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1 INTRODUCTION

In the unsplittable flow on a path problem (UFP) we are given a set of 𝑛 tasks 𝑇 and
an undirected path 𝐺 = (𝑉,𝐸). Each edge 𝑒 has a capacity 𝑢𝑒 ∈ N+. Each task 𝑖 ∈ 𝑇 is
specified by a subpath 𝑃 (𝑖) between the start (i.e. leftmost) vertex 𝑠(𝑖) ∈ 𝑉 and the end
(i.e. rightmost) vertex 𝑡(𝑖) ∈ 𝑉 , a demand 𝑑(𝑖) ∈ N+, and a profit (or weight) 𝑤(𝑖) ≥ 0. For
each edge 𝑒 ∈ 𝐸, denote by 𝑇𝑒 all tasks 𝑖 using 𝑒, such that 𝑒 ∈ 𝑃 (𝑖). For any subset of tasks
𝑇 ′, we define 𝑤(𝑇 ′) :=

∑︀
𝑖∈𝑇 ′ 𝑤(𝑖) and 𝑑(𝑇 ′) :=

∑︀
𝑖∈𝑇 ′ 𝑑(𝑖). The goal is to select a subset of

tasks 𝑇 ′ with maximum profit 𝑤(𝑇 ′) such that 𝑑(𝑇 ′ ∩ 𝑇𝑒) ≤ 𝑢𝑒, for each edge 𝑒.
We can make the following simplifying assumptions w.l.o.g.: (i) For each task 𝑖, we assume

that 𝑑(𝑖) ≤ min𝑒∈𝑃 (𝑖){𝑢𝑒} (otherwise task 𝑖 can be discarded); (ii) The edge capacities are
all distinct (this can be achieved by slight perturbations and scaling, see [12]); (iii) Each
node is either the start node or the end node of precisely one task, so that the number of
nodes of the path is 2𝑛 (this can be enforced by duplicating and contracting edges in a
proper way, similar to [6]).

UFP and variations of it are motivated by several applications in settings such as bandwidth
allocation [10, 18, 25], caching [19], multicommodity demand flow [17], scheduling [4], or
resource allocation [8, 13, 20, 26]. For example, edge capacities might model a given resource
whose supply varies over a time horizon. Here, tasks correspond to jobs with given start and
end times and each job has a fixed demand for the mentioned resource. The goal is then to
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select the most profitable subset of jobs whose total demand at any time can be satisfied
with the available resources.

When studying the problem algorithmically, a natural classification of the tasks is the
following. For each task 𝑖 define its bottleneck capacity as the smallest capacity 𝑏(𝑖) :=
min{𝑢𝑒 : 𝑒 ∈ 𝑃 (𝑖)} of any edge of 𝑃 (𝑖). Let also the bottleneck edge 𝑒(𝑖) of 𝑖 be the edge of 𝑖
with capacity 𝑏(𝑖). For any value 𝛿 ∈ (0, 1] we say that a task 𝑖 is 𝛿-large if 𝑑(𝑖) ≥ 𝛿 · 𝑏(𝑖)
and 𝛿-small otherwise.

If all tasks are 𝛿-small (𝛿-small instances), then the problem is well understood. As shown
by Chekuri et al. [17, Corollary 3.4], for 𝛿 small enough, one can obtain an arbitrarily good
approximation with LP-rounding techniques.

Theorem 1 ([17]). For any 𝛿 ∈ (0, 3−
√
5

2 ), there is a (1 +𝑂(
√
𝛿))-approximation algorithm

for 𝛿-small instances of UFP.

However, much remains unclear for the complementary case where all tasks are 𝛿-large
(𝛿-large instances), even if 𝛿 is very close to 1. A straightforward dynamic programming
approach (where for each edge 𝑒 one enumerates all possible subsets of tasks using 𝑒 in an
optimal solution) is doomed to fail: there are instances where in the optimal solution one
edge of the path is used by all the tasks in the input. Also, for 𝛿-large instances the canonical
LP has an integrality gap of Ω(𝑛) [14] (see Section 1.2 for the description of the canonical
LP). The best known approximation factor proven by Bonsma et al. [12] for this setting is
2𝑘, where 𝑘 ∈ N such that 𝛿 > 1

𝑘 (and in particular 𝑘 ≥ 2). They reduce the problem to
an instance of maximum independent set of rectangles and this approach inherently loses a
factor of 2𝑘 ≥ 4 in the approximation ratio. In particular, their approximation ratio increases
unboundedly if 𝛿 → 0. The best known (6+ 𝜀)-approximation algorithm for 𝛿-large instances,
for any 𝛿 > 0, combines the approach above (with 𝑘 = 2) with another algorithm, which is
2 + 𝜀 approximate for instances that are 1/2-small and 𝛿-large at the same time. Combining
this (6 + 𝜀)-approximation with the result from Theorem 1, they obtain the currently best
(7 + 𝜀)-approximation algorithm for UFP [12] (for general instances).

1.1 Our Results and Techniques

In this paper, we present a polynomial-time approximation scheme (PTAS) for 𝛿-large
instances of UFP (for any constant 𝛿 > 0), improving on the previously best 6 + 𝜀 ap-
proximation for the same case [12]. In combination with the algorithm from Theorem 1,
our PTAS implies a 2 + 𝜀 approximation for arbitrary UFP instances, without any further
assumptions (such as the common no-bottleneck-assumption max𝑖{𝑑(𝑖)} ≤ min𝑒{𝑢𝑒} or
restrictions on edge capacities). This improves on the previously best 7+𝜀 approximation for
the problem [12], and matches the best known approximation ratio for the much simpler case
of uniform edge capacities [13]. We remark that, given our result, any further improvement
of the approximation factor for UFP requires to consider 𝛿-small and 𝛿-large tasks at the
same time.
Our PTAS for 𝛿-large instances is based on a dynamic program (DP) and exploits the

following geometrical viewpoint, inspired by [12] (but different in spirit and, as it turns out,
more powerful). Let us represent edge capacities with a closed curve on the 2D plane (the
capacity curve) as follows: We label nodes with integers from 1 to 2𝑛 going from left to
right. For each edge 𝑒 = (𝑣, 𝑣 + 1), we draw a horizontal line segment (or segment for short)
[𝑣, 𝑣+1]×{𝑢𝑒}. Then we add a horizontal segment at the bottom, and vertical segments in a
natural way to obtain a closed curve (see Figure 1). We represent each task 𝑖 as a horizontal
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𝑒(𝑖) 𝑡(𝑖)

𝑃 (𝑖)

𝑖

𝑠(𝑖)

Fig. 1. An example of capacity curve and the maze, with segments associated to some tasks 𝑇 ′ (dashed)
and m-tasks 𝑀 ′ (bold). Note that (𝑇 ′,𝑀 ′) is 2-thin.

segment (𝑠(𝑖), 𝑡(𝑖))× {𝑏(𝑖)}. In particular, this segment lies underneath the capacity curve,
and touches the horizontal segment corresponding to its bottleneck edge 𝑒(𝑖) (see Figure 1).
(For comparison, our segments correspond to the upper sides of the rectangles from [12].)
Note that, because all tasks are 𝛿-large, the segment representation is sufficient to provide
a rough estimate of task demands. At the same time, this notation turns out to be very
convenient for the design of our DP and for its analysis.
The basic idea behind our approach is to sacrifice some tasks of the optimal solution,

which we replace by profitless maze tasks (or m-tasks for short), that structure the area
within the capacity curve into a maze. This maze has a tree topology: our DP traverses this
tree from the leaves to the root, where the root is placed conventionally in the bottom-left
corner of the capacity curve (it can be thought as the exit of the maze). We enforce the
property that between any two consecutive (in a top–bottom ordering) m-tasks there are
at most 𝑘 = 𝑂(1/𝜖 + 1/𝛿) tasks above every edge 𝑒 (see Figure 1). We will refer to this
property as 𝑘-thinness later. This way, the DP is able to guess the tasks crossing any given
corridor in an optimal solution.
One still remaining difficulty is that, when the DP computes a solution for some arising

subproblem, we cannot afford to remember precisely which tasks were selected previously
(this would result in too many DP-cells). To this end, the maze tasks have a second function:
We use them to make it affordable to forget some decisions as we move from the leaves to
the root. In particular, consider any edge 𝑒 and let 𝑚 be the m-task using 𝑒 with highest
bottleneck capacity 𝑏(𝑚). When we check the capacity constraint on edge 𝑒, we ignore all
the subcritical tasks, which are tasks whose bottleneck capacity is below 𝛿

2𝑏(𝑚). If the total
capacity of all the tasks in the solution that use each edge 𝑒, ignoring the subcritical tasks,
satisfies the capacity constraint of 𝑒, then we call the solution weakly feasible. We will show
that a weakly feasible solution becomes feasible (in the usual sense) if we remove all maze
tasks. The reason is that the capacity of the m-task with highest bottleneck capacity using
edge 𝑒 exceeds the total capacity of the subcritical tasks that use 𝑒, which we ignored in the
definition of weak feasibility.
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𝑣

𝐴𝑣

𝑢

corridor of 𝑢

root

Fig. 2. An example of a maze and the corresponding tree topology, in which tree nodes are represented
by squares.

Therefore, our DP computes a weakly feasible 𝑘-thin pair (𝑇 ′,𝑀 ′) where 𝑇 ′ ⊆ 𝑇 is a set
of tasks and 𝑀 ′ is a set of m-tasks; in fact it computes the optimal weakly feasible solution
among all pairs (𝑇 ′,𝑀 ′), which is the solution that maximizes 𝑤(𝑇 ′). The final output
consists only of 𝑇 ′, whose weight we seek to maximize. Because at the end we will remove
the maze tasks of a computed solution we need to ensure that there is in fact a solution
(𝑇 ′,𝑀 ′) where the weight of 𝑇 ′ is almost the weight of the optimum 𝑇 *. We prove this
by a nontrivial sequence of reductions where, eventually, the tasks of 𝑇 * are mapped into
directed paths of a properly defined tree. On those paths we define a min-cost flow LP where
each integral solution induces a 𝑘-thin pair (𝑇 ′,𝑀 ′) where the tasks 𝑇 * are (essentially)
partitioned into 𝑇 ′ and 𝑀 ′. The objective is to minimize 𝑤(𝑀 ′). The claim then follows by
showing that there exists a cheap fractional solution of weight at most 𝜀 · 𝑤(𝑇 *), and that
the LP matrix is totally unimodular.
The actual DP computing the optimal weakly feasible 𝑘-thin pair (𝑇 ′,𝑀 ′) is rather

involved and technical. We next give an intuitive description, which highlights the key ideas.
For the sake of simplicity, let us pretend that 𝑀 ′ is given to us (whereas our DP will have
to guess it along the way). Together with the capacity curve, the tasks in 𝑀 ′ structure the
plane into a maze. The maze induces a tree (see Figure 2), which guides our DP. In the
maze tree, there is a node 𝑣 for each horizontal corridor in the maze, which is characterized
by an edge 𝑒 and two consecutive m-tasks 𝑚↓,𝑚↑ using 𝑒 (at the top or the bottom of the
capacity curve 𝑚↓ or 𝑚↑ may be undefined and then the corridor goes all the way to the
bottom or to the top). We define the node on the bottom left corridor to be the root of the
tree. For each node 𝑣 we define an area 𝐴𝑣: draw a vertical segment connecting 𝑚↓ and 𝑚↑
above the midpoint of 𝑒. This segment partitions the maze into two disconnected regions.
We define 𝐴𝑣 to be the region not containing the bottom-left corner; see Figure 2. Then
we place an edge (𝑣, 𝑤) if 𝐴𝑤 ⊂ 𝐴𝑣 and there is no other node 𝑢 so that 𝐴𝑤 ⊂ 𝐴𝑢 ⊂ 𝐴𝑣.
Due to the way we preprocessed the input instance, each node in the tree has at most two
children: this helps to simplify the DP.

In the DP table there is a cell for each combination of a tree node 𝑣 and a set of tasks 𝑇 .
This set 𝑇 contains a subset of boundary tasks 𝑖 using the corridor of 𝑣 (formally, 𝑒 ∈ 𝑃 (𝑖)
and 𝑏(𝑚↓) < 𝑏(𝑖) ≤ 𝑏(𝑚↑)). Furthermore, 𝑇 contains a subset of critical tasks for 𝑚↓ and
𝑚↑; those are tasks that share some edge with 𝑃 (𝑚↓) (resp., 𝑃 (𝑚↑)) and whose bottleneck
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capacity is in the range [ 𝛿2𝑏(𝑚↓), 𝑏(𝑚↓)) (resp., [
𝛿
2𝑏(𝑚↑), 𝑏(𝑚↑))). Observe that only those

are the tasks underneath 𝑚↓ (resp., 𝑚↑) that are being considered when checking for weak
feasibility—the rest are subcritial tasks, which, as we mentioned previously, are being ignored.
We show that, to obtain a good approximation, it is sufficient to consider subsets of at

most 𝑘 = 𝑂(1/𝜀+ 1/𝛿) boundary tasks, and subsets of at most 𝑂(1/𝛿2) critical tasks. This
implies that the DP table has polynomial size. The value of each DP cell (𝑣, 𝑇 ) is the weight
of the optimal solution to the following subproblem: select some tasks 𝑇 ′ that lie completely
in 𝐴𝑣 such that (𝑇 ∪ 𝑇 ′,𝑀 ′) is weakly feasible and 𝑤(𝑇 ′) is maximized. We prove that the
value of a DP cell (𝑣, 𝑇 ) can be derived from the value of two DP cells (𝑣1, 𝑇1), (𝑣2, 𝑇2)
associated to the children 𝑣1, 𝑣2 of 𝑣 (or possibly only one cell, if 𝑣 has only one child) that
are compatible with (𝑣, 𝑇 ) and with each other. Hence, for computing the optimal solution
of a cell (𝑣, 𝑇 ), we guess all possibilities for cells (𝑣1, 𝑇1), (𝑣2, 𝑇2), compute their optimal
solutions, and select the best combination. The notion of compatibility then ensures locally
that each such combination yields a feasible solution for the subproblem encoded in (𝑣, 𝑇 ).
Leaf nodes form the base cases of the DP, and a suitable DP-cell associated to the root node
gives the final solution.

