOPT ≥
∑
j∈Ai

b̄j

n .

Proof. In this case, Algorithm 4 finds a price in (vi−1, vi) such that we can have
n2

ε copies of goods to satisfy the demand of all bidders in Ai at price p̄i:∑
i∈Ai

Di(p̄i) =
∑
i∈Ai

b b̄i
p̄i
c ≤

∑
i∈Ai

b̄i
p̄i

=
n2

ε
.

Note that essentially those bidders are the ones in Ai. Thus, we have rOPT ≥∑
j∈Aib

b̄j
p̄i
c · p̄i ≥

∑
j∈Ai(

b̄j
p̄i
−1) · p̄i ≥

∑
j∈Ai b̄j−n · p̄i ≥

∑
j∈Ai b̄j−

ε·
∑
j∈Ai

b̄j

n =∑
j∈Ai

b̄j
n (n− ε). From n ≥ 2 we have n− ε > 1 and the lemma follows. ut

Lemma 9. If pOPT ∈ Πi and p̄i 6= vi, then rALG ≥ (1− ε)rOPT .

Proof. rOPT ≤
∑
j∈Ai b̄j =

∑
j∈Ai

b̄j
p̄i
· p̄i ≤

∑
j∈Ai(b

b̄j
p̄i
c+ 1) · p̄i ≤

∑
j∈Ai x

ALG
j ·

p̄i +
∑
j∈Ai p̄i = rALG +

∑
j∈Ai p̄i ≤ rALG + n ·

ε·
∑
j∈Ai

b̄j

n2 ≤ rALG + ε · rOPT .

The first inequality comes from the assumption that pOPT ∈ Πi, and the last
inequality is implied by Lemma 2. Hence, we have rALG4 ≥ (1− ε)rOPT . ut

The second part is that pOPT ∈ Πi and p̄i = vi. We observe the following:

Lemma 10. The optimal price pOPT /∈ Πi, if

∑
j∈ANB

i
bj

n2

ε −
∑
j∈AB

i
fj
< vi−1.

Proof. Algorithm 4 searches the maximum price such that it is possible that n2

ε

copies of goods are sold. If

∑
j∈ANB

i
bj

n2

ε −
∑
j∈AB

i
fj

< vi−1 and pOPT > vi−1, it implies

that there is less than n2

ε copies of goods sold in the optimal allocation thus

a contradiction since we are in the case of at least n2

ε goods allocated to the
optimal revenue maximizing envy-free outcome. ut
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Above lemma allows us to concentrate the case that pOPT ∈ Πi and

∑
j∈ANB

i
bj

n2

ε −
∑
j∈AB

i
fj
≥

vi. The idea of the proof is essentially the same as Lemma 5.

Lemma 11. If pOPT ∈ Πi and p̄i = vi, r
ALG > (1− ε)rOPT .

Proof. By Lemma 10, we only consider the cases that Algorithm 4 suggests that

one could sell n2

ε copies of goods at price p̄i = vi. Since m ≥ n2

ε , it is easy to

see that Algorithm 2 sells at least n2

ε −n copies at price vi. Since the maximum
revenue any algorithm can get is no more than the budgets of the bidders, it is

easy to the the optimal revenue is at most n2

ε vi. Hence, Algorithm 2 achieves a
(1− ε)-approximation to the optimal revenue. ut

Besides a good approximation to the optimal revenue, the following shows
outcomes produced by Algorithm 2 are envy-free.

Lemma 12. < XALG, pALG > is envy-free.

Proof. When price p̄i 6= vi, every bidder in Ai get his full demand b b̄ip̄i c. When

p̄i = vi and
∑
i∈Ai Di(p̄i) ≤ m, every bidder in Ai get their full demands. when

p̄i = vi and
∑
i∈Ai Di(p̄i) > m, for every bidder i ∈ Ai, it holds either bidder i

obtains Di(p̄i) items or bidder i receive the maximum number of items among
all bidders. It concludes that allocation < XALG, pALG > is envy-free. ut

Now we present the main theorem as stated below.

Theorem 8. Given a price, when there are at least n2

ε copies of different types
of goods sold, computing p̄i as suggested in Algorithm 4, Algorithm 2 outputs
a rational revenue maximizing envy-free allocation in polynomial time in n and
1/ε.
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