1.2 Related Work

The best known polynomial-time approximation algorithm for UFP prior to this work
achieved an approximation factor of 7 + 𝜀 [12]. This result improves on the previously best
known polynomial time 𝑂(log 𝑛)-approximation algorithm designed by Bansal et al. [7].
Bansal et al. [6] present a QPTAS for UFP assuming a quasi-polynomial bound on capacities
and demands of the input instance. In terms of lower bounds, the problem is strongly
NP-hard, even in the case of uniform edge capacities and unit profits [12, 19, 20].
Because of the difficulty of the general problem, researchers have studied special cases

of UFP. The resource allocation problem (RAP) is the special case of UFP with uniform
capacities. A 6-approximation for RAP is given by Phillips et al. [27]. The approximation
ratio was later improved to 4 by Bar-Noy et al. [9], and finally to 2 + 𝜀 by Calinescu
et al. [13]. The no-bottleneck assumption (NBA) requires that max𝑖{𝑑(𝑖)} ≤ min𝑒{𝑢𝑒}.
Chekuri, Mydlarz, and Shepherd [17] give a (2 + 𝜀)-approximation algorithm for UFP under
the NBA. Observe that this generalizes the result in [13] since UFP instances with uniform
capacities satisfy the NBA.
Several researchers addressed the problem of finding good LPs for UFP. The canonical

LP for UFP has a variable 𝑥𝑖 ∈ [0, 1] for each task 𝑖 and takes the following form:

max
∑︁
𝑖

𝑤(𝑖)𝑥𝑖

s.t.
∑︁

𝑖:𝑒∈𝑃 (𝑖)

𝑑(𝑖)𝑥𝑖 ≤ 𝑢𝑒 ∀𝑒

𝑥𝑖 ∈ [0, 1].

Unfortunately, this LP has an integrality gap of Ω(𝑛) [14]. Adding further constraints,
Chekuri, Ene, and Korula give an LP relaxation with an integrality gap of only 𝑂(log2 𝑛) [16],
which was improved to 𝑂(log 𝑛) [15]. Anagnostopoulos et al. [2] describe a compact LP for
the unweighted case of UFP with constant integrality gap. They also present an extended
(i.e., containing extra variables besides the 𝑥𝑖’s) compact LP for weighted UFP with constant
integrality gap.
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The problem of unsplittable flow on a tree (UFT) is the generalization of UFP where
the input graph is a tree rather than a path. UFT is APX-hard, even for unit demands,
edge capacities being either 1 or 2, and trees with depth 3 [21]. The currently best known
approximation algorithm for UFT has a ratio of 𝑂(log2 𝑛) [16]. This was refinded and
extended to a 𝑂(𝑘 log 𝑛)-approximation by Adamaszek et al. [1] where 𝑘 denotes the
pathwidth of the given tree (always upper-bounded by 𝑂(log 𝑛)) which works also if the
objective function is given by a submodular function. Chekuri et al. [16] give a𝑂(log(1/𝛾)/𝛾3)-
approximation algorithm for UFT in the case that all tasks are (1− 𝛾)-small. Under the
NBA, Chekuri et al. [17] design a 48-approximation algorithm for UFT.
The unsplittable flow problem (UF) is a further generalization of UFP. Here the input

graph 𝐺 = (𝑉,𝐸) is arbitrary, and the paths 𝑃 (𝑖) are not specified in the input. A solution
consists of a subset of selected tasks 𝑇 ′, and a path 𝑃 (𝑖) between 𝑠(𝑖) and 𝑡(𝑖) for each 𝑖 ∈ 𝑇 ′.
Azar and Regev [5] show that UF is NP-hard to approximate within a factor better than

𝑂(|𝐸|1−𝜀
). They also present a 𝑂(

√︀
|𝐸|) approximation under the NBA. This generalizes a

similar approximation for the Edge Disjoint Path Problem (EDP) by Kleinberg [24].

1.3 Follow-up Results

After the publication of an extended abstract of this paper [3] several new results on UFP
were found. Batra et al. [11] present a new QPTAS for the problem that does not require
that the input data are quasi-polynomially bounded. In the same paper, the authors present
a PTAS for the special case that the weight of each task is proportional to its demand, and
a PTAS for a resource augmentation setting in which one is allowed to slightly shorten the
path of each task while the compared optimum does not have this privilege. On a high level,
the approach in that paper is similar as in our work: one proves that there is a near-optimal
solution which is well-structured, similarly as the pairs (𝑇 ′,𝑀 ′) in our approach. Then one
derives a dynamic program that computes a profitable solution with this property.
Extending this approach, Grandoni et al. [22] present PTASs for the special cases that

there is an edge that is used by all tasks, that there are no two tasks whose paths are
contained in each other, that one can select an arbitrary number of copies of each task, and
that the profit of each task is proportional to the product of its demand and the length
of its path, i.e., its area in a geometric sense. Very recently, Grandoni et al. [23] found a
polynomial time (31/16 + 𝜖)-approximation algorithm for UFP.

2 DEFINITIONS AND METHODOLOGY

In this section we describe our methodology, which results in a polynomial-time (1 + 𝜀)-
approximation algorithm for 𝛿-large UFP instances (for any two given constants 𝜀, 𝛿 > 0).
Recall that, in polynomial time, we can reduce the input instance so that each vertex is
either the start or the end vertex of exactly one task in 𝑇 (similarly to [6]). Thus, the number
of nodes in the graph is 2𝑛.

Now we define the maze tasks, or m-tasks for short, which we use to structure our solution.
For each pair of tasks 𝑖 and 𝑗 that share the same bottleneck edge 𝑒 (possibly 𝑖 = 𝑗),
we define an m-task 𝑚 with 𝑃 (𝑚) = 𝑃 (𝑖) ∪ 𝑃 (𝑗). Analogously to regular tasks, we set
𝑏(𝑚) = 𝑢𝑒 and 𝑒(𝑚) = 𝑒. Furthermore, we define 𝑑(𝑚) = 𝛿 · 𝑢𝑒 and 𝑤(𝑚) = 0. We remark
that 𝑑(𝑖), 𝑑(𝑗) ≥ 𝑑(𝑚). Let 𝑀𝑒 be the m-tasks 𝑚 with 𝑒 ∈ 𝑃 (𝑚). Note that because of the
preprocessing described in Section 1, no two m-tasks with different bottleneck capacities
share the same endpoint.
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Our goal is to search for solutions in the form of maze pairs (𝑇 ′,𝑀 ′) ∈ 2𝑇 × 2𝑀 , where
we require for any two different m-tasks 𝑚,𝑚′ ∈𝑀 ′ that 𝑏(𝑚′) ̸= 𝑏(𝑚′′). Let 𝑘 = 𝑘(𝜀, 𝛿) be
an integer constant to be defined later. We restrict our attention to maze pairs that are
𝑘-thin and weakly feasible, as defined below.
Intuitively, a maze pair (𝑇 ′,𝑀 ′) is 𝑘-thin if, for any edge 𝑒, between two consecutive

segments (in a top–bottom ordering) associated to m-tasks from 𝑀 ′ ∩𝑀𝑒 there are at most
𝑘 segments associated to tasks in 𝑇 ′ ∩ 𝑇𝑒 (see Figure 1).

Definition 2 (𝑘-thinness). A maze pair (𝑇 ′,𝑀 ′) is 𝑘-thin if for every edge 𝑒 and every set
𝑇 ′′ ⊆ 𝑇 ′ ∩ 𝑇𝑒 with |𝑇 ′′| > 𝑘 there is an m-task 𝑚 ∈ 𝑀 ′ ∩𝑀𝑒 such that min𝑖∈𝑇 ′′{𝑏(𝑖)} ≤
𝑏(𝑚) < max𝑖∈𝑇 ′′{𝑏(𝑖)}.

In Section 3 we prove that, for large enough 𝑘, there exists a 𝑘-thin maze pair (𝑇 , 𝑀̃) so

that 𝑇 is a good approximation to the optimum 𝑇 * and 𝑇 ∪ 𝑀̃ is feasible (i.e., 𝑑(𝑇 ∩ 𝑇𝑒) +

𝑑(𝑀̃ ∩𝑀𝑒) ≤ 𝑢𝑒 on each edge 𝑒).

Lemma 3. For any 𝜀, 𝛿 > 0 there is a 𝑘 ∈ N with 𝑘 = 𝑂(1/𝜀+1/𝛿), such that for any 𝛿-large

instance of UFP, there exists a 𝑘-thin maze pair (𝑇 , 𝑀̃) such that 𝑤(𝑇 ) ≥ (1− 𝜀)𝑤(𝑇 *) and

𝑇 ∪ 𝑀̃ is feasible.

However, we are not able to compute the most profitable 𝑘-thin maze pair in polynomial
time. For this reason we relax the notion of feasibility of a maze pair (𝑇 ′,𝑀 ′) so that 𝑇 ′∪𝑀 ′

might not be feasible, but still 𝑇 ′ alone is feasible (which is sufficient for our purposes).
We need some definitions first. For every m-task 𝑚 ∈ 𝑀 and any subset of tasks 𝑇 ′, we
partition the set 𝑇 ′(𝑚) := {𝑖 ∈ 𝑇 ′ : 𝑃 (𝑖) ∩ 𝑃 (𝑚) ̸= ∅} of tasks of 𝑇 ′ sharing some edge with
𝑚 into three (disjoint) subsets:

∙ (above tasks) 𝑎𝑏𝑣(𝑚,𝑇 ′) := {𝑖 ∈ 𝑇 ′(𝑚) : 𝑏(𝑖) > 𝑏(𝑚)}.
∙ (critical tasks) 𝑐𝑟𝑖𝑡(𝑚,𝑇 ′) := {𝑖 ∈ 𝑇 ′(𝑚) : 𝑏(𝑚) ≥ 𝑏(𝑖) ≥ 𝛿

2𝑏(𝑚)}.
∙ (subcritical tasks) 𝑠𝑢𝑏𝑐(𝑚,𝑇 ′) := {𝑖 ∈ 𝑇 ′(𝑚) : 𝑏(𝑖) < 𝛿

2𝑏(𝑚)}.
We also define 𝑎𝑏𝑣𝑒(𝑚,𝑇 ′) := 𝑎𝑏𝑣(𝑚,𝑇 ′) ∩ 𝑇𝑒, and we define analogously 𝑐𝑟𝑖𝑡𝑒(𝑚,𝑇 ′) and
𝑠𝑢𝑏𝑐𝑒(𝑚,𝑇 ′).

Definition 4 (Weak feasibility). A maze pair (𝑇 ′,𝑀 ′) is weakly feasible if for every edge
𝑒 it holds that 𝑑(𝑎𝑏𝑣𝑒(𝑚𝑒, 𝑇

′)) + 𝑑(𝑐𝑟𝑖𝑡𝑒(𝑚𝑒, 𝑇
′)) + 𝑑(𝑚𝑒) ≤ 𝑢𝑒, where 𝑚𝑒 is the m-task in

𝑀 ′ ∩𝑀𝑒 of largest bottleneck capacity, or 𝑑(𝑇 ′ ∩ 𝑇𝑒) ≤ 𝑢𝑒, if 𝑀
′ ∩𝑀𝑒 = ∅.

Next we show that weak feasibility of a maze pair (𝑇 ′,𝑀 ′) implies feasibility of 𝑇 ′. The
key argument is that for each edge 𝑒 the task 𝑚𝑒 compensates for the tasks in 𝑠𝑢𝑏𝑐𝑒(𝑚𝑒, 𝑇

′)
that were ignored in the definition of weak feasibility.

Lemma 5. Let (𝑇 ′,𝑀 ′) be a weakly feasible maze pair. Then 𝑇 ′ is feasible.

Proof. Let 𝑒1, . . . , 𝑒𝑚 be the edges in nondecreasing order of capacity. We prove by
induction on 𝑗 that 𝑑(𝑇 ′ ∩ 𝑇𝑒𝑗 ) ≤ 𝑢𝑒𝑗 for all 𝑗. Consider first 𝑒1. If there is no m-task using
𝑒1, then the claim is true by definition. Otherwise let 𝑚1 = 𝑚𝑒1 be the (only) m-task in
𝑀 ′∩𝑀𝑒1 . All tasks 𝑖 ∈ 𝑇 ′∩𝑇𝑒1 must have 𝑏(𝑖) = 𝑢𝑒1 (in particular, they are critical for 𝑚1).
Thus 𝑑(𝑇 ′ ∩ 𝑇𝑒) ≤ 𝑑(𝑇 ′ ∩ 𝑇𝑒) + 𝑑(𝑚1) = 𝑑(𝑎𝑏𝑣𝑒1(𝑚1, 𝑇

′)) + 𝑑(𝑐𝑟𝑖𝑡𝑒1(𝑚1, 𝑇
′)) + 𝑑(𝑚1) ≤ 𝑢𝑒.

Now suppose by induction that there is a value 𝑗 ∈ N such that 𝑑(𝑇 ′ ∩ 𝑇𝑒𝑗′ ) ≤ 𝑢𝑒𝑗′ for

all 𝑗′ ∈ {1, ..., 𝑗 − 1}. Consider the edge 𝑒𝑗 . Once again if there is no m-task using 𝑒𝑗 , then
the claim is true by definition. Otherwise, let 𝑚𝑗 := 𝑚𝑒𝑗 . Consider the subcritical tasks
𝑆𝐶 := 𝑠𝑢𝑏𝑐𝑒𝑗 (𝑚𝑗 , 𝑇

′). By definition, 𝑒𝑗 is not the bottleneck edge of any task in 𝑆𝐶. We
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partition 𝑆𝐶 into the sets 𝑆𝐶𝐿 and 𝑆𝐶𝑅, containing the tasks with bottleneck edge on the
left of 𝑒𝑗 and on the right of 𝑒𝑗 , respectively. Consider the set 𝑆𝐶𝐿. Let 𝑖𝐿 ∈ 𝑆𝐶𝐿 be a task
with maximum bottleneck capacity in 𝑆𝐶𝐿 and let 𝑒𝐿 be its bottleneck edge. By the definition
of 𝑆𝐶𝐿 and 𝑖𝐿, all tasks in 𝑆𝐶𝐿 use 𝑒𝐿 and 𝑢𝑒𝐿 = 𝑏(𝑖𝐿) <

𝛿
2 · 𝑏(𝑚𝑗). Using the induction

hypothesis on 𝑒𝐿, we obtain that 𝑑(𝑆𝐶𝐿) = 𝑑(𝑆𝐶𝐿 ∩ 𝑇𝑒𝐿) ≤ 𝑑(𝑇 ′ ∩ 𝑇𝑒𝐿) ≤ 𝑢𝑒𝐿 < 𝛿
2 · 𝑏(𝑚𝑗).

Similarly, we obtain that 𝑑(𝑆𝐶𝑅) < 𝛿
2 · 𝑏(𝑚𝑗). Since 𝑑(𝑚𝑗) = 𝛿 · 𝑏(𝑚𝑗) the m-task 𝑚

compensates for all tasks in 𝑆𝐶, that is,

𝑑(𝑠𝑢𝑏𝑐𝑒𝑗 (𝑚𝑗 , 𝑇
′)) = 𝑑(𝑆𝐶) = 𝑑(𝑆𝐶𝐿) + 𝑑(𝑆𝐶𝑅)

< 𝛿 · 𝑏(𝑚𝑗) = 𝑑(𝑚𝑗).

Hence

𝑑(𝑇 ′ ∩ 𝑇𝑒𝑗 ) = 𝑑(𝑎𝑏𝑣𝑒𝑗 (𝑚𝑗 , 𝑇
′)) + 𝑑(𝑐𝑟𝑖𝑡𝑒𝑗 (𝑚𝑗 , 𝑇

′))

+ 𝑑(𝑠𝑢𝑏𝑐𝑒𝑗 (𝑚𝑗 , 𝑇
′))

≤ 𝑑(𝑎𝑏𝑣𝑒𝑗 (𝑚𝑗 , 𝑇
′)) + 𝑑(𝑐𝑟𝑖𝑡𝑒𝑗 (𝑚𝑗 , 𝑇

′))

+ 𝑑(𝑚𝑗)

≤ 𝑢𝑒𝑗 ,

where the last inequality follows from the weak feasibility of (𝑇 ′,𝑀 ′). □

Note that the maze pair (𝑇 , 𝑀̃) obtained in Lemma 3 is feasible so, by definition, it is also
weakly feasible. In Section 4 we present a polynomial-time dynamic program that computes
the weakly feasible 𝑘-thin maze pair with highest profit.

Lemma 6. For any constants 𝛿 ∈ (0, 1] and 𝑘 ∈ N+, there is a dynamic program with

running time 𝑛𝑂(𝑘+1/𝛿2) that computes a weakly feasible 𝑘-thin maze pair (𝑇 ′,𝑀 ′) of largest
profit 𝑤(𝑇 ′) for 𝛿-large instances of UFP.

A crucial property that we exploit in the design of our dynamic program is that for each
m-task in a weakly feasible maze pair the number of critical tasks is bounded by a constant
depending only on 𝛿.

Lemma 7. Let (𝑇 ′,𝑀 ′) be a weakly feasible maze pair and 𝑚 ∈ 𝑀 ′. It holds that
|𝑐𝑟𝑖𝑡(𝑚,𝑇 ′)| ≤ 𝑛𝑐𝑟𝑖𝑡(𝛿) := 4

𝛿2 + 1
𝛿 .

Proof. First recall that, by Lemma 5, 𝑇 ′ is a feasible solution. Consider the tasks
𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚,𝑇 ′) with 𝑏(𝑖) = 𝑏(𝑚). Because all tasks are 𝛿-large, there can be at most 1/𝛿 such
tasks. The remaining tasks 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚,𝑇 ′) have 𝑏(𝑖) < 𝑏(𝑚) and must use the leftmost edge
𝑒𝐿 of 𝑃 (𝑚) or the rightmost edge 𝑒𝑅 of 𝑃 (𝑚) (or both). Consider the tasks 𝐶𝐿 of the first
type: we will show that |𝐶𝐿| ≤ 2/𝛿2. A symmetric argument holds for the remaining tasks
𝐶𝑅, hence giving the claim. Consider the task 𝑖𝐿 ∈ 𝐶𝐿 that has the largest 𝑏(𝑖𝐿). By the
definition of 𝐶𝐿 and 𝑖𝐿 all tasks in 𝐶𝐿 must use 𝑒(𝑖𝐿) and 𝑏(𝑖𝐿) ≤ 𝑏(𝑚). Each task 𝑖 ∈ 𝐶𝐿

is critical for 𝑚 and thus 𝑏(𝑖) ≥ 𝛿
2𝑏(𝑚). Also, 𝑖 is 𝛿-large and so 𝑑(𝑖) ≥ 𝛿𝑏(𝑖) ≥ 𝛿2

2 𝑏(𝑚).

Therefore, there can be at most 𝑏(𝑖𝐿)/(
𝛿2

2 𝑏(𝑚)) ≤ 2
𝛿2 such tasks. □

By combining Lemmas 3, 5 and 6 we obtain the main theorem of this paper.

Theorem 8. For any constant 𝛿 > 0, there is a PTAS for 𝛿-large instances of UFP.

Combining Theorem 8 with Theorem 1, we obtain the following corollary.

Corollary 9. For any constant 𝜀 > 0, there is a polynomial-time (2 + 𝜀) approximation
algorithm for UFP.
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3 A THIN PROFITABLE MAZE PAIR

In this section we prove Lemma 3, that is, we show that for any instance there is a 𝑘-thin maze
pair (𝑇 , 𝑀̃) such that 𝑤(𝑇 ) ≥ (1−𝜀)𝑂𝑃𝑇 and 𝑇 ∪𝑀̃ is feasible. Recall that, by assumption,
the vertices of the graph are labeled by 1, . . . , 2𝑛 from left to right. Let ℓ(𝑖) denote the
segment (𝑠(𝑖), 𝑡(𝑖)) × {𝑏(𝑖)} associated to each task 𝑖 ∈ 𝑇 *. Define 𝐿 := {ℓ(𝑖) : 𝑖 ∈ 𝑇 *}
and 𝑤(ℓ(𝑖)) := 𝑤(𝑖). We say that a segment (𝑎, 𝑏)× {𝑦} contains an edge 𝑒 = (𝑣, 𝑣 + 1) if
(𝑣, 𝑣 + 1) ⊆ (𝑎, 𝑏).

We want to select a subset 𝐿′ ⊆ 𝐿 such that 𝑤(𝐿′) :=
∑︀

ℓ(𝑖)∈𝐿′ 𝑤(ℓ(𝑖)) is at most 𝜀 ·𝑤(𝑇 *)

and any vertical segment {𝑥} × (𝑦𝑏, 𝑦𝑡) intersecting more than 𝑘 segments in 𝐿 intersects at
least one segment in 𝐿′. We call a set 𝐿′ with the latter property 𝑘-thin for 𝐿. As we will
show, for proving Lemma 3 it suffices to find a 𝑘-thin set 𝐿′ for 𝐿 because of the following
transformation of 𝐿′ into a maze-pair (𝑇 (𝐿′),𝑀(𝐿′)). We define 𝑇 (𝐿′) := {𝑖 : ℓ(𝑖) ∈ 𝐿 ∖ 𝐿′}.
For constructing𝑀(𝐿′) we group the segments in 𝐿′ according to the bottleneck edges of their
corresponding tasks. For each edge 𝑒, we define 𝐿′

𝑒 := {ℓ(𝑖) ∈ 𝐿′ : 𝑒(𝑖) = 𝑒}. Now for each
edge 𝑒 with 𝐿′

𝑒 ̸= ∅ we add to 𝑀(𝐿′) the m-task 𝑚𝑒 ∈𝑀 with path 𝑃 (𝑚) = ∪ℓ(𝑖)∈𝐿′
𝑒
𝑃 (𝑖).

Note that 𝑃 (𝑚) = 𝑃 (𝑖𝐿) ∪ 𝑃 (𝑖𝑅) for the task 𝑖𝐿 ∈ 𝐿′
𝑒 with leftmost start vertex and the

task 𝑖𝑅 ∈ 𝐿′
𝑒 with rightmost end vertex (in a sense, we glue 𝑖𝐿 and 𝑖𝑅 together to form an

m-task). Hence 𝑚𝑒 is a well-defined m-task. Observe that, as required in the definition of a
maze pair, we have 𝑏(𝑚′) ̸= 𝑏(𝑚′′) for any two distinct 𝑚′,𝑚′′ ∈𝑀(𝐿′).

Lemma 10. If a set 𝐿′ ⊆ 𝐿 is 𝑘-thin for 𝐿, then the maze pair (𝑇 (𝐿′),𝑀(𝐿′)) is (𝑘+1/𝛿)-
thin and 𝑇 (𝐿′) ∪𝑀(𝐿′) is feasible.

Proof. The proof is based on the similarity of the definitions of 𝑘-thinness for segments
and for maze pairs. Some extra work is required because some line segments may share
the same bottleneck edge and then overlap. Consider any edge 𝑒 = (𝑢, 𝑢 + 1), and any
set of 𝑘 + 1/𝛿 + 1 tasks 𝑇 ′ ⊆ 𝑇 * ∩ 𝑇𝑒. We define {𝑖1, 𝑖2, . . . , 𝑖𝑘+1} ⊆ 𝑇 ′ to be 𝑘 + 1 of
them with lowest bottleneck capacity, in nondecreasing order of bottleneck capacity. Let
𝑏𝑚𝑎𝑥 := max𝑖∈𝑇 ′{𝑏(𝑖)}. Since 𝑇 * is feasible, and since the tasks in 𝑇 * are 𝛿-large, there
cannot be more than 1/𝛿 tasks in 𝑇 ′ of bottleneck capacity equal to 𝑏𝑚𝑎𝑥. It follows that
𝑏(𝑖𝑗) < 𝑏𝑚𝑎𝑥 for all 1 ≤ 𝑗 ≤ 𝑘 + 1.
Consider a vertical segment ℓ′ with 𝑥-coordinate 𝑢+ 1

2 that intersects ℓ(𝑖1), . . . , ℓ(𝑖𝑘+1).
Since 𝐿′ is 𝑘-thin, ℓ′ must intersect some segment ℓ(𝑖*) ∈ 𝐿′. Segment ℓ(𝑖*) corresponds to a
task 𝑖*; in turn, to this task corresponds an m-task 𝑚 ∈𝑀(𝐿′) with 𝑏(𝑖1) ≤ 𝑏(𝑚) = 𝑏(𝑖*) ≤
𝑏(𝑖𝑘+1) < 𝑏𝑚𝑎𝑥. Hence (𝑇 (𝐿′),𝑀(𝐿′)) is (𝑘 + 1/𝛿)-thin.

To show the feasibility of 𝑇 (𝐿′) ∪𝑀(𝐿′) recall that 𝑇 * is feasible and all tasks in 𝑇 * are
𝛿-large. Furthermore, each m-task has capacity 𝛿 · 𝑏(𝑚). Therefore, on every edge 𝑒 each
m-task 𝑚𝑒 uses at most as much capacity as the tasks from 𝑇 * whose segments are in 𝐿′

𝑒

(the latter tasks in a sense were replaced by 𝑚𝑒). □

Next we reduce the problem of finding a 𝑘-thin set 𝐿′ with low weight to the case that
each segment ℓ(𝑖) starts at 𝑒(𝑖) and either goes only to the right or only to the left. See
Figures 3(a) and 3(b). Formally, we split each segment ℓ(𝑖) into two segments ℓ𝐿(𝑖) and
ℓ𝑅(𝑖) such that ℓ𝐿(𝑖) contains the edges of 𝑃 (𝑖) between 𝑠(𝑖) and the right vertex of the
bottleneck edge 𝑒(𝑖) and symmetrically for ℓ𝑅(𝑖). So ℓ𝐿(𝑖) and ℓ𝑅(𝑖) overlap on 𝑒(𝑖). We set
𝑤(ℓ𝐿(𝑖)) = 𝑤(ℓ𝑅(𝑖)) = 𝑤(𝑖). We define 𝐿𝐿 := {ℓ𝐿(𝑖) : ℓ(𝑖) ∈ 𝐿} and 𝐿𝑅 := {ℓ𝑅(𝑖) : ℓ(𝑖) ∈ 𝐿}.
The next lemma shows that it suffices to find low weight 𝑘-thin sets for 𝐿𝐿 and 𝐿𝑅.
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(a) Initial instance. The numbers identify some of
the tasks.
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(b) Splitting the segments to the ones in 𝐿𝑅 (in
bold) and to 𝐿𝐿 (dashed).

1

2
3

4
5

6
7

8
9

10
11

12

(c) Line segments in 𝐿𝑅 shifted up (distances distorted)

and extended to the left (in dashed).
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(d) Decomposition of the segments for 𝑘 = 4. The

dashed lines indicates the values (𝑦0 in the text)
where the respective interval 𝐼𝑤 is split.

A

B

D(7)

D(4)

D(10)

(e) The tree created from the decomposition of (d) (for repre-

sentation issues, arc directions (all towards the left) are omitted,

and some nodes of degree 2 are contracted). A and B indicate
the nodes corresponding to the splittings in (d).

Fig. 3. Construction of the maze

Lemma 11. Given 𝑘-thin sets 𝐿′
𝐿 for 𝐿𝐿 and 𝐿′

𝑅 for 𝐿𝑅, there is a 2𝑘-thin set 𝐿′ for 𝐿
with 𝑤(𝐿′) ≤ 𝑤(𝐿′

𝐿) + 𝑤(𝐿′
𝑅).

Proof. We add a segment ℓ(𝑖) to 𝐿′ if and only if ℓ𝐿(𝑖) ∈ 𝐿′
𝐿 or ℓ𝑅(𝑖) ∈ 𝐿′

𝑅. It follows
directly that 𝑤(𝐿′) ≤ 𝑤(𝐿′

𝐿) + 𝑤(𝐿′
𝑅). Now any vertical segment ℓ′ crossing at least 2𝑘 + 1

segments in 𝐿′ must either cross 𝑘 + 1 segments from 𝐿𝐿 or 𝑘 + 1 segments from 𝐿𝑅. Thus,
ℓ′ crosses a segment in 𝐿′

𝐿 or a segment in 𝐿′
𝑅, and hence ℓ′ crosses a segment in 𝐿′. □

Consider now only the segments 𝐿𝑅 (a symmetric argument holds for 𝐿𝐿). The next step is
to reduce the problem to the case where, intuitively speaking, the edge capacities are strictly
increasing and all segments contain the leftmost edge of the graph (we shift up segments and
then extend them to the left). To simplify the description of the next step, we also enforce
that new segments have different 𝑦-coordinates. Formally, let us assume that task labels 𝑖 are
integers between 1 and 𝑛 (in any order). For each ℓ𝑅(𝑖) = (𝑣, 𝑢)× {𝑏(𝑖)} ∈ 𝐿𝑅, we construct

a segment (1, 𝑢)× {𝑏(𝑖) +𝑀 · 𝑣+ 𝜀 · 𝑖}, which we denote by ℓ̃𝑅(𝑖). Here 𝑀 := 1 +max𝑒{𝑢𝑒}
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and 𝜀 = 1
𝑛+1 (so that 𝜀 · 𝑖 < 1). Define 𝐿̃𝑅 := {ℓ̃𝑅(𝑖) : 𝑖 ∈ 𝑇 *} and 𝑤(ℓ̃𝑅(𝑖)) = 𝑤(𝑖). (See

Figure 3(c).)

Lemma 12. Given a 𝑘-thin set 𝐿̃′
𝑅 for 𝐿̃𝑅, there is a 𝑘-thin set 𝐿′

𝑅 for 𝐿𝑅 with 𝑤(𝐿̃′
𝑅) =

𝑤(𝐿′
𝑅). A symmetric claim holds for 𝐿̃𝐿 and 𝐿𝐿.

Proof. We prove the first claim only, the proof of the second one being symmetric. Let
𝐿′
𝑅 := {ℓ𝑅(𝑖) ∈ 𝐿𝑅 : ℓ̃𝑅(𝑖) ∈ 𝐿̃′

𝑅}. Clearly 𝑤(𝐿′
𝑅) = 𝑤(𝐿̃′

𝑅). Consider any vertical segment
{𝑥} × (𝑦𝑏, 𝑦𝑡) that intersects at least 𝑘 + 1 segments from 𝐿𝑅. Let ℓ𝑅(𝑖1), . . . ℓ𝑅(𝑖𝑘+1) be
𝑘 + 1 such segments of lowest capacity, breaking ties according to the lowest label 𝑖 of the
corresponding tasks. To prove the lemma it suffices to show that at least one such segment
ℓ𝑅(𝑖𝑗*) belongs to 𝐿′

𝑅.
W.l.o.g., assume that for any 1 ≤ 𝑗 ≤ 𝑘, 𝑠(𝑖𝑗) is equal to or to the left of 𝑠(𝑖𝑗+1),

and 𝑖𝑗 < 𝑖𝑗+1 if 𝑠(𝑖𝑗) = 𝑠(𝑖𝑗+1). Then by construction 𝑦1 < . . . < 𝑦𝑘+1, where 𝑦𝑗 is the 𝑦-

coordinate of segment ℓ̃𝑅(𝑖𝑗). Consider a vertical segment {𝑥}×(𝑦1−𝜀′, 𝑦𝑘+1+𝜀′). For 𝜀′ > 0

small enough, we can assume that ℓ′ intersects precisely the segments ℓ̃𝑅(𝑖1), . . . , ℓ̃𝑅(𝑖𝑘+1).

Hence ℓ̃𝑅(𝑖𝑗*) ∈ 𝐿̃′
𝑅 for some 1 ≤ 𝑗* ≤ 𝑘 + 1. It follows from the definition of 𝐿′

𝑅 that
ℓ𝑅(𝑖𝑗*) ∈ 𝐿′

𝑅 as required. □

It remains to prove that there is a 𝑘-thin set for 𝐿̃𝑅 whose weight is bounded by
𝑂(1/𝑘)𝑤(𝐿̃𝑅). We do this by reducing this problem to a min-cost flow problem in a directed
tree network. Assume w.l.o.g. that 𝑘 ∈ N is even (this assumption has the only purpose
to avoid ceilings and floors). We consider the following hierarchical decomposition of the

segments in 𝐿̃𝑅, which corresponds to a (directed) rooted out-tree 𝒟 (see Figures 3(d)
and 3(e)). We construct 𝒟 iteratively, starting from the root. Each node 𝑤 of 𝒟 is labelled
with a triple (𝑒𝑤, 𝐼𝑤, 𝑅𝑤), where 𝑒𝑤 is an edge in 𝐸, 𝐼𝑤 ⊆ [0,∞) is an interval, and 𝑅𝑤

contains all segments that contain 𝑒 and whose 𝑦-coordinate is in 𝐼𝑤 (the representative
segments of 𝑤). Let 𝑒𝑟 ∈ 𝐸 be the rightmost edge that is contained in at least 𝑘−1 segments.
We let the root 𝑟 of 𝒟 be labelled with (𝑒𝑟, [0,∞), 𝑅𝑟). For any constructed node 𝑤, if 𝑒𝑤 is
the leftmost edge of the graph, then 𝑤 is a leaf. Otherwise, consider the edge 𝑒′ to the left of
𝑒𝑤, and let 𝑅′ be the segments in 𝐼𝑤 that contain 𝑒′. Note that, by the initial preprocessing
of the instance, each edge can be the rightmost edge of at most one segment (task), hence
|𝑅′| ≤ |𝑅𝑤|+ 1. If |𝑅′| < 𝑘, we append to 𝑤 a child 𝑤′ (with a directed arc (𝑤,𝑤′)) with
label (𝑒′, 𝐼𝑤, 𝑅

′). Otherwise (i.e., if |𝑅′| = 𝑘), we append to 𝑤 two children 𝑤𝑏 and 𝑤𝑡, which

are labelled as follows. Let ℓ̃𝑅(𝑖1), ..., ℓ̃𝑅(𝑖𝑘) be the segments in 𝑅′, sorted increasingly by
𝑦-coordinate (here we exploit the fact that 𝑦-coordinates are all distinct). We partition 𝑅′

into 𝑅𝑏 = {ℓ̃𝑅(𝑖1), ..., ℓ̃𝑅(𝑖𝑘/2)} and 𝑅𝑡 = {ℓ̃𝑅(𝑖𝑘/2+1), ..., ℓ̃𝑅(𝑖𝑘)}. Let 𝑦0 be a value such
that all segments in 𝑅𝑏 have a 𝑦-coordinate strictly smaller than 𝑦0 and all segments in 𝑅𝑡

have a 𝑦-coordinate strictly greater than 𝑦0. We label 𝑤𝑏 and 𝑤𝑡 with (𝑒′, 𝐼𝑤 ∩ [0, 𝑦0), 𝑅𝑏)
and (𝑒′, 𝐼𝑤 ∩ [𝑦0,∞), 𝑅𝑡), respectively.

Consider a given segment ℓ̃𝑅(𝑖) ∈ 𝐿̃𝑅, and the nodes 𝑤 of 𝒟 that have ℓ̃𝑅(𝑖) as one of
their representative segments 𝑅𝑤. Then the latter nodes induce a directed path 𝒟(𝑖) in 𝒟.
To see this, observe that if ℓ̃𝑅(𝑖) ∈ 𝑅𝑤, then either 𝑤 is a leaf or ℓ̃𝑅(𝑖) ∈ 𝑅𝑤′ for exactly one

child 𝑤′ of 𝑤. Furthermore, each ℓ̃𝑅(𝑖) belongs to 𝑅𝑤 for some leaf 𝑤 of 𝒟 (i.e., no 𝒟(𝑖) is
empty).

We call a set of segments 𝐿̃′
𝑅 ⊆ 𝐿̃𝑅 a segment cover if for each node 𝑤 of 𝒟 it holds that

𝑅𝑤 ∩ 𝐿̃′
𝑅 ̸= ∅.
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Lemma 13. If 𝐿̃′
𝑅 ⊆ 𝐿̃𝑅 is a segment cover, then 𝐿̃′

𝑅 is 2𝑘-thin for 𝐿̃𝑅. A symmetric claim

holds for 𝐿̃𝐿.

Proof. We prove the first claim only, the proof of the second one being symmetric.
Consider any vertical segment ℓ′ = {𝑥} × (𝑦𝑏, 𝑦𝑡) crossing at least 2𝑘 + 1 segments from

𝐿̃𝑅, and let 𝐿̃′′ be 2𝑘 + 1 such segments of lowest 𝑦-coordinate. Let also 𝑒 = (𝑢, 𝑢 + 1)

be the edge such that 𝑥 ∈ (𝑢, 𝑢 + 1), and ℓ̃𝑅(𝑖1), . . . , ℓ̃𝑅(𝑖ℎ) be the segments containing

edge 𝑒 in increasing order of 𝑦 coordinate. Observe that segments 𝐿̃′′ induce a subsequence
ℓ̃𝑅(𝑖𝑗), ℓ̃𝑅(𝑖𝑗+1), . . . , ℓ̃𝑅(𝑖𝑗+2𝑘) of ℓ̃𝑅(𝑖1), . . . , ℓ̃𝑅(𝑖ℎ). Furthermore, the representative sets

𝑅𝑤 of nodes 𝑤 such that 𝑒𝑤 = 𝑒 partition ℓ̃𝑅(𝑖1), . . . , ℓ̃𝑅(𝑖ℎ) into subsequences, each one
containing between 𝑘/2 and 𝑘 − 1 segments. It follows that there must be one node 𝑤′

such that 𝑅𝑤′ ⊆ {ℓ̃𝑅(𝑖𝑗), . . . , ℓ̃𝑅(𝑖𝑗+2𝑘)}. Since 𝐿̃′
𝑅 ∩𝑅𝑤′ ̸= ∅ by assumption, it follows that

ℓ̃𝑅(𝑖𝑗*) ∈ 𝐿̃′
𝑅 for some 𝑗 ≤ 𝑗* ≤ 𝑗 + 2𝑘. □

It remains to show that there is a segment cover with small weight.

Lemma 14. There exists a segment cover 𝐿̃′
𝑅 ⊆ 𝐿̃𝑅 with 𝑤(𝐿̃′

𝑅) ≤ 2
𝑘 · 𝑤(𝐿̃𝑅) (where 𝑘 is

the parameter used in the construction of 𝒟).

Proof. We can formulate the problem of finding a 𝐿̃′
𝑅 satisfying the claim as a flow

problem. We augment 𝒟 by appending a dummy node 𝑤′ to each leaf node 𝑤 with a
directed edge (𝑤,𝑤′) (so that all the original nodes are internal) and extend the paths 𝒟(𝑖)
consequently (so that each path contains exactly one new edge (𝑤,𝑤′)). We define a min-cost
flow problem, specified by a linear program. For each directed path 𝒟(𝑖) we define a variable
𝑥𝑖 ∈ [0, 1]. Let 𝐴 denote the set of all arcs in 𝒟. For each arc 𝑎 denote by 𝑇𝑎 all values 𝑖
such that 𝒟(𝑖) uses 𝑎. For arguing about the flow problem, we consider the following linear
program:

min
∑︁

𝑖:ℓ(𝑖)∈𝐿̃𝑅

𝑤(𝑖) · 𝑥𝑖

s.t.
∑︁
𝑖∈𝑇𝑎

𝑥𝑖 ≥ 1 ∀𝑎 ∈ 𝐴

𝑥𝑖 ≥ 0 ∀ℓ(𝑖) ∈ 𝐿̃𝑅.

By the construction of 𝒟 every arc is used by at least 𝑘/2 paths. Hence, the linear program

has a fractional solution of weight
∑︀

𝑖 𝑤(𝑖) ·
2
𝑘 = 2

𝑘 · 𝑤(𝐿̃𝑅), which is obtained by setting
𝑥𝑖 := 2/𝑘 for each 𝑖. Since the underlying network 𝒟 is a directed tree and all paths follow
the direction of the arcs, the resulting network flow matrix is totally unimodular, see [28].
Therefore, there exists also an integral solution with at most the same weight. This integral
solution induces the set 𝐿̃′

𝑅. □

Now the proof of Lemma 3 follows easily from the previous reductions.
Proof of Lemma 3. Suppose we are given the optimal solution 𝑇 *. As described above, we

construct the sets 𝐿, 𝐿𝐿, 𝐿𝑅, 𝐿̃𝐿, and 𝐿̃𝑅. We compute segment covers 𝐿̃′
𝐿 for 𝐿̃𝐿 and 𝐿̃′

𝑅

for 𝐿̃𝑅 as described in the proof of Lemma 14. By Lemma 13 they are 2𝑘-thin for 𝐿̃𝐿 and 𝐿̃𝑅,
respectively. By Lemma 12 we obtain 2𝑘-thin sets 𝐿′

𝐿 and 𝐿′
𝑅 for 𝐿𝐿 and 𝐿𝑅, respectively,

with 𝑤(𝐿′
𝐿) = 𝑤(𝐿̃′

𝐿) and 𝑤(𝐿′
𝑅) = 𝑤(𝐿̃′

𝑅). By Lemma 11 this yields a 4𝑘-thin set 𝐿′ for 𝐿

whose weight is bounded by 𝑤(𝐿′
𝐿) + 𝑤(𝐿′

𝑅). Finally, set (𝑇 , 𝑀̃) := (𝑇 (𝐿′),𝑀(𝐿′)). This
maze pair is feasible by definition. Furthermore, by Lemma 10, it is (4𝑘 + 1

𝛿 )-thin and its
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weight is bounded by 𝑤(𝑇 ) ≤ 𝑤(𝐿̃′
𝐿)+𝑤(𝐿̃′

𝑅) ≤ 2
𝑘 · (𝑤(𝐿̃𝐿)+𝑤(𝐿̃𝑅)) ≤ 4

𝑘 ·𝑤(𝐿) = 4
𝑘 ·𝑤(𝑇 *).

By setting the parameter 𝑘 in the construction of 𝒟 to be 4/𝜀 we obtain an 𝑂(1/𝜀+1/𝛿)-thin
maze pair, completing the proof of the lemma.

4 THE DYNAMIC PROGRAM

In this section we present a DP that computes the weakly feasible 𝑘-thin maze pair (𝑇 , 𝑀̃)

with maximum weight 𝑤(𝑇 ), and thus prove Lemma 6. Let 𝑘 = 𝑂(1/𝜀+ 1/𝛿) (as suggested
by Lemma 3). To simplify the description and analysis of our DP, we introduce the following
assumptions and notations. For technical reasons, we add edges 𝑒𝐿 and 𝑒𝑅 to the left and
right of the input graph, respectively, and set their capacity to zero (those edges are used
by no task). For notational convenience, we also add to 𝑀 two special dummy m-tasks ⊥
and ⊤. The paths of ⊥ and ⊤ span all the edges of the graph, and they both have demand
zero. Furthermore, 𝑏(⊤) := +∞ and 𝑏(⊥) := 0. In particular, with these definitions we have
that 𝑎𝑏𝑣𝑒(⊤, 𝑇 ′) = 𝑐𝑟𝑖𝑡𝑒(⊤, 𝑇 ′) = ∅, 𝑎𝑏𝑣𝑒(⊥, 𝑇 ′) = 𝑇 ′ ∩ 𝑇𝑒, and 𝑐𝑟𝑖𝑡𝑒(⊥, 𝑇 ′) = ∅. We let
𝑒(⊥) = 𝑒𝑅, and we leave 𝑒(⊤) unspecified. However, when talking about weak-feasibility
and 𝑘-thinness of a maze pair (𝑇 ′,𝑀 ′) we will ignore the dummy m-tasks, that is, we will
implicitly consider (𝑇 ′,𝑀 ′ ∖ {⊥,⊤}).

For any 𝑒 ∈ 𝐸, 𝑇 ′ ⊆ 𝑇 , and any two m-tasks 𝑚′ and 𝑚′′ with 𝑏(𝑚′) < 𝑏(𝑚′′), the boundary
tasks in 𝑇 ′ for the triple (𝑒,𝑚′,𝑚′′) are the tasks

𝑏𝑜𝑢𝑛𝑑𝑒(𝑚
′,𝑚′′, 𝑇 ′) := {𝑖 ∈ 𝑇 ′ ∩ 𝑇𝑒 : 𝑏(𝑚

′) < 𝑏(𝑖) ≤ 𝑏(𝑚′′)}.

Intuitively, boundary tasks 𝑖 are the tasks using edge 𝑒 such that the segment corresponding
to 𝑖 is sandwiched between the segments corresponding to 𝑚′ and 𝑚′′.
In our DP table we introduce a cell for each tuple of the form 𝑐 = (𝑒,𝑚↑, 𝐶↑,𝑚↓, 𝐶↓, 𝐵)

where:

∙ 𝑒 is an edge;
∙ 𝑚↓ ∈𝑀𝑒 and 𝑚↑ ∈𝑀𝑒, 𝑏(𝑚↓) < 𝑏(𝑚↑);
∙ 𝐶↓ ⊆ 𝑐𝑟𝑖𝑡(𝑚↓, 𝑇 ) and 𝐶↑ ⊆ 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇 ), with |𝐶↑| , |𝐶↓| ≤ 𝑛𝑐𝑟𝑖𝑡(𝛿);
∙ 𝐵 ⊆ 𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝑇 ), with |𝐵| ≤ 𝑘.

Recall that 𝑛𝑐𝑟𝑖𝑡(𝛿) = 4
𝛿2 + 1

𝛿 (see Lemma 7). Intuitively, 𝐶↓ (resp., 𝐶↑) are the critical
tasks associated to 𝑚↓ (resp., 𝑚↑). Observe that 𝐶↓ and 𝐵 are disjoint, whereas 𝐶↑ might
overlap with both 𝐶↓ and 𝐵. For such a cell to exist we further impose the following
consistency property : we require that (𝐵 ∪𝐶↓ ∪𝐶↑, {𝑚↓,𝑚↑}) is weakly feasible and that for
𝑇 ′ = 𝐵∪𝐶↓∪𝐶↑, one has 𝑐𝑟𝑖𝑡(𝑚↓, 𝑇

′) = 𝐶↓, 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇
′) = 𝐶↑, and 𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝑇

′) = 𝐵.
Given a DP cell 𝑐 = (𝑒,𝑚↑, 𝐶↑,𝑚↓, 𝐶↓, 𝐵), as a shorthand notation we use 𝑒(𝑐) := 𝑒,

𝑚↑(𝑐) := 𝑚↑ and similarly for the other indices of the cell. We also define 𝑒↓ = 𝑒↓(𝑐) := 𝑒(𝑚↓)
and 𝑒↑ = 𝑒↑(𝑐) := 𝑒(𝑚↑) (we set 𝑒↑ = 𝑒 if 𝑚↑ = ⊤). The idea behind a cell 𝑐 is as follows.
We define 𝐸(𝑐) as the set of edges between 𝑒↑ (included) and 𝑒↓ (excluded) (if 𝑒↑ = 𝑒↓, we
assume 𝐸(𝑐) = ∅). We define 𝑇 (𝑐) as the set of tasks 𝑖 with bottleneck edge in 𝐸(𝑐) such
that 𝑏(𝑖) > 𝑏(𝑚↑) or 𝑃 (𝑖) does not contain 𝑒. We define 𝑀(𝑐) similarly w.r.t. m-tasks. For a
geometric intuition we can think of cell 𝑐 as defining an area such that 𝑇 (𝑐) and 𝑀(𝑐) lie
entirely inside—see Figure 4.
Our goal is to compute the maze-pair (𝑇𝑐,𝑀𝑐) with 𝑇𝑐 ⊆ 𝑇 (𝑐) and 𝑀𝑐 ⊆ 𝑀(𝑐) with

maximum weight 𝑤(𝑐) := 𝑤(𝑇𝑐) such that:

(1) (𝑇𝑐 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑,𝑀𝑐 ∪ {𝑚↓,𝑚↑}) is weakly feasible;
(2) (𝑇𝑐 ∪𝐵,𝑀𝑐 ∪ {𝑚↓,𝑚↑}) is 𝑘-thin;
(3) If 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇𝑐) then 𝑖 ∈ 𝐶↑ (inclusion property).
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𝑚↓

𝑚↑

𝑒 𝑒↑ 𝑒↓

𝐵(𝑐)

𝐶↓

𝐶↑

Fig. 4. Tasks 𝐵∪𝐶↓∪𝐶↑ (dashed) and area associated to a DP cell 𝑐. Tasks in 𝐶↑ (𝐶↓) use a common
edge with 𝑚↑ (𝑚↓). Tasks (resp., m-tasks) that lie entirely within the shaded area are those that belong
to 𝑇 (𝑐) (resp., 𝑀(𝑐)).
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(b) top–bottom branching
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𝑐𝑙

𝑐𝑟

(c) left–right branching

Fig. 5. The three branching cases. The area of the cell 𝑐 is the area of the subcell(s) 𝑐𝑠, (𝑐𝑡, 𝑐𝑏), and
(𝑐𝑙, 𝑐𝑟), respectively, in addition to the checkered pattern.

We call maze-pairs fulfilling the above properties feasible for 𝑐. From this definition it follows
that the optimal solution for the cell 𝑐* := (𝑒𝐿,⊥, ∅,⊤, ∅, ∅) is the weakly feasible 𝑘-thin
maze pair (𝑇𝑐* ,𝑀𝑐*) with maximum weight 𝑤(𝑇𝑐*).

We define a partial order ≺ for the cells and fill in the DP table w.r.t. this order (breaking
ties arbitrarily). Intuitively speaking, we define ≺ to ensure that 𝑐′ ≺ 𝑐′′ if the area (within
the capacity curve) corresponding to 𝑐′ is contained in the area corresponding to 𝑐′′. The
following definition achieves this: for two edges 𝑒′ and 𝑒′′, we let |𝑒′ − 𝑒′′| be the number of
edges between 𝑒′ and 𝑒′′, boundary included. We define that 𝑐′ ≺ 𝑐′′ if (in a lexicographic
sense) (|𝑒↑(𝑐′)− 𝑒↓(𝑐

′)| , |𝑒(𝑐′)− 𝑒↓(𝑐
′)|) <𝑙𝑒𝑥 (|𝑒↑(𝑐′′)− 𝑒↓(𝑐

′′)| , |𝑒(𝑐′′)− 𝑒↓(𝑐
′′)|).

The base case cells are obtained when 𝑒 = 𝑒↓. In this case one must have 𝑚↑ = ⊤,
and hence 𝑒↑ = 𝑒. Also 𝑇 (𝑐) = ∅ = 𝑀(𝑐). For those cells we set (𝑇𝑐,𝑀𝑐) := (∅, ∅) (hence
𝑤(𝑐) = 0).
Consider a cell 𝑐 that is not a base case. For the sake of presentation, assume that 𝑒↓ is

to the right of 𝑒, the other case being symmetric. Let 𝑒𝑟 be the first edge to the right of
𝑒 (possibly 𝑒𝑟 = 𝑒↓). We will compute (𝑇𝑐,𝑀𝑐) as a function of some pairs (𝑇𝑐′ ,𝑀𝑐′) with
𝑐′ ≺ 𝑐, considering the following three branching cases (see Figure 5):

∙ (single branching) This case applies only when 𝑚↑ uses both 𝑒 and 𝑒𝑟 (possibly
𝑚↑ = ⊤). Consider any feasible DP-cell 𝑐𝑠 = (𝑒𝑟,𝑚↓, 𝐶↓,𝑚↑, 𝐶↑, 𝐵𝑠) with the follow-
ing extra compatibility property : for 𝑇 ′ := 𝐶↓ ∪ 𝐶↑ ∪ 𝐵 ∪ 𝐵𝑠, one has 𝑐𝑟𝑖𝑡(𝑚↓, 𝑇

′) = 𝐶↓,
𝑐𝑟𝑖𝑡(𝑚↑, 𝑇

′) = 𝐶↑, 𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝑇
′) = 𝐵, and 𝑏𝑜𝑢𝑛𝑑𝑒𝑟(𝑚↓,𝑚↑, 𝑇

′) = 𝐵𝑠. Set 𝑤𝑠𝑏(𝑐) ←
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max𝑐𝑠{𝑤(𝑐𝑠) + 𝑤(𝐵𝑠 ∖𝐵)}.
∙ (top–bottom branching) This case applies only when 𝑚↑ uses both 𝑒 and 𝑒𝑟 (possibly
𝑚↑ = ⊤). Consider any m-task 𝑚𝑚𝑖𝑑 ̸= ⊤ that has 𝑒𝑟 as its leftmost edge and such that
𝑏(𝑚↓) < 𝑏(𝑚𝑚𝑖𝑑) < 𝑏(𝑚↑). Consider any pair of feasible entries 𝑐𝑏 = (𝑒𝑟,𝑚↓, 𝐶↓,𝑚𝑚𝑖𝑑, 𝐶𝑚𝑖𝑑, 𝐵𝑏)
and 𝑐𝑡 = (𝑒𝑟,𝑚𝑚𝑖𝑑, 𝐶𝑚𝑖𝑑,𝑚↑, 𝐶↑, 𝐵𝑡) with the following extra compatibility property : for
𝑇 ′ := 𝐶↓ ∪ 𝐶↑ ∪ 𝐶𝑚𝑖𝑑 ∪ 𝐵 ∪ 𝐵𝑏 ∪ 𝐵𝑡, one has 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇

′) = 𝐶↑, 𝑐𝑟𝑖𝑡(𝑚↓, 𝑇
′) = 𝐶↓,

𝑐𝑟𝑖𝑡(𝑚𝑚𝑖𝑑, 𝑇
′) = 𝐶𝑚𝑖𝑑, 𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝑇

′) = 𝐵, 𝑏𝑜𝑢𝑛𝑑𝑒𝑟(𝑚↓,𝑚𝑚𝑖𝑑, 𝑇
′) = 𝐵𝑏, and finally

𝑏𝑜𝑢𝑛𝑑𝑒𝑟 (𝑚𝑚𝑖𝑑,𝑚↑, 𝑇
′) = 𝐵𝑡. Set 𝑤𝑡𝑏(𝑐)← max(𝑐𝑏,𝑐𝑡){𝑤(𝑐𝑏) + 𝑤(𝑐𝑡) + 𝑤((𝐵𝑏 ∪𝐵𝑡) ∖𝐵)}.

∙ (left–right branching) This branching applies only to the case that 𝑒 is the right-

most edge of 𝑚↑, and 𝑚↑ ̸= ⊤. Consider any m-task 𝑚𝑎𝑏𝑣 that uses both 𝑒𝑟 and 𝑒
and with 𝑏(𝑚𝑎𝑏𝑣) > 𝑏(𝑚↑) (possibly 𝑚𝑎𝑏𝑣 = ⊤). Consider the pairs of feasible entries
𝑐𝑙 = (𝑒,𝑚↑, 𝐶↑,𝑚𝑎𝑏𝑣, 𝐶𝑎𝑏𝑣, 𝐵𝑙) and 𝑐𝑟 = (𝑒𝑟,𝑚↓, 𝐶↓,𝑚𝑎𝑏𝑣, 𝐶𝑎𝑏𝑣, 𝐵𝑟) with the following ex-
tra compatibility property : for 𝑇 ′ := 𝐶↓ ∪𝐶↑ ∪𝐶𝑎𝑏𝑣 ∪𝐵 ∪𝐵𝑙 ∪𝐵𝑟, one has 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇

′) = 𝐶↑,
𝑐𝑟𝑖𝑡(𝑚↓, 𝑇

′) = 𝐶↓, 𝑐𝑟𝑖𝑡(𝑚𝑎𝑏𝑣, 𝑇
′) = 𝐶𝑎𝑏𝑣, 𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝑇

′) = 𝐵, 𝑏𝑜𝑢𝑛𝑑𝑒𝑟 (𝑚↓,𝑚𝑎𝑏𝑣, 𝑇
′) =

𝐵𝑟, and 𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↑,𝑚𝑎𝑏𝑣, 𝑇
′) = 𝐵𝑙. We set 𝑤𝑙𝑟(𝑐) ← max(𝑐𝑙,𝑐𝑟){𝑤(𝑐𝑙) + 𝑤(𝑐𝑟) + 𝑤((𝐵𝑙 ∪

𝐵𝑟) ∖𝐵)}.
Finally, we set 𝑤(𝑐) := max{𝑤𝑠𝑏(𝑐), 𝑤𝑡𝑏(𝑐), 𝑤𝑙𝑟(𝑐)}. Depending on the case attaining the

maximum, we define (𝑇𝑐,𝑀𝑐): if the maximum is achieved in the single-branching case for
some 𝑐𝑠, then we set 𝑇𝑐 ← 𝑇𝑐𝑠 ∪ (𝐵𝑠 ∖ 𝐵) and 𝑀𝑐 ← 𝑀𝑐𝑠 . If the maximum is achieved in
the top–bottom branching for some 𝑐𝑏 and 𝑐𝑡, we set 𝑇𝑐 ← 𝑇𝑐𝑏 ∪ 𝑇𝑐𝑡 ∪ ((𝐵𝑏 ∪𝐵𝑡) ∖𝐵) and
𝑀𝑐 ←𝑀𝑐𝑏 ∪𝑀𝑐𝑡 ∪{𝑚𝑚𝑖𝑑}. Similarly, if the maximum is achieved in the left–right branching
for some 𝑐𝑙 and 𝑐𝑟, we set 𝑇𝑐 ← 𝑇𝑐𝑙 ∪ 𝑇𝑐𝑟 ∪ ((𝐵𝑙 ∪𝐵𝑟) ∖𝐵) and 𝑀𝑐 ←𝑀𝑐𝑙 ∪𝑀𝑐𝑟 ∪ {𝑚𝑎𝑏𝑣}.

Observe that, in the single branching case, one has that |𝑒↑(𝑐𝑠)− 𝑒↓(𝑐𝑠)| = |𝑒↑(𝑐)− 𝑒↓(𝑐)|
and that |𝑒(𝑐𝑠) − 𝑒↓(𝑐𝑠)| < |𝑒(𝑐) − 𝑒↓(𝑐)|. In the other cases one has |𝑒↑(𝑐′)− 𝑒↓(𝑐

′)| <
|𝑒↑(𝑐)− 𝑒↓(𝑐)|, where 𝑐′ ∈ {𝑐𝑏, 𝑐𝑡, 𝑐𝑙, 𝑐𝑟}. Hence 𝑐𝑠, 𝑐𝑏, 𝑐𝑡, 𝑐𝑙, 𝑐𝑟 ≺ 𝑐 as required. Note also that
𝑐* is the only feasible DP-cell associated to edge 𝑒𝐿 and for any other DP-cell 𝑐 it holds that
𝑐 ≺ 𝑐*. The DP outputs (𝑇𝑐* ,𝑀𝑐*) and we return 𝑇𝑐* as the computed set of tasks.

Lemma 15. The above dynamic program runs in time 𝑛𝑂(𝑘+1/𝛿2).

Proof. Let us first bound the number of DP cells. Each DP cell is characterized by a tuple
(𝑒,𝑚↑, 𝐶↑,𝑚↓, 𝐶↓, 𝐵). By the preprocessing step there are 𝑂(𝑛) choices for 𝑒, and by the
definition of the m-tasks there are 𝑂(𝑛2) choices for 𝑚↓ and 𝑚↑. Since |𝐶↓|, |𝐶↑| ≤ 𝑛𝑐𝑟𝑖𝑡(𝛿)

and |𝐵| ≤ 𝑘 by definition, there are 𝑛𝑂(1/𝛿2) choices for 𝐶↓ and 𝐶↑, and 𝑂(𝑛𝑘) choices for 𝐵.
Next observe that in the DP, to compute the value of a DP-cell, one needs to consider any
choice of at most two other DP-cells with certain restrictions, and to perform a polynomial
number of operations for each such choice. The claim follows. □

Recall that by Lemma 3, to obtain a 1 + 𝜀 approximation for 𝛿-large tasks, we need

to choose 𝑘 = Θ( 1𝜀 + 1
𝛿 ) which gives an overall running time of 𝑛𝑂(1/𝜀+1/𝛿2) for our DP.

Note also that, from Theorem 1, to get a 1 + 𝜀 approximation for 𝛿-small tasks, one has to

choose 𝛿 = 𝑂(𝜀2). Therefore, our 2 + 𝜀 approximation for UFP runs in time 𝑛𝑂(1/𝜀4). For a
comparison, the running time of the 2 + 𝜀 approximation for UFP under the NBA in [17] is

also 𝑛𝑂(1/𝜀4).
We next show the correctness of the dynamic program. Consider any cell 𝑐. First observe

that 𝑇𝑐 ⊆ 𝑇 (𝑐) and 𝑀𝑐 ⊆𝑀(𝑐). Also, by an easy induction, any two distinct m-tasks in 𝑀𝑐

have different bottleneck capacity. In other terms, (𝑇𝑐,𝑀𝑐) is a well-defined maze pair. We
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next prove that 𝑤(𝑇𝑐) ≥ 𝑤(𝑇 ′
𝑐) for any feasible pair (𝑇 ′

𝑐,𝑀
′
𝑐) for 𝑐. To that aim, we prove

that if a pair (𝑇 ′
𝑐,𝑀

′
𝑐) is feasible for a cell 𝑐, then it can be decomposed into the feasible

solution for a cell 𝑐𝑠 and the tasks in 𝐵(𝑐𝑠) ∖𝐵 or into feasible solutions for two cells 𝑐𝑡, 𝑐𝑏
(or 𝑐𝑙, 𝑐𝑟) and the tasks in (𝐵(𝑐𝑡) ∪𝐵(𝑐𝑏)) ∖𝐵 (or (𝐵(𝑐𝑙) ∪𝐵(𝑐𝑟)) ∖𝐵), depending on the
applying branching case.

Lemma 16. If (𝑇 ′
𝑐,𝑀

′
𝑐) is a feasible maze-pair for cell 𝑐, then 𝑤(𝑇 ′

𝑐) ≤ 𝑤(𝑇𝑐).

Proof. We show the claim by induction, following the partial order ≺ on cells. For the
base cases, it is clear that 𝑤(𝑇 ′

𝑐) = 𝑤(𝑇𝑐) = 0 and the claim follows.
Now consider a non-base-case cell 𝑐 and suppose the claim is true for all cells 𝑐′ with

𝑐′ ≺ 𝑐. W.l.o.g. assume again that 𝑒↓ lies on the right of 𝑒, and let 𝑒𝑟 be the first edge to the
right of 𝑒. We distinguish cases, depending on which m-tasks use 𝑒𝑟.
First suppose that there is no m-task 𝑚𝑚𝑖𝑑 ∈𝑀 ′

𝑐 ∩𝑀𝑒𝑟 with 𝑏(𝑚↓) < 𝑏(𝑚𝑚𝑖𝑑) < 𝑏(𝑚↑)
using 𝑒𝑟 and that 𝑚↑ uses 𝑒𝑟, where possibly 𝑚↑ = ⊤ (single branching case). Then consider
the DP cell 𝑐𝑠 = (𝑒𝑟,𝑚↓, 𝐶↓,𝑚↑, 𝐶↑, 𝐵𝑠) with 𝐵𝑠 = 𝑏𝑜𝑢𝑛𝑑𝑒𝑟 (𝑚↓,𝑚↑, 𝑇

′
𝑐 ∪𝐵). Since (𝑇 ′

𝑐,𝑀
′
𝑐)

is feasible for 𝑐, 𝑐𝑠 is indeed a cell in our DP table. In particular, observe that |𝐵𝑠| ≤ 𝑘 since
(𝑇 ′

𝑐,𝑀
′
𝑐) is 𝑘-thin. The consistency property follows by the weak feasibility of (𝑇 ′

𝑐,𝑀
′
𝑐) and

from the compatibility property of the single branching. By induction, we know that the DP
computed the optimal solution (𝑇𝑐𝑠 ,𝑀𝑐𝑠) for 𝑐𝑠. In particular, 𝑤(𝑇𝑐𝑠) ≥ 𝑤(𝑇 ′

𝑐)− 𝑤(𝐵𝑠 ∖𝐵)
since (𝑇 ′

𝑐 ∖ (𝐵𝑠 ∖𝐵),𝑀 ′
𝑐) is feasible for 𝑐𝑠. By definition of the DP transition,

𝑤(𝑇𝑐) ≥ 𝑤𝑠𝑏(𝑐) ≥ 𝑤(𝑇𝑐𝑠) + 𝑤(𝐵𝑠 ∖𝐵)

≥ (𝑤(𝑇 ′
𝑐)− 𝑤(𝐵𝑠 ∖𝐵)) + 𝑤(𝐵𝑠 ∖𝐵) = 𝑤(𝑇 ′

𝑐).

Next consider the case that there is an m-task 𝑚𝑚𝑖𝑑 ∈𝑀 ′
𝑐∩𝑀𝑒𝑟 with 𝑏(𝑚↓) < 𝑏(𝑚𝑚𝑖𝑑) <

𝑏(𝑚↑) using 𝑒𝑟. Note that by our preprocessing then 𝑚↑ uses 𝑒𝑟 where possibly 𝑚↑ = ⊤
(top–bottom branching). Also observe that there can be at most one such task 𝑚𝑚𝑖𝑑 by
our preprocessing and using that any two m-tasks in a maze pair have different bottleneck
capacities. Let us consider the (bottom) cell 𝑐𝑏 = (𝑒𝑟,𝑚↓, 𝐶↓,𝑚𝑚𝑖𝑑, 𝐶𝑚𝑖𝑑, 𝐵𝑏) and the (top)
cell 𝑐𝑡 = (𝑒𝑟,𝑚𝑚𝑖𝑑, 𝐶𝑚𝑖𝑑,𝑚↑, 𝐶↑, 𝐵𝑡) where we define 𝐵𝑏 := 𝑏𝑜𝑢𝑛𝑑𝑒𝑟(𝑚↓,𝑚𝑚𝑖𝑑, 𝑇

′
𝑐 ∪ 𝐵),

𝐵𝑡 := 𝑏𝑜𝑢𝑛𝑑𝑒𝑟(𝑚𝑚𝑖𝑑,𝑚↑, 𝑇
′
𝑐 ∪ 𝐵), and 𝐶𝑚𝑖𝑑 := 𝑐𝑟𝑖𝑡(𝑚𝑚𝑖𝑑, 𝑇

′
𝑐 ∪ 𝐵). Also in this case, the

feasibility of (𝑇 ′
𝑐,𝑀

′
𝑐) for 𝑐 implies that 𝑐𝑙 and 𝑐𝑟 are in fact DP cells. In particular, since

(𝑇 ′
𝑐,𝑀

′
𝑐) is weakly feasible, |𝐶𝑚𝑖𝑑| ≤ 𝑛𝑐𝑟𝑖𝑡(𝛿) by Lemma 7. The pair (𝑇 ′

𝑐∩𝑇 (𝑐𝑏),𝑀 ′
𝑐∩𝑀(𝑐𝑏)})

is feasible for 𝑐𝑏 and the pair (𝑇 ′
𝑐 ∩ 𝑇 (𝑐𝑡),𝑀

′
𝑐 ∩𝑀(𝑐𝑏)) is feasible for 𝑐𝑡. In this case 𝑇 ′

𝑐 is
partitioned by 𝑇 ′

𝑐 ∩ 𝑇 (𝑐𝑏), 𝑇
′
𝑐 ∩ 𝑇 (𝑐𝑡), and (𝐵𝑏 ∪𝐵𝑡) ∖𝐵. Hence,

𝑤(𝑇𝑐) ≥ 𝑤𝑡𝑏(𝑐) ≥ 𝑤(𝑐𝑏) + 𝑤(𝑐𝑡) + 𝑤((𝐵𝑏 ∪𝐵𝑡) ∖𝐵)

≥ 𝑤(𝑇 ′
𝑐 ∩ 𝑇 (𝑐𝑏)) + 𝑤(𝑇 ′

𝑐 ∩ 𝑇 (𝑐𝑡)) + 𝑤((𝐵𝑏 ∪𝐵𝑡) ∖𝐵)

= 𝑤(𝑇 ′
𝑐).

Finally, consider the case that there is no m-task 𝑚𝑚𝑖𝑑 ∈ 𝑀 ′
𝑐 ∩ 𝑀𝑒𝑟 with 𝑏(𝑚↓) <

𝑏(𝑚𝑚𝑖𝑑) < 𝑏(𝑚↑) and that 𝑚↑ does not use 𝑒𝑟 (left–right branching case). Let 𝑚𝑎𝑏𝑣 ∈
𝑀 ′

𝑐∩𝑀𝑒𝑟 be the m-task minimizing 𝑏(𝑚𝑎𝑏𝑣) such that 𝑏(𝑚𝑎𝑏𝑣) > 𝑏(𝑚↑) (possibly 𝑚𝑎𝑏𝑣 = ⊤).
By the preprocessing of the input tasks, if 𝑚𝑎𝑏𝑣 ̸= ⊤, then 𝑚𝑎𝑏𝑣 must use 𝑒, as well (otherwise
two m-tasks with different bottleneck capacities would share one endpoint).

Consider now the cells 𝑐𝑙 = (𝑒,𝑚↑, 𝐶↑,𝑚𝑎𝑏𝑣, 𝐶𝑎𝑏𝑣, 𝐵𝑙) and 𝑐𝑟 = (𝑒𝑟,𝑚↓, 𝐶↓,𝑚𝑎𝑏𝑣, 𝐶𝑎𝑏𝑣, 𝐵𝑟)
where we define 𝐵𝑙 = 𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↑,𝑚𝑎𝑏𝑣, 𝑇

′
𝑐 ∪ 𝐵), 𝐵𝑟 = 𝑏𝑜𝑢𝑛𝑑𝑒𝑟(𝑚↓,𝑚𝑎𝑏𝑣, 𝑇

′
𝑐 ∪ 𝐵), and

𝐶𝑎𝑏𝑣 = 𝑐𝑟𝑖𝑡(𝑚𝑎𝑏𝑣, 𝑇
′
𝑐 ∪ 𝐵). Again, since (𝑇 ′

𝑐,𝑀
′
𝑐) is feasible for 𝑐, 𝑐𝑙 and 𝑐𝑟 are in fact DP

cells.
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Also, the pair (𝑇 ′
𝑐∩𝑇 (𝑐𝑙),𝑀 ′

𝑐∩𝑀(𝑐𝑙)) is feasible for 𝑐𝑙 and the pair (𝑇 ′
𝑐∩𝑇 (𝑐𝑟),𝑀 ′

𝑐∩𝑀(𝑐𝑟))
is feasible for 𝑐𝑟. By induction, we know that the DP computed the optimal solutions
(𝑇𝑐𝑙 ,𝑀𝑐𝑙) and (𝑇𝑐𝑟 ,𝑀𝑐𝑟) for 𝑐𝑙 and 𝑐𝑟, respectively. Observe that 𝑇 ′

𝑐 is partitioned by
𝑇 ′
𝑐 ∩ 𝑇 (𝑐𝑙), 𝑇

′
𝑐 ∩ 𝑇 (𝑐𝑟), and (𝐵𝑙 ∪𝐵𝑟) ∖𝐵. Hence,

𝑤(𝑇𝑐) ≥ 𝑤𝑙𝑟(𝑐) ≥ 𝑤(𝑐𝑙) + 𝑤(𝑐𝑟) + 𝑤((𝐵𝑙 ∪𝐵𝑟) ∖𝐵)

= 𝑤(𝑇 ′
𝑐 ∩ 𝑇 (𝑐𝑙)) + 𝑤(𝑇 ′

𝑐 ∩ 𝑇 (𝑐𝑟)) + 𝑤((𝐵𝑙 ∪𝐵𝑟) ∖𝐵)

= 𝑤(𝑇 ′
𝑐).

This concludes the proof. □

We next prove that the DP computes a feasible solution (satisfying properties 1-3) for
each DP cell 𝑐. The proofs of the next three lemmas use a similar inductive pattern. We
show that whenever we extend the solution for a cell 𝑐𝑠 or combine the solutions for two
cells 𝑐𝑡,𝑐𝑏 or 𝑐𝑙, 𝑐𝑟 to a solution for some cell 𝑐 according to the DP transition, then the new
solution is 𝑘-thin (has the inclusion property, is weakly feasible) assuming that the original
cells 𝑐𝑠 or 𝑐𝑡,𝑐𝑏 or 𝑐𝑙, 𝑐𝑟 were 𝑘-thin (have the inclusion property, are weakly feasible).

Lemma 17 (𝑘-thinness). For each DP-cell 𝑐 = (𝑒,𝑚↓, 𝐶↓,𝑚↑, 𝐶↑, 𝐵), we have that (𝑇𝑐 ∪
𝐵,𝑀𝑐 ∪ {𝑚↓,𝑚↑}) is 𝑘-thin.

Proof. It is sufficient to show that, given any edge 𝑒 and any two m-tasks 𝑚′,𝑚′′ ∈ (𝑀𝑐∪
{𝑚↓,𝑚↑})∩𝑀𝑒, with 𝑏(𝑚′) < 𝑏(𝑚′′) and such that there is no 𝑚′′′ ∈ (𝑀𝑐 ∪{𝑚↓,𝑚↑})∩𝑀𝑒

with 𝑏(𝑚′) < 𝑏(𝑚′′′) < 𝑏(𝑚′′), then the number of tasks 𝑖 in (𝑇𝑐 ∪ 𝐵) ∩ 𝑇𝑒 with 𝑏(𝑚′) <
𝑏(𝑖) ≤ 𝑏(𝑚′′) is at most 𝑘. In other terms, |𝑏𝑜𝑢𝑛𝑑𝑒(𝑚′,𝑚′′, 𝑇𝑐 ∪𝐵)| ≤ 𝑘.

We prove the latter claim by induction, following the partial order ≺ on the cells. For the
base cases, recall that for each DP cell 𝑐 we required that |𝐵(𝑐)| ≤ 𝑘. Hence, in that case
(𝑇𝑐 ∪𝐵,𝑀𝑐 ∪ {𝑚↓,𝑚↑}) = (𝐵, {𝑚↓,𝑚↑}) and the claim is trivially true.

Now consider a non-base-case DP cell 𝑐 and suppose the claim is true for all cells 𝑐′ with
𝑐′ ≺ 𝑐. Assume w.l.o.g. that 𝑒↓ lies on the right of 𝑒. We distinguish the three branching
cases and show that in each case the pair (𝑇𝑐,𝑀𝑐) is 𝑘-thin.
First suppose that the single branching case applies, that is, there is a cell 𝑐𝑠 such that

𝑇𝑐 = 𝑇𝑐𝑠 ∪ (𝐵(𝑐𝑠) ∖𝐵) and 𝑀𝑐 = 𝑀𝑐𝑠 . By induction (𝑇𝑐𝑠 ∪𝐵(𝑐𝑠),𝑀𝑐𝑠 ∪ {𝑚↓,𝑚↑}) is 𝑘-thin.
Hence, it suffices to ensure that |𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝑇𝑐 ∪𝐵)| ≤ 𝑘. However, the latter holds
since |𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝑇𝑐 ∪𝐵)| = |𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝐵)| = |𝐵| by the compatibility property
of the branching, and |𝐵| ≤ 𝑘 by the definition of DP cells.

The same basic argument also works for the remaining two branching cases: it is sufficient
to bound |𝑏𝑜𝑢𝑛𝑑𝑒(𝑚↓,𝑚↑, 𝑇𝑐 ∪𝐵)|, and an upper bound of 𝑘 follows from the compatibility
property of the considered branching and by definition of DP cells. □

Lemma 18 (Inclusion property). For each DP-cell 𝑐 = (𝑒,𝑚↓, 𝐶↓,𝑚↑, 𝐶↑, 𝐵), if 𝑖 ∈
𝑐𝑟𝑖𝑡(𝑚↑, 𝑇𝑐) then 𝑖 ∈ 𝐶↑.

Proof. We prove this claim by using the compatibility properties of the branching
procedures. The claim is trivially true for base case cells 𝑐 since 𝑇𝑐 ⊆ 𝑇 (𝑐) = ∅.
Consider now a non-base-case cell 𝑐, and assume the claim holds for any cell 𝑐′ ≺ 𝑐.

Assume w.l.o.g. that 𝑒↓ lies on the right of 𝑒. Suppose that 𝑇𝑐 = 𝑇𝑐𝑠 ∪ (𝐵𝑠 ∖ 𝐵) for some
cell 𝑐𝑠 = (𝑒𝑟,𝑚↓, 𝐶↓,𝑚↑, 𝐶↑, 𝐵𝑠) in the single branching case. If 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚↑, 𝐵𝑠 ∖ 𝐵) then
𝑖 ∈ 𝐶↑ by the compatibility property of the single branching procedure. If 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇𝑐𝑠)
then 𝑖 ∈ 𝐶↑ by the induction hypothesis.
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Assume now that 𝑇𝑐 = 𝑇𝑐𝑡 ∪ 𝑇𝑐𝑏 ∪ ((𝐵(𝑐𝑡) ∪ 𝐵(𝑐𝑏)) ∖ 𝐵) holds for two cells 𝑐𝑏 =
(𝑒𝑟,𝑚↓, 𝐶↓,𝑚𝑚𝑖𝑑, 𝐶𝑚𝑖𝑑, 𝐵𝑏) and 𝑐𝑡 = (𝑒𝑟,𝑚𝑚𝑖𝑑, 𝐶𝑚𝑖𝑑,𝑚↑, 𝐶↑, 𝐵𝑡) in the top–bottom branch-
ing case. If 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇𝑐𝑡) then 𝑖 ∈ 𝐶↑ by the induction hypothesis. If 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇𝑐𝑏) then
𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚𝑚𝑖𝑑, 𝑇𝑐𝑏) and hence 𝑖 ∈ 𝐶𝑚𝑖𝑑 by the induction hypothesis. Now the compatibility
property of the top–bottom branching case implies that 𝑖 ∈ 𝐶↑ (using that 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇𝑐𝑏)).
If 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚↑, (𝐵(𝑐𝑡) ∪ 𝐵(𝑐𝑏)) ∖ 𝐵) then 𝑖 ∈ 𝐶↑ by the compatibility property of the
top–bottom branching case.
Finally, assume that 𝑇𝑐 = 𝑇𝑐𝑙 ∪ 𝑇𝑐𝑟 ∪ ((𝐵𝑙 ∪𝐵𝑟) ∖𝐵) for two DP cells which are defined

as 𝑐𝑙 = (𝑒,𝑚↑, 𝐶↑,𝑚𝑎𝑏𝑣, 𝐶𝑎𝑏𝑣, 𝐵𝑙) and 𝑐𝑟 = (𝑒𝑟,𝑚↓, 𝐶↓,𝑚𝑎𝑏𝑣, 𝐶𝑎𝑏𝑣, 𝐵𝑟) in the left–right
branching case. If 𝑖 ∈ 𝑇𝑐𝑙 then 𝑏(𝑖) > 𝑏(𝑚↑), so 𝑖 is not critical for 𝑚↑ and there is nothing
to show. If 𝑖 ∈ 𝑐𝑟𝑖𝑡(𝑚↑, 𝑇𝑐𝑟) then also 𝑖 ∈ 𝐵 and the claim follows from the compatibility
property of the left–right branching case. Finally, if 𝑖 ∈ ((𝐵𝑙 ∪𝐵𝑟) ∖𝐵 then the claim also
follows from the compatibility property. □

Lemma 19 (Weak feasibility). For each DP-cell 𝑐 = (𝑒,𝑚↓, 𝐶↓,𝑚↑, 𝐶↑, 𝐵), we have that
(𝑇𝑐 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑,𝑀𝑐 ∪ {𝑚↓,𝑚↑}) is weakly feasible.

Proof. For any edge 𝑓 , define 𝑚𝑓 := 𝑚𝑓 (𝑐) as the highest bottleneck capacity m-task
in 𝑀𝑐 ∪ {𝑚↓(𝑐),𝑚↑(𝑐),⊥} ∖ {⊤} using edge 𝑓 . Let also 𝑇 𝑒𝑥𝑡

𝑐 := 𝑇𝑐 ∪ 𝐶↓(𝑐) ∪ 𝐶↑(𝑐) ∪ 𝐵(𝑐).
With this notation, we need to prove that for each edge 𝑓

𝑑(𝑎𝑏𝑣𝑓 (𝑚𝑓 (𝑐), 𝑇
𝑒𝑥𝑡
𝑐 )) + 𝑑(𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 (𝑐), 𝑇

𝑒𝑥𝑡
𝑐 )) + 𝑑(𝑚𝑓 (𝑐)) ≤ 𝑢𝑓 .

We prove the claim by induction, following the partial order ≺ on the cells. If 𝑐 is a
base case cell then 𝑇𝑐 ⊆ 𝑇 (𝑐) = ∅, 𝑀𝑐 ⊆𝑀(𝑐) = ∅ and hence 𝑇 𝑒𝑥𝑡

𝑐 = 𝐶↓ ∪ 𝐶↑ ∪𝐵. By the
consistency property, (𝑇 𝑒𝑥𝑡

𝑐 , {𝑚↓,𝑚↑}) is weakly feasible.
For notation convenience, let us say that 𝑒′ < 𝑒′′ if edge 𝑒′ is to the left of edge 𝑒′′ and

𝑒′ ̸= 𝑒′′. We define analogously ≤, >, and ≥.
Suppose now that 𝑐 is not a base case cell. By induction hypothesis, we know that the

claim holds for any cell 𝑐′ ≺ 𝑐. Assume w.l.o.g. that 𝑒 < 𝑒↓. Let 𝑒𝑟 be the first edge to the
right of 𝑒 (possibly 𝑒𝑟 = 𝑒↓). We distinguish 3 cases, depending on the branching that defines
the maximum value of 𝑤(𝑐).

a) (Single branching) Let 𝑐𝑠 be the cell achieving the maximum. Recall that 𝑇𝑐 =
𝑇𝑐𝑠 ∪ (𝐵𝑠 ∖𝐵) and 𝑀𝑐 = 𝑀𝑐𝑠 . We have 𝑚𝑓 = 𝑚𝑓 (𝑐) = 𝑚𝑓 (𝑐𝑠) because 𝑀𝑐 = 𝑀𝑐𝑠 . Let us
assume 𝑒↑ < 𝑒, the case 𝑒↑ ≥ 𝑒 being analogous. Consider any edge 𝑓 . We distinguish 3
subcases depending on the relative position of 𝑓 :

a.1) (𝑓 ≤ 𝑒↑ or 𝑓 ≥ 𝑒↓) Here 𝑇 (𝑐) ∩ 𝑇𝑓 = 𝑀(𝑐) ∩𝑀𝑓 = ∅, hence 𝑇 𝑒𝑥𝑡
𝑐 = 𝐶↓ ∪𝐶↑ ∪𝐵 and

𝑀𝑐 ∪ {𝑚↓,𝑚↑} = {𝑚↓,𝑚↑}. The claim follows by the consistency property.

a.2) (𝑒 < 𝑓 < 𝑒↓). In this range of edges we have (𝐵 ∖𝐵𝑠) ∩ 𝑇𝑓 = ∅ by the compatibility
property of the single branching case. Hence

𝑇 𝑒𝑥𝑡
𝑐 ∩ 𝑇𝑓 = (𝑇𝑐 ∪ 𝐶↓ ∪ 𝐶↑ ∪𝐵) ∩ 𝑇𝑓

= (𝑇𝑐𝑠 ∪𝐵 ∪𝐵𝑠 ∪ 𝐶↓ ∪ 𝐶↑) ∩ 𝑇𝑓

= (𝑇𝑐𝑠 ∪ 𝐶↓ ∪ 𝐶↑ ∪𝐵𝑠) ∩ 𝑇𝑓 = 𝑇 𝑒𝑥𝑡
𝑐𝑠 ∩ 𝑇𝑓 .

As a consequence, 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 ) = 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇

𝑒𝑥𝑡
𝑐𝑠 ) and 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇

𝑒𝑥𝑡
𝑐 ) = 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇

𝑒𝑥𝑡
𝑐𝑠 ).

The claim follows by induction hypothesis on 𝑐𝑠.
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a.3) (𝑒↑ < 𝑓 ≤ 𝑒) In this case 𝑏(𝑚𝑓 ) ≥ 𝑏(𝑚↑). Since any task 𝑖 ∈ 𝐵 has 𝑏(𝑖) ≤ 𝑏(𝑚↑), we
have

𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 ) = 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑠 ∪𝐵𝑠 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

= 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑠 ∪𝐵𝑠 ∪ 𝐶↓ ∪ 𝐶↑)

= 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑠 ).

Also, any task 𝑖 ∈ 𝐵 that is critical for 𝑚𝑓 must be contained in 𝐶↑ by the compatibility
property of the single branching, hence 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝐵) ⊆ 𝐶↑ ∩ 𝑇𝑓 . Therefore

𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 ) = 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑠 ∪𝐵𝑠 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

= 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑠 ∪𝐵𝑠 ∪ 𝐶↓ ∪ 𝐶↑)

= 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑠 ).

The claim then follows by induction hypothesis on 𝑐𝑠.

b) (Top-bottom branching) Let 𝑐𝑏 and 𝑐𝑡 be the cells achieving the maximum. Recall
that 𝑀𝑐 = 𝑀𝑐𝑏 ∪𝑀𝑐𝑡 ∪ {𝑚𝑚𝑖𝑑} and 𝑇𝑐 = 𝑇𝑐𝑏 ∪ 𝑇𝑐𝑡 ∪ ((𝐵𝑏 ∪𝐵𝑡) ∖𝐵). Let 𝑒𝑚𝑖𝑑 := 𝑒(𝑚𝑚𝑖𝑑).
Note that 𝑒 < 𝑒𝑚𝑖𝑑 and 𝑒↑ < 𝑒𝑚𝑖𝑑. Let us assume 𝑒↑ < 𝑒, the case 𝑒↑ ≥ 𝑒 being analogous.
Consider any edge 𝑓 . We distinguish 4 subcases:

b.1) (𝑓 ≤ 𝑒↑ or 𝑓 ≥ 𝑒↓) Here 𝑇 (𝑐) ∩ 𝑇𝑓 = 𝑀(𝑐) ∩𝑀𝑓 = ∅. The claim follows by the same
argument as in case (a.1).

b.2) (𝑒mid ≤ 𝑓 < 𝑒↓) Note that 𝑀(𝑐𝑡) ∩𝑀𝑓 = 𝑇 (𝑐𝑡) ∩ 𝑇𝑓 = ∅. We have 𝑚𝑓 = 𝑚𝑓 (𝑐) =
𝑚𝑓 (𝑐𝑏). Observe also that ((𝐵 ∪ 𝐵𝑡) ∖ 𝐵𝑏) ∩ 𝑇𝑓 = ∅ and 𝐶↑ ∩ 𝑇𝑓 ⊆ 𝐶𝑚𝑖𝑑 ∩ 𝑇𝑓 by the
compatibility property of the top–bottom branching case. Altogether

𝑇 𝑒𝑥𝑡
𝑐 ∩ 𝑇𝑓 = (𝑇𝑐𝑏 ∪ 𝑇𝑐𝑡 ∪𝐵𝑏 ∪𝐵𝑡 ∪𝐵 ∪ 𝐶↑ ∪ 𝐶↓) ∩ 𝑇𝑓

= (𝑇𝑐𝑏 ∪𝐵𝑏 ∪ 𝐶↑ ∪ 𝐶↓) ∩ 𝑇𝑓

⊆ (𝑇𝑐𝑏 ∪𝐵𝑏 ∪ 𝐶𝑚𝑖𝑑 ∪ 𝐶↓) ∩ 𝑇𝑓 = 𝑇 𝑒𝑥𝑡
𝑐𝑏
∩ 𝑇𝑓 .

Then 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 ) ⊆ 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇

𝑒𝑥𝑡
𝑐𝑏

) and 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 ) ⊆ 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇

𝑒𝑥𝑡
𝑐𝑏

). The claim
follows by induction hypothesis on 𝑐𝑏.

b.3) (𝑒r ≤ 𝑓 < 𝑒mid) We have 𝑚𝑓 = 𝑚𝑓 (𝑐) = 𝑚𝑓 (𝑐𝑡) and observe that 𝑏(𝑚𝑓 ) ≥ 𝑏(𝑚𝑚𝑖𝑑).
By the compatibility property of the top–bottom branching, if 𝑖 ∈ 𝐵∩𝑇𝑓 and 𝑏(𝑖) > 𝑏(𝑚𝑚𝑖𝑑),
then 𝑖 ∈ 𝐵𝑡. Note also that for any 𝑖 ∈ (𝐶𝑚𝑖𝑑 ∪ 𝐶↓ ∪ 𝑇𝑐𝑏 ∪𝐵𝑏) ∩ 𝑇𝑓 we have 𝑏(𝑖) ≤ 𝑏(𝑚𝑚𝑖𝑑).
Altogether

𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 )

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑏 ∪ 𝑇𝑐𝑡 ∪𝐵𝑏 ∪𝐵𝑡 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑡 ∪𝐵𝑡 ∪ 𝐶↑)

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑡 ∪𝐵𝑡 ∪ 𝐶𝑚𝑖𝑑 ∪ 𝐶↑) = 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑡 ).

By the compatibility property of the top–bottom branching, if 𝑖 ∈ (𝐵𝑏 ∪ 𝐵 ∪ 𝐶↓) ∩ 𝑇𝑓 is
critical for 𝑚𝑓 (hence for 𝑚𝑚𝑖𝑑), then 𝑖 ∈ 𝐶𝑚𝑖𝑑. By Lemma 18, if 𝑖 ∈ 𝑇𝑐𝑏 ∩ 𝑇𝑓 is critical
for 𝑚𝑓 (hence for 𝑚𝑚𝑖𝑑), then 𝑖 ∈ 𝐶𝑚𝑖𝑑. Altogether 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇

𝑒𝑥𝑡
𝑐 ) = 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑏 ∪ 𝑇𝑐𝑡 ∪

𝐵𝑏 ∪ 𝐵𝑡 ∪ 𝐵 ∪ 𝐶↓ ∪ 𝐶↑) ⊆ 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑡 ∪ 𝐵𝑡 ∪ 𝐶↑ ∪ 𝐶𝑚𝑖𝑑) = 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑡 ). The claim

follows by induction hypothesis on 𝑐𝑡.
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b.4) (𝑒↑ < 𝑓 < 𝑒r) We have 𝑚𝑓 = 𝑚𝑓 (𝑐) = 𝑚𝑓 (𝑐𝑡) and observe that 𝑏(𝑚𝑓 ) ≥ 𝑏(𝑚↑). Note
that 𝑇𝑐𝑏 ∩ 𝑇𝑓 = ∅. Also, for any 𝑖 ∈ (𝐵 ∪𝐵𝑏 ∪ 𝐶↓ ∪ 𝐶𝑚𝑖𝑑) ∩ 𝑇𝑓 we have that 𝑏(𝑖) ≤ 𝑏(𝑚↑).
Then

𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 )

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑏 ∪ 𝑇𝑐𝑡 ∪𝐵𝑏 ∪𝐵𝑡 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑡 ∪𝐵𝑡 ∪ 𝐶↑) = 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑡 ).

By the compatibility property of the top–bottom branching case, if 𝑖 ∈ (𝐵𝑏∪𝐵∪𝐶↓∪𝐶𝑚𝑖𝑑)∩𝑇𝑓

is critical for 𝑚𝑓 , then 𝑖 ∈ 𝐶↑. Thus

𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 )

=𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑏 ∪ 𝑇𝑐𝑡 ∪𝐵𝑏 ∪𝐵𝑡 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

=𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑡 ∪𝐵𝑡 ∪ 𝐶↑ ∪ 𝐶𝑚𝑖𝑑) = 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑡 ).

The claim follows by induction hypothesis on 𝑐𝑡.

c) (Left-right branching) Let 𝑐𝑙 and 𝑐𝑟 be the cells achieving the maximum. Recall that
𝑀𝑐 = 𝑀𝑐𝑙∪𝑀𝑐𝑟 ∪{𝑚𝑎𝑏𝑣} and 𝑇𝑐 = 𝑇𝑐𝑙∪𝑇𝑐𝑟 ∪((𝐵𝑙∪𝐵𝑟)∖𝐵). Let 𝑒𝑎𝑏𝑣 := 𝑒(𝑚𝑎𝑏𝑣) (𝑒𝑎𝑏𝑣 := 𝑒𝑟
if 𝑚𝑎𝑏𝑣 = ⊤). Let us assume that 𝑒𝑎𝑏𝑣 > 𝑒𝑟, the case 𝑒𝑎𝑏𝑣 ≤ 𝑒𝑟 being analogous. Consider
any edge 𝑓 . We distinguish 4 subcases:

c.1) (𝑓 ≤ 𝑒↑ or f ≥ e↓) In this case 𝑇 (𝑐) ∩ 𝑇𝑓 = 𝑀(𝑐) ∩𝑀𝑓 = ∅. The claim follows by the
same argument as in case (a.1).

c.2) (𝑒abv ≤ f < 𝑒↓) In this case 𝑇 (𝑐𝑙)∩ 𝑇𝑓 = 𝑀(𝑐𝑙)∩𝑀𝑓 = ∅. As a consequence, 𝑚𝑓 (𝑐) =
𝑚𝑓 (𝑐𝑟). Also, ((𝐵 ∪ 𝐵𝑙) ∖ 𝐵𝑟) ∩ 𝑇𝑓 = ∅ by the compatibility property of the left–right
branching. Furthermore, 𝐶↑ ∩ 𝑇𝑓 ⊆ 𝐵𝑟 ∪ 𝐶↓ and 𝐶𝑎𝑏𝑣 ∩ 𝑇𝑓 ⊆ 𝐵𝑟 ∪ 𝑇𝑐𝑟 ∪ 𝐶↓. Then

𝑇 𝑒𝑥𝑡
𝑐 ∩ 𝑇𝑓 = (𝑇𝑐𝑙 ∪ 𝑇𝑐𝑟 ∪𝐵𝑙 ∪𝐵𝑟 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑) ∩ 𝑇𝑓

= (𝑇𝑐𝑟 ∪𝐵𝑟 ∪ 𝐶↓) ∩ 𝑇𝑓

= (𝑇𝑐𝑟 ∪𝐵𝑟 ∪ 𝐶↓ ∪ 𝐶𝑎𝑏𝑣) ∩ 𝑇𝑓 = 𝑇 𝑒𝑥𝑡
𝑐𝑟 ∩ 𝑇𝑓 .

As a consequence 𝑎𝑏𝑣𝑓 (𝑚𝑓 (𝑐), 𝑇
𝑒𝑥𝑡
𝑐 ) = 𝑎𝑏𝑣𝑓 (𝑚𝑓 (𝑐𝑟), 𝑇

𝑒𝑥𝑡
𝑐𝑟 ) and also 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 (𝑐), 𝑇

𝑒𝑥𝑡
𝑐 ) =

𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 (𝑐𝑟), 𝑇
𝑒𝑥𝑡
𝑐𝑟 ). The claim follows by induction hypothesis on 𝑐𝑟.

c.3) (𝑒r ≤ 𝑓 < 𝑒abv) We have 𝑚𝑓 = 𝑚𝑓 (𝑐) = 𝑚𝑓 (𝑐𝑙) and 𝑏(𝑚𝑓 ) ≥ 𝑏(𝑚𝑎𝑏𝑣). Note that any
task 𝑖 ∈ (𝑇𝑐𝑟 ∪𝐵 ∪𝐵𝑟 ∪ 𝐶↓ ∪ 𝐶𝑎𝑏𝑣) ∩ 𝑇𝑓 has 𝑏(𝑖) ≤ 𝑏(𝑚𝑎𝑏𝑣). Hence

𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 )

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪ 𝑇𝑐𝑟 ∪𝐵𝑙 ∪𝐵𝑟 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪𝐵𝑙 ∪ 𝐶↑ ∪ 𝐶𝑎𝑏𝑣) = 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑙

).

Furthermore, if a task 𝑖 ∈ (𝑇𝑐𝑟 ∪𝐵 ∪𝐵𝑟 ∪ 𝐶↓) ∩ 𝑇𝑓 is critical for 𝑚𝑓 , then 𝑖 ∈ 𝐶𝑎𝑏𝑣 by the
compatibility property of the left–right branching. Consequently

𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 )

=𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪ 𝑇𝑐𝑟 ∪𝐵𝑙 ∪𝐵𝑟 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

⊆𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪ 𝐶𝑎𝑏𝑣 ∪ 𝐶↑ ∪𝐵𝑙) = 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑙

).

The claim follows by induction hypothesis on 𝑐𝑙.
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c.4) (𝑒↑ < 𝑓 < 𝑒r) In this case 𝑚𝑓 = 𝑚𝑓 (𝑐) = 𝑚𝑓 (𝑐𝑙) and 𝑏(𝑚𝑓 ) ≥ 𝑏(𝑚↑). By the compati-
bility property of the left–right branching, ((𝐵𝑟 ∪𝐵) ∖𝐵𝑙) ∩ 𝑇𝑓 = 𝐵 ∩ 𝑇𝑓 . Observe that any
task 𝑖 ∈ (𝐵 ∪ 𝐶↓) ∩ 𝑇𝑓 has 𝑏(𝑖) ≤ 𝑏(𝑚↑). Also, 𝑇𝑐𝑟 ∩ 𝑇𝑓 ⊆ 𝑇 (𝑐𝑟) ∪ 𝑇𝑓 = ∅. Then

𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 )

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪ 𝑇𝑐𝑟 ∪𝐵𝑙 ∪𝐵𝑟 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

=𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪𝐵𝑙 ∪ 𝐶↑)

⊆𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪𝐵𝑙 ∪ 𝐶↑ ∪ 𝐶𝑎𝑏𝑣) = 𝑎𝑏𝑣𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑙

).

By the compatibility property of the left–right branching, any 𝑖 ∈ (𝐵 ∪ 𝐶↓) ∩ 𝑇𝑓 that is
critical for 𝑚𝑓 must belong to 𝐶↑. Thus

𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐 )

=𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪ 𝑇𝑐𝑟 ∪𝐵𝑙 ∪𝐵𝑟 ∪𝐵 ∪ 𝐶↓ ∪ 𝐶↑)

=𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪𝐵𝑙 ∪ 𝐶↑)

⊆𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇𝑐𝑙 ∪𝐵𝑙 ∪ 𝐶↑ ∪ 𝐶𝑎𝑏𝑣) = 𝑐𝑟𝑖𝑡𝑓 (𝑚𝑓 , 𝑇
𝑒𝑥𝑡
𝑐𝑙

).

The claim follows by induction hypothesis on 𝑐𝑙. □

Now the proof of Lemma 6 follows from Lemmas 15-19, and the fact that the cell
𝑐* := (𝑒*,⊥, ∅,⊤, ∅, ∅) corresponds to the optimal weakly-feasible 𝑘-thin maze-pair.
